1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When executing a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 70 START, LAST, static, amdgpu_vm_it) 71 72 #undef START 73 #undef LAST 74 75 /** 76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 77 */ 78 struct amdgpu_prt_cb { 79 80 /** 81 * @adev: amdgpu device 82 */ 83 struct amdgpu_device *adev; 84 85 /** 86 * @cb: callback 87 */ 88 struct dma_fence_cb cb; 89 }; 90 91 /** 92 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 93 * 94 * @adev: amdgpu_device pointer 95 * @vm: amdgpu_vm pointer 96 * @pasid: the pasid the VM is using on this GPU 97 * 98 * Set the pasid this VM is using on this GPU, can also be used to remove the 99 * pasid by passing in zero. 100 * 101 */ 102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 103 u32 pasid) 104 { 105 int r; 106 107 if (vm->pasid == pasid) 108 return 0; 109 110 if (vm->pasid) { 111 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 112 if (r < 0) 113 return r; 114 115 vm->pasid = 0; 116 } 117 118 if (pasid) { 119 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 120 GFP_KERNEL)); 121 if (r < 0) 122 return r; 123 124 vm->pasid = pasid; 125 } 126 127 128 return 0; 129 } 130 131 /* 132 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 133 * happens while holding this lock anywhere to prevent deadlocks when 134 * an MMU notifier runs in reclaim-FS context. 135 */ 136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 137 { 138 mutex_lock(&vm->eviction_lock); 139 vm->saved_flags = memalloc_noreclaim_save(); 140 } 141 142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 143 { 144 if (mutex_trylock(&vm->eviction_lock)) { 145 vm->saved_flags = memalloc_noreclaim_save(); 146 return 1; 147 } 148 return 0; 149 } 150 151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 152 { 153 memalloc_noreclaim_restore(vm->saved_flags); 154 mutex_unlock(&vm->eviction_lock); 155 } 156 157 /** 158 * amdgpu_vm_level_shift - return the addr shift for each level 159 * 160 * @adev: amdgpu_device pointer 161 * @level: VMPT level 162 * 163 * Returns: 164 * The number of bits the pfn needs to be right shifted for a level. 165 */ 166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 167 unsigned level) 168 { 169 switch (level) { 170 case AMDGPU_VM_PDB2: 171 case AMDGPU_VM_PDB1: 172 case AMDGPU_VM_PDB0: 173 return 9 * (AMDGPU_VM_PDB0 - level) + 174 adev->vm_manager.block_size; 175 case AMDGPU_VM_PTB: 176 return 0; 177 default: 178 return ~0; 179 } 180 } 181 182 /** 183 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 184 * 185 * @adev: amdgpu_device pointer 186 * @level: VMPT level 187 * 188 * Returns: 189 * The number of entries in a page directory or page table. 190 */ 191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 192 unsigned level) 193 { 194 unsigned shift = amdgpu_vm_level_shift(adev, 195 adev->vm_manager.root_level); 196 197 if (level == adev->vm_manager.root_level) 198 /* For the root directory */ 199 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 200 >> shift; 201 else if (level != AMDGPU_VM_PTB) 202 /* Everything in between */ 203 return 512; 204 else 205 /* For the page tables on the leaves */ 206 return AMDGPU_VM_PTE_COUNT(adev); 207 } 208 209 /** 210 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 211 * 212 * @adev: amdgpu_device pointer 213 * 214 * Returns: 215 * The number of entries in the root page directory which needs the ATS setting. 216 */ 217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 218 { 219 unsigned shift; 220 221 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 222 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 223 } 224 225 /** 226 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 227 * 228 * @adev: amdgpu_device pointer 229 * @level: VMPT level 230 * 231 * Returns: 232 * The mask to extract the entry number of a PD/PT from an address. 233 */ 234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 235 unsigned int level) 236 { 237 if (level <= adev->vm_manager.root_level) 238 return 0xffffffff; 239 else if (level != AMDGPU_VM_PTB) 240 return 0x1ff; 241 else 242 return AMDGPU_VM_PTE_COUNT(adev) - 1; 243 } 244 245 /** 246 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 247 * 248 * @adev: amdgpu_device pointer 249 * @level: VMPT level 250 * 251 * Returns: 252 * The size of the BO for a page directory or page table in bytes. 253 */ 254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 255 { 256 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 257 } 258 259 /** 260 * amdgpu_vm_bo_evicted - vm_bo is evicted 261 * 262 * @vm_bo: vm_bo which is evicted 263 * 264 * State for PDs/PTs and per VM BOs which are not at the location they should 265 * be. 266 */ 267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 struct amdgpu_vm *vm = vm_bo->vm; 270 struct amdgpu_bo *bo = vm_bo->bo; 271 272 vm_bo->moved = true; 273 if (bo->tbo.type == ttm_bo_type_kernel) 274 list_move(&vm_bo->vm_status, &vm->evicted); 275 else 276 list_move_tail(&vm_bo->vm_status, &vm->evicted); 277 } 278 /** 279 * amdgpu_vm_bo_moved - vm_bo is moved 280 * 281 * @vm_bo: vm_bo which is moved 282 * 283 * State for per VM BOs which are moved, but that change is not yet reflected 284 * in the page tables. 285 */ 286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 289 } 290 291 /** 292 * amdgpu_vm_bo_idle - vm_bo is idle 293 * 294 * @vm_bo: vm_bo which is now idle 295 * 296 * State for PDs/PTs and per VM BOs which have gone through the state machine 297 * and are now idle. 298 */ 299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 300 { 301 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 302 vm_bo->moved = false; 303 } 304 305 /** 306 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 307 * 308 * @vm_bo: vm_bo which is now invalidated 309 * 310 * State for normal BOs which are invalidated and that change not yet reflected 311 * in the PTs. 312 */ 313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 314 { 315 spin_lock(&vm_bo->vm->invalidated_lock); 316 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 317 spin_unlock(&vm_bo->vm->invalidated_lock); 318 } 319 320 /** 321 * amdgpu_vm_bo_relocated - vm_bo is reloacted 322 * 323 * @vm_bo: vm_bo which is relocated 324 * 325 * State for PDs/PTs which needs to update their parent PD. 326 * For the root PD, just move to idle state. 327 */ 328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 329 { 330 if (vm_bo->bo->parent) 331 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 332 else 333 amdgpu_vm_bo_idle(vm_bo); 334 } 335 336 /** 337 * amdgpu_vm_bo_done - vm_bo is done 338 * 339 * @vm_bo: vm_bo which is now done 340 * 341 * State for normal BOs which are invalidated and that change has been updated 342 * in the PTs. 343 */ 344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 345 { 346 spin_lock(&vm_bo->vm->invalidated_lock); 347 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 348 spin_unlock(&vm_bo->vm->invalidated_lock); 349 } 350 351 /** 352 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 353 * 354 * @base: base structure for tracking BO usage in a VM 355 * @vm: vm to which bo is to be added 356 * @bo: amdgpu buffer object 357 * 358 * Initialize a bo_va_base structure and add it to the appropriate lists 359 * 360 */ 361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 362 struct amdgpu_vm *vm, 363 struct amdgpu_bo *bo) 364 { 365 base->vm = vm; 366 base->bo = bo; 367 base->next = NULL; 368 INIT_LIST_HEAD(&base->vm_status); 369 370 if (!bo) 371 return; 372 base->next = bo->vm_bo; 373 bo->vm_bo = base; 374 375 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 376 return; 377 378 vm->bulk_moveable = false; 379 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 380 amdgpu_vm_bo_relocated(base); 381 else 382 amdgpu_vm_bo_idle(base); 383 384 if (bo->preferred_domains & 385 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 386 return; 387 388 /* 389 * we checked all the prerequisites, but it looks like this per vm bo 390 * is currently evicted. add the bo to the evicted list to make sure it 391 * is validated on next vm use to avoid fault. 392 * */ 393 amdgpu_vm_bo_evicted(base); 394 } 395 396 /** 397 * amdgpu_vm_pt_parent - get the parent page directory 398 * 399 * @pt: child page table 400 * 401 * Helper to get the parent entry for the child page table. NULL if we are at 402 * the root page directory. 403 */ 404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 405 { 406 struct amdgpu_bo *parent = pt->bo->parent; 407 408 if (!parent) 409 return NULL; 410 411 return parent->vm_bo; 412 } 413 414 /* 415 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 416 */ 417 struct amdgpu_vm_pt_cursor { 418 uint64_t pfn; 419 struct amdgpu_vm_bo_base *parent; 420 struct amdgpu_vm_bo_base *entry; 421 unsigned level; 422 }; 423 424 /** 425 * amdgpu_vm_pt_start - start PD/PT walk 426 * 427 * @adev: amdgpu_device pointer 428 * @vm: amdgpu_vm structure 429 * @start: start address of the walk 430 * @cursor: state to initialize 431 * 432 * Initialize a amdgpu_vm_pt_cursor to start a walk. 433 */ 434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 435 struct amdgpu_vm *vm, uint64_t start, 436 struct amdgpu_vm_pt_cursor *cursor) 437 { 438 cursor->pfn = start; 439 cursor->parent = NULL; 440 cursor->entry = &vm->root; 441 cursor->level = adev->vm_manager.root_level; 442 } 443 444 /** 445 * amdgpu_vm_pt_descendant - go to child node 446 * 447 * @adev: amdgpu_device pointer 448 * @cursor: current state 449 * 450 * Walk to the child node of the current node. 451 * Returns: 452 * True if the walk was possible, false otherwise. 453 */ 454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 455 struct amdgpu_vm_pt_cursor *cursor) 456 { 457 unsigned mask, shift, idx; 458 459 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 460 !cursor->entry->bo) 461 return false; 462 463 mask = amdgpu_vm_entries_mask(adev, cursor->level); 464 shift = amdgpu_vm_level_shift(adev, cursor->level); 465 466 ++cursor->level; 467 idx = (cursor->pfn >> shift) & mask; 468 cursor->parent = cursor->entry; 469 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 470 return true; 471 } 472 473 /** 474 * amdgpu_vm_pt_sibling - go to sibling node 475 * 476 * @adev: amdgpu_device pointer 477 * @cursor: current state 478 * 479 * Walk to the sibling node of the current node. 480 * Returns: 481 * True if the walk was possible, false otherwise. 482 */ 483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 484 struct amdgpu_vm_pt_cursor *cursor) 485 { 486 unsigned shift, num_entries; 487 488 /* Root doesn't have a sibling */ 489 if (!cursor->parent) 490 return false; 491 492 /* Go to our parents and see if we got a sibling */ 493 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 494 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 495 496 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1]) 497 return false; 498 499 cursor->pfn += 1ULL << shift; 500 cursor->pfn &= ~((1ULL << shift) - 1); 501 ++cursor->entry; 502 return true; 503 } 504 505 /** 506 * amdgpu_vm_pt_ancestor - go to parent node 507 * 508 * @cursor: current state 509 * 510 * Walk to the parent node of the current node. 511 * Returns: 512 * True if the walk was possible, false otherwise. 513 */ 514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 515 { 516 if (!cursor->parent) 517 return false; 518 519 --cursor->level; 520 cursor->entry = cursor->parent; 521 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 522 return true; 523 } 524 525 /** 526 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 527 * 528 * @adev: amdgpu_device pointer 529 * @cursor: current state 530 * 531 * Walk the PD/PT tree to the next node. 532 */ 533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 534 struct amdgpu_vm_pt_cursor *cursor) 535 { 536 /* First try a newborn child */ 537 if (amdgpu_vm_pt_descendant(adev, cursor)) 538 return; 539 540 /* If that didn't worked try to find a sibling */ 541 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 542 /* No sibling, go to our parents and grandparents */ 543 if (!amdgpu_vm_pt_ancestor(cursor)) { 544 cursor->pfn = ~0ll; 545 return; 546 } 547 } 548 } 549 550 /** 551 * amdgpu_vm_pt_first_dfs - start a deep first search 552 * 553 * @adev: amdgpu_device structure 554 * @vm: amdgpu_vm structure 555 * @start: optional cursor to start with 556 * @cursor: state to initialize 557 * 558 * Starts a deep first traversal of the PD/PT tree. 559 */ 560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 561 struct amdgpu_vm *vm, 562 struct amdgpu_vm_pt_cursor *start, 563 struct amdgpu_vm_pt_cursor *cursor) 564 { 565 if (start) 566 *cursor = *start; 567 else 568 amdgpu_vm_pt_start(adev, vm, 0, cursor); 569 while (amdgpu_vm_pt_descendant(adev, cursor)); 570 } 571 572 /** 573 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 574 * 575 * @start: starting point for the search 576 * @entry: current entry 577 * 578 * Returns: 579 * True when the search should continue, false otherwise. 580 */ 581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 582 struct amdgpu_vm_bo_base *entry) 583 { 584 return entry && (!start || entry != start->entry); 585 } 586 587 /** 588 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 589 * 590 * @adev: amdgpu_device structure 591 * @cursor: current state 592 * 593 * Move the cursor to the next node in a deep first search. 594 */ 595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 596 struct amdgpu_vm_pt_cursor *cursor) 597 { 598 if (!cursor->entry) 599 return; 600 601 if (!cursor->parent) 602 cursor->entry = NULL; 603 else if (amdgpu_vm_pt_sibling(adev, cursor)) 604 while (amdgpu_vm_pt_descendant(adev, cursor)); 605 else 606 amdgpu_vm_pt_ancestor(cursor); 607 } 608 609 /* 610 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 611 */ 612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 613 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 614 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 615 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 616 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 617 618 /** 619 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 620 * 621 * @vm: vm providing the BOs 622 * @validated: head of validation list 623 * @entry: entry to add 624 * 625 * Add the page directory to the list of BOs to 626 * validate for command submission. 627 */ 628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 629 struct list_head *validated, 630 struct amdgpu_bo_list_entry *entry) 631 { 632 entry->priority = 0; 633 entry->tv.bo = &vm->root.bo->tbo; 634 /* Two for VM updates, one for TTM and one for the CS job */ 635 entry->tv.num_shared = 4; 636 entry->user_pages = NULL; 637 list_add(&entry->tv.head, validated); 638 } 639 640 /** 641 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 642 * 643 * @bo: BO which was removed from the LRU 644 * 645 * Make sure the bulk_moveable flag is updated when a BO is removed from the 646 * LRU. 647 */ 648 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 649 { 650 struct amdgpu_bo *abo; 651 struct amdgpu_vm_bo_base *bo_base; 652 653 if (!amdgpu_bo_is_amdgpu_bo(bo)) 654 return; 655 656 if (bo->pin_count) 657 return; 658 659 abo = ttm_to_amdgpu_bo(bo); 660 if (!abo->parent) 661 return; 662 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 663 struct amdgpu_vm *vm = bo_base->vm; 664 665 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv) 666 vm->bulk_moveable = false; 667 } 668 669 } 670 /** 671 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 672 * 673 * @adev: amdgpu device pointer 674 * @vm: vm providing the BOs 675 * 676 * Move all BOs to the end of LRU and remember their positions to put them 677 * together. 678 */ 679 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 680 struct amdgpu_vm *vm) 681 { 682 struct amdgpu_vm_bo_base *bo_base; 683 684 if (vm->bulk_moveable) { 685 spin_lock(&adev->mman.bdev.lru_lock); 686 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 687 spin_unlock(&adev->mman.bdev.lru_lock); 688 return; 689 } 690 691 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 692 693 spin_lock(&adev->mman.bdev.lru_lock); 694 list_for_each_entry(bo_base, &vm->idle, vm_status) { 695 struct amdgpu_bo *bo = bo_base->bo; 696 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 697 698 if (!bo->parent) 699 continue; 700 701 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource, 702 &vm->lru_bulk_move); 703 if (shadow) 704 ttm_bo_move_to_lru_tail(&shadow->tbo, 705 shadow->tbo.resource, 706 &vm->lru_bulk_move); 707 } 708 spin_unlock(&adev->mman.bdev.lru_lock); 709 710 vm->bulk_moveable = true; 711 } 712 713 /** 714 * amdgpu_vm_validate_pt_bos - validate the page table BOs 715 * 716 * @adev: amdgpu device pointer 717 * @vm: vm providing the BOs 718 * @validate: callback to do the validation 719 * @param: parameter for the validation callback 720 * 721 * Validate the page table BOs on command submission if neccessary. 722 * 723 * Returns: 724 * Validation result. 725 */ 726 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 727 int (*validate)(void *p, struct amdgpu_bo *bo), 728 void *param) 729 { 730 struct amdgpu_vm_bo_base *bo_base, *tmp; 731 int r; 732 733 vm->bulk_moveable &= list_empty(&vm->evicted); 734 735 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 736 struct amdgpu_bo *bo = bo_base->bo; 737 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 738 739 r = validate(param, bo); 740 if (r) 741 return r; 742 if (shadow) { 743 r = validate(param, shadow); 744 if (r) 745 return r; 746 } 747 748 if (bo->tbo.type != ttm_bo_type_kernel) { 749 amdgpu_vm_bo_moved(bo_base); 750 } else { 751 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 752 amdgpu_vm_bo_relocated(bo_base); 753 } 754 } 755 756 amdgpu_vm_eviction_lock(vm); 757 vm->evicting = false; 758 amdgpu_vm_eviction_unlock(vm); 759 760 return 0; 761 } 762 763 /** 764 * amdgpu_vm_ready - check VM is ready for updates 765 * 766 * @vm: VM to check 767 * 768 * Check if all VM PDs/PTs are ready for updates 769 * 770 * Returns: 771 * True if VM is not evicting. 772 */ 773 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 774 { 775 bool ret; 776 777 amdgpu_vm_eviction_lock(vm); 778 ret = !vm->evicting; 779 amdgpu_vm_eviction_unlock(vm); 780 return ret; 781 } 782 783 /** 784 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 785 * 786 * @adev: amdgpu_device pointer 787 * @vm: VM to clear BO from 788 * @vmbo: BO to clear 789 * @immediate: use an immediate update 790 * 791 * Root PD needs to be reserved when calling this. 792 * 793 * Returns: 794 * 0 on success, errno otherwise. 795 */ 796 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 797 struct amdgpu_vm *vm, 798 struct amdgpu_bo_vm *vmbo, 799 bool immediate) 800 { 801 struct ttm_operation_ctx ctx = { true, false }; 802 unsigned level = adev->vm_manager.root_level; 803 struct amdgpu_vm_update_params params; 804 struct amdgpu_bo *ancestor = &vmbo->bo; 805 struct amdgpu_bo *bo = &vmbo->bo; 806 unsigned entries, ats_entries; 807 uint64_t addr; 808 int r, idx; 809 810 /* Figure out our place in the hierarchy */ 811 if (ancestor->parent) { 812 ++level; 813 while (ancestor->parent->parent) { 814 ++level; 815 ancestor = ancestor->parent; 816 } 817 } 818 819 entries = amdgpu_bo_size(bo) / 8; 820 if (!vm->pte_support_ats) { 821 ats_entries = 0; 822 823 } else if (!bo->parent) { 824 ats_entries = amdgpu_vm_num_ats_entries(adev); 825 ats_entries = min(ats_entries, entries); 826 entries -= ats_entries; 827 828 } else { 829 struct amdgpu_vm_bo_base *pt; 830 831 pt = ancestor->vm_bo; 832 ats_entries = amdgpu_vm_num_ats_entries(adev); 833 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { 834 ats_entries = 0; 835 } else { 836 ats_entries = entries; 837 entries = 0; 838 } 839 } 840 841 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 842 if (r) 843 return r; 844 845 if (vmbo->shadow) { 846 struct amdgpu_bo *shadow = vmbo->shadow; 847 848 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 849 if (r) 850 return r; 851 } 852 853 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 854 return -ENODEV; 855 856 r = vm->update_funcs->map_table(vmbo); 857 if (r) 858 goto exit; 859 860 memset(¶ms, 0, sizeof(params)); 861 params.adev = adev; 862 params.vm = vm; 863 params.immediate = immediate; 864 865 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 866 if (r) 867 goto exit; 868 869 addr = 0; 870 if (ats_entries) { 871 uint64_t value = 0, flags; 872 873 flags = AMDGPU_PTE_DEFAULT_ATC; 874 if (level != AMDGPU_VM_PTB) { 875 /* Handle leaf PDEs as PTEs */ 876 flags |= AMDGPU_PDE_PTE; 877 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 878 } 879 880 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 881 value, flags); 882 if (r) 883 goto exit; 884 885 addr += ats_entries * 8; 886 } 887 888 if (entries) { 889 uint64_t value = 0, flags = 0; 890 891 if (adev->asic_type >= CHIP_VEGA10) { 892 if (level != AMDGPU_VM_PTB) { 893 /* Handle leaf PDEs as PTEs */ 894 flags |= AMDGPU_PDE_PTE; 895 amdgpu_gmc_get_vm_pde(adev, level, 896 &value, &flags); 897 } else { 898 /* Workaround for fault priority problem on GMC9 */ 899 flags = AMDGPU_PTE_EXECUTABLE; 900 } 901 } 902 903 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 904 value, flags); 905 if (r) 906 goto exit; 907 } 908 909 r = vm->update_funcs->commit(¶ms, NULL); 910 exit: 911 drm_dev_exit(idx); 912 return r; 913 } 914 915 /** 916 * amdgpu_vm_pt_create - create bo for PD/PT 917 * 918 * @adev: amdgpu_device pointer 919 * @vm: requesting vm 920 * @level: the page table level 921 * @immediate: use a immediate update 922 * @vmbo: pointer to the buffer object pointer 923 */ 924 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 925 struct amdgpu_vm *vm, 926 int level, bool immediate, 927 struct amdgpu_bo_vm **vmbo) 928 { 929 struct amdgpu_bo_param bp; 930 struct amdgpu_bo *bo; 931 struct dma_resv *resv; 932 unsigned int num_entries; 933 int r; 934 935 memset(&bp, 0, sizeof(bp)); 936 937 bp.size = amdgpu_vm_bo_size(adev, level); 938 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 939 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 940 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 941 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 942 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 943 944 if (level < AMDGPU_VM_PTB) 945 num_entries = amdgpu_vm_num_entries(adev, level); 946 else 947 num_entries = 0; 948 949 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 950 951 if (vm->use_cpu_for_update) 952 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 953 954 bp.type = ttm_bo_type_kernel; 955 bp.no_wait_gpu = immediate; 956 if (vm->root.bo) 957 bp.resv = vm->root.bo->tbo.base.resv; 958 959 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 960 if (r) 961 return r; 962 963 bo = &(*vmbo)->bo; 964 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 965 (*vmbo)->shadow = NULL; 966 return 0; 967 } 968 969 if (!bp.resv) 970 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 971 NULL)); 972 resv = bp.resv; 973 memset(&bp, 0, sizeof(bp)); 974 bp.size = amdgpu_vm_bo_size(adev, level); 975 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 976 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 977 bp.type = ttm_bo_type_kernel; 978 bp.resv = bo->tbo.base.resv; 979 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 980 981 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 982 983 if (!resv) 984 dma_resv_unlock(bo->tbo.base.resv); 985 986 if (r) { 987 amdgpu_bo_unref(&bo); 988 return r; 989 } 990 991 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 992 amdgpu_bo_add_to_shadow_list(*vmbo); 993 994 return 0; 995 } 996 997 /** 998 * amdgpu_vm_alloc_pts - Allocate a specific page table 999 * 1000 * @adev: amdgpu_device pointer 1001 * @vm: VM to allocate page tables for 1002 * @cursor: Which page table to allocate 1003 * @immediate: use an immediate update 1004 * 1005 * Make sure a specific page table or directory is allocated. 1006 * 1007 * Returns: 1008 * 1 if page table needed to be allocated, 0 if page table was already 1009 * allocated, negative errno if an error occurred. 1010 */ 1011 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 1012 struct amdgpu_vm *vm, 1013 struct amdgpu_vm_pt_cursor *cursor, 1014 bool immediate) 1015 { 1016 struct amdgpu_vm_bo_base *entry = cursor->entry; 1017 struct amdgpu_bo *pt_bo; 1018 struct amdgpu_bo_vm *pt; 1019 int r; 1020 1021 if (entry->bo) 1022 return 0; 1023 1024 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 1025 if (r) 1026 return r; 1027 1028 /* Keep a reference to the root directory to avoid 1029 * freeing them up in the wrong order. 1030 */ 1031 pt_bo = &pt->bo; 1032 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 1033 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 1034 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 1035 if (r) 1036 goto error_free_pt; 1037 1038 return 0; 1039 1040 error_free_pt: 1041 amdgpu_bo_unref(&pt->shadow); 1042 amdgpu_bo_unref(&pt_bo); 1043 return r; 1044 } 1045 1046 /** 1047 * amdgpu_vm_free_table - fre one PD/PT 1048 * 1049 * @entry: PDE to free 1050 */ 1051 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry) 1052 { 1053 struct amdgpu_bo *shadow; 1054 1055 if (!entry->bo) 1056 return; 1057 shadow = amdgpu_bo_shadowed(entry->bo); 1058 entry->bo->vm_bo = NULL; 1059 list_del(&entry->vm_status); 1060 amdgpu_bo_unref(&shadow); 1061 amdgpu_bo_unref(&entry->bo); 1062 } 1063 1064 /** 1065 * amdgpu_vm_free_pts - free PD/PT levels 1066 * 1067 * @adev: amdgpu device structure 1068 * @vm: amdgpu vm structure 1069 * @start: optional cursor where to start freeing PDs/PTs 1070 * 1071 * Free the page directory or page table level and all sub levels. 1072 */ 1073 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1074 struct amdgpu_vm *vm, 1075 struct amdgpu_vm_pt_cursor *start) 1076 { 1077 struct amdgpu_vm_pt_cursor cursor; 1078 struct amdgpu_vm_bo_base *entry; 1079 1080 vm->bulk_moveable = false; 1081 1082 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1083 amdgpu_vm_free_table(entry); 1084 1085 if (start) 1086 amdgpu_vm_free_table(start->entry); 1087 } 1088 1089 /** 1090 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1091 * 1092 * @adev: amdgpu_device pointer 1093 */ 1094 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1095 { 1096 const struct amdgpu_ip_block *ip_block; 1097 bool has_compute_vm_bug; 1098 struct amdgpu_ring *ring; 1099 int i; 1100 1101 has_compute_vm_bug = false; 1102 1103 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1104 if (ip_block) { 1105 /* Compute has a VM bug for GFX version < 7. 1106 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1107 if (ip_block->version->major <= 7) 1108 has_compute_vm_bug = true; 1109 else if (ip_block->version->major == 8) 1110 if (adev->gfx.mec_fw_version < 673) 1111 has_compute_vm_bug = true; 1112 } 1113 1114 for (i = 0; i < adev->num_rings; i++) { 1115 ring = adev->rings[i]; 1116 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1117 /* only compute rings */ 1118 ring->has_compute_vm_bug = has_compute_vm_bug; 1119 else 1120 ring->has_compute_vm_bug = false; 1121 } 1122 } 1123 1124 /** 1125 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1126 * 1127 * @ring: ring on which the job will be submitted 1128 * @job: job to submit 1129 * 1130 * Returns: 1131 * True if sync is needed. 1132 */ 1133 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1134 struct amdgpu_job *job) 1135 { 1136 struct amdgpu_device *adev = ring->adev; 1137 unsigned vmhub = ring->funcs->vmhub; 1138 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1139 struct amdgpu_vmid *id; 1140 bool gds_switch_needed; 1141 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1142 1143 if (job->vmid == 0) 1144 return false; 1145 id = &id_mgr->ids[job->vmid]; 1146 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1147 id->gds_base != job->gds_base || 1148 id->gds_size != job->gds_size || 1149 id->gws_base != job->gws_base || 1150 id->gws_size != job->gws_size || 1151 id->oa_base != job->oa_base || 1152 id->oa_size != job->oa_size); 1153 1154 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1155 return true; 1156 1157 return vm_flush_needed || gds_switch_needed; 1158 } 1159 1160 /** 1161 * amdgpu_vm_flush - hardware flush the vm 1162 * 1163 * @ring: ring to use for flush 1164 * @job: related job 1165 * @need_pipe_sync: is pipe sync needed 1166 * 1167 * Emit a VM flush when it is necessary. 1168 * 1169 * Returns: 1170 * 0 on success, errno otherwise. 1171 */ 1172 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1173 bool need_pipe_sync) 1174 { 1175 struct amdgpu_device *adev = ring->adev; 1176 unsigned vmhub = ring->funcs->vmhub; 1177 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1178 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1179 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1180 id->gds_base != job->gds_base || 1181 id->gds_size != job->gds_size || 1182 id->gws_base != job->gws_base || 1183 id->gws_size != job->gws_size || 1184 id->oa_base != job->oa_base || 1185 id->oa_size != job->oa_size); 1186 bool vm_flush_needed = job->vm_needs_flush; 1187 struct dma_fence *fence = NULL; 1188 bool pasid_mapping_needed = false; 1189 unsigned patch_offset = 0; 1190 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1191 int r; 1192 1193 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1194 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1195 1196 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1197 gds_switch_needed = true; 1198 vm_flush_needed = true; 1199 pasid_mapping_needed = true; 1200 } 1201 1202 mutex_lock(&id_mgr->lock); 1203 if (id->pasid != job->pasid || !id->pasid_mapping || 1204 !dma_fence_is_signaled(id->pasid_mapping)) 1205 pasid_mapping_needed = true; 1206 mutex_unlock(&id_mgr->lock); 1207 1208 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1209 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1210 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1211 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1212 ring->funcs->emit_wreg; 1213 1214 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1215 return 0; 1216 1217 if (ring->funcs->init_cond_exec) 1218 patch_offset = amdgpu_ring_init_cond_exec(ring); 1219 1220 if (need_pipe_sync) 1221 amdgpu_ring_emit_pipeline_sync(ring); 1222 1223 if (vm_flush_needed) { 1224 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1225 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1226 } 1227 1228 if (pasid_mapping_needed) 1229 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1230 1231 if (vm_flush_needed || pasid_mapping_needed) { 1232 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 1233 if (r) 1234 return r; 1235 } 1236 1237 if (vm_flush_needed) { 1238 mutex_lock(&id_mgr->lock); 1239 dma_fence_put(id->last_flush); 1240 id->last_flush = dma_fence_get(fence); 1241 id->current_gpu_reset_count = 1242 atomic_read(&adev->gpu_reset_counter); 1243 mutex_unlock(&id_mgr->lock); 1244 } 1245 1246 if (pasid_mapping_needed) { 1247 mutex_lock(&id_mgr->lock); 1248 id->pasid = job->pasid; 1249 dma_fence_put(id->pasid_mapping); 1250 id->pasid_mapping = dma_fence_get(fence); 1251 mutex_unlock(&id_mgr->lock); 1252 } 1253 dma_fence_put(fence); 1254 1255 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1256 id->gds_base = job->gds_base; 1257 id->gds_size = job->gds_size; 1258 id->gws_base = job->gws_base; 1259 id->gws_size = job->gws_size; 1260 id->oa_base = job->oa_base; 1261 id->oa_size = job->oa_size; 1262 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1263 job->gds_size, job->gws_base, 1264 job->gws_size, job->oa_base, 1265 job->oa_size); 1266 } 1267 1268 if (ring->funcs->patch_cond_exec) 1269 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1270 1271 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1272 if (ring->funcs->emit_switch_buffer) { 1273 amdgpu_ring_emit_switch_buffer(ring); 1274 amdgpu_ring_emit_switch_buffer(ring); 1275 } 1276 return 0; 1277 } 1278 1279 /** 1280 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1281 * 1282 * @vm: requested vm 1283 * @bo: requested buffer object 1284 * 1285 * Find @bo inside the requested vm. 1286 * Search inside the @bos vm list for the requested vm 1287 * Returns the found bo_va or NULL if none is found 1288 * 1289 * Object has to be reserved! 1290 * 1291 * Returns: 1292 * Found bo_va or NULL. 1293 */ 1294 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1295 struct amdgpu_bo *bo) 1296 { 1297 struct amdgpu_vm_bo_base *base; 1298 1299 for (base = bo->vm_bo; base; base = base->next) { 1300 if (base->vm != vm) 1301 continue; 1302 1303 return container_of(base, struct amdgpu_bo_va, base); 1304 } 1305 return NULL; 1306 } 1307 1308 /** 1309 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1310 * 1311 * @pages_addr: optional DMA address to use for lookup 1312 * @addr: the unmapped addr 1313 * 1314 * Look up the physical address of the page that the pte resolves 1315 * to. 1316 * 1317 * Returns: 1318 * The pointer for the page table entry. 1319 */ 1320 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1321 { 1322 uint64_t result; 1323 1324 /* page table offset */ 1325 result = pages_addr[addr >> PAGE_SHIFT]; 1326 1327 /* in case cpu page size != gpu page size*/ 1328 result |= addr & (~PAGE_MASK); 1329 1330 result &= 0xFFFFFFFFFFFFF000ULL; 1331 1332 return result; 1333 } 1334 1335 /** 1336 * amdgpu_vm_update_pde - update a single level in the hierarchy 1337 * 1338 * @params: parameters for the update 1339 * @vm: requested vm 1340 * @entry: entry to update 1341 * 1342 * Makes sure the requested entry in parent is up to date. 1343 */ 1344 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1345 struct amdgpu_vm *vm, 1346 struct amdgpu_vm_bo_base *entry) 1347 { 1348 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 1349 struct amdgpu_bo *bo = parent->bo, *pbo; 1350 uint64_t pde, pt, flags; 1351 unsigned level; 1352 1353 for (level = 0, pbo = bo->parent; pbo; ++level) 1354 pbo = pbo->parent; 1355 1356 level += params->adev->vm_manager.root_level; 1357 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 1358 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 1359 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1360 1, 0, flags); 1361 } 1362 1363 /** 1364 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1365 * 1366 * @adev: amdgpu_device pointer 1367 * @vm: related vm 1368 * 1369 * Mark all PD level as invalid after an error. 1370 */ 1371 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1372 struct amdgpu_vm *vm) 1373 { 1374 struct amdgpu_vm_pt_cursor cursor; 1375 struct amdgpu_vm_bo_base *entry; 1376 1377 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1378 if (entry->bo && !entry->moved) 1379 amdgpu_vm_bo_relocated(entry); 1380 } 1381 1382 /** 1383 * amdgpu_vm_update_pdes - make sure that all directories are valid 1384 * 1385 * @adev: amdgpu_device pointer 1386 * @vm: requested vm 1387 * @immediate: submit immediately to the paging queue 1388 * 1389 * Makes sure all directories are up to date. 1390 * 1391 * Returns: 1392 * 0 for success, error for failure. 1393 */ 1394 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1395 struct amdgpu_vm *vm, bool immediate) 1396 { 1397 struct amdgpu_vm_update_params params; 1398 int r, idx; 1399 1400 if (list_empty(&vm->relocated)) 1401 return 0; 1402 1403 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1404 return -ENODEV; 1405 1406 memset(¶ms, 0, sizeof(params)); 1407 params.adev = adev; 1408 params.vm = vm; 1409 params.immediate = immediate; 1410 1411 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1412 if (r) 1413 goto exit; 1414 1415 while (!list_empty(&vm->relocated)) { 1416 struct amdgpu_vm_bo_base *entry; 1417 1418 entry = list_first_entry(&vm->relocated, 1419 struct amdgpu_vm_bo_base, 1420 vm_status); 1421 amdgpu_vm_bo_idle(entry); 1422 1423 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1424 if (r) 1425 goto error; 1426 } 1427 1428 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1429 if (r) 1430 goto error; 1431 drm_dev_exit(idx); 1432 return 0; 1433 1434 error: 1435 amdgpu_vm_invalidate_pds(adev, vm); 1436 exit: 1437 drm_dev_exit(idx); 1438 return r; 1439 } 1440 1441 /* 1442 * amdgpu_vm_update_flags - figure out flags for PTE updates 1443 * 1444 * Make sure to set the right flags for the PTEs at the desired level. 1445 */ 1446 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1447 struct amdgpu_bo_vm *pt, unsigned int level, 1448 uint64_t pe, uint64_t addr, 1449 unsigned int count, uint32_t incr, 1450 uint64_t flags) 1451 1452 { 1453 if (level != AMDGPU_VM_PTB) { 1454 flags |= AMDGPU_PDE_PTE; 1455 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1456 1457 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1458 !(flags & AMDGPU_PTE_VALID) && 1459 !(flags & AMDGPU_PTE_PRT)) { 1460 1461 /* Workaround for fault priority problem on GMC9 */ 1462 flags |= AMDGPU_PTE_EXECUTABLE; 1463 } 1464 1465 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1466 flags); 1467 } 1468 1469 /** 1470 * amdgpu_vm_fragment - get fragment for PTEs 1471 * 1472 * @params: see amdgpu_vm_update_params definition 1473 * @start: first PTE to handle 1474 * @end: last PTE to handle 1475 * @flags: hw mapping flags 1476 * @frag: resulting fragment size 1477 * @frag_end: end of this fragment 1478 * 1479 * Returns the first possible fragment for the start and end address. 1480 */ 1481 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1482 uint64_t start, uint64_t end, uint64_t flags, 1483 unsigned int *frag, uint64_t *frag_end) 1484 { 1485 /** 1486 * The MC L1 TLB supports variable sized pages, based on a fragment 1487 * field in the PTE. When this field is set to a non-zero value, page 1488 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1489 * flags are considered valid for all PTEs within the fragment range 1490 * and corresponding mappings are assumed to be physically contiguous. 1491 * 1492 * The L1 TLB can store a single PTE for the whole fragment, 1493 * significantly increasing the space available for translation 1494 * caching. This leads to large improvements in throughput when the 1495 * TLB is under pressure. 1496 * 1497 * The L2 TLB distributes small and large fragments into two 1498 * asymmetric partitions. The large fragment cache is significantly 1499 * larger. Thus, we try to use large fragments wherever possible. 1500 * Userspace can support this by aligning virtual base address and 1501 * allocation size to the fragment size. 1502 * 1503 * Starting with Vega10 the fragment size only controls the L1. The L2 1504 * is now directly feed with small/huge/giant pages from the walker. 1505 */ 1506 unsigned max_frag; 1507 1508 if (params->adev->asic_type < CHIP_VEGA10) 1509 max_frag = params->adev->vm_manager.fragment_size; 1510 else 1511 max_frag = 31; 1512 1513 /* system pages are non continuously */ 1514 if (params->pages_addr) { 1515 *frag = 0; 1516 *frag_end = end; 1517 return; 1518 } 1519 1520 /* This intentionally wraps around if no bit is set */ 1521 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1522 if (*frag >= max_frag) { 1523 *frag = max_frag; 1524 *frag_end = end & ~((1ULL << max_frag) - 1); 1525 } else { 1526 *frag_end = start + (1 << *frag); 1527 } 1528 } 1529 1530 /** 1531 * amdgpu_vm_update_ptes - make sure that page tables are valid 1532 * 1533 * @params: see amdgpu_vm_update_params definition 1534 * @start: start of GPU address range 1535 * @end: end of GPU address range 1536 * @dst: destination address to map to, the next dst inside the function 1537 * @flags: mapping flags 1538 * 1539 * Update the page tables in the range @start - @end. 1540 * 1541 * Returns: 1542 * 0 for success, -EINVAL for failure. 1543 */ 1544 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1545 uint64_t start, uint64_t end, 1546 uint64_t dst, uint64_t flags) 1547 { 1548 struct amdgpu_device *adev = params->adev; 1549 struct amdgpu_vm_pt_cursor cursor; 1550 uint64_t frag_start = start, frag_end; 1551 unsigned int frag; 1552 int r; 1553 1554 /* figure out the initial fragment */ 1555 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1556 1557 /* walk over the address space and update the PTs */ 1558 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1559 while (cursor.pfn < end) { 1560 unsigned shift, parent_shift, mask; 1561 uint64_t incr, entry_end, pe_start; 1562 struct amdgpu_bo *pt; 1563 1564 if (!params->unlocked) { 1565 /* make sure that the page tables covering the 1566 * address range are actually allocated 1567 */ 1568 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1569 &cursor, params->immediate); 1570 if (r) 1571 return r; 1572 } 1573 1574 shift = amdgpu_vm_level_shift(adev, cursor.level); 1575 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1576 if (params->unlocked) { 1577 /* Unlocked updates are only allowed on the leaves */ 1578 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1579 continue; 1580 } else if (adev->asic_type < CHIP_VEGA10 && 1581 (flags & AMDGPU_PTE_VALID)) { 1582 /* No huge page support before GMC v9 */ 1583 if (cursor.level != AMDGPU_VM_PTB) { 1584 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1585 return -ENOENT; 1586 continue; 1587 } 1588 } else if (frag < shift) { 1589 /* We can't use this level when the fragment size is 1590 * smaller than the address shift. Go to the next 1591 * child entry and try again. 1592 */ 1593 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1594 continue; 1595 } else if (frag >= parent_shift) { 1596 /* If the fragment size is even larger than the parent 1597 * shift we should go up one level and check it again. 1598 */ 1599 if (!amdgpu_vm_pt_ancestor(&cursor)) 1600 return -EINVAL; 1601 continue; 1602 } 1603 1604 pt = cursor.entry->bo; 1605 if (!pt) { 1606 /* We need all PDs and PTs for mapping something, */ 1607 if (flags & AMDGPU_PTE_VALID) 1608 return -ENOENT; 1609 1610 /* but unmapping something can happen at a higher 1611 * level. 1612 */ 1613 if (!amdgpu_vm_pt_ancestor(&cursor)) 1614 return -EINVAL; 1615 1616 pt = cursor.entry->bo; 1617 shift = parent_shift; 1618 frag_end = max(frag_end, ALIGN(frag_start + 1, 1619 1ULL << shift)); 1620 } 1621 1622 /* Looks good so far, calculate parameters for the update */ 1623 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1624 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1625 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1626 entry_end = ((uint64_t)mask + 1) << shift; 1627 entry_end += cursor.pfn & ~(entry_end - 1); 1628 entry_end = min(entry_end, end); 1629 1630 do { 1631 struct amdgpu_vm *vm = params->vm; 1632 uint64_t upd_end = min(entry_end, frag_end); 1633 unsigned nptes = (upd_end - frag_start) >> shift; 1634 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1635 1636 /* This can happen when we set higher level PDs to 1637 * silent to stop fault floods. 1638 */ 1639 nptes = max(nptes, 1u); 1640 1641 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1642 nptes, dst, incr, upd_flags, 1643 vm->task_info.pid, 1644 vm->immediate.fence_context); 1645 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1646 cursor.level, pe_start, dst, 1647 nptes, incr, upd_flags); 1648 1649 pe_start += nptes * 8; 1650 dst += nptes * incr; 1651 1652 frag_start = upd_end; 1653 if (frag_start >= frag_end) { 1654 /* figure out the next fragment */ 1655 amdgpu_vm_fragment(params, frag_start, end, 1656 flags, &frag, &frag_end); 1657 if (frag < shift) 1658 break; 1659 } 1660 } while (frag_start < entry_end); 1661 1662 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1663 /* Free all child entries. 1664 * Update the tables with the flags and addresses and free up subsequent 1665 * tables in the case of huge pages or freed up areas. 1666 * This is the maximum you can free, because all other page tables are not 1667 * completely covered by the range and so potentially still in use. 1668 */ 1669 while (cursor.pfn < frag_start) { 1670 /* Make sure previous mapping is freed */ 1671 if (cursor.entry->bo) { 1672 params->table_freed = true; 1673 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1674 } 1675 amdgpu_vm_pt_next(adev, &cursor); 1676 } 1677 1678 } else if (frag >= shift) { 1679 /* or just move on to the next on the same level. */ 1680 amdgpu_vm_pt_next(adev, &cursor); 1681 } 1682 } 1683 1684 return 0; 1685 } 1686 1687 /** 1688 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1689 * 1690 * @adev: amdgpu_device pointer of the VM 1691 * @bo_adev: amdgpu_device pointer of the mapped BO 1692 * @vm: requested vm 1693 * @immediate: immediate submission in a page fault 1694 * @unlocked: unlocked invalidation during MM callback 1695 * @resv: fences we need to sync to 1696 * @start: start of mapped range 1697 * @last: last mapped entry 1698 * @flags: flags for the entries 1699 * @offset: offset into nodes and pages_addr 1700 * @res: ttm_resource to map 1701 * @pages_addr: DMA addresses to use for mapping 1702 * @fence: optional resulting fence 1703 * @table_freed: return true if page table is freed 1704 * 1705 * Fill in the page table entries between @start and @last. 1706 * 1707 * Returns: 1708 * 0 for success, -EINVAL for failure. 1709 */ 1710 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1711 struct amdgpu_device *bo_adev, 1712 struct amdgpu_vm *vm, bool immediate, 1713 bool unlocked, struct dma_resv *resv, 1714 uint64_t start, uint64_t last, 1715 uint64_t flags, uint64_t offset, 1716 struct ttm_resource *res, 1717 dma_addr_t *pages_addr, 1718 struct dma_fence **fence, 1719 bool *table_freed) 1720 { 1721 struct amdgpu_vm_update_params params; 1722 struct amdgpu_res_cursor cursor; 1723 enum amdgpu_sync_mode sync_mode; 1724 int r, idx; 1725 1726 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1727 return -ENODEV; 1728 1729 memset(¶ms, 0, sizeof(params)); 1730 params.adev = adev; 1731 params.vm = vm; 1732 params.immediate = immediate; 1733 params.pages_addr = pages_addr; 1734 params.unlocked = unlocked; 1735 1736 /* Implicitly sync to command submissions in the same VM before 1737 * unmapping. Sync to moving fences before mapping. 1738 */ 1739 if (!(flags & AMDGPU_PTE_VALID)) 1740 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1741 else 1742 sync_mode = AMDGPU_SYNC_EXPLICIT; 1743 1744 amdgpu_vm_eviction_lock(vm); 1745 if (vm->evicting) { 1746 r = -EBUSY; 1747 goto error_unlock; 1748 } 1749 1750 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1751 struct dma_fence *tmp = dma_fence_get_stub(); 1752 1753 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1754 swap(vm->last_unlocked, tmp); 1755 dma_fence_put(tmp); 1756 } 1757 1758 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1759 if (r) 1760 goto error_unlock; 1761 1762 amdgpu_res_first(pages_addr ? NULL : res, offset, 1763 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1764 while (cursor.remaining) { 1765 uint64_t tmp, num_entries, addr; 1766 1767 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1768 if (pages_addr) { 1769 bool contiguous = true; 1770 1771 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1772 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1773 uint64_t count; 1774 1775 contiguous = pages_addr[pfn + 1] == 1776 pages_addr[pfn] + PAGE_SIZE; 1777 1778 tmp = num_entries / 1779 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1780 for (count = 2; count < tmp; ++count) { 1781 uint64_t idx = pfn + count; 1782 1783 if (contiguous != (pages_addr[idx] == 1784 pages_addr[idx - 1] + PAGE_SIZE)) 1785 break; 1786 } 1787 num_entries = count * 1788 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1789 } 1790 1791 if (!contiguous) { 1792 addr = cursor.start; 1793 params.pages_addr = pages_addr; 1794 } else { 1795 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1796 params.pages_addr = NULL; 1797 } 1798 1799 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1800 addr = bo_adev->vm_manager.vram_base_offset + 1801 cursor.start; 1802 } else { 1803 addr = 0; 1804 } 1805 1806 tmp = start + num_entries; 1807 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1808 if (r) 1809 goto error_unlock; 1810 1811 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1812 start = tmp; 1813 } 1814 1815 r = vm->update_funcs->commit(¶ms, fence); 1816 1817 if (table_freed) 1818 *table_freed = *table_freed || params.table_freed; 1819 1820 error_unlock: 1821 amdgpu_vm_eviction_unlock(vm); 1822 drm_dev_exit(idx); 1823 return r; 1824 } 1825 1826 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1827 uint64_t *gtt_mem, uint64_t *cpu_mem) 1828 { 1829 struct amdgpu_bo_va *bo_va, *tmp; 1830 1831 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1832 if (!bo_va->base.bo) 1833 continue; 1834 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1835 gtt_mem, cpu_mem); 1836 } 1837 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1838 if (!bo_va->base.bo) 1839 continue; 1840 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1841 gtt_mem, cpu_mem); 1842 } 1843 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1844 if (!bo_va->base.bo) 1845 continue; 1846 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1847 gtt_mem, cpu_mem); 1848 } 1849 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1850 if (!bo_va->base.bo) 1851 continue; 1852 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1853 gtt_mem, cpu_mem); 1854 } 1855 spin_lock(&vm->invalidated_lock); 1856 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1857 if (!bo_va->base.bo) 1858 continue; 1859 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1860 gtt_mem, cpu_mem); 1861 } 1862 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1863 if (!bo_va->base.bo) 1864 continue; 1865 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1866 gtt_mem, cpu_mem); 1867 } 1868 spin_unlock(&vm->invalidated_lock); 1869 } 1870 /** 1871 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1872 * 1873 * @adev: amdgpu_device pointer 1874 * @bo_va: requested BO and VM object 1875 * @clear: if true clear the entries 1876 * @table_freed: return true if page table is freed 1877 * 1878 * Fill in the page table entries for @bo_va. 1879 * 1880 * Returns: 1881 * 0 for success, -EINVAL for failure. 1882 */ 1883 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1884 bool clear, bool *table_freed) 1885 { 1886 struct amdgpu_bo *bo = bo_va->base.bo; 1887 struct amdgpu_vm *vm = bo_va->base.vm; 1888 struct amdgpu_bo_va_mapping *mapping; 1889 dma_addr_t *pages_addr = NULL; 1890 struct ttm_resource *mem; 1891 struct dma_fence **last_update; 1892 struct dma_resv *resv; 1893 uint64_t flags; 1894 struct amdgpu_device *bo_adev = adev; 1895 int r; 1896 1897 if (clear || !bo) { 1898 mem = NULL; 1899 resv = vm->root.bo->tbo.base.resv; 1900 } else { 1901 struct drm_gem_object *obj = &bo->tbo.base; 1902 1903 resv = bo->tbo.base.resv; 1904 if (obj->import_attach && bo_va->is_xgmi) { 1905 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1906 struct drm_gem_object *gobj = dma_buf->priv; 1907 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1908 1909 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1910 bo = gem_to_amdgpu_bo(gobj); 1911 } 1912 mem = bo->tbo.resource; 1913 if (mem->mem_type == TTM_PL_TT || 1914 mem->mem_type == AMDGPU_PL_PREEMPT) 1915 pages_addr = bo->tbo.ttm->dma_address; 1916 } 1917 1918 if (bo) { 1919 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1920 1921 if (amdgpu_bo_encrypted(bo)) 1922 flags |= AMDGPU_PTE_TMZ; 1923 1924 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1925 } else { 1926 flags = 0x0; 1927 } 1928 1929 if (clear || (bo && bo->tbo.base.resv == 1930 vm->root.bo->tbo.base.resv)) 1931 last_update = &vm->last_update; 1932 else 1933 last_update = &bo_va->last_pt_update; 1934 1935 if (!clear && bo_va->base.moved) { 1936 bo_va->base.moved = false; 1937 list_splice_init(&bo_va->valids, &bo_va->invalids); 1938 1939 } else if (bo_va->cleared != clear) { 1940 list_splice_init(&bo_va->valids, &bo_va->invalids); 1941 } 1942 1943 list_for_each_entry(mapping, &bo_va->invalids, list) { 1944 uint64_t update_flags = flags; 1945 1946 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1947 * but in case of something, we filter the flags in first place 1948 */ 1949 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1950 update_flags &= ~AMDGPU_PTE_READABLE; 1951 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1952 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1953 1954 /* Apply ASIC specific mapping flags */ 1955 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1956 1957 trace_amdgpu_vm_bo_update(mapping); 1958 1959 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1960 resv, mapping->start, 1961 mapping->last, update_flags, 1962 mapping->offset, mem, 1963 pages_addr, last_update, table_freed); 1964 if (r) 1965 return r; 1966 } 1967 1968 /* If the BO is not in its preferred location add it back to 1969 * the evicted list so that it gets validated again on the 1970 * next command submission. 1971 */ 1972 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1973 uint32_t mem_type = bo->tbo.resource->mem_type; 1974 1975 if (!(bo->preferred_domains & 1976 amdgpu_mem_type_to_domain(mem_type))) 1977 amdgpu_vm_bo_evicted(&bo_va->base); 1978 else 1979 amdgpu_vm_bo_idle(&bo_va->base); 1980 } else { 1981 amdgpu_vm_bo_done(&bo_va->base); 1982 } 1983 1984 list_splice_init(&bo_va->invalids, &bo_va->valids); 1985 bo_va->cleared = clear; 1986 1987 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1988 list_for_each_entry(mapping, &bo_va->valids, list) 1989 trace_amdgpu_vm_bo_mapping(mapping); 1990 } 1991 1992 return 0; 1993 } 1994 1995 /** 1996 * amdgpu_vm_update_prt_state - update the global PRT state 1997 * 1998 * @adev: amdgpu_device pointer 1999 */ 2000 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2001 { 2002 unsigned long flags; 2003 bool enable; 2004 2005 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2006 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2007 adev->gmc.gmc_funcs->set_prt(adev, enable); 2008 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2009 } 2010 2011 /** 2012 * amdgpu_vm_prt_get - add a PRT user 2013 * 2014 * @adev: amdgpu_device pointer 2015 */ 2016 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2017 { 2018 if (!adev->gmc.gmc_funcs->set_prt) 2019 return; 2020 2021 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2022 amdgpu_vm_update_prt_state(adev); 2023 } 2024 2025 /** 2026 * amdgpu_vm_prt_put - drop a PRT user 2027 * 2028 * @adev: amdgpu_device pointer 2029 */ 2030 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2031 { 2032 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2033 amdgpu_vm_update_prt_state(adev); 2034 } 2035 2036 /** 2037 * amdgpu_vm_prt_cb - callback for updating the PRT status 2038 * 2039 * @fence: fence for the callback 2040 * @_cb: the callback function 2041 */ 2042 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2043 { 2044 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2045 2046 amdgpu_vm_prt_put(cb->adev); 2047 kfree(cb); 2048 } 2049 2050 /** 2051 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2052 * 2053 * @adev: amdgpu_device pointer 2054 * @fence: fence for the callback 2055 */ 2056 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2057 struct dma_fence *fence) 2058 { 2059 struct amdgpu_prt_cb *cb; 2060 2061 if (!adev->gmc.gmc_funcs->set_prt) 2062 return; 2063 2064 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2065 if (!cb) { 2066 /* Last resort when we are OOM */ 2067 if (fence) 2068 dma_fence_wait(fence, false); 2069 2070 amdgpu_vm_prt_put(adev); 2071 } else { 2072 cb->adev = adev; 2073 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2074 amdgpu_vm_prt_cb)) 2075 amdgpu_vm_prt_cb(fence, &cb->cb); 2076 } 2077 } 2078 2079 /** 2080 * amdgpu_vm_free_mapping - free a mapping 2081 * 2082 * @adev: amdgpu_device pointer 2083 * @vm: requested vm 2084 * @mapping: mapping to be freed 2085 * @fence: fence of the unmap operation 2086 * 2087 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2088 */ 2089 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2090 struct amdgpu_vm *vm, 2091 struct amdgpu_bo_va_mapping *mapping, 2092 struct dma_fence *fence) 2093 { 2094 if (mapping->flags & AMDGPU_PTE_PRT) 2095 amdgpu_vm_add_prt_cb(adev, fence); 2096 kfree(mapping); 2097 } 2098 2099 /** 2100 * amdgpu_vm_prt_fini - finish all prt mappings 2101 * 2102 * @adev: amdgpu_device pointer 2103 * @vm: requested vm 2104 * 2105 * Register a cleanup callback to disable PRT support after VM dies. 2106 */ 2107 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2108 { 2109 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2110 struct dma_resv_iter cursor; 2111 struct dma_fence *fence; 2112 2113 dma_resv_for_each_fence(&cursor, resv, true, fence) { 2114 /* Add a callback for each fence in the reservation object */ 2115 amdgpu_vm_prt_get(adev); 2116 amdgpu_vm_add_prt_cb(adev, fence); 2117 } 2118 } 2119 2120 /** 2121 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2122 * 2123 * @adev: amdgpu_device pointer 2124 * @vm: requested vm 2125 * @fence: optional resulting fence (unchanged if no work needed to be done 2126 * or if an error occurred) 2127 * 2128 * Make sure all freed BOs are cleared in the PT. 2129 * PTs have to be reserved and mutex must be locked! 2130 * 2131 * Returns: 2132 * 0 for success. 2133 * 2134 */ 2135 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2136 struct amdgpu_vm *vm, 2137 struct dma_fence **fence) 2138 { 2139 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2140 struct amdgpu_bo_va_mapping *mapping; 2141 uint64_t init_pte_value = 0; 2142 struct dma_fence *f = NULL; 2143 int r; 2144 2145 while (!list_empty(&vm->freed)) { 2146 mapping = list_first_entry(&vm->freed, 2147 struct amdgpu_bo_va_mapping, list); 2148 list_del(&mapping->list); 2149 2150 if (vm->pte_support_ats && 2151 mapping->start < AMDGPU_GMC_HOLE_START) 2152 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2153 2154 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2155 resv, mapping->start, 2156 mapping->last, init_pte_value, 2157 0, NULL, NULL, &f, NULL); 2158 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2159 if (r) { 2160 dma_fence_put(f); 2161 return r; 2162 } 2163 } 2164 2165 if (fence && f) { 2166 dma_fence_put(*fence); 2167 *fence = f; 2168 } else { 2169 dma_fence_put(f); 2170 } 2171 2172 return 0; 2173 2174 } 2175 2176 /** 2177 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2178 * 2179 * @adev: amdgpu_device pointer 2180 * @vm: requested vm 2181 * 2182 * Make sure all BOs which are moved are updated in the PTs. 2183 * 2184 * Returns: 2185 * 0 for success. 2186 * 2187 * PTs have to be reserved! 2188 */ 2189 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2190 struct amdgpu_vm *vm) 2191 { 2192 struct amdgpu_bo_va *bo_va, *tmp; 2193 struct dma_resv *resv; 2194 bool clear; 2195 int r; 2196 2197 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2198 /* Per VM BOs never need to bo cleared in the page tables */ 2199 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 2200 if (r) 2201 return r; 2202 } 2203 2204 spin_lock(&vm->invalidated_lock); 2205 while (!list_empty(&vm->invalidated)) { 2206 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2207 base.vm_status); 2208 resv = bo_va->base.bo->tbo.base.resv; 2209 spin_unlock(&vm->invalidated_lock); 2210 2211 /* Try to reserve the BO to avoid clearing its ptes */ 2212 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2213 clear = false; 2214 /* Somebody else is using the BO right now */ 2215 else 2216 clear = true; 2217 2218 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL); 2219 if (r) 2220 return r; 2221 2222 if (!clear) 2223 dma_resv_unlock(resv); 2224 spin_lock(&vm->invalidated_lock); 2225 } 2226 spin_unlock(&vm->invalidated_lock); 2227 2228 return 0; 2229 } 2230 2231 /** 2232 * amdgpu_vm_bo_add - add a bo to a specific vm 2233 * 2234 * @adev: amdgpu_device pointer 2235 * @vm: requested vm 2236 * @bo: amdgpu buffer object 2237 * 2238 * Add @bo into the requested vm. 2239 * Add @bo to the list of bos associated with the vm 2240 * 2241 * Returns: 2242 * Newly added bo_va or NULL for failure 2243 * 2244 * Object has to be reserved! 2245 */ 2246 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2247 struct amdgpu_vm *vm, 2248 struct amdgpu_bo *bo) 2249 { 2250 struct amdgpu_bo_va *bo_va; 2251 2252 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2253 if (bo_va == NULL) { 2254 return NULL; 2255 } 2256 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2257 2258 bo_va->ref_count = 1; 2259 INIT_LIST_HEAD(&bo_va->valids); 2260 INIT_LIST_HEAD(&bo_va->invalids); 2261 2262 if (!bo) 2263 return bo_va; 2264 2265 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2266 bo_va->is_xgmi = true; 2267 /* Power up XGMI if it can be potentially used */ 2268 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2269 } 2270 2271 return bo_va; 2272 } 2273 2274 2275 /** 2276 * amdgpu_vm_bo_insert_map - insert a new mapping 2277 * 2278 * @adev: amdgpu_device pointer 2279 * @bo_va: bo_va to store the address 2280 * @mapping: the mapping to insert 2281 * 2282 * Insert a new mapping into all structures. 2283 */ 2284 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2285 struct amdgpu_bo_va *bo_va, 2286 struct amdgpu_bo_va_mapping *mapping) 2287 { 2288 struct amdgpu_vm *vm = bo_va->base.vm; 2289 struct amdgpu_bo *bo = bo_va->base.bo; 2290 2291 mapping->bo_va = bo_va; 2292 list_add(&mapping->list, &bo_va->invalids); 2293 amdgpu_vm_it_insert(mapping, &vm->va); 2294 2295 if (mapping->flags & AMDGPU_PTE_PRT) 2296 amdgpu_vm_prt_get(adev); 2297 2298 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 2299 !bo_va->base.moved) { 2300 list_move(&bo_va->base.vm_status, &vm->moved); 2301 } 2302 trace_amdgpu_vm_bo_map(bo_va, mapping); 2303 } 2304 2305 /** 2306 * amdgpu_vm_bo_map - map bo inside a vm 2307 * 2308 * @adev: amdgpu_device pointer 2309 * @bo_va: bo_va to store the address 2310 * @saddr: where to map the BO 2311 * @offset: requested offset in the BO 2312 * @size: BO size in bytes 2313 * @flags: attributes of pages (read/write/valid/etc.) 2314 * 2315 * Add a mapping of the BO at the specefied addr into the VM. 2316 * 2317 * Returns: 2318 * 0 for success, error for failure. 2319 * 2320 * Object has to be reserved and unreserved outside! 2321 */ 2322 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2323 struct amdgpu_bo_va *bo_va, 2324 uint64_t saddr, uint64_t offset, 2325 uint64_t size, uint64_t flags) 2326 { 2327 struct amdgpu_bo_va_mapping *mapping, *tmp; 2328 struct amdgpu_bo *bo = bo_va->base.bo; 2329 struct amdgpu_vm *vm = bo_va->base.vm; 2330 uint64_t eaddr; 2331 2332 /* validate the parameters */ 2333 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2334 size == 0 || size & ~PAGE_MASK) 2335 return -EINVAL; 2336 2337 /* make sure object fit at this offset */ 2338 eaddr = saddr + size - 1; 2339 if (saddr >= eaddr || 2340 (bo && offset + size > amdgpu_bo_size(bo)) || 2341 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2342 return -EINVAL; 2343 2344 saddr /= AMDGPU_GPU_PAGE_SIZE; 2345 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2346 2347 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2348 if (tmp) { 2349 /* bo and tmp overlap, invalid addr */ 2350 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2351 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2352 tmp->start, tmp->last + 1); 2353 return -EINVAL; 2354 } 2355 2356 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2357 if (!mapping) 2358 return -ENOMEM; 2359 2360 mapping->start = saddr; 2361 mapping->last = eaddr; 2362 mapping->offset = offset; 2363 mapping->flags = flags; 2364 2365 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2366 2367 return 0; 2368 } 2369 2370 /** 2371 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2372 * 2373 * @adev: amdgpu_device pointer 2374 * @bo_va: bo_va to store the address 2375 * @saddr: where to map the BO 2376 * @offset: requested offset in the BO 2377 * @size: BO size in bytes 2378 * @flags: attributes of pages (read/write/valid/etc.) 2379 * 2380 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2381 * mappings as we do so. 2382 * 2383 * Returns: 2384 * 0 for success, error for failure. 2385 * 2386 * Object has to be reserved and unreserved outside! 2387 */ 2388 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2389 struct amdgpu_bo_va *bo_va, 2390 uint64_t saddr, uint64_t offset, 2391 uint64_t size, uint64_t flags) 2392 { 2393 struct amdgpu_bo_va_mapping *mapping; 2394 struct amdgpu_bo *bo = bo_va->base.bo; 2395 uint64_t eaddr; 2396 int r; 2397 2398 /* validate the parameters */ 2399 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2400 size == 0 || size & ~PAGE_MASK) 2401 return -EINVAL; 2402 2403 /* make sure object fit at this offset */ 2404 eaddr = saddr + size - 1; 2405 if (saddr >= eaddr || 2406 (bo && offset + size > amdgpu_bo_size(bo)) || 2407 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2408 return -EINVAL; 2409 2410 /* Allocate all the needed memory */ 2411 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2412 if (!mapping) 2413 return -ENOMEM; 2414 2415 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2416 if (r) { 2417 kfree(mapping); 2418 return r; 2419 } 2420 2421 saddr /= AMDGPU_GPU_PAGE_SIZE; 2422 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2423 2424 mapping->start = saddr; 2425 mapping->last = eaddr; 2426 mapping->offset = offset; 2427 mapping->flags = flags; 2428 2429 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2430 2431 return 0; 2432 } 2433 2434 /** 2435 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2436 * 2437 * @adev: amdgpu_device pointer 2438 * @bo_va: bo_va to remove the address from 2439 * @saddr: where to the BO is mapped 2440 * 2441 * Remove a mapping of the BO at the specefied addr from the VM. 2442 * 2443 * Returns: 2444 * 0 for success, error for failure. 2445 * 2446 * Object has to be reserved and unreserved outside! 2447 */ 2448 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2449 struct amdgpu_bo_va *bo_va, 2450 uint64_t saddr) 2451 { 2452 struct amdgpu_bo_va_mapping *mapping; 2453 struct amdgpu_vm *vm = bo_va->base.vm; 2454 bool valid = true; 2455 2456 saddr /= AMDGPU_GPU_PAGE_SIZE; 2457 2458 list_for_each_entry(mapping, &bo_va->valids, list) { 2459 if (mapping->start == saddr) 2460 break; 2461 } 2462 2463 if (&mapping->list == &bo_va->valids) { 2464 valid = false; 2465 2466 list_for_each_entry(mapping, &bo_va->invalids, list) { 2467 if (mapping->start == saddr) 2468 break; 2469 } 2470 2471 if (&mapping->list == &bo_va->invalids) 2472 return -ENOENT; 2473 } 2474 2475 list_del(&mapping->list); 2476 amdgpu_vm_it_remove(mapping, &vm->va); 2477 mapping->bo_va = NULL; 2478 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2479 2480 if (valid) 2481 list_add(&mapping->list, &vm->freed); 2482 else 2483 amdgpu_vm_free_mapping(adev, vm, mapping, 2484 bo_va->last_pt_update); 2485 2486 return 0; 2487 } 2488 2489 /** 2490 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2491 * 2492 * @adev: amdgpu_device pointer 2493 * @vm: VM structure to use 2494 * @saddr: start of the range 2495 * @size: size of the range 2496 * 2497 * Remove all mappings in a range, split them as appropriate. 2498 * 2499 * Returns: 2500 * 0 for success, error for failure. 2501 */ 2502 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2503 struct amdgpu_vm *vm, 2504 uint64_t saddr, uint64_t size) 2505 { 2506 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2507 LIST_HEAD(removed); 2508 uint64_t eaddr; 2509 2510 eaddr = saddr + size - 1; 2511 saddr /= AMDGPU_GPU_PAGE_SIZE; 2512 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2513 2514 /* Allocate all the needed memory */ 2515 before = kzalloc(sizeof(*before), GFP_KERNEL); 2516 if (!before) 2517 return -ENOMEM; 2518 INIT_LIST_HEAD(&before->list); 2519 2520 after = kzalloc(sizeof(*after), GFP_KERNEL); 2521 if (!after) { 2522 kfree(before); 2523 return -ENOMEM; 2524 } 2525 INIT_LIST_HEAD(&after->list); 2526 2527 /* Now gather all removed mappings */ 2528 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2529 while (tmp) { 2530 /* Remember mapping split at the start */ 2531 if (tmp->start < saddr) { 2532 before->start = tmp->start; 2533 before->last = saddr - 1; 2534 before->offset = tmp->offset; 2535 before->flags = tmp->flags; 2536 before->bo_va = tmp->bo_va; 2537 list_add(&before->list, &tmp->bo_va->invalids); 2538 } 2539 2540 /* Remember mapping split at the end */ 2541 if (tmp->last > eaddr) { 2542 after->start = eaddr + 1; 2543 after->last = tmp->last; 2544 after->offset = tmp->offset; 2545 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2546 after->flags = tmp->flags; 2547 after->bo_va = tmp->bo_va; 2548 list_add(&after->list, &tmp->bo_va->invalids); 2549 } 2550 2551 list_del(&tmp->list); 2552 list_add(&tmp->list, &removed); 2553 2554 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2555 } 2556 2557 /* And free them up */ 2558 list_for_each_entry_safe(tmp, next, &removed, list) { 2559 amdgpu_vm_it_remove(tmp, &vm->va); 2560 list_del(&tmp->list); 2561 2562 if (tmp->start < saddr) 2563 tmp->start = saddr; 2564 if (tmp->last > eaddr) 2565 tmp->last = eaddr; 2566 2567 tmp->bo_va = NULL; 2568 list_add(&tmp->list, &vm->freed); 2569 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2570 } 2571 2572 /* Insert partial mapping before the range */ 2573 if (!list_empty(&before->list)) { 2574 amdgpu_vm_it_insert(before, &vm->va); 2575 if (before->flags & AMDGPU_PTE_PRT) 2576 amdgpu_vm_prt_get(adev); 2577 } else { 2578 kfree(before); 2579 } 2580 2581 /* Insert partial mapping after the range */ 2582 if (!list_empty(&after->list)) { 2583 amdgpu_vm_it_insert(after, &vm->va); 2584 if (after->flags & AMDGPU_PTE_PRT) 2585 amdgpu_vm_prt_get(adev); 2586 } else { 2587 kfree(after); 2588 } 2589 2590 return 0; 2591 } 2592 2593 /** 2594 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2595 * 2596 * @vm: the requested VM 2597 * @addr: the address 2598 * 2599 * Find a mapping by it's address. 2600 * 2601 * Returns: 2602 * The amdgpu_bo_va_mapping matching for addr or NULL 2603 * 2604 */ 2605 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2606 uint64_t addr) 2607 { 2608 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2609 } 2610 2611 /** 2612 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2613 * 2614 * @vm: the requested vm 2615 * @ticket: CS ticket 2616 * 2617 * Trace all mappings of BOs reserved during a command submission. 2618 */ 2619 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2620 { 2621 struct amdgpu_bo_va_mapping *mapping; 2622 2623 if (!trace_amdgpu_vm_bo_cs_enabled()) 2624 return; 2625 2626 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2627 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2628 if (mapping->bo_va && mapping->bo_va->base.bo) { 2629 struct amdgpu_bo *bo; 2630 2631 bo = mapping->bo_va->base.bo; 2632 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2633 ticket) 2634 continue; 2635 } 2636 2637 trace_amdgpu_vm_bo_cs(mapping); 2638 } 2639 } 2640 2641 /** 2642 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2643 * 2644 * @adev: amdgpu_device pointer 2645 * @bo_va: requested bo_va 2646 * 2647 * Remove @bo_va->bo from the requested vm. 2648 * 2649 * Object have to be reserved! 2650 */ 2651 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2652 struct amdgpu_bo_va *bo_va) 2653 { 2654 struct amdgpu_bo_va_mapping *mapping, *next; 2655 struct amdgpu_bo *bo = bo_va->base.bo; 2656 struct amdgpu_vm *vm = bo_va->base.vm; 2657 struct amdgpu_vm_bo_base **base; 2658 2659 if (bo) { 2660 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2661 vm->bulk_moveable = false; 2662 2663 for (base = &bo_va->base.bo->vm_bo; *base; 2664 base = &(*base)->next) { 2665 if (*base != &bo_va->base) 2666 continue; 2667 2668 *base = bo_va->base.next; 2669 break; 2670 } 2671 } 2672 2673 spin_lock(&vm->invalidated_lock); 2674 list_del(&bo_va->base.vm_status); 2675 spin_unlock(&vm->invalidated_lock); 2676 2677 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2678 list_del(&mapping->list); 2679 amdgpu_vm_it_remove(mapping, &vm->va); 2680 mapping->bo_va = NULL; 2681 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2682 list_add(&mapping->list, &vm->freed); 2683 } 2684 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2685 list_del(&mapping->list); 2686 amdgpu_vm_it_remove(mapping, &vm->va); 2687 amdgpu_vm_free_mapping(adev, vm, mapping, 2688 bo_va->last_pt_update); 2689 } 2690 2691 dma_fence_put(bo_va->last_pt_update); 2692 2693 if (bo && bo_va->is_xgmi) 2694 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2695 2696 kfree(bo_va); 2697 } 2698 2699 /** 2700 * amdgpu_vm_evictable - check if we can evict a VM 2701 * 2702 * @bo: A page table of the VM. 2703 * 2704 * Check if it is possible to evict a VM. 2705 */ 2706 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2707 { 2708 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2709 2710 /* Page tables of a destroyed VM can go away immediately */ 2711 if (!bo_base || !bo_base->vm) 2712 return true; 2713 2714 /* Don't evict VM page tables while they are busy */ 2715 if (!dma_resv_test_signaled(bo->tbo.base.resv, true)) 2716 return false; 2717 2718 /* Try to block ongoing updates */ 2719 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2720 return false; 2721 2722 /* Don't evict VM page tables while they are updated */ 2723 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2724 amdgpu_vm_eviction_unlock(bo_base->vm); 2725 return false; 2726 } 2727 2728 bo_base->vm->evicting = true; 2729 amdgpu_vm_eviction_unlock(bo_base->vm); 2730 return true; 2731 } 2732 2733 /** 2734 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2735 * 2736 * @adev: amdgpu_device pointer 2737 * @bo: amdgpu buffer object 2738 * @evicted: is the BO evicted 2739 * 2740 * Mark @bo as invalid. 2741 */ 2742 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2743 struct amdgpu_bo *bo, bool evicted) 2744 { 2745 struct amdgpu_vm_bo_base *bo_base; 2746 2747 /* shadow bo doesn't have bo base, its validation needs its parent */ 2748 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2749 bo = bo->parent; 2750 2751 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2752 struct amdgpu_vm *vm = bo_base->vm; 2753 2754 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2755 amdgpu_vm_bo_evicted(bo_base); 2756 continue; 2757 } 2758 2759 if (bo_base->moved) 2760 continue; 2761 bo_base->moved = true; 2762 2763 if (bo->tbo.type == ttm_bo_type_kernel) 2764 amdgpu_vm_bo_relocated(bo_base); 2765 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2766 amdgpu_vm_bo_moved(bo_base); 2767 else 2768 amdgpu_vm_bo_invalidated(bo_base); 2769 } 2770 } 2771 2772 /** 2773 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2774 * 2775 * @vm_size: VM size 2776 * 2777 * Returns: 2778 * VM page table as power of two 2779 */ 2780 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2781 { 2782 /* Total bits covered by PD + PTs */ 2783 unsigned bits = ilog2(vm_size) + 18; 2784 2785 /* Make sure the PD is 4K in size up to 8GB address space. 2786 Above that split equal between PD and PTs */ 2787 if (vm_size <= 8) 2788 return (bits - 9); 2789 else 2790 return ((bits + 3) / 2); 2791 } 2792 2793 /** 2794 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2795 * 2796 * @adev: amdgpu_device pointer 2797 * @min_vm_size: the minimum vm size in GB if it's set auto 2798 * @fragment_size_default: Default PTE fragment size 2799 * @max_level: max VMPT level 2800 * @max_bits: max address space size in bits 2801 * 2802 */ 2803 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2804 uint32_t fragment_size_default, unsigned max_level, 2805 unsigned max_bits) 2806 { 2807 unsigned int max_size = 1 << (max_bits - 30); 2808 unsigned int vm_size; 2809 uint64_t tmp; 2810 2811 /* adjust vm size first */ 2812 if (amdgpu_vm_size != -1) { 2813 vm_size = amdgpu_vm_size; 2814 if (vm_size > max_size) { 2815 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2816 amdgpu_vm_size, max_size); 2817 vm_size = max_size; 2818 } 2819 } else { 2820 struct sysinfo si; 2821 unsigned int phys_ram_gb; 2822 2823 /* Optimal VM size depends on the amount of physical 2824 * RAM available. Underlying requirements and 2825 * assumptions: 2826 * 2827 * - Need to map system memory and VRAM from all GPUs 2828 * - VRAM from other GPUs not known here 2829 * - Assume VRAM <= system memory 2830 * - On GFX8 and older, VM space can be segmented for 2831 * different MTYPEs 2832 * - Need to allow room for fragmentation, guard pages etc. 2833 * 2834 * This adds up to a rough guess of system memory x3. 2835 * Round up to power of two to maximize the available 2836 * VM size with the given page table size. 2837 */ 2838 si_meminfo(&si); 2839 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2840 (1 << 30) - 1) >> 30; 2841 vm_size = roundup_pow_of_two( 2842 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2843 } 2844 2845 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2846 2847 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2848 if (amdgpu_vm_block_size != -1) 2849 tmp >>= amdgpu_vm_block_size - 9; 2850 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2851 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2852 switch (adev->vm_manager.num_level) { 2853 case 3: 2854 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2855 break; 2856 case 2: 2857 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2858 break; 2859 case 1: 2860 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2861 break; 2862 default: 2863 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2864 } 2865 /* block size depends on vm size and hw setup*/ 2866 if (amdgpu_vm_block_size != -1) 2867 adev->vm_manager.block_size = 2868 min((unsigned)amdgpu_vm_block_size, max_bits 2869 - AMDGPU_GPU_PAGE_SHIFT 2870 - 9 * adev->vm_manager.num_level); 2871 else if (adev->vm_manager.num_level > 1) 2872 adev->vm_manager.block_size = 9; 2873 else 2874 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2875 2876 if (amdgpu_vm_fragment_size == -1) 2877 adev->vm_manager.fragment_size = fragment_size_default; 2878 else 2879 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2880 2881 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2882 vm_size, adev->vm_manager.num_level + 1, 2883 adev->vm_manager.block_size, 2884 adev->vm_manager.fragment_size); 2885 } 2886 2887 /** 2888 * amdgpu_vm_wait_idle - wait for the VM to become idle 2889 * 2890 * @vm: VM object to wait for 2891 * @timeout: timeout to wait for VM to become idle 2892 */ 2893 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2894 { 2895 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true, 2896 true, timeout); 2897 if (timeout <= 0) 2898 return timeout; 2899 2900 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2901 } 2902 2903 /** 2904 * amdgpu_vm_init - initialize a vm instance 2905 * 2906 * @adev: amdgpu_device pointer 2907 * @vm: requested vm 2908 * 2909 * Init @vm fields. 2910 * 2911 * Returns: 2912 * 0 for success, error for failure. 2913 */ 2914 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2915 { 2916 struct amdgpu_bo *root_bo; 2917 struct amdgpu_bo_vm *root; 2918 int r, i; 2919 2920 vm->va = RB_ROOT_CACHED; 2921 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2922 vm->reserved_vmid[i] = NULL; 2923 INIT_LIST_HEAD(&vm->evicted); 2924 INIT_LIST_HEAD(&vm->relocated); 2925 INIT_LIST_HEAD(&vm->moved); 2926 INIT_LIST_HEAD(&vm->idle); 2927 INIT_LIST_HEAD(&vm->invalidated); 2928 spin_lock_init(&vm->invalidated_lock); 2929 INIT_LIST_HEAD(&vm->freed); 2930 INIT_LIST_HEAD(&vm->done); 2931 2932 /* create scheduler entities for page table updates */ 2933 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2934 adev->vm_manager.vm_pte_scheds, 2935 adev->vm_manager.vm_pte_num_scheds, NULL); 2936 if (r) 2937 return r; 2938 2939 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2940 adev->vm_manager.vm_pte_scheds, 2941 adev->vm_manager.vm_pte_num_scheds, NULL); 2942 if (r) 2943 goto error_free_immediate; 2944 2945 vm->pte_support_ats = false; 2946 vm->is_compute_context = false; 2947 2948 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2949 AMDGPU_VM_USE_CPU_FOR_GFX); 2950 2951 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2952 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2953 WARN_ONCE((vm->use_cpu_for_update && 2954 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2955 "CPU update of VM recommended only for large BAR system\n"); 2956 2957 if (vm->use_cpu_for_update) 2958 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2959 else 2960 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2961 vm->last_update = NULL; 2962 vm->last_unlocked = dma_fence_get_stub(); 2963 2964 mutex_init(&vm->eviction_lock); 2965 vm->evicting = false; 2966 2967 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2968 false, &root); 2969 if (r) 2970 goto error_free_delayed; 2971 root_bo = &root->bo; 2972 r = amdgpu_bo_reserve(root_bo, true); 2973 if (r) 2974 goto error_free_root; 2975 2976 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1); 2977 if (r) 2978 goto error_unreserve; 2979 2980 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2981 2982 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2983 if (r) 2984 goto error_unreserve; 2985 2986 amdgpu_bo_unreserve(vm->root.bo); 2987 2988 INIT_KFIFO(vm->faults); 2989 2990 return 0; 2991 2992 error_unreserve: 2993 amdgpu_bo_unreserve(vm->root.bo); 2994 2995 error_free_root: 2996 amdgpu_bo_unref(&root->shadow); 2997 amdgpu_bo_unref(&root_bo); 2998 vm->root.bo = NULL; 2999 3000 error_free_delayed: 3001 dma_fence_put(vm->last_unlocked); 3002 drm_sched_entity_destroy(&vm->delayed); 3003 3004 error_free_immediate: 3005 drm_sched_entity_destroy(&vm->immediate); 3006 3007 return r; 3008 } 3009 3010 /** 3011 * amdgpu_vm_check_clean_reserved - check if a VM is clean 3012 * 3013 * @adev: amdgpu_device pointer 3014 * @vm: the VM to check 3015 * 3016 * check all entries of the root PD, if any subsequent PDs are allocated, 3017 * it means there are page table creating and filling, and is no a clean 3018 * VM 3019 * 3020 * Returns: 3021 * 0 if this VM is clean 3022 */ 3023 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 3024 struct amdgpu_vm *vm) 3025 { 3026 enum amdgpu_vm_level root = adev->vm_manager.root_level; 3027 unsigned int entries = amdgpu_vm_num_entries(adev, root); 3028 unsigned int i = 0; 3029 3030 for (i = 0; i < entries; i++) { 3031 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 3032 return -EINVAL; 3033 } 3034 3035 return 0; 3036 } 3037 3038 /** 3039 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3040 * 3041 * @adev: amdgpu_device pointer 3042 * @vm: requested vm 3043 * 3044 * This only works on GFX VMs that don't have any BOs added and no 3045 * page tables allocated yet. 3046 * 3047 * Changes the following VM parameters: 3048 * - use_cpu_for_update 3049 * - pte_supports_ats 3050 * 3051 * Reinitializes the page directory to reflect the changed ATS 3052 * setting. 3053 * 3054 * Returns: 3055 * 0 for success, -errno for errors. 3056 */ 3057 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3058 { 3059 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3060 int r; 3061 3062 r = amdgpu_bo_reserve(vm->root.bo, true); 3063 if (r) 3064 return r; 3065 3066 /* Sanity checks */ 3067 r = amdgpu_vm_check_clean_reserved(adev, vm); 3068 if (r) 3069 goto unreserve_bo; 3070 3071 /* Check if PD needs to be reinitialized and do it before 3072 * changing any other state, in case it fails. 3073 */ 3074 if (pte_support_ats != vm->pte_support_ats) { 3075 vm->pte_support_ats = pte_support_ats; 3076 r = amdgpu_vm_clear_bo(adev, vm, 3077 to_amdgpu_bo_vm(vm->root.bo), 3078 false); 3079 if (r) 3080 goto unreserve_bo; 3081 } 3082 3083 /* Update VM state */ 3084 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3085 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3086 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3087 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3088 WARN_ONCE((vm->use_cpu_for_update && 3089 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3090 "CPU update of VM recommended only for large BAR system\n"); 3091 3092 if (vm->use_cpu_for_update) { 3093 /* Sync with last SDMA update/clear before switching to CPU */ 3094 r = amdgpu_bo_sync_wait(vm->root.bo, 3095 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3096 if (r) 3097 goto unreserve_bo; 3098 3099 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3100 } else { 3101 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3102 } 3103 dma_fence_put(vm->last_update); 3104 vm->last_update = NULL; 3105 vm->is_compute_context = true; 3106 3107 /* Free the shadow bo for compute VM */ 3108 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 3109 3110 goto unreserve_bo; 3111 3112 unreserve_bo: 3113 amdgpu_bo_unreserve(vm->root.bo); 3114 return r; 3115 } 3116 3117 /** 3118 * amdgpu_vm_release_compute - release a compute vm 3119 * @adev: amdgpu_device pointer 3120 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3121 * 3122 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3123 * pasid from vm. Compute should stop use of vm after this call. 3124 */ 3125 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3126 { 3127 amdgpu_vm_set_pasid(adev, vm, 0); 3128 vm->is_compute_context = false; 3129 } 3130 3131 /** 3132 * amdgpu_vm_fini - tear down a vm instance 3133 * 3134 * @adev: amdgpu_device pointer 3135 * @vm: requested vm 3136 * 3137 * Tear down @vm. 3138 * Unbind the VM and remove all bos from the vm bo list 3139 */ 3140 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3141 { 3142 struct amdgpu_bo_va_mapping *mapping, *tmp; 3143 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3144 struct amdgpu_bo *root; 3145 int i; 3146 3147 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3148 3149 root = amdgpu_bo_ref(vm->root.bo); 3150 amdgpu_bo_reserve(root, true); 3151 amdgpu_vm_set_pasid(adev, vm, 0); 3152 dma_fence_wait(vm->last_unlocked, false); 3153 dma_fence_put(vm->last_unlocked); 3154 3155 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3156 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3157 amdgpu_vm_prt_fini(adev, vm); 3158 prt_fini_needed = false; 3159 } 3160 3161 list_del(&mapping->list); 3162 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3163 } 3164 3165 amdgpu_vm_free_pts(adev, vm, NULL); 3166 amdgpu_bo_unreserve(root); 3167 amdgpu_bo_unref(&root); 3168 WARN_ON(vm->root.bo); 3169 3170 drm_sched_entity_destroy(&vm->immediate); 3171 drm_sched_entity_destroy(&vm->delayed); 3172 3173 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3174 dev_err(adev->dev, "still active bo inside vm\n"); 3175 } 3176 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3177 &vm->va.rb_root, rb) { 3178 /* Don't remove the mapping here, we don't want to trigger a 3179 * rebalance and the tree is about to be destroyed anyway. 3180 */ 3181 list_del(&mapping->list); 3182 kfree(mapping); 3183 } 3184 3185 dma_fence_put(vm->last_update); 3186 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3187 amdgpu_vmid_free_reserved(adev, vm, i); 3188 } 3189 3190 /** 3191 * amdgpu_vm_manager_init - init the VM manager 3192 * 3193 * @adev: amdgpu_device pointer 3194 * 3195 * Initialize the VM manager structures 3196 */ 3197 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3198 { 3199 unsigned i; 3200 3201 /* Concurrent flushes are only possible starting with Vega10 and 3202 * are broken on Navi10 and Navi14. 3203 */ 3204 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3205 adev->asic_type == CHIP_NAVI10 || 3206 adev->asic_type == CHIP_NAVI14); 3207 amdgpu_vmid_mgr_init(adev); 3208 3209 adev->vm_manager.fence_context = 3210 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3211 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3212 adev->vm_manager.seqno[i] = 0; 3213 3214 spin_lock_init(&adev->vm_manager.prt_lock); 3215 atomic_set(&adev->vm_manager.num_prt_users, 0); 3216 3217 /* If not overridden by the user, by default, only in large BAR systems 3218 * Compute VM tables will be updated by CPU 3219 */ 3220 #ifdef CONFIG_X86_64 3221 if (amdgpu_vm_update_mode == -1) { 3222 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3223 adev->vm_manager.vm_update_mode = 3224 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3225 else 3226 adev->vm_manager.vm_update_mode = 0; 3227 } else 3228 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3229 #else 3230 adev->vm_manager.vm_update_mode = 0; 3231 #endif 3232 3233 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 3234 } 3235 3236 /** 3237 * amdgpu_vm_manager_fini - cleanup VM manager 3238 * 3239 * @adev: amdgpu_device pointer 3240 * 3241 * Cleanup the VM manager and free resources. 3242 */ 3243 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3244 { 3245 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 3246 xa_destroy(&adev->vm_manager.pasids); 3247 3248 amdgpu_vmid_mgr_fini(adev); 3249 } 3250 3251 /** 3252 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3253 * 3254 * @dev: drm device pointer 3255 * @data: drm_amdgpu_vm 3256 * @filp: drm file pointer 3257 * 3258 * Returns: 3259 * 0 for success, -errno for errors. 3260 */ 3261 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3262 { 3263 union drm_amdgpu_vm *args = data; 3264 struct amdgpu_device *adev = drm_to_adev(dev); 3265 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3266 long timeout = msecs_to_jiffies(2000); 3267 int r; 3268 3269 switch (args->in.op) { 3270 case AMDGPU_VM_OP_RESERVE_VMID: 3271 /* We only have requirement to reserve vmid from gfxhub */ 3272 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3273 AMDGPU_GFXHUB_0); 3274 if (r) 3275 return r; 3276 break; 3277 case AMDGPU_VM_OP_UNRESERVE_VMID: 3278 if (amdgpu_sriov_runtime(adev)) 3279 timeout = 8 * timeout; 3280 3281 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3282 * not referenced anymore. 3283 */ 3284 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true); 3285 if (r) 3286 return r; 3287 3288 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3289 if (r < 0) 3290 return r; 3291 3292 amdgpu_bo_unreserve(fpriv->vm.root.bo); 3293 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3294 break; 3295 default: 3296 return -EINVAL; 3297 } 3298 3299 return 0; 3300 } 3301 3302 /** 3303 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3304 * 3305 * @adev: drm device pointer 3306 * @pasid: PASID identifier for VM 3307 * @task_info: task_info to fill. 3308 */ 3309 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3310 struct amdgpu_task_info *task_info) 3311 { 3312 struct amdgpu_vm *vm; 3313 unsigned long flags; 3314 3315 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3316 3317 vm = xa_load(&adev->vm_manager.pasids, pasid); 3318 if (vm) 3319 *task_info = vm->task_info; 3320 3321 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3322 } 3323 3324 /** 3325 * amdgpu_vm_set_task_info - Sets VMs task info. 3326 * 3327 * @vm: vm for which to set the info 3328 */ 3329 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3330 { 3331 if (vm->task_info.pid) 3332 return; 3333 3334 vm->task_info.pid = current->pid; 3335 get_task_comm(vm->task_info.task_name, current); 3336 3337 if (current->group_leader->mm != current->mm) 3338 return; 3339 3340 vm->task_info.tgid = current->group_leader->pid; 3341 get_task_comm(vm->task_info.process_name, current->group_leader); 3342 } 3343 3344 /** 3345 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3346 * @adev: amdgpu device pointer 3347 * @pasid: PASID of the VM 3348 * @addr: Address of the fault 3349 * @write_fault: true is write fault, false is read fault 3350 * 3351 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3352 * shouldn't be reported any more. 3353 */ 3354 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3355 uint64_t addr, bool write_fault) 3356 { 3357 bool is_compute_context = false; 3358 struct amdgpu_bo *root; 3359 unsigned long irqflags; 3360 uint64_t value, flags; 3361 struct amdgpu_vm *vm; 3362 int r; 3363 3364 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3365 vm = xa_load(&adev->vm_manager.pasids, pasid); 3366 if (vm) { 3367 root = amdgpu_bo_ref(vm->root.bo); 3368 is_compute_context = vm->is_compute_context; 3369 } else { 3370 root = NULL; 3371 } 3372 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3373 3374 if (!root) 3375 return false; 3376 3377 addr /= AMDGPU_GPU_PAGE_SIZE; 3378 3379 if (is_compute_context && 3380 !svm_range_restore_pages(adev, pasid, addr, write_fault)) { 3381 amdgpu_bo_unref(&root); 3382 return true; 3383 } 3384 3385 r = amdgpu_bo_reserve(root, true); 3386 if (r) 3387 goto error_unref; 3388 3389 /* Double check that the VM still exists */ 3390 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3391 vm = xa_load(&adev->vm_manager.pasids, pasid); 3392 if (vm && vm->root.bo != root) 3393 vm = NULL; 3394 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3395 if (!vm) 3396 goto error_unlock; 3397 3398 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3399 AMDGPU_PTE_SYSTEM; 3400 3401 if (is_compute_context) { 3402 /* Intentionally setting invalid PTE flag 3403 * combination to force a no-retry-fault 3404 */ 3405 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3406 AMDGPU_PTE_TF; 3407 value = 0; 3408 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3409 /* Redirect the access to the dummy page */ 3410 value = adev->dummy_page_addr; 3411 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3412 AMDGPU_PTE_WRITEABLE; 3413 3414 } else { 3415 /* Let the hw retry silently on the PTE */ 3416 value = 0; 3417 } 3418 3419 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3420 if (r) { 3421 pr_debug("failed %d to reserve fence slot\n", r); 3422 goto error_unlock; 3423 } 3424 3425 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3426 addr, flags, value, NULL, NULL, NULL, 3427 NULL); 3428 if (r) 3429 goto error_unlock; 3430 3431 r = amdgpu_vm_update_pdes(adev, vm, true); 3432 3433 error_unlock: 3434 amdgpu_bo_unreserve(root); 3435 if (r < 0) 3436 DRM_ERROR("Can't handle page fault (%d)\n", r); 3437 3438 error_unref: 3439 amdgpu_bo_unref(&root); 3440 3441 return false; 3442 } 3443 3444 #if defined(CONFIG_DEBUG_FS) 3445 /** 3446 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3447 * 3448 * @vm: Requested VM for printing BO info 3449 * @m: debugfs file 3450 * 3451 * Print BO information in debugfs file for the VM 3452 */ 3453 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3454 { 3455 struct amdgpu_bo_va *bo_va, *tmp; 3456 u64 total_idle = 0; 3457 u64 total_evicted = 0; 3458 u64 total_relocated = 0; 3459 u64 total_moved = 0; 3460 u64 total_invalidated = 0; 3461 u64 total_done = 0; 3462 unsigned int total_idle_objs = 0; 3463 unsigned int total_evicted_objs = 0; 3464 unsigned int total_relocated_objs = 0; 3465 unsigned int total_moved_objs = 0; 3466 unsigned int total_invalidated_objs = 0; 3467 unsigned int total_done_objs = 0; 3468 unsigned int id = 0; 3469 3470 seq_puts(m, "\tIdle BOs:\n"); 3471 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3472 if (!bo_va->base.bo) 3473 continue; 3474 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3475 } 3476 total_idle_objs = id; 3477 id = 0; 3478 3479 seq_puts(m, "\tEvicted BOs:\n"); 3480 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3481 if (!bo_va->base.bo) 3482 continue; 3483 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3484 } 3485 total_evicted_objs = id; 3486 id = 0; 3487 3488 seq_puts(m, "\tRelocated BOs:\n"); 3489 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3490 if (!bo_va->base.bo) 3491 continue; 3492 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3493 } 3494 total_relocated_objs = id; 3495 id = 0; 3496 3497 seq_puts(m, "\tMoved BOs:\n"); 3498 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3499 if (!bo_va->base.bo) 3500 continue; 3501 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3502 } 3503 total_moved_objs = id; 3504 id = 0; 3505 3506 seq_puts(m, "\tInvalidated BOs:\n"); 3507 spin_lock(&vm->invalidated_lock); 3508 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3509 if (!bo_va->base.bo) 3510 continue; 3511 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3512 } 3513 total_invalidated_objs = id; 3514 id = 0; 3515 3516 seq_puts(m, "\tDone BOs:\n"); 3517 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3518 if (!bo_va->base.bo) 3519 continue; 3520 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3521 } 3522 spin_unlock(&vm->invalidated_lock); 3523 total_done_objs = id; 3524 3525 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3526 total_idle_objs); 3527 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3528 total_evicted_objs); 3529 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3530 total_relocated_objs); 3531 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3532 total_moved_objs); 3533 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3534 total_invalidated_objs); 3535 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3536 total_done_objs); 3537 } 3538 #endif 3539