1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_vm.h" 40 #include "amdgpu_trace.h" 41 #include "amdgpu_amdkfd.h" 42 #include "amdgpu_gmc.h" 43 #include "amdgpu_xgmi.h" 44 #include "amdgpu_dma_buf.h" 45 #include "amdgpu_res_cursor.h" 46 #include "kfd_svm.h" 47 48 /** 49 * DOC: GPUVM 50 * 51 * GPUVM is the MMU functionality provided on the GPU. 52 * GPUVM is similar to the legacy GART on older asics, however 53 * rather than there being a single global GART table 54 * for the entire GPU, there can be multiple GPUVM page tables active 55 * at any given time. The GPUVM page tables can contain a mix 56 * VRAM pages and system pages (both memory and MMIO) and system pages 57 * can be mapped as snooped (cached system pages) or unsnooped 58 * (uncached system pages). 59 * 60 * Each active GPUVM has an ID associated with it and there is a page table 61 * linked with each VMID. When executing a command buffer, 62 * the kernel tells the engine what VMID to use for that command 63 * buffer. VMIDs are allocated dynamically as commands are submitted. 64 * The userspace drivers maintain their own address space and the kernel 65 * sets up their pages tables accordingly when they submit their 66 * command buffers and a VMID is assigned. 67 * The hardware supports up to 16 active GPUVMs at any given time. 68 * 69 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 70 * on the ASIC family. GPUVM supports RWX attributes on each page as well 71 * as other features such as encryption and caching attributes. 72 * 73 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 74 * addition to an aperture managed by a page table, VMID 0 also has 75 * several other apertures. There is an aperture for direct access to VRAM 76 * and there is a legacy AGP aperture which just forwards accesses directly 77 * to the matching system physical addresses (or IOVAs when an IOMMU is 78 * present). These apertures provide direct access to these memories without 79 * incurring the overhead of a page table. VMID 0 is used by the kernel 80 * driver for tasks like memory management. 81 * 82 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 83 * For user applications, each application can have their own unique GPUVM 84 * address space. The application manages the address space and the kernel 85 * driver manages the GPUVM page tables for each process. If an GPU client 86 * accesses an invalid page, it will generate a GPU page fault, similar to 87 * accessing an invalid page on a CPU. 88 */ 89 90 #define START(node) ((node)->start) 91 #define LAST(node) ((node)->last) 92 93 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 94 START, LAST, static, amdgpu_vm_it) 95 96 #undef START 97 #undef LAST 98 99 /** 100 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 101 */ 102 struct amdgpu_prt_cb { 103 104 /** 105 * @adev: amdgpu device 106 */ 107 struct amdgpu_device *adev; 108 109 /** 110 * @cb: callback 111 */ 112 struct dma_fence_cb cb; 113 }; 114 115 /** 116 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 117 */ 118 struct amdgpu_vm_tlb_seq_struct { 119 /** 120 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 121 */ 122 struct amdgpu_vm *vm; 123 124 /** 125 * @cb: callback 126 */ 127 struct dma_fence_cb cb; 128 }; 129 130 /** 131 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 132 * 133 * @adev: amdgpu_device pointer 134 * @vm: amdgpu_vm pointer 135 * @pasid: the pasid the VM is using on this GPU 136 * 137 * Set the pasid this VM is using on this GPU, can also be used to remove the 138 * pasid by passing in zero. 139 * 140 */ 141 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 142 u32 pasid) 143 { 144 int r; 145 146 if (vm->pasid == pasid) 147 return 0; 148 149 if (vm->pasid) { 150 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 151 if (r < 0) 152 return r; 153 154 vm->pasid = 0; 155 } 156 157 if (pasid) { 158 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 159 GFP_KERNEL)); 160 if (r < 0) 161 return r; 162 163 vm->pasid = pasid; 164 } 165 166 167 return 0; 168 } 169 170 /** 171 * amdgpu_vm_bo_evicted - vm_bo is evicted 172 * 173 * @vm_bo: vm_bo which is evicted 174 * 175 * State for PDs/PTs and per VM BOs which are not at the location they should 176 * be. 177 */ 178 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 179 { 180 struct amdgpu_vm *vm = vm_bo->vm; 181 struct amdgpu_bo *bo = vm_bo->bo; 182 183 vm_bo->moved = true; 184 spin_lock(&vm_bo->vm->status_lock); 185 if (bo->tbo.type == ttm_bo_type_kernel) 186 list_move(&vm_bo->vm_status, &vm->evicted); 187 else 188 list_move_tail(&vm_bo->vm_status, &vm->evicted); 189 spin_unlock(&vm_bo->vm->status_lock); 190 } 191 /** 192 * amdgpu_vm_bo_moved - vm_bo is moved 193 * 194 * @vm_bo: vm_bo which is moved 195 * 196 * State for per VM BOs which are moved, but that change is not yet reflected 197 * in the page tables. 198 */ 199 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 200 { 201 spin_lock(&vm_bo->vm->status_lock); 202 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 203 spin_unlock(&vm_bo->vm->status_lock); 204 } 205 206 /** 207 * amdgpu_vm_bo_idle - vm_bo is idle 208 * 209 * @vm_bo: vm_bo which is now idle 210 * 211 * State for PDs/PTs and per VM BOs which have gone through the state machine 212 * and are now idle. 213 */ 214 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 215 { 216 spin_lock(&vm_bo->vm->status_lock); 217 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 218 spin_unlock(&vm_bo->vm->status_lock); 219 vm_bo->moved = false; 220 } 221 222 /** 223 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 224 * 225 * @vm_bo: vm_bo which is now invalidated 226 * 227 * State for normal BOs which are invalidated and that change not yet reflected 228 * in the PTs. 229 */ 230 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 231 { 232 spin_lock(&vm_bo->vm->status_lock); 233 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 234 spin_unlock(&vm_bo->vm->status_lock); 235 } 236 237 /** 238 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 239 * 240 * @vm_bo: vm_bo which is evicted 241 * 242 * State for BOs used by user mode queues which are not at the location they 243 * should be. 244 */ 245 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 246 { 247 vm_bo->moved = true; 248 spin_lock(&vm_bo->vm->status_lock); 249 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 250 spin_unlock(&vm_bo->vm->status_lock); 251 } 252 253 /** 254 * amdgpu_vm_bo_relocated - vm_bo is reloacted 255 * 256 * @vm_bo: vm_bo which is relocated 257 * 258 * State for PDs/PTs which needs to update their parent PD. 259 * For the root PD, just move to idle state. 260 */ 261 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 262 { 263 if (vm_bo->bo->parent) { 264 spin_lock(&vm_bo->vm->status_lock); 265 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 266 spin_unlock(&vm_bo->vm->status_lock); 267 } else { 268 amdgpu_vm_bo_idle(vm_bo); 269 } 270 } 271 272 /** 273 * amdgpu_vm_bo_done - vm_bo is done 274 * 275 * @vm_bo: vm_bo which is now done 276 * 277 * State for normal BOs which are invalidated and that change has been updated 278 * in the PTs. 279 */ 280 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 spin_lock(&vm_bo->vm->status_lock); 283 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 284 spin_unlock(&vm_bo->vm->status_lock); 285 } 286 287 /** 288 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 289 * @vm: the VM which state machine to reset 290 * 291 * Move all vm_bo object in the VM into a state where they will be updated 292 * again during validation. 293 */ 294 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 295 { 296 struct amdgpu_vm_bo_base *vm_bo, *tmp; 297 298 spin_lock(&vm->status_lock); 299 list_splice_init(&vm->done, &vm->invalidated); 300 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 301 vm_bo->moved = true; 302 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 303 struct amdgpu_bo *bo = vm_bo->bo; 304 305 vm_bo->moved = true; 306 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 307 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 308 else if (bo->parent) 309 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 310 } 311 spin_unlock(&vm->status_lock); 312 } 313 314 /** 315 * amdgpu_vm_update_shared - helper to update shared memory stat 316 * @base: base structure for tracking BO usage in a VM 317 * 318 * Takes the vm status_lock and updates the shared memory stat. If the basic 319 * stat changed (e.g. buffer was moved) amdgpu_vm_update_stats need to be called 320 * as well. 321 */ 322 static void amdgpu_vm_update_shared(struct amdgpu_vm_bo_base *base) 323 { 324 struct amdgpu_vm *vm = base->vm; 325 struct amdgpu_bo *bo = base->bo; 326 uint64_t size = amdgpu_bo_size(bo); 327 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 328 bool shared; 329 330 spin_lock(&vm->status_lock); 331 shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 332 if (base->shared != shared) { 333 base->shared = shared; 334 if (shared) { 335 vm->stats[bo_memtype].drm.shared += size; 336 vm->stats[bo_memtype].drm.private -= size; 337 } else { 338 vm->stats[bo_memtype].drm.shared -= size; 339 vm->stats[bo_memtype].drm.private += size; 340 } 341 } 342 spin_unlock(&vm->status_lock); 343 } 344 345 /** 346 * amdgpu_vm_bo_update_shared - callback when bo gets shared/unshared 347 * @bo: amdgpu buffer object 348 * 349 * Update the per VM stats for all the vm if needed from private to shared or 350 * vice versa. 351 */ 352 void amdgpu_vm_bo_update_shared(struct amdgpu_bo *bo) 353 { 354 struct amdgpu_vm_bo_base *base; 355 356 for (base = bo->vm_bo; base; base = base->next) 357 amdgpu_vm_update_shared(base); 358 } 359 360 /** 361 * amdgpu_vm_update_stats_locked - helper to update normal memory stat 362 * @base: base structure for tracking BO usage in a VM 363 * @res: the ttm_resource to use for the purpose of accounting, may or may not 364 * be bo->tbo.resource 365 * @sign: if we should add (+1) or subtract (-1) from the stat 366 * 367 * Caller need to have the vm status_lock held. Useful for when multiple update 368 * need to happen at the same time. 369 */ 370 static void amdgpu_vm_update_stats_locked(struct amdgpu_vm_bo_base *base, 371 struct ttm_resource *res, int sign) 372 { 373 struct amdgpu_vm *vm = base->vm; 374 struct amdgpu_bo *bo = base->bo; 375 int64_t size = sign * amdgpu_bo_size(bo); 376 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 377 378 /* For drm-total- and drm-shared-, BO are accounted by their preferred 379 * placement, see also amdgpu_bo_mem_stats_placement. 380 */ 381 if (base->shared) 382 vm->stats[bo_memtype].drm.shared += size; 383 else 384 vm->stats[bo_memtype].drm.private += size; 385 386 if (res && res->mem_type < __AMDGPU_PL_NUM) { 387 uint32_t res_memtype = res->mem_type; 388 389 vm->stats[res_memtype].drm.resident += size; 390 /* BO only count as purgeable if it is resident, 391 * since otherwise there's nothing to purge. 392 */ 393 if (bo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) 394 vm->stats[res_memtype].drm.purgeable += size; 395 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(res_memtype))) 396 vm->stats[bo_memtype].evicted += size; 397 } 398 } 399 400 /** 401 * amdgpu_vm_update_stats - helper to update normal memory stat 402 * @base: base structure for tracking BO usage in a VM 403 * @res: the ttm_resource to use for the purpose of accounting, may or may not 404 * be bo->tbo.resource 405 * @sign: if we should add (+1) or subtract (-1) from the stat 406 * 407 * Updates the basic memory stat when bo is added/deleted/moved. 408 */ 409 void amdgpu_vm_update_stats(struct amdgpu_vm_bo_base *base, 410 struct ttm_resource *res, int sign) 411 { 412 struct amdgpu_vm *vm = base->vm; 413 414 spin_lock(&vm->status_lock); 415 amdgpu_vm_update_stats_locked(base, res, sign); 416 spin_unlock(&vm->status_lock); 417 } 418 419 /** 420 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 421 * 422 * @base: base structure for tracking BO usage in a VM 423 * @vm: vm to which bo is to be added 424 * @bo: amdgpu buffer object 425 * 426 * Initialize a bo_va_base structure and add it to the appropriate lists 427 * 428 */ 429 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 430 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 431 { 432 base->vm = vm; 433 base->bo = bo; 434 base->next = NULL; 435 INIT_LIST_HEAD(&base->vm_status); 436 437 if (!bo) 438 return; 439 base->next = bo->vm_bo; 440 bo->vm_bo = base; 441 442 spin_lock(&vm->status_lock); 443 base->shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 444 amdgpu_vm_update_stats_locked(base, bo->tbo.resource, +1); 445 spin_unlock(&vm->status_lock); 446 447 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 448 return; 449 450 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 451 452 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 453 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 454 amdgpu_vm_bo_relocated(base); 455 else 456 amdgpu_vm_bo_idle(base); 457 458 if (bo->preferred_domains & 459 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 460 return; 461 462 /* 463 * we checked all the prerequisites, but it looks like this per vm bo 464 * is currently evicted. add the bo to the evicted list to make sure it 465 * is validated on next vm use to avoid fault. 466 * */ 467 amdgpu_vm_bo_evicted(base); 468 } 469 470 /** 471 * amdgpu_vm_lock_pd - lock PD in drm_exec 472 * 473 * @vm: vm providing the BOs 474 * @exec: drm execution context 475 * @num_fences: number of extra fences to reserve 476 * 477 * Lock the VM root PD in the DRM execution context. 478 */ 479 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 480 unsigned int num_fences) 481 { 482 /* We need at least two fences for the VM PD/PT updates */ 483 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 484 2 + num_fences); 485 } 486 487 /** 488 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 489 * 490 * @adev: amdgpu device pointer 491 * @vm: vm providing the BOs 492 * 493 * Move all BOs to the end of LRU and remember their positions to put them 494 * together. 495 */ 496 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 497 struct amdgpu_vm *vm) 498 { 499 spin_lock(&adev->mman.bdev.lru_lock); 500 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 501 spin_unlock(&adev->mman.bdev.lru_lock); 502 } 503 504 /* Create scheduler entities for page table updates */ 505 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 506 struct amdgpu_vm *vm) 507 { 508 int r; 509 510 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 511 adev->vm_manager.vm_pte_scheds, 512 adev->vm_manager.vm_pte_num_scheds, NULL); 513 if (r) 514 goto error; 515 516 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 517 adev->vm_manager.vm_pte_scheds, 518 adev->vm_manager.vm_pte_num_scheds, NULL); 519 520 error: 521 drm_sched_entity_destroy(&vm->immediate); 522 return r; 523 } 524 525 /* Destroy the entities for page table updates again */ 526 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 527 { 528 drm_sched_entity_destroy(&vm->immediate); 529 drm_sched_entity_destroy(&vm->delayed); 530 } 531 532 /** 533 * amdgpu_vm_generation - return the page table re-generation counter 534 * @adev: the amdgpu_device 535 * @vm: optional VM to check, might be NULL 536 * 537 * Returns a page table re-generation token to allow checking if submissions 538 * are still valid to use this VM. The VM parameter might be NULL in which case 539 * just the VRAM lost counter will be used. 540 */ 541 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 542 { 543 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 544 545 if (!vm) 546 return result; 547 548 result += lower_32_bits(vm->generation); 549 /* Add one if the page tables will be re-generated on next CS */ 550 if (drm_sched_entity_error(&vm->delayed)) 551 ++result; 552 553 return result; 554 } 555 556 /** 557 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 558 * 559 * @adev: amdgpu device pointer 560 * @vm: vm providing the BOs 561 * @ticket: optional reservation ticket used to reserve the VM 562 * @validate: callback to do the validation 563 * @param: parameter for the validation callback 564 * 565 * Validate the page table BOs and per-VM BOs on command submission if 566 * necessary. If a ticket is given, also try to validate evicted user queue 567 * BOs. They must already be reserved with the given ticket. 568 * 569 * Returns: 570 * Validation result. 571 */ 572 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 573 struct ww_acquire_ctx *ticket, 574 int (*validate)(void *p, struct amdgpu_bo *bo), 575 void *param) 576 { 577 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 578 struct amdgpu_vm_bo_base *bo_base; 579 struct amdgpu_bo *bo; 580 int r; 581 582 if (vm->generation != new_vm_generation) { 583 vm->generation = new_vm_generation; 584 amdgpu_vm_bo_reset_state_machine(vm); 585 amdgpu_vm_fini_entities(vm); 586 r = amdgpu_vm_init_entities(adev, vm); 587 if (r) 588 return r; 589 } 590 591 spin_lock(&vm->status_lock); 592 while (!list_empty(&vm->evicted)) { 593 bo_base = list_first_entry(&vm->evicted, 594 struct amdgpu_vm_bo_base, 595 vm_status); 596 spin_unlock(&vm->status_lock); 597 598 bo = bo_base->bo; 599 600 r = validate(param, bo); 601 if (r) 602 return r; 603 604 if (bo->tbo.type != ttm_bo_type_kernel) { 605 amdgpu_vm_bo_moved(bo_base); 606 } else { 607 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 608 amdgpu_vm_bo_relocated(bo_base); 609 } 610 spin_lock(&vm->status_lock); 611 } 612 while (ticket && !list_empty(&vm->evicted_user)) { 613 bo_base = list_first_entry(&vm->evicted_user, 614 struct amdgpu_vm_bo_base, 615 vm_status); 616 spin_unlock(&vm->status_lock); 617 618 bo = bo_base->bo; 619 620 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 621 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 622 623 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 624 if (ti) { 625 pr_warn_ratelimited("pid %d\n", ti->task.pid); 626 amdgpu_vm_put_task_info(ti); 627 } 628 629 return -EINVAL; 630 } 631 632 r = validate(param, bo); 633 if (r) 634 return r; 635 636 amdgpu_vm_bo_invalidated(bo_base); 637 638 spin_lock(&vm->status_lock); 639 } 640 spin_unlock(&vm->status_lock); 641 642 amdgpu_vm_eviction_lock(vm); 643 vm->evicting = false; 644 amdgpu_vm_eviction_unlock(vm); 645 646 return 0; 647 } 648 649 /** 650 * amdgpu_vm_ready - check VM is ready for updates 651 * 652 * @vm: VM to check 653 * 654 * Check if all VM PDs/PTs are ready for updates 655 * 656 * Returns: 657 * True if VM is not evicting and all VM entities are not stopped 658 */ 659 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 660 { 661 bool ret; 662 663 amdgpu_vm_eviction_lock(vm); 664 ret = !vm->evicting; 665 amdgpu_vm_eviction_unlock(vm); 666 667 spin_lock(&vm->status_lock); 668 ret &= list_empty(&vm->evicted); 669 spin_unlock(&vm->status_lock); 670 671 spin_lock(&vm->immediate.lock); 672 ret &= !vm->immediate.stopped; 673 spin_unlock(&vm->immediate.lock); 674 675 spin_lock(&vm->delayed.lock); 676 ret &= !vm->delayed.stopped; 677 spin_unlock(&vm->delayed.lock); 678 679 return ret; 680 } 681 682 /** 683 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 684 * 685 * @adev: amdgpu_device pointer 686 */ 687 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 688 { 689 const struct amdgpu_ip_block *ip_block; 690 bool has_compute_vm_bug; 691 struct amdgpu_ring *ring; 692 int i; 693 694 has_compute_vm_bug = false; 695 696 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 697 if (ip_block) { 698 /* Compute has a VM bug for GFX version < 7. 699 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 700 if (ip_block->version->major <= 7) 701 has_compute_vm_bug = true; 702 else if (ip_block->version->major == 8) 703 if (adev->gfx.mec_fw_version < 673) 704 has_compute_vm_bug = true; 705 } 706 707 for (i = 0; i < adev->num_rings; i++) { 708 ring = adev->rings[i]; 709 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 710 /* only compute rings */ 711 ring->has_compute_vm_bug = has_compute_vm_bug; 712 else 713 ring->has_compute_vm_bug = false; 714 } 715 } 716 717 /** 718 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 719 * 720 * @ring: ring on which the job will be submitted 721 * @job: job to submit 722 * 723 * Returns: 724 * True if sync is needed. 725 */ 726 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 727 struct amdgpu_job *job) 728 { 729 struct amdgpu_device *adev = ring->adev; 730 unsigned vmhub = ring->vm_hub; 731 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 732 733 if (job->vmid == 0) 734 return false; 735 736 if (job->vm_needs_flush || ring->has_compute_vm_bug) 737 return true; 738 739 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 740 return true; 741 742 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 743 return true; 744 745 return false; 746 } 747 748 /** 749 * amdgpu_vm_flush - hardware flush the vm 750 * 751 * @ring: ring to use for flush 752 * @job: related job 753 * @need_pipe_sync: is pipe sync needed 754 * 755 * Emit a VM flush when it is necessary. 756 * 757 * Returns: 758 * 0 on success, errno otherwise. 759 */ 760 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 761 bool need_pipe_sync) 762 { 763 struct amdgpu_device *adev = ring->adev; 764 struct amdgpu_isolation *isolation = &adev->isolation[ring->xcp_id]; 765 unsigned vmhub = ring->vm_hub; 766 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 767 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 768 bool spm_update_needed = job->spm_update_needed; 769 bool gds_switch_needed = ring->funcs->emit_gds_switch && 770 job->gds_switch_needed; 771 bool vm_flush_needed = job->vm_needs_flush; 772 bool cleaner_shader_needed = false; 773 bool pasid_mapping_needed = false; 774 struct dma_fence *fence = NULL; 775 struct amdgpu_fence *af; 776 unsigned int patch; 777 int r; 778 779 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 780 gds_switch_needed = true; 781 vm_flush_needed = true; 782 pasid_mapping_needed = true; 783 spm_update_needed = true; 784 } 785 786 mutex_lock(&id_mgr->lock); 787 if (id->pasid != job->pasid || !id->pasid_mapping || 788 !dma_fence_is_signaled(id->pasid_mapping)) 789 pasid_mapping_needed = true; 790 mutex_unlock(&id_mgr->lock); 791 792 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 793 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 794 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 795 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 796 ring->funcs->emit_wreg; 797 798 cleaner_shader_needed = job->run_cleaner_shader && 799 adev->gfx.enable_cleaner_shader && 800 ring->funcs->emit_cleaner_shader && job->base.s_fence && 801 &job->base.s_fence->scheduled == isolation->spearhead; 802 803 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync && 804 !cleaner_shader_needed) 805 return 0; 806 807 amdgpu_ring_ib_begin(ring); 808 if (ring->funcs->init_cond_exec) 809 patch = amdgpu_ring_init_cond_exec(ring, 810 ring->cond_exe_gpu_addr); 811 812 if (need_pipe_sync) 813 amdgpu_ring_emit_pipeline_sync(ring); 814 815 if (cleaner_shader_needed) 816 ring->funcs->emit_cleaner_shader(ring); 817 818 if (vm_flush_needed) { 819 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 820 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 821 } 822 823 if (pasid_mapping_needed) 824 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 825 826 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 827 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 828 829 if (ring->funcs->emit_gds_switch && 830 gds_switch_needed) { 831 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 832 job->gds_size, job->gws_base, 833 job->gws_size, job->oa_base, 834 job->oa_size); 835 } 836 837 if (vm_flush_needed || pasid_mapping_needed || cleaner_shader_needed) { 838 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 839 if (r) 840 return r; 841 /* this is part of the job's context */ 842 af = container_of(fence, struct amdgpu_fence, base); 843 af->context = job->base.s_fence ? job->base.s_fence->finished.context : 0; 844 } 845 846 if (vm_flush_needed) { 847 mutex_lock(&id_mgr->lock); 848 dma_fence_put(id->last_flush); 849 id->last_flush = dma_fence_get(fence); 850 id->current_gpu_reset_count = 851 atomic_read(&adev->gpu_reset_counter); 852 mutex_unlock(&id_mgr->lock); 853 } 854 855 if (pasid_mapping_needed) { 856 mutex_lock(&id_mgr->lock); 857 id->pasid = job->pasid; 858 dma_fence_put(id->pasid_mapping); 859 id->pasid_mapping = dma_fence_get(fence); 860 mutex_unlock(&id_mgr->lock); 861 } 862 863 /* 864 * Make sure that all other submissions wait for the cleaner shader to 865 * finish before we push them to the HW. 866 */ 867 if (cleaner_shader_needed) { 868 trace_amdgpu_cleaner_shader(ring, fence); 869 mutex_lock(&adev->enforce_isolation_mutex); 870 dma_fence_put(isolation->spearhead); 871 isolation->spearhead = dma_fence_get(fence); 872 mutex_unlock(&adev->enforce_isolation_mutex); 873 } 874 dma_fence_put(fence); 875 876 amdgpu_ring_patch_cond_exec(ring, patch); 877 878 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 879 if (ring->funcs->emit_switch_buffer) { 880 amdgpu_ring_emit_switch_buffer(ring); 881 amdgpu_ring_emit_switch_buffer(ring); 882 } 883 884 amdgpu_ring_ib_end(ring); 885 return 0; 886 } 887 888 /** 889 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 890 * 891 * @vm: requested vm 892 * @bo: requested buffer object 893 * 894 * Find @bo inside the requested vm. 895 * Search inside the @bos vm list for the requested vm 896 * Returns the found bo_va or NULL if none is found 897 * 898 * Object has to be reserved! 899 * 900 * Returns: 901 * Found bo_va or NULL. 902 */ 903 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 904 struct amdgpu_bo *bo) 905 { 906 struct amdgpu_vm_bo_base *base; 907 908 for (base = bo->vm_bo; base; base = base->next) { 909 if (base->vm != vm) 910 continue; 911 912 return container_of(base, struct amdgpu_bo_va, base); 913 } 914 return NULL; 915 } 916 917 /** 918 * amdgpu_vm_map_gart - Resolve gart mapping of addr 919 * 920 * @pages_addr: optional DMA address to use for lookup 921 * @addr: the unmapped addr 922 * 923 * Look up the physical address of the page that the pte resolves 924 * to. 925 * 926 * Returns: 927 * The pointer for the page table entry. 928 */ 929 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 930 { 931 uint64_t result; 932 933 /* page table offset */ 934 result = pages_addr[addr >> PAGE_SHIFT]; 935 936 /* in case cpu page size != gpu page size*/ 937 result |= addr & (~PAGE_MASK); 938 939 result &= 0xFFFFFFFFFFFFF000ULL; 940 941 return result; 942 } 943 944 /** 945 * amdgpu_vm_update_pdes - make sure that all directories are valid 946 * 947 * @adev: amdgpu_device pointer 948 * @vm: requested vm 949 * @immediate: submit immediately to the paging queue 950 * 951 * Makes sure all directories are up to date. 952 * 953 * Returns: 954 * 0 for success, error for failure. 955 */ 956 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 957 struct amdgpu_vm *vm, bool immediate) 958 { 959 struct amdgpu_vm_update_params params; 960 struct amdgpu_vm_bo_base *entry; 961 bool flush_tlb_needed = false; 962 LIST_HEAD(relocated); 963 int r, idx; 964 965 spin_lock(&vm->status_lock); 966 list_splice_init(&vm->relocated, &relocated); 967 spin_unlock(&vm->status_lock); 968 969 if (list_empty(&relocated)) 970 return 0; 971 972 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 973 return -ENODEV; 974 975 memset(¶ms, 0, sizeof(params)); 976 params.adev = adev; 977 params.vm = vm; 978 params.immediate = immediate; 979 980 r = vm->update_funcs->prepare(¶ms, NULL, 981 AMDGPU_KERNEL_JOB_ID_VM_UPDATE_PDES); 982 if (r) 983 goto error; 984 985 list_for_each_entry(entry, &relocated, vm_status) { 986 /* vm_flush_needed after updating moved PDEs */ 987 flush_tlb_needed |= entry->moved; 988 989 r = amdgpu_vm_pde_update(¶ms, entry); 990 if (r) 991 goto error; 992 } 993 994 r = vm->update_funcs->commit(¶ms, &vm->last_update); 995 if (r) 996 goto error; 997 998 if (flush_tlb_needed) 999 atomic64_inc(&vm->tlb_seq); 1000 1001 while (!list_empty(&relocated)) { 1002 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 1003 vm_status); 1004 amdgpu_vm_bo_idle(entry); 1005 } 1006 1007 error: 1008 drm_dev_exit(idx); 1009 return r; 1010 } 1011 1012 /** 1013 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 1014 * @fence: unused 1015 * @cb: the callback structure 1016 * 1017 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1018 */ 1019 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 1020 struct dma_fence_cb *cb) 1021 { 1022 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1023 1024 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 1025 atomic64_inc(&tlb_cb->vm->tlb_seq); 1026 kfree(tlb_cb); 1027 } 1028 1029 /** 1030 * amdgpu_vm_tlb_flush - prepare TLB flush 1031 * 1032 * @params: parameters for update 1033 * @fence: input fence to sync TLB flush with 1034 * @tlb_cb: the callback structure 1035 * 1036 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1037 */ 1038 static void 1039 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 1040 struct dma_fence **fence, 1041 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 1042 { 1043 struct amdgpu_vm *vm = params->vm; 1044 1045 tlb_cb->vm = vm; 1046 if (!fence || !*fence) { 1047 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1048 return; 1049 } 1050 1051 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 1052 amdgpu_vm_tlb_seq_cb)) { 1053 dma_fence_put(vm->last_tlb_flush); 1054 vm->last_tlb_flush = dma_fence_get(*fence); 1055 } else { 1056 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1057 } 1058 1059 /* Prepare a TLB flush fence to be attached to PTs */ 1060 if (!params->unlocked && vm->is_compute_context) { 1061 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 1062 1063 /* Makes sure no PD/PT is freed before the flush */ 1064 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 1065 DMA_RESV_USAGE_BOOKKEEP); 1066 } 1067 } 1068 1069 /** 1070 * amdgpu_vm_update_range - update a range in the vm page table 1071 * 1072 * @adev: amdgpu_device pointer to use for commands 1073 * @vm: the VM to update the range 1074 * @immediate: immediate submission in a page fault 1075 * @unlocked: unlocked invalidation during MM callback 1076 * @flush_tlb: trigger tlb invalidation after update completed 1077 * @allow_override: change MTYPE for local NUMA nodes 1078 * @sync: fences we need to sync to 1079 * @start: start of mapped range 1080 * @last: last mapped entry 1081 * @flags: flags for the entries 1082 * @offset: offset into nodes and pages_addr 1083 * @vram_base: base for vram mappings 1084 * @res: ttm_resource to map 1085 * @pages_addr: DMA addresses to use for mapping 1086 * @fence: optional resulting fence 1087 * 1088 * Fill in the page table entries between @start and @last. 1089 * 1090 * Returns: 1091 * 0 for success, negative erro code for failure. 1092 */ 1093 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1094 bool immediate, bool unlocked, bool flush_tlb, 1095 bool allow_override, struct amdgpu_sync *sync, 1096 uint64_t start, uint64_t last, uint64_t flags, 1097 uint64_t offset, uint64_t vram_base, 1098 struct ttm_resource *res, dma_addr_t *pages_addr, 1099 struct dma_fence **fence) 1100 { 1101 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1102 struct amdgpu_vm_update_params params; 1103 struct amdgpu_res_cursor cursor; 1104 int r, idx; 1105 1106 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1107 return -ENODEV; 1108 1109 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 1110 if (!tlb_cb) { 1111 drm_dev_exit(idx); 1112 return -ENOMEM; 1113 } 1114 1115 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 1116 * heavy-weight flush TLB unconditionally. 1117 */ 1118 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 1119 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 1120 1121 /* 1122 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 1123 */ 1124 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 1125 1126 memset(¶ms, 0, sizeof(params)); 1127 params.adev = adev; 1128 params.vm = vm; 1129 params.immediate = immediate; 1130 params.pages_addr = pages_addr; 1131 params.unlocked = unlocked; 1132 params.needs_flush = flush_tlb; 1133 params.allow_override = allow_override; 1134 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 1135 1136 amdgpu_vm_eviction_lock(vm); 1137 if (vm->evicting) { 1138 r = -EBUSY; 1139 goto error_free; 1140 } 1141 1142 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1143 struct dma_fence *tmp = dma_fence_get_stub(); 1144 1145 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1146 swap(vm->last_unlocked, tmp); 1147 dma_fence_put(tmp); 1148 } 1149 1150 r = vm->update_funcs->prepare(¶ms, sync, 1151 AMDGPU_KERNEL_JOB_ID_VM_UPDATE_RANGE); 1152 if (r) 1153 goto error_free; 1154 1155 amdgpu_res_first(pages_addr ? NULL : res, offset, 1156 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1157 while (cursor.remaining) { 1158 uint64_t tmp, num_entries, addr; 1159 1160 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1161 if (pages_addr) { 1162 bool contiguous = true; 1163 1164 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1165 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1166 uint64_t count; 1167 1168 contiguous = pages_addr[pfn + 1] == 1169 pages_addr[pfn] + PAGE_SIZE; 1170 1171 tmp = num_entries / 1172 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1173 for (count = 2; count < tmp; ++count) { 1174 uint64_t idx = pfn + count; 1175 1176 if (contiguous != (pages_addr[idx] == 1177 pages_addr[idx - 1] + PAGE_SIZE)) 1178 break; 1179 } 1180 if (!contiguous) 1181 count--; 1182 num_entries = count * 1183 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1184 } 1185 1186 if (!contiguous) { 1187 addr = cursor.start; 1188 params.pages_addr = pages_addr; 1189 } else { 1190 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1191 params.pages_addr = NULL; 1192 } 1193 1194 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1195 addr = vram_base + cursor.start; 1196 } else { 1197 addr = 0; 1198 } 1199 1200 tmp = start + num_entries; 1201 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1202 if (r) 1203 goto error_free; 1204 1205 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1206 start = tmp; 1207 } 1208 1209 r = vm->update_funcs->commit(¶ms, fence); 1210 if (r) 1211 goto error_free; 1212 1213 if (params.needs_flush) { 1214 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1215 tlb_cb = NULL; 1216 } 1217 1218 amdgpu_vm_pt_free_list(adev, ¶ms); 1219 1220 error_free: 1221 kfree(tlb_cb); 1222 amdgpu_vm_eviction_unlock(vm); 1223 drm_dev_exit(idx); 1224 return r; 1225 } 1226 1227 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1228 struct amdgpu_mem_stats stats[__AMDGPU_PL_NUM]) 1229 { 1230 spin_lock(&vm->status_lock); 1231 memcpy(stats, vm->stats, sizeof(*stats) * __AMDGPU_PL_NUM); 1232 spin_unlock(&vm->status_lock); 1233 } 1234 1235 /** 1236 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1237 * 1238 * @adev: amdgpu_device pointer 1239 * @bo_va: requested BO and VM object 1240 * @clear: if true clear the entries 1241 * 1242 * Fill in the page table entries for @bo_va. 1243 * 1244 * Returns: 1245 * 0 for success, -EINVAL for failure. 1246 */ 1247 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1248 bool clear) 1249 { 1250 struct amdgpu_bo *bo = bo_va->base.bo; 1251 struct amdgpu_vm *vm = bo_va->base.vm; 1252 struct amdgpu_bo_va_mapping *mapping; 1253 struct dma_fence **last_update; 1254 dma_addr_t *pages_addr = NULL; 1255 struct ttm_resource *mem; 1256 struct amdgpu_sync sync; 1257 bool flush_tlb = clear; 1258 uint64_t vram_base; 1259 uint64_t flags; 1260 bool uncached; 1261 int r; 1262 1263 amdgpu_sync_create(&sync); 1264 if (clear) { 1265 mem = NULL; 1266 1267 /* Implicitly sync to command submissions in the same VM before 1268 * unmapping. 1269 */ 1270 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1271 AMDGPU_SYNC_EQ_OWNER, vm); 1272 if (r) 1273 goto error_free; 1274 if (bo) { 1275 r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv); 1276 if (r) 1277 goto error_free; 1278 } 1279 } else if (!bo) { 1280 mem = NULL; 1281 1282 /* PRT map operations don't need to sync to anything. */ 1283 1284 } else { 1285 struct drm_gem_object *obj = &bo->tbo.base; 1286 1287 if (drm_gem_is_imported(obj) && bo_va->is_xgmi) { 1288 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1289 struct drm_gem_object *gobj = dma_buf->priv; 1290 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1291 1292 if (abo->tbo.resource && 1293 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1294 bo = gem_to_amdgpu_bo(gobj); 1295 } 1296 mem = bo->tbo.resource; 1297 if (mem && (mem->mem_type == TTM_PL_TT || 1298 mem->mem_type == AMDGPU_PL_PREEMPT)) 1299 pages_addr = bo->tbo.ttm->dma_address; 1300 1301 /* Implicitly sync to moving fences before mapping anything */ 1302 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1303 AMDGPU_SYNC_EXPLICIT, vm); 1304 if (r) 1305 goto error_free; 1306 } 1307 1308 if (bo) { 1309 struct amdgpu_device *bo_adev; 1310 1311 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1312 1313 if (amdgpu_bo_encrypted(bo)) 1314 flags |= AMDGPU_PTE_TMZ; 1315 1316 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1317 vram_base = bo_adev->vm_manager.vram_base_offset; 1318 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1319 } else { 1320 flags = 0x0; 1321 vram_base = 0; 1322 uncached = false; 1323 } 1324 1325 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1326 last_update = &vm->last_update; 1327 else 1328 last_update = &bo_va->last_pt_update; 1329 1330 if (!clear && bo_va->base.moved) { 1331 flush_tlb = true; 1332 list_splice_init(&bo_va->valids, &bo_va->invalids); 1333 1334 } else if (bo_va->cleared != clear) { 1335 list_splice_init(&bo_va->valids, &bo_va->invalids); 1336 } 1337 1338 list_for_each_entry(mapping, &bo_va->invalids, list) { 1339 uint64_t update_flags = flags; 1340 1341 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1342 * but in case of something, we filter the flags in first place 1343 */ 1344 if (!(mapping->flags & AMDGPU_VM_PAGE_READABLE)) 1345 update_flags &= ~AMDGPU_PTE_READABLE; 1346 if (!(mapping->flags & AMDGPU_VM_PAGE_WRITEABLE)) 1347 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1348 1349 /* Apply ASIC specific mapping flags */ 1350 amdgpu_gmc_get_vm_pte(adev, vm, bo, mapping->flags, 1351 &update_flags); 1352 1353 trace_amdgpu_vm_bo_update(mapping); 1354 1355 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1356 !uncached, &sync, mapping->start, 1357 mapping->last, update_flags, 1358 mapping->offset, vram_base, mem, 1359 pages_addr, last_update); 1360 if (r) 1361 goto error_free; 1362 } 1363 1364 /* If the BO is not in its preferred location add it back to 1365 * the evicted list so that it gets validated again on the 1366 * next command submission. 1367 */ 1368 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1369 if (bo->tbo.resource && 1370 !(bo->preferred_domains & 1371 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))) 1372 amdgpu_vm_bo_evicted(&bo_va->base); 1373 else 1374 amdgpu_vm_bo_idle(&bo_va->base); 1375 } else { 1376 amdgpu_vm_bo_done(&bo_va->base); 1377 } 1378 1379 list_splice_init(&bo_va->invalids, &bo_va->valids); 1380 bo_va->cleared = clear; 1381 bo_va->base.moved = false; 1382 1383 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1384 list_for_each_entry(mapping, &bo_va->valids, list) 1385 trace_amdgpu_vm_bo_mapping(mapping); 1386 } 1387 1388 error_free: 1389 amdgpu_sync_free(&sync); 1390 return r; 1391 } 1392 1393 /** 1394 * amdgpu_vm_update_prt_state - update the global PRT state 1395 * 1396 * @adev: amdgpu_device pointer 1397 */ 1398 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1399 { 1400 unsigned long flags; 1401 bool enable; 1402 1403 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1404 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1405 adev->gmc.gmc_funcs->set_prt(adev, enable); 1406 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1407 } 1408 1409 /** 1410 * amdgpu_vm_prt_get - add a PRT user 1411 * 1412 * @adev: amdgpu_device pointer 1413 */ 1414 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1415 { 1416 if (!adev->gmc.gmc_funcs->set_prt) 1417 return; 1418 1419 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1420 amdgpu_vm_update_prt_state(adev); 1421 } 1422 1423 /** 1424 * amdgpu_vm_prt_put - drop a PRT user 1425 * 1426 * @adev: amdgpu_device pointer 1427 */ 1428 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1429 { 1430 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1431 amdgpu_vm_update_prt_state(adev); 1432 } 1433 1434 /** 1435 * amdgpu_vm_prt_cb - callback for updating the PRT status 1436 * 1437 * @fence: fence for the callback 1438 * @_cb: the callback function 1439 */ 1440 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1441 { 1442 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1443 1444 amdgpu_vm_prt_put(cb->adev); 1445 kfree(cb); 1446 } 1447 1448 /** 1449 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1450 * 1451 * @adev: amdgpu_device pointer 1452 * @fence: fence for the callback 1453 */ 1454 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1455 struct dma_fence *fence) 1456 { 1457 struct amdgpu_prt_cb *cb; 1458 1459 if (!adev->gmc.gmc_funcs->set_prt) 1460 return; 1461 1462 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1463 if (!cb) { 1464 /* Last resort when we are OOM */ 1465 if (fence) 1466 dma_fence_wait(fence, false); 1467 1468 amdgpu_vm_prt_put(adev); 1469 } else { 1470 cb->adev = adev; 1471 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1472 amdgpu_vm_prt_cb)) 1473 amdgpu_vm_prt_cb(fence, &cb->cb); 1474 } 1475 } 1476 1477 /** 1478 * amdgpu_vm_free_mapping - free a mapping 1479 * 1480 * @adev: amdgpu_device pointer 1481 * @vm: requested vm 1482 * @mapping: mapping to be freed 1483 * @fence: fence of the unmap operation 1484 * 1485 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1486 */ 1487 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1488 struct amdgpu_vm *vm, 1489 struct amdgpu_bo_va_mapping *mapping, 1490 struct dma_fence *fence) 1491 { 1492 if (mapping->flags & AMDGPU_VM_PAGE_PRT) 1493 amdgpu_vm_add_prt_cb(adev, fence); 1494 kfree(mapping); 1495 } 1496 1497 /** 1498 * amdgpu_vm_prt_fini - finish all prt mappings 1499 * 1500 * @adev: amdgpu_device pointer 1501 * @vm: requested vm 1502 * 1503 * Register a cleanup callback to disable PRT support after VM dies. 1504 */ 1505 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1506 { 1507 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1508 struct dma_resv_iter cursor; 1509 struct dma_fence *fence; 1510 1511 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1512 /* Add a callback for each fence in the reservation object */ 1513 amdgpu_vm_prt_get(adev); 1514 amdgpu_vm_add_prt_cb(adev, fence); 1515 } 1516 } 1517 1518 /** 1519 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1520 * 1521 * @adev: amdgpu_device pointer 1522 * @vm: requested vm 1523 * @fence: optional resulting fence (unchanged if no work needed to be done 1524 * or if an error occurred) 1525 * 1526 * Make sure all freed BOs are cleared in the PT. 1527 * PTs have to be reserved and mutex must be locked! 1528 * 1529 * Returns: 1530 * 0 for success. 1531 * 1532 */ 1533 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1534 struct amdgpu_vm *vm, 1535 struct dma_fence **fence) 1536 { 1537 struct amdgpu_bo_va_mapping *mapping; 1538 struct dma_fence *f = NULL; 1539 struct amdgpu_sync sync; 1540 int r; 1541 1542 1543 /* 1544 * Implicitly sync to command submissions in the same VM before 1545 * unmapping. 1546 */ 1547 amdgpu_sync_create(&sync); 1548 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1549 AMDGPU_SYNC_EQ_OWNER, vm); 1550 if (r) 1551 goto error_free; 1552 1553 while (!list_empty(&vm->freed)) { 1554 mapping = list_first_entry(&vm->freed, 1555 struct amdgpu_bo_va_mapping, list); 1556 list_del(&mapping->list); 1557 1558 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1559 &sync, mapping->start, mapping->last, 1560 0, 0, 0, NULL, NULL, &f); 1561 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1562 if (r) { 1563 dma_fence_put(f); 1564 goto error_free; 1565 } 1566 } 1567 1568 if (fence && f) { 1569 dma_fence_put(*fence); 1570 *fence = f; 1571 } else { 1572 dma_fence_put(f); 1573 } 1574 1575 error_free: 1576 amdgpu_sync_free(&sync); 1577 return r; 1578 1579 } 1580 1581 /** 1582 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1583 * 1584 * @adev: amdgpu_device pointer 1585 * @vm: requested vm 1586 * @ticket: optional reservation ticket used to reserve the VM 1587 * 1588 * Make sure all BOs which are moved are updated in the PTs. 1589 * 1590 * Returns: 1591 * 0 for success. 1592 * 1593 * PTs have to be reserved! 1594 */ 1595 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1596 struct amdgpu_vm *vm, 1597 struct ww_acquire_ctx *ticket) 1598 { 1599 struct amdgpu_bo_va *bo_va; 1600 struct dma_resv *resv; 1601 bool clear, unlock; 1602 int r; 1603 1604 spin_lock(&vm->status_lock); 1605 while (!list_empty(&vm->moved)) { 1606 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1607 base.vm_status); 1608 spin_unlock(&vm->status_lock); 1609 1610 /* Per VM BOs never need to bo cleared in the page tables */ 1611 r = amdgpu_vm_bo_update(adev, bo_va, false); 1612 if (r) 1613 return r; 1614 spin_lock(&vm->status_lock); 1615 } 1616 1617 while (!list_empty(&vm->invalidated)) { 1618 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1619 base.vm_status); 1620 resv = bo_va->base.bo->tbo.base.resv; 1621 spin_unlock(&vm->status_lock); 1622 1623 /* Try to reserve the BO to avoid clearing its ptes */ 1624 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1625 clear = false; 1626 unlock = true; 1627 /* The caller is already holding the reservation lock */ 1628 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1629 clear = false; 1630 unlock = false; 1631 /* Somebody else is using the BO right now */ 1632 } else { 1633 clear = true; 1634 unlock = false; 1635 } 1636 1637 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1638 1639 if (unlock) 1640 dma_resv_unlock(resv); 1641 if (r) 1642 return r; 1643 1644 /* Remember evicted DMABuf imports in compute VMs for later 1645 * validation 1646 */ 1647 if (vm->is_compute_context && 1648 drm_gem_is_imported(&bo_va->base.bo->tbo.base) && 1649 (!bo_va->base.bo->tbo.resource || 1650 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1651 amdgpu_vm_bo_evicted_user(&bo_va->base); 1652 1653 spin_lock(&vm->status_lock); 1654 } 1655 spin_unlock(&vm->status_lock); 1656 1657 return 0; 1658 } 1659 1660 /** 1661 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1662 * 1663 * @adev: amdgpu_device pointer 1664 * @vm: requested vm 1665 * @flush_type: flush type 1666 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1667 * 1668 * Flush TLB if needed for a compute VM. 1669 * 1670 * Returns: 1671 * 0 for success. 1672 */ 1673 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1674 struct amdgpu_vm *vm, 1675 uint32_t flush_type, 1676 uint32_t xcc_mask) 1677 { 1678 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1679 bool all_hub = false; 1680 int xcc = 0, r = 0; 1681 1682 WARN_ON_ONCE(!vm->is_compute_context); 1683 1684 /* 1685 * It can be that we race and lose here, but that is extremely unlikely 1686 * and the worst thing which could happen is that we flush the changes 1687 * into the TLB once more which is harmless. 1688 */ 1689 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1690 return 0; 1691 1692 if (adev->family == AMDGPU_FAMILY_AI || 1693 adev->family == AMDGPU_FAMILY_RV) 1694 all_hub = true; 1695 1696 for_each_inst(xcc, xcc_mask) { 1697 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1698 all_hub, xcc); 1699 if (r) 1700 break; 1701 } 1702 return r; 1703 } 1704 1705 /** 1706 * amdgpu_vm_bo_add - add a bo to a specific vm 1707 * 1708 * @adev: amdgpu_device pointer 1709 * @vm: requested vm 1710 * @bo: amdgpu buffer object 1711 * 1712 * Add @bo into the requested vm. 1713 * Add @bo to the list of bos associated with the vm 1714 * 1715 * Returns: 1716 * Newly added bo_va or NULL for failure 1717 * 1718 * Object has to be reserved! 1719 */ 1720 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1721 struct amdgpu_vm *vm, 1722 struct amdgpu_bo *bo) 1723 { 1724 struct amdgpu_bo_va *bo_va; 1725 1726 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1727 if (bo_va == NULL) { 1728 return NULL; 1729 } 1730 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1731 1732 bo_va->ref_count = 1; 1733 bo_va->last_pt_update = dma_fence_get_stub(); 1734 INIT_LIST_HEAD(&bo_va->valids); 1735 INIT_LIST_HEAD(&bo_va->invalids); 1736 1737 if (!bo) 1738 return bo_va; 1739 1740 dma_resv_assert_held(bo->tbo.base.resv); 1741 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1742 bo_va->is_xgmi = true; 1743 /* Power up XGMI if it can be potentially used */ 1744 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1745 } 1746 1747 return bo_va; 1748 } 1749 1750 1751 /** 1752 * amdgpu_vm_bo_insert_map - insert a new mapping 1753 * 1754 * @adev: amdgpu_device pointer 1755 * @bo_va: bo_va to store the address 1756 * @mapping: the mapping to insert 1757 * 1758 * Insert a new mapping into all structures. 1759 */ 1760 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1761 struct amdgpu_bo_va *bo_va, 1762 struct amdgpu_bo_va_mapping *mapping) 1763 { 1764 struct amdgpu_vm *vm = bo_va->base.vm; 1765 struct amdgpu_bo *bo = bo_va->base.bo; 1766 1767 mapping->bo_va = bo_va; 1768 list_add(&mapping->list, &bo_va->invalids); 1769 amdgpu_vm_it_insert(mapping, &vm->va); 1770 1771 if (mapping->flags & AMDGPU_VM_PAGE_PRT) 1772 amdgpu_vm_prt_get(adev); 1773 1774 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1775 amdgpu_vm_bo_moved(&bo_va->base); 1776 1777 trace_amdgpu_vm_bo_map(bo_va, mapping); 1778 } 1779 1780 /* Validate operation parameters to prevent potential abuse */ 1781 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1782 struct amdgpu_bo *bo, 1783 uint64_t saddr, 1784 uint64_t offset, 1785 uint64_t size) 1786 { 1787 uint64_t tmp, lpfn; 1788 1789 if (saddr & AMDGPU_GPU_PAGE_MASK 1790 || offset & AMDGPU_GPU_PAGE_MASK 1791 || size & AMDGPU_GPU_PAGE_MASK) 1792 return -EINVAL; 1793 1794 if (check_add_overflow(saddr, size, &tmp) 1795 || check_add_overflow(offset, size, &tmp) 1796 || size == 0 /* which also leads to end < begin */) 1797 return -EINVAL; 1798 1799 /* make sure object fit at this offset */ 1800 if (bo && offset + size > amdgpu_bo_size(bo)) 1801 return -EINVAL; 1802 1803 /* Ensure last pfn not exceed max_pfn */ 1804 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1805 if (lpfn >= adev->vm_manager.max_pfn) 1806 return -EINVAL; 1807 1808 return 0; 1809 } 1810 1811 /** 1812 * amdgpu_vm_bo_map - map bo inside a vm 1813 * 1814 * @adev: amdgpu_device pointer 1815 * @bo_va: bo_va to store the address 1816 * @saddr: where to map the BO 1817 * @offset: requested offset in the BO 1818 * @size: BO size in bytes 1819 * @flags: attributes of pages (read/write/valid/etc.) 1820 * 1821 * Add a mapping of the BO at the specefied addr into the VM. 1822 * 1823 * Returns: 1824 * 0 for success, error for failure. 1825 * 1826 * Object has to be reserved and unreserved outside! 1827 */ 1828 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1829 struct amdgpu_bo_va *bo_va, 1830 uint64_t saddr, uint64_t offset, 1831 uint64_t size, uint32_t flags) 1832 { 1833 struct amdgpu_bo_va_mapping *mapping, *tmp; 1834 struct amdgpu_bo *bo = bo_va->base.bo; 1835 struct amdgpu_vm *vm = bo_va->base.vm; 1836 uint64_t eaddr; 1837 int r; 1838 1839 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1840 if (r) 1841 return r; 1842 1843 saddr /= AMDGPU_GPU_PAGE_SIZE; 1844 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1845 1846 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1847 if (tmp) { 1848 /* bo and tmp overlap, invalid addr */ 1849 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1850 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1851 tmp->start, tmp->last + 1); 1852 return -EINVAL; 1853 } 1854 1855 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1856 if (!mapping) 1857 return -ENOMEM; 1858 1859 mapping->start = saddr; 1860 mapping->last = eaddr; 1861 mapping->offset = offset; 1862 mapping->flags = flags; 1863 1864 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1865 1866 return 0; 1867 } 1868 1869 /** 1870 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1871 * 1872 * @adev: amdgpu_device pointer 1873 * @bo_va: bo_va to store the address 1874 * @saddr: where to map the BO 1875 * @offset: requested offset in the BO 1876 * @size: BO size in bytes 1877 * @flags: attributes of pages (read/write/valid/etc.) 1878 * 1879 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1880 * mappings as we do so. 1881 * 1882 * Returns: 1883 * 0 for success, error for failure. 1884 * 1885 * Object has to be reserved and unreserved outside! 1886 */ 1887 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1888 struct amdgpu_bo_va *bo_va, 1889 uint64_t saddr, uint64_t offset, 1890 uint64_t size, uint32_t flags) 1891 { 1892 struct amdgpu_bo_va_mapping *mapping; 1893 struct amdgpu_bo *bo = bo_va->base.bo; 1894 uint64_t eaddr; 1895 int r; 1896 1897 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1898 if (r) 1899 return r; 1900 1901 /* Allocate all the needed memory */ 1902 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1903 if (!mapping) 1904 return -ENOMEM; 1905 1906 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1907 if (r) { 1908 kfree(mapping); 1909 return r; 1910 } 1911 1912 saddr /= AMDGPU_GPU_PAGE_SIZE; 1913 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1914 1915 mapping->start = saddr; 1916 mapping->last = eaddr; 1917 mapping->offset = offset; 1918 mapping->flags = flags; 1919 1920 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1921 1922 return 0; 1923 } 1924 1925 /** 1926 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1927 * 1928 * @adev: amdgpu_device pointer 1929 * @bo_va: bo_va to remove the address from 1930 * @saddr: where to the BO is mapped 1931 * 1932 * Remove a mapping of the BO at the specefied addr from the VM. 1933 * 1934 * Returns: 1935 * 0 for success, error for failure. 1936 * 1937 * Object has to be reserved and unreserved outside! 1938 */ 1939 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1940 struct amdgpu_bo_va *bo_va, 1941 uint64_t saddr) 1942 { 1943 struct amdgpu_bo_va_mapping *mapping; 1944 struct amdgpu_vm *vm = bo_va->base.vm; 1945 bool valid = true; 1946 1947 saddr /= AMDGPU_GPU_PAGE_SIZE; 1948 1949 list_for_each_entry(mapping, &bo_va->valids, list) { 1950 if (mapping->start == saddr) 1951 break; 1952 } 1953 1954 if (&mapping->list == &bo_va->valids) { 1955 valid = false; 1956 1957 list_for_each_entry(mapping, &bo_va->invalids, list) { 1958 if (mapping->start == saddr) 1959 break; 1960 } 1961 1962 if (&mapping->list == &bo_va->invalids) 1963 return -ENOENT; 1964 } 1965 1966 list_del(&mapping->list); 1967 amdgpu_vm_it_remove(mapping, &vm->va); 1968 mapping->bo_va = NULL; 1969 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1970 1971 if (valid) 1972 list_add(&mapping->list, &vm->freed); 1973 else 1974 amdgpu_vm_free_mapping(adev, vm, mapping, 1975 bo_va->last_pt_update); 1976 1977 return 0; 1978 } 1979 1980 /** 1981 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1982 * 1983 * @adev: amdgpu_device pointer 1984 * @vm: VM structure to use 1985 * @saddr: start of the range 1986 * @size: size of the range 1987 * 1988 * Remove all mappings in a range, split them as appropriate. 1989 * 1990 * Returns: 1991 * 0 for success, error for failure. 1992 */ 1993 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1994 struct amdgpu_vm *vm, 1995 uint64_t saddr, uint64_t size) 1996 { 1997 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1998 LIST_HEAD(removed); 1999 uint64_t eaddr; 2000 int r; 2001 2002 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 2003 if (r) 2004 return r; 2005 2006 saddr /= AMDGPU_GPU_PAGE_SIZE; 2007 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 2008 2009 /* Allocate all the needed memory */ 2010 before = kzalloc(sizeof(*before), GFP_KERNEL); 2011 if (!before) 2012 return -ENOMEM; 2013 INIT_LIST_HEAD(&before->list); 2014 2015 after = kzalloc(sizeof(*after), GFP_KERNEL); 2016 if (!after) { 2017 kfree(before); 2018 return -ENOMEM; 2019 } 2020 INIT_LIST_HEAD(&after->list); 2021 2022 /* Now gather all removed mappings */ 2023 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2024 while (tmp) { 2025 /* Remember mapping split at the start */ 2026 if (tmp->start < saddr) { 2027 before->start = tmp->start; 2028 before->last = saddr - 1; 2029 before->offset = tmp->offset; 2030 before->flags = tmp->flags; 2031 before->bo_va = tmp->bo_va; 2032 list_add(&before->list, &tmp->bo_va->invalids); 2033 } 2034 2035 /* Remember mapping split at the end */ 2036 if (tmp->last > eaddr) { 2037 after->start = eaddr + 1; 2038 after->last = tmp->last; 2039 after->offset = tmp->offset; 2040 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2041 after->flags = tmp->flags; 2042 after->bo_va = tmp->bo_va; 2043 list_add(&after->list, &tmp->bo_va->invalids); 2044 } 2045 2046 list_del(&tmp->list); 2047 list_add(&tmp->list, &removed); 2048 2049 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2050 } 2051 2052 /* And free them up */ 2053 list_for_each_entry_safe(tmp, next, &removed, list) { 2054 amdgpu_vm_it_remove(tmp, &vm->va); 2055 list_del(&tmp->list); 2056 2057 if (tmp->start < saddr) 2058 tmp->start = saddr; 2059 if (tmp->last > eaddr) 2060 tmp->last = eaddr; 2061 2062 tmp->bo_va = NULL; 2063 list_add(&tmp->list, &vm->freed); 2064 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2065 } 2066 2067 /* Insert partial mapping before the range */ 2068 if (!list_empty(&before->list)) { 2069 struct amdgpu_bo *bo = before->bo_va->base.bo; 2070 2071 amdgpu_vm_it_insert(before, &vm->va); 2072 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2073 amdgpu_vm_prt_get(adev); 2074 2075 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2076 !before->bo_va->base.moved) 2077 amdgpu_vm_bo_moved(&before->bo_va->base); 2078 } else { 2079 kfree(before); 2080 } 2081 2082 /* Insert partial mapping after the range */ 2083 if (!list_empty(&after->list)) { 2084 struct amdgpu_bo *bo = after->bo_va->base.bo; 2085 2086 amdgpu_vm_it_insert(after, &vm->va); 2087 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2088 amdgpu_vm_prt_get(adev); 2089 2090 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2091 !after->bo_va->base.moved) 2092 amdgpu_vm_bo_moved(&after->bo_va->base); 2093 } else { 2094 kfree(after); 2095 } 2096 2097 return 0; 2098 } 2099 2100 /** 2101 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2102 * 2103 * @vm: the requested VM 2104 * @addr: the address 2105 * 2106 * Find a mapping by it's address. 2107 * 2108 * Returns: 2109 * The amdgpu_bo_va_mapping matching for addr or NULL 2110 * 2111 */ 2112 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2113 uint64_t addr) 2114 { 2115 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2116 } 2117 2118 /** 2119 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2120 * 2121 * @vm: the requested vm 2122 * @ticket: CS ticket 2123 * 2124 * Trace all mappings of BOs reserved during a command submission. 2125 */ 2126 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2127 { 2128 struct amdgpu_bo_va_mapping *mapping; 2129 2130 if (!trace_amdgpu_vm_bo_cs_enabled()) 2131 return; 2132 2133 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2134 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2135 if (mapping->bo_va && mapping->bo_va->base.bo) { 2136 struct amdgpu_bo *bo; 2137 2138 bo = mapping->bo_va->base.bo; 2139 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2140 ticket) 2141 continue; 2142 } 2143 2144 trace_amdgpu_vm_bo_cs(mapping); 2145 } 2146 } 2147 2148 /** 2149 * amdgpu_vm_bo_del - remove a bo from a specific vm 2150 * 2151 * @adev: amdgpu_device pointer 2152 * @bo_va: requested bo_va 2153 * 2154 * Remove @bo_va->bo from the requested vm. 2155 * 2156 * Object have to be reserved! 2157 */ 2158 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2159 struct amdgpu_bo_va *bo_va) 2160 { 2161 struct amdgpu_bo_va_mapping *mapping, *next; 2162 struct amdgpu_bo *bo = bo_va->base.bo; 2163 struct amdgpu_vm *vm = bo_va->base.vm; 2164 struct amdgpu_vm_bo_base **base; 2165 2166 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2167 2168 if (bo) { 2169 dma_resv_assert_held(bo->tbo.base.resv); 2170 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2171 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2172 2173 for (base = &bo_va->base.bo->vm_bo; *base; 2174 base = &(*base)->next) { 2175 if (*base != &bo_va->base) 2176 continue; 2177 2178 amdgpu_vm_update_stats(*base, bo->tbo.resource, -1); 2179 *base = bo_va->base.next; 2180 break; 2181 } 2182 } 2183 2184 spin_lock(&vm->status_lock); 2185 list_del(&bo_va->base.vm_status); 2186 spin_unlock(&vm->status_lock); 2187 2188 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2189 list_del(&mapping->list); 2190 amdgpu_vm_it_remove(mapping, &vm->va); 2191 mapping->bo_va = NULL; 2192 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2193 list_add(&mapping->list, &vm->freed); 2194 } 2195 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2196 list_del(&mapping->list); 2197 amdgpu_vm_it_remove(mapping, &vm->va); 2198 amdgpu_vm_free_mapping(adev, vm, mapping, 2199 bo_va->last_pt_update); 2200 } 2201 2202 dma_fence_put(bo_va->last_pt_update); 2203 2204 if (bo && bo_va->is_xgmi) 2205 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2206 2207 kfree(bo_va); 2208 } 2209 2210 /** 2211 * amdgpu_vm_evictable - check if we can evict a VM 2212 * 2213 * @bo: A page table of the VM. 2214 * 2215 * Check if it is possible to evict a VM. 2216 */ 2217 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2218 { 2219 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2220 2221 /* Page tables of a destroyed VM can go away immediately */ 2222 if (!bo_base || !bo_base->vm) 2223 return true; 2224 2225 /* Don't evict VM page tables while they are busy */ 2226 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2227 return false; 2228 2229 /* Try to block ongoing updates */ 2230 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2231 return false; 2232 2233 /* Don't evict VM page tables while they are updated */ 2234 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2235 amdgpu_vm_eviction_unlock(bo_base->vm); 2236 return false; 2237 } 2238 2239 bo_base->vm->evicting = true; 2240 amdgpu_vm_eviction_unlock(bo_base->vm); 2241 return true; 2242 } 2243 2244 /** 2245 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2246 * 2247 * @bo: amdgpu buffer object 2248 * @evicted: is the BO evicted 2249 * 2250 * Mark @bo as invalid. 2251 */ 2252 void amdgpu_vm_bo_invalidate(struct amdgpu_bo *bo, bool evicted) 2253 { 2254 struct amdgpu_vm_bo_base *bo_base; 2255 2256 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2257 struct amdgpu_vm *vm = bo_base->vm; 2258 2259 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2260 amdgpu_vm_bo_evicted(bo_base); 2261 continue; 2262 } 2263 2264 if (bo_base->moved) 2265 continue; 2266 bo_base->moved = true; 2267 2268 if (bo->tbo.type == ttm_bo_type_kernel) 2269 amdgpu_vm_bo_relocated(bo_base); 2270 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2271 amdgpu_vm_bo_moved(bo_base); 2272 else 2273 amdgpu_vm_bo_invalidated(bo_base); 2274 } 2275 } 2276 2277 /** 2278 * amdgpu_vm_bo_move - handle BO move 2279 * 2280 * @bo: amdgpu buffer object 2281 * @new_mem: the new placement of the BO move 2282 * @evicted: is the BO evicted 2283 * 2284 * Update the memory stats for the new placement and mark @bo as invalid. 2285 */ 2286 void amdgpu_vm_bo_move(struct amdgpu_bo *bo, struct ttm_resource *new_mem, 2287 bool evicted) 2288 { 2289 struct amdgpu_vm_bo_base *bo_base; 2290 2291 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2292 struct amdgpu_vm *vm = bo_base->vm; 2293 2294 spin_lock(&vm->status_lock); 2295 amdgpu_vm_update_stats_locked(bo_base, bo->tbo.resource, -1); 2296 amdgpu_vm_update_stats_locked(bo_base, new_mem, +1); 2297 spin_unlock(&vm->status_lock); 2298 } 2299 2300 amdgpu_vm_bo_invalidate(bo, evicted); 2301 } 2302 2303 /** 2304 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2305 * 2306 * @vm_size: VM size 2307 * 2308 * Returns: 2309 * VM page table as power of two 2310 */ 2311 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2312 { 2313 /* Total bits covered by PD + PTs */ 2314 unsigned bits = ilog2(vm_size) + 18; 2315 2316 /* Make sure the PD is 4K in size up to 8GB address space. 2317 Above that split equal between PD and PTs */ 2318 if (vm_size <= 8) 2319 return (bits - 9); 2320 else 2321 return ((bits + 3) / 2); 2322 } 2323 2324 /** 2325 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2326 * 2327 * @adev: amdgpu_device pointer 2328 * @min_vm_size: the minimum vm size in GB if it's set auto 2329 * @fragment_size_default: Default PTE fragment size 2330 * @max_level: max VMPT level 2331 * @max_bits: max address space size in bits 2332 * 2333 */ 2334 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2335 uint32_t fragment_size_default, unsigned max_level, 2336 unsigned max_bits) 2337 { 2338 unsigned int max_size = 1 << (max_bits - 30); 2339 unsigned int vm_size; 2340 uint64_t tmp; 2341 2342 /* adjust vm size first */ 2343 if (amdgpu_vm_size != -1) { 2344 vm_size = amdgpu_vm_size; 2345 if (vm_size > max_size) { 2346 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2347 amdgpu_vm_size, max_size); 2348 vm_size = max_size; 2349 } 2350 } else { 2351 struct sysinfo si; 2352 unsigned int phys_ram_gb; 2353 2354 /* Optimal VM size depends on the amount of physical 2355 * RAM available. Underlying requirements and 2356 * assumptions: 2357 * 2358 * - Need to map system memory and VRAM from all GPUs 2359 * - VRAM from other GPUs not known here 2360 * - Assume VRAM <= system memory 2361 * - On GFX8 and older, VM space can be segmented for 2362 * different MTYPEs 2363 * - Need to allow room for fragmentation, guard pages etc. 2364 * 2365 * This adds up to a rough guess of system memory x3. 2366 * Round up to power of two to maximize the available 2367 * VM size with the given page table size. 2368 */ 2369 si_meminfo(&si); 2370 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2371 (1 << 30) - 1) >> 30; 2372 vm_size = roundup_pow_of_two( 2373 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2374 } 2375 2376 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2377 2378 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2379 if (amdgpu_vm_block_size != -1) 2380 tmp >>= amdgpu_vm_block_size - 9; 2381 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2382 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2383 switch (adev->vm_manager.num_level) { 2384 case 3: 2385 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2386 break; 2387 case 2: 2388 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2389 break; 2390 case 1: 2391 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2392 break; 2393 default: 2394 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2395 } 2396 /* block size depends on vm size and hw setup*/ 2397 if (amdgpu_vm_block_size != -1) 2398 adev->vm_manager.block_size = 2399 min((unsigned)amdgpu_vm_block_size, max_bits 2400 - AMDGPU_GPU_PAGE_SHIFT 2401 - 9 * adev->vm_manager.num_level); 2402 else if (adev->vm_manager.num_level > 1) 2403 adev->vm_manager.block_size = 9; 2404 else 2405 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2406 2407 if (amdgpu_vm_fragment_size == -1) 2408 adev->vm_manager.fragment_size = fragment_size_default; 2409 else 2410 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2411 2412 dev_info( 2413 adev->dev, 2414 "vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2415 vm_size, adev->vm_manager.num_level + 1, 2416 adev->vm_manager.block_size, adev->vm_manager.fragment_size); 2417 } 2418 2419 /** 2420 * amdgpu_vm_wait_idle - wait for the VM to become idle 2421 * 2422 * @vm: VM object to wait for 2423 * @timeout: timeout to wait for VM to become idle 2424 */ 2425 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2426 { 2427 timeout = drm_sched_entity_flush(&vm->immediate, timeout); 2428 if (timeout <= 0) 2429 return timeout; 2430 2431 return drm_sched_entity_flush(&vm->delayed, timeout); 2432 } 2433 2434 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2435 { 2436 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2437 2438 kfree(ti); 2439 } 2440 2441 static inline struct amdgpu_vm * 2442 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2443 { 2444 struct amdgpu_vm *vm; 2445 unsigned long flags; 2446 2447 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2448 vm = xa_load(&adev->vm_manager.pasids, pasid); 2449 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2450 2451 return vm; 2452 } 2453 2454 /** 2455 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2456 * 2457 * @task_info: task_info struct under discussion. 2458 * 2459 * frees the vm task_info ptr at the last put 2460 */ 2461 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2462 { 2463 if (task_info) 2464 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2465 } 2466 2467 /** 2468 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2469 * 2470 * @vm: VM to get info from 2471 * 2472 * Returns the reference counted task_info structure, which must be 2473 * referenced down with amdgpu_vm_put_task_info. 2474 */ 2475 struct amdgpu_task_info * 2476 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2477 { 2478 struct amdgpu_task_info *ti = NULL; 2479 2480 if (vm) { 2481 ti = vm->task_info; 2482 kref_get(&vm->task_info->refcount); 2483 } 2484 2485 return ti; 2486 } 2487 2488 /** 2489 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2490 * 2491 * @adev: drm device pointer 2492 * @pasid: PASID identifier for VM 2493 * 2494 * Returns the reference counted task_info structure, which must be 2495 * referenced down with amdgpu_vm_put_task_info. 2496 */ 2497 struct amdgpu_task_info * 2498 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2499 { 2500 return amdgpu_vm_get_task_info_vm( 2501 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2502 } 2503 2504 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2505 { 2506 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2507 if (!vm->task_info) 2508 return -ENOMEM; 2509 2510 kref_init(&vm->task_info->refcount); 2511 return 0; 2512 } 2513 2514 /** 2515 * amdgpu_vm_set_task_info - Sets VMs task info. 2516 * 2517 * @vm: vm for which to set the info 2518 */ 2519 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2520 { 2521 if (!vm->task_info) 2522 return; 2523 2524 if (vm->task_info->task.pid == current->pid) 2525 return; 2526 2527 vm->task_info->task.pid = current->pid; 2528 get_task_comm(vm->task_info->task.comm, current); 2529 2530 if (current->group_leader->mm != current->mm) 2531 return; 2532 2533 vm->task_info->tgid = current->group_leader->pid; 2534 get_task_comm(vm->task_info->process_name, current->group_leader); 2535 } 2536 2537 /** 2538 * amdgpu_vm_init - initialize a vm instance 2539 * 2540 * @adev: amdgpu_device pointer 2541 * @vm: requested vm 2542 * @xcp_id: GPU partition selection id 2543 * 2544 * Init @vm fields. 2545 * 2546 * Returns: 2547 * 0 for success, error for failure. 2548 */ 2549 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2550 int32_t xcp_id) 2551 { 2552 struct amdgpu_bo *root_bo; 2553 struct amdgpu_bo_vm *root; 2554 int r, i; 2555 2556 vm->va = RB_ROOT_CACHED; 2557 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2558 vm->reserved_vmid[i] = NULL; 2559 INIT_LIST_HEAD(&vm->evicted); 2560 INIT_LIST_HEAD(&vm->evicted_user); 2561 INIT_LIST_HEAD(&vm->relocated); 2562 INIT_LIST_HEAD(&vm->moved); 2563 INIT_LIST_HEAD(&vm->idle); 2564 INIT_LIST_HEAD(&vm->invalidated); 2565 spin_lock_init(&vm->status_lock); 2566 INIT_LIST_HEAD(&vm->freed); 2567 INIT_LIST_HEAD(&vm->done); 2568 INIT_KFIFO(vm->faults); 2569 2570 r = amdgpu_vm_init_entities(adev, vm); 2571 if (r) 2572 return r; 2573 2574 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2575 2576 vm->is_compute_context = false; 2577 2578 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2579 AMDGPU_VM_USE_CPU_FOR_GFX); 2580 2581 dev_dbg(adev->dev, "VM update mode is %s\n", 2582 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2583 WARN_ONCE((vm->use_cpu_for_update && 2584 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2585 "CPU update of VM recommended only for large BAR system\n"); 2586 2587 if (vm->use_cpu_for_update) 2588 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2589 else 2590 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2591 2592 vm->last_update = dma_fence_get_stub(); 2593 vm->last_unlocked = dma_fence_get_stub(); 2594 vm->last_tlb_flush = dma_fence_get_stub(); 2595 vm->generation = amdgpu_vm_generation(adev, NULL); 2596 2597 mutex_init(&vm->eviction_lock); 2598 vm->evicting = false; 2599 vm->tlb_fence_context = dma_fence_context_alloc(1); 2600 2601 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2602 false, &root, xcp_id); 2603 if (r) 2604 goto error_free_delayed; 2605 2606 root_bo = amdgpu_bo_ref(&root->bo); 2607 r = amdgpu_bo_reserve(root_bo, true); 2608 if (r) { 2609 amdgpu_bo_unref(&root_bo); 2610 goto error_free_delayed; 2611 } 2612 2613 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2614 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2615 if (r) 2616 goto error_free_root; 2617 2618 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2619 if (r) 2620 goto error_free_root; 2621 2622 r = amdgpu_vm_create_task_info(vm); 2623 if (r) 2624 dev_dbg(adev->dev, "Failed to create task info for VM\n"); 2625 2626 amdgpu_bo_unreserve(vm->root.bo); 2627 amdgpu_bo_unref(&root_bo); 2628 2629 return 0; 2630 2631 error_free_root: 2632 amdgpu_vm_pt_free_root(adev, vm); 2633 amdgpu_bo_unreserve(vm->root.bo); 2634 amdgpu_bo_unref(&root_bo); 2635 2636 error_free_delayed: 2637 dma_fence_put(vm->last_tlb_flush); 2638 dma_fence_put(vm->last_unlocked); 2639 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2640 amdgpu_vm_fini_entities(vm); 2641 2642 return r; 2643 } 2644 2645 /** 2646 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2647 * 2648 * @adev: amdgpu_device pointer 2649 * @vm: requested vm 2650 * 2651 * This only works on GFX VMs that don't have any BOs added and no 2652 * page tables allocated yet. 2653 * 2654 * Changes the following VM parameters: 2655 * - use_cpu_for_update 2656 * - pte_supports_ats 2657 * 2658 * Reinitializes the page directory to reflect the changed ATS 2659 * setting. 2660 * 2661 * Returns: 2662 * 0 for success, -errno for errors. 2663 */ 2664 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2665 { 2666 int r; 2667 2668 r = amdgpu_bo_reserve(vm->root.bo, true); 2669 if (r) 2670 return r; 2671 2672 /* Update VM state */ 2673 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2674 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2675 dev_dbg(adev->dev, "VM update mode is %s\n", 2676 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2677 WARN_ONCE((vm->use_cpu_for_update && 2678 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2679 "CPU update of VM recommended only for large BAR system\n"); 2680 2681 if (vm->use_cpu_for_update) { 2682 /* Sync with last SDMA update/clear before switching to CPU */ 2683 r = amdgpu_bo_sync_wait(vm->root.bo, 2684 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2685 if (r) 2686 goto unreserve_bo; 2687 2688 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2689 r = amdgpu_vm_pt_map_tables(adev, vm); 2690 if (r) 2691 goto unreserve_bo; 2692 2693 } else { 2694 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2695 } 2696 2697 dma_fence_put(vm->last_update); 2698 vm->last_update = dma_fence_get_stub(); 2699 vm->is_compute_context = true; 2700 2701 unreserve_bo: 2702 amdgpu_bo_unreserve(vm->root.bo); 2703 return r; 2704 } 2705 2706 static int amdgpu_vm_stats_is_zero(struct amdgpu_vm *vm) 2707 { 2708 for (int i = 0; i < __AMDGPU_PL_NUM; ++i) { 2709 if (!(drm_memory_stats_is_zero(&vm->stats[i].drm) && 2710 vm->stats[i].evicted == 0)) 2711 return false; 2712 } 2713 return true; 2714 } 2715 2716 /** 2717 * amdgpu_vm_fini - tear down a vm instance 2718 * 2719 * @adev: amdgpu_device pointer 2720 * @vm: requested vm 2721 * 2722 * Tear down @vm. 2723 * Unbind the VM and remove all bos from the vm bo list 2724 */ 2725 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2726 { 2727 struct amdgpu_bo_va_mapping *mapping, *tmp; 2728 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2729 struct amdgpu_bo *root; 2730 unsigned long flags; 2731 int i; 2732 2733 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2734 2735 root = amdgpu_bo_ref(vm->root.bo); 2736 amdgpu_bo_reserve(root, true); 2737 amdgpu_vm_set_pasid(adev, vm, 0); 2738 dma_fence_wait(vm->last_unlocked, false); 2739 dma_fence_put(vm->last_unlocked); 2740 dma_fence_wait(vm->last_tlb_flush, false); 2741 /* Make sure that all fence callbacks have completed */ 2742 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2743 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2744 dma_fence_put(vm->last_tlb_flush); 2745 2746 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2747 if (mapping->flags & AMDGPU_VM_PAGE_PRT && prt_fini_needed) { 2748 amdgpu_vm_prt_fini(adev, vm); 2749 prt_fini_needed = false; 2750 } 2751 2752 list_del(&mapping->list); 2753 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2754 } 2755 2756 amdgpu_vm_pt_free_root(adev, vm); 2757 amdgpu_bo_unreserve(root); 2758 amdgpu_bo_unref(&root); 2759 WARN_ON(vm->root.bo); 2760 2761 amdgpu_vm_fini_entities(vm); 2762 2763 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2764 dev_err(adev->dev, "still active bo inside vm\n"); 2765 } 2766 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2767 &vm->va.rb_root, rb) { 2768 /* Don't remove the mapping here, we don't want to trigger a 2769 * rebalance and the tree is about to be destroyed anyway. 2770 */ 2771 list_del(&mapping->list); 2772 kfree(mapping); 2773 } 2774 2775 dma_fence_put(vm->last_update); 2776 2777 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2778 if (vm->reserved_vmid[i]) { 2779 amdgpu_vmid_free_reserved(adev, i); 2780 vm->reserved_vmid[i] = false; 2781 } 2782 } 2783 2784 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2785 2786 if (!amdgpu_vm_stats_is_zero(vm)) { 2787 struct amdgpu_task_info *ti = vm->task_info; 2788 2789 dev_warn(adev->dev, 2790 "VM memory stats for proc %s(%d) task %s(%d) is non-zero when fini\n", 2791 ti->process_name, ti->task.pid, ti->task.comm, ti->tgid); 2792 } 2793 2794 amdgpu_vm_put_task_info(vm->task_info); 2795 } 2796 2797 /** 2798 * amdgpu_vm_manager_init - init the VM manager 2799 * 2800 * @adev: amdgpu_device pointer 2801 * 2802 * Initialize the VM manager structures 2803 */ 2804 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2805 { 2806 unsigned i; 2807 2808 /* Concurrent flushes are only possible starting with Vega10 and 2809 * are broken on Navi10 and Navi14. 2810 */ 2811 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2812 adev->asic_type == CHIP_NAVI10 || 2813 adev->asic_type == CHIP_NAVI14); 2814 amdgpu_vmid_mgr_init(adev); 2815 2816 adev->vm_manager.fence_context = 2817 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2818 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2819 adev->vm_manager.seqno[i] = 0; 2820 2821 spin_lock_init(&adev->vm_manager.prt_lock); 2822 atomic_set(&adev->vm_manager.num_prt_users, 0); 2823 2824 /* If not overridden by the user, by default, only in large BAR systems 2825 * Compute VM tables will be updated by CPU 2826 */ 2827 #ifdef CONFIG_X86_64 2828 if (amdgpu_vm_update_mode == -1) { 2829 /* For asic with VF MMIO access protection 2830 * avoid using CPU for VM table updates 2831 */ 2832 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2833 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2834 adev->vm_manager.vm_update_mode = 2835 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2836 else 2837 adev->vm_manager.vm_update_mode = 0; 2838 } else 2839 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2840 #else 2841 adev->vm_manager.vm_update_mode = 0; 2842 #endif 2843 2844 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2845 } 2846 2847 /** 2848 * amdgpu_vm_manager_fini - cleanup VM manager 2849 * 2850 * @adev: amdgpu_device pointer 2851 * 2852 * Cleanup the VM manager and free resources. 2853 */ 2854 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2855 { 2856 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2857 xa_destroy(&adev->vm_manager.pasids); 2858 2859 amdgpu_vmid_mgr_fini(adev); 2860 } 2861 2862 /** 2863 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2864 * 2865 * @dev: drm device pointer 2866 * @data: drm_amdgpu_vm 2867 * @filp: drm file pointer 2868 * 2869 * Returns: 2870 * 0 for success, -errno for errors. 2871 */ 2872 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2873 { 2874 union drm_amdgpu_vm *args = data; 2875 struct amdgpu_device *adev = drm_to_adev(dev); 2876 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2877 2878 /* No valid flags defined yet */ 2879 if (args->in.flags) 2880 return -EINVAL; 2881 2882 switch (args->in.op) { 2883 case AMDGPU_VM_OP_RESERVE_VMID: 2884 /* We only have requirement to reserve vmid from gfxhub */ 2885 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2886 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2887 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2888 } 2889 2890 break; 2891 case AMDGPU_VM_OP_UNRESERVE_VMID: 2892 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2893 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2894 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2895 } 2896 break; 2897 default: 2898 return -EINVAL; 2899 } 2900 2901 return 0; 2902 } 2903 2904 /** 2905 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2906 * @adev: amdgpu device pointer 2907 * @pasid: PASID of the VM 2908 * @ts: Timestamp of the fault 2909 * @vmid: VMID, only used for GFX 9.4.3. 2910 * @node_id: Node_id received in IH cookie. Only applicable for 2911 * GFX 9.4.3. 2912 * @addr: Address of the fault 2913 * @write_fault: true is write fault, false is read fault 2914 * 2915 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2916 * shouldn't be reported any more. 2917 */ 2918 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2919 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2920 bool write_fault) 2921 { 2922 bool is_compute_context = false; 2923 struct amdgpu_bo *root; 2924 unsigned long irqflags; 2925 uint64_t value, flags; 2926 struct amdgpu_vm *vm; 2927 int r; 2928 2929 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2930 vm = xa_load(&adev->vm_manager.pasids, pasid); 2931 if (vm) { 2932 root = amdgpu_bo_ref(vm->root.bo); 2933 is_compute_context = vm->is_compute_context; 2934 } else { 2935 root = NULL; 2936 } 2937 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2938 2939 if (!root) 2940 return false; 2941 2942 addr /= AMDGPU_GPU_PAGE_SIZE; 2943 2944 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2945 node_id, addr, ts, write_fault)) { 2946 amdgpu_bo_unref(&root); 2947 return true; 2948 } 2949 2950 r = amdgpu_bo_reserve(root, true); 2951 if (r) 2952 goto error_unref; 2953 2954 /* Double check that the VM still exists */ 2955 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2956 vm = xa_load(&adev->vm_manager.pasids, pasid); 2957 if (vm && vm->root.bo != root) 2958 vm = NULL; 2959 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2960 if (!vm) 2961 goto error_unlock; 2962 2963 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2964 AMDGPU_PTE_SYSTEM; 2965 2966 if (is_compute_context) { 2967 /* Intentionally setting invalid PTE flag 2968 * combination to force a no-retry-fault 2969 */ 2970 flags = AMDGPU_VM_NORETRY_FLAGS; 2971 value = 0; 2972 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2973 /* Redirect the access to the dummy page */ 2974 value = adev->dummy_page_addr; 2975 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2976 AMDGPU_PTE_WRITEABLE; 2977 2978 } else { 2979 /* Let the hw retry silently on the PTE */ 2980 value = 0; 2981 } 2982 2983 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2984 if (r) { 2985 pr_debug("failed %d to reserve fence slot\n", r); 2986 goto error_unlock; 2987 } 2988 2989 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2990 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2991 if (r) 2992 goto error_unlock; 2993 2994 r = amdgpu_vm_update_pdes(adev, vm, true); 2995 2996 error_unlock: 2997 amdgpu_bo_unreserve(root); 2998 if (r < 0) 2999 dev_err(adev->dev, "Can't handle page fault (%d)\n", r); 3000 3001 error_unref: 3002 amdgpu_bo_unref(&root); 3003 3004 return false; 3005 } 3006 3007 #if defined(CONFIG_DEBUG_FS) 3008 /** 3009 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3010 * 3011 * @vm: Requested VM for printing BO info 3012 * @m: debugfs file 3013 * 3014 * Print BO information in debugfs file for the VM 3015 */ 3016 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3017 { 3018 struct amdgpu_bo_va *bo_va, *tmp; 3019 u64 total_idle = 0; 3020 u64 total_evicted = 0; 3021 u64 total_relocated = 0; 3022 u64 total_moved = 0; 3023 u64 total_invalidated = 0; 3024 u64 total_done = 0; 3025 unsigned int total_idle_objs = 0; 3026 unsigned int total_evicted_objs = 0; 3027 unsigned int total_relocated_objs = 0; 3028 unsigned int total_moved_objs = 0; 3029 unsigned int total_invalidated_objs = 0; 3030 unsigned int total_done_objs = 0; 3031 unsigned int id = 0; 3032 3033 spin_lock(&vm->status_lock); 3034 seq_puts(m, "\tIdle BOs:\n"); 3035 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3036 if (!bo_va->base.bo) 3037 continue; 3038 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3039 } 3040 total_idle_objs = id; 3041 id = 0; 3042 3043 seq_puts(m, "\tEvicted BOs:\n"); 3044 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3045 if (!bo_va->base.bo) 3046 continue; 3047 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3048 } 3049 total_evicted_objs = id; 3050 id = 0; 3051 3052 seq_puts(m, "\tRelocated BOs:\n"); 3053 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3054 if (!bo_va->base.bo) 3055 continue; 3056 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3057 } 3058 total_relocated_objs = id; 3059 id = 0; 3060 3061 seq_puts(m, "\tMoved BOs:\n"); 3062 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3063 if (!bo_va->base.bo) 3064 continue; 3065 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3066 } 3067 total_moved_objs = id; 3068 id = 0; 3069 3070 seq_puts(m, "\tInvalidated BOs:\n"); 3071 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3072 if (!bo_va->base.bo) 3073 continue; 3074 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3075 } 3076 total_invalidated_objs = id; 3077 id = 0; 3078 3079 seq_puts(m, "\tDone BOs:\n"); 3080 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3081 if (!bo_va->base.bo) 3082 continue; 3083 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3084 } 3085 spin_unlock(&vm->status_lock); 3086 total_done_objs = id; 3087 3088 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3089 total_idle_objs); 3090 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3091 total_evicted_objs); 3092 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3093 total_relocated_objs); 3094 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3095 total_moved_objs); 3096 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3097 total_invalidated_objs); 3098 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3099 total_done_objs); 3100 } 3101 #endif 3102 3103 /** 3104 * amdgpu_vm_update_fault_cache - update cached fault into. 3105 * @adev: amdgpu device pointer 3106 * @pasid: PASID of the VM 3107 * @addr: Address of the fault 3108 * @status: GPUVM fault status register 3109 * @vmhub: which vmhub got the fault 3110 * 3111 * Cache the fault info for later use by userspace in debugging. 3112 */ 3113 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 3114 unsigned int pasid, 3115 uint64_t addr, 3116 uint32_t status, 3117 unsigned int vmhub) 3118 { 3119 struct amdgpu_vm *vm; 3120 unsigned long flags; 3121 3122 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3123 3124 vm = xa_load(&adev->vm_manager.pasids, pasid); 3125 /* Don't update the fault cache if status is 0. In the multiple 3126 * fault case, subsequent faults will return a 0 status which is 3127 * useless for userspace and replaces the useful fault status, so 3128 * only update if status is non-0. 3129 */ 3130 if (vm && status) { 3131 vm->fault_info.addr = addr; 3132 vm->fault_info.status = status; 3133 /* 3134 * Update the fault information globally for later usage 3135 * when vm could be stale or freed. 3136 */ 3137 adev->vm_manager.fault_info.addr = addr; 3138 adev->vm_manager.fault_info.vmhub = vmhub; 3139 adev->vm_manager.fault_info.status = status; 3140 3141 if (AMDGPU_IS_GFXHUB(vmhub)) { 3142 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3143 vm->fault_info.vmhub |= 3144 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3145 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3146 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3147 vm->fault_info.vmhub |= 3148 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3149 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3150 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3151 vm->fault_info.vmhub |= 3152 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3153 } else { 3154 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3155 } 3156 } 3157 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3158 } 3159 3160 /** 3161 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3162 * 3163 * @vm: VM to test against. 3164 * @bo: BO to be tested. 3165 * 3166 * Returns true if the BO shares the dma_resv object with the root PD and is 3167 * always guaranteed to be valid inside the VM. 3168 */ 3169 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3170 { 3171 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3172 } 3173 3174 void amdgpu_vm_print_task_info(struct amdgpu_device *adev, 3175 struct amdgpu_task_info *task_info) 3176 { 3177 dev_err(adev->dev, 3178 " Process %s pid %d thread %s pid %d\n", 3179 task_info->process_name, task_info->tgid, 3180 task_info->task.comm, task_info->task.pid); 3181 } 3182