xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 6015fb905d89063231ed33bc15be19ef0fc339b8)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When executing a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /**
92  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
93  *
94  * @adev: amdgpu_device pointer
95  * @vm: amdgpu_vm pointer
96  * @pasid: the pasid the VM is using on this GPU
97  *
98  * Set the pasid this VM is using on this GPU, can also be used to remove the
99  * pasid by passing in zero.
100  *
101  */
102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
103 			u32 pasid)
104 {
105 	int r;
106 
107 	if (vm->pasid == pasid)
108 		return 0;
109 
110 	if (vm->pasid) {
111 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
112 		if (r < 0)
113 			return r;
114 
115 		vm->pasid = 0;
116 	}
117 
118 	if (pasid) {
119 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
120 					GFP_KERNEL));
121 		if (r < 0)
122 			return r;
123 
124 		vm->pasid = pasid;
125 	}
126 
127 
128 	return 0;
129 }
130 
131 /*
132  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
133  * happens while holding this lock anywhere to prevent deadlocks when
134  * an MMU notifier runs in reclaim-FS context.
135  */
136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
137 {
138 	mutex_lock(&vm->eviction_lock);
139 	vm->saved_flags = memalloc_noreclaim_save();
140 }
141 
142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
143 {
144 	if (mutex_trylock(&vm->eviction_lock)) {
145 		vm->saved_flags = memalloc_noreclaim_save();
146 		return 1;
147 	}
148 	return 0;
149 }
150 
151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
152 {
153 	memalloc_noreclaim_restore(vm->saved_flags);
154 	mutex_unlock(&vm->eviction_lock);
155 }
156 
157 /**
158  * amdgpu_vm_level_shift - return the addr shift for each level
159  *
160  * @adev: amdgpu_device pointer
161  * @level: VMPT level
162  *
163  * Returns:
164  * The number of bits the pfn needs to be right shifted for a level.
165  */
166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
167 				      unsigned level)
168 {
169 	switch (level) {
170 	case AMDGPU_VM_PDB2:
171 	case AMDGPU_VM_PDB1:
172 	case AMDGPU_VM_PDB0:
173 		return 9 * (AMDGPU_VM_PDB0 - level) +
174 			adev->vm_manager.block_size;
175 	case AMDGPU_VM_PTB:
176 		return 0;
177 	default:
178 		return ~0;
179 	}
180 }
181 
182 /**
183  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
184  *
185  * @adev: amdgpu_device pointer
186  * @level: VMPT level
187  *
188  * Returns:
189  * The number of entries in a page directory or page table.
190  */
191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
192 				      unsigned level)
193 {
194 	unsigned shift = amdgpu_vm_level_shift(adev,
195 					       adev->vm_manager.root_level);
196 
197 	if (level == adev->vm_manager.root_level)
198 		/* For the root directory */
199 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
200 			>> shift;
201 	else if (level != AMDGPU_VM_PTB)
202 		/* Everything in between */
203 		return 512;
204 	else
205 		/* For the page tables on the leaves */
206 		return AMDGPU_VM_PTE_COUNT(adev);
207 }
208 
209 /**
210  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
211  *
212  * @adev: amdgpu_device pointer
213  *
214  * Returns:
215  * The number of entries in the root page directory which needs the ATS setting.
216  */
217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
218 {
219 	unsigned shift;
220 
221 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
222 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
223 }
224 
225 /**
226  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
227  *
228  * @adev: amdgpu_device pointer
229  * @level: VMPT level
230  *
231  * Returns:
232  * The mask to extract the entry number of a PD/PT from an address.
233  */
234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
235 				       unsigned int level)
236 {
237 	if (level <= adev->vm_manager.root_level)
238 		return 0xffffffff;
239 	else if (level != AMDGPU_VM_PTB)
240 		return 0x1ff;
241 	else
242 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
243 }
244 
245 /**
246  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
247  *
248  * @adev: amdgpu_device pointer
249  * @level: VMPT level
250  *
251  * Returns:
252  * The size of the BO for a page directory or page table in bytes.
253  */
254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
255 {
256 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
257 }
258 
259 /**
260  * amdgpu_vm_bo_evicted - vm_bo is evicted
261  *
262  * @vm_bo: vm_bo which is evicted
263  *
264  * State for PDs/PTs and per VM BOs which are not at the location they should
265  * be.
266  */
267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 	struct amdgpu_vm *vm = vm_bo->vm;
270 	struct amdgpu_bo *bo = vm_bo->bo;
271 
272 	vm_bo->moved = true;
273 	if (bo->tbo.type == ttm_bo_type_kernel)
274 		list_move(&vm_bo->vm_status, &vm->evicted);
275 	else
276 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
277 }
278 /**
279  * amdgpu_vm_bo_moved - vm_bo is moved
280  *
281  * @vm_bo: vm_bo which is moved
282  *
283  * State for per VM BOs which are moved, but that change is not yet reflected
284  * in the page tables.
285  */
286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
289 }
290 
291 /**
292  * amdgpu_vm_bo_idle - vm_bo is idle
293  *
294  * @vm_bo: vm_bo which is now idle
295  *
296  * State for PDs/PTs and per VM BOs which have gone through the state machine
297  * and are now idle.
298  */
299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
300 {
301 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
302 	vm_bo->moved = false;
303 }
304 
305 /**
306  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
307  *
308  * @vm_bo: vm_bo which is now invalidated
309  *
310  * State for normal BOs which are invalidated and that change not yet reflected
311  * in the PTs.
312  */
313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
314 {
315 	spin_lock(&vm_bo->vm->invalidated_lock);
316 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
317 	spin_unlock(&vm_bo->vm->invalidated_lock);
318 }
319 
320 /**
321  * amdgpu_vm_bo_relocated - vm_bo is reloacted
322  *
323  * @vm_bo: vm_bo which is relocated
324  *
325  * State for PDs/PTs which needs to update their parent PD.
326  * For the root PD, just move to idle state.
327  */
328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
329 {
330 	if (vm_bo->bo->parent)
331 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
332 	else
333 		amdgpu_vm_bo_idle(vm_bo);
334 }
335 
336 /**
337  * amdgpu_vm_bo_done - vm_bo is done
338  *
339  * @vm_bo: vm_bo which is now done
340  *
341  * State for normal BOs which are invalidated and that change has been updated
342  * in the PTs.
343  */
344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
345 {
346 	spin_lock(&vm_bo->vm->invalidated_lock);
347 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
348 	spin_unlock(&vm_bo->vm->invalidated_lock);
349 }
350 
351 /**
352  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
353  *
354  * @base: base structure for tracking BO usage in a VM
355  * @vm: vm to which bo is to be added
356  * @bo: amdgpu buffer object
357  *
358  * Initialize a bo_va_base structure and add it to the appropriate lists
359  *
360  */
361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
362 				   struct amdgpu_vm *vm,
363 				   struct amdgpu_bo *bo)
364 {
365 	base->vm = vm;
366 	base->bo = bo;
367 	base->next = NULL;
368 	INIT_LIST_HEAD(&base->vm_status);
369 
370 	if (!bo)
371 		return;
372 	base->next = bo->vm_bo;
373 	bo->vm_bo = base;
374 
375 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
376 		return;
377 
378 	vm->bulk_moveable = false;
379 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
380 		amdgpu_vm_bo_relocated(base);
381 	else
382 		amdgpu_vm_bo_idle(base);
383 
384 	if (bo->preferred_domains &
385 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
386 		return;
387 
388 	/*
389 	 * we checked all the prerequisites, but it looks like this per vm bo
390 	 * is currently evicted. add the bo to the evicted list to make sure it
391 	 * is validated on next vm use to avoid fault.
392 	 * */
393 	amdgpu_vm_bo_evicted(base);
394 }
395 
396 /**
397  * amdgpu_vm_pt_parent - get the parent page directory
398  *
399  * @pt: child page table
400  *
401  * Helper to get the parent entry for the child page table. NULL if we are at
402  * the root page directory.
403  */
404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
405 {
406 	struct amdgpu_bo *parent = pt->bo->parent;
407 
408 	if (!parent)
409 		return NULL;
410 
411 	return parent->vm_bo;
412 }
413 
414 /*
415  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
416  */
417 struct amdgpu_vm_pt_cursor {
418 	uint64_t pfn;
419 	struct amdgpu_vm_bo_base *parent;
420 	struct amdgpu_vm_bo_base *entry;
421 	unsigned level;
422 };
423 
424 /**
425  * amdgpu_vm_pt_start - start PD/PT walk
426  *
427  * @adev: amdgpu_device pointer
428  * @vm: amdgpu_vm structure
429  * @start: start address of the walk
430  * @cursor: state to initialize
431  *
432  * Initialize a amdgpu_vm_pt_cursor to start a walk.
433  */
434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
435 			       struct amdgpu_vm *vm, uint64_t start,
436 			       struct amdgpu_vm_pt_cursor *cursor)
437 {
438 	cursor->pfn = start;
439 	cursor->parent = NULL;
440 	cursor->entry = &vm->root;
441 	cursor->level = adev->vm_manager.root_level;
442 }
443 
444 /**
445  * amdgpu_vm_pt_descendant - go to child node
446  *
447  * @adev: amdgpu_device pointer
448  * @cursor: current state
449  *
450  * Walk to the child node of the current node.
451  * Returns:
452  * True if the walk was possible, false otherwise.
453  */
454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
455 				    struct amdgpu_vm_pt_cursor *cursor)
456 {
457 	unsigned mask, shift, idx;
458 
459 	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
460 	    !cursor->entry->bo)
461 		return false;
462 
463 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
464 	shift = amdgpu_vm_level_shift(adev, cursor->level);
465 
466 	++cursor->level;
467 	idx = (cursor->pfn >> shift) & mask;
468 	cursor->parent = cursor->entry;
469 	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
470 	return true;
471 }
472 
473 /**
474  * amdgpu_vm_pt_sibling - go to sibling node
475  *
476  * @adev: amdgpu_device pointer
477  * @cursor: current state
478  *
479  * Walk to the sibling node of the current node.
480  * Returns:
481  * True if the walk was possible, false otherwise.
482  */
483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
484 				 struct amdgpu_vm_pt_cursor *cursor)
485 {
486 	unsigned shift, num_entries;
487 
488 	/* Root doesn't have a sibling */
489 	if (!cursor->parent)
490 		return false;
491 
492 	/* Go to our parents and see if we got a sibling */
493 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
494 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
495 
496 	if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
497 		return false;
498 
499 	cursor->pfn += 1ULL << shift;
500 	cursor->pfn &= ~((1ULL << shift) - 1);
501 	++cursor->entry;
502 	return true;
503 }
504 
505 /**
506  * amdgpu_vm_pt_ancestor - go to parent node
507  *
508  * @cursor: current state
509  *
510  * Walk to the parent node of the current node.
511  * Returns:
512  * True if the walk was possible, false otherwise.
513  */
514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
515 {
516 	if (!cursor->parent)
517 		return false;
518 
519 	--cursor->level;
520 	cursor->entry = cursor->parent;
521 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
522 	return true;
523 }
524 
525 /**
526  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
527  *
528  * @adev: amdgpu_device pointer
529  * @cursor: current state
530  *
531  * Walk the PD/PT tree to the next node.
532  */
533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
534 			      struct amdgpu_vm_pt_cursor *cursor)
535 {
536 	/* First try a newborn child */
537 	if (amdgpu_vm_pt_descendant(adev, cursor))
538 		return;
539 
540 	/* If that didn't worked try to find a sibling */
541 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
542 		/* No sibling, go to our parents and grandparents */
543 		if (!amdgpu_vm_pt_ancestor(cursor)) {
544 			cursor->pfn = ~0ll;
545 			return;
546 		}
547 	}
548 }
549 
550 /**
551  * amdgpu_vm_pt_first_dfs - start a deep first search
552  *
553  * @adev: amdgpu_device structure
554  * @vm: amdgpu_vm structure
555  * @start: optional cursor to start with
556  * @cursor: state to initialize
557  *
558  * Starts a deep first traversal of the PD/PT tree.
559  */
560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
561 				   struct amdgpu_vm *vm,
562 				   struct amdgpu_vm_pt_cursor *start,
563 				   struct amdgpu_vm_pt_cursor *cursor)
564 {
565 	if (start)
566 		*cursor = *start;
567 	else
568 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
569 	while (amdgpu_vm_pt_descendant(adev, cursor));
570 }
571 
572 /**
573  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
574  *
575  * @start: starting point for the search
576  * @entry: current entry
577  *
578  * Returns:
579  * True when the search should continue, false otherwise.
580  */
581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
582 				      struct amdgpu_vm_bo_base *entry)
583 {
584 	return entry && (!start || entry != start->entry);
585 }
586 
587 /**
588  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
589  *
590  * @adev: amdgpu_device structure
591  * @cursor: current state
592  *
593  * Move the cursor to the next node in a deep first search.
594  */
595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
596 				  struct amdgpu_vm_pt_cursor *cursor)
597 {
598 	if (!cursor->entry)
599 		return;
600 
601 	if (!cursor->parent)
602 		cursor->entry = NULL;
603 	else if (amdgpu_vm_pt_sibling(adev, cursor))
604 		while (amdgpu_vm_pt_descendant(adev, cursor));
605 	else
606 		amdgpu_vm_pt_ancestor(cursor);
607 }
608 
609 /*
610  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
611  */
612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
613 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
614 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
615 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
616 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
617 
618 /**
619  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
620  *
621  * @vm: vm providing the BOs
622  * @validated: head of validation list
623  * @entry: entry to add
624  *
625  * Add the page directory to the list of BOs to
626  * validate for command submission.
627  */
628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
629 			 struct list_head *validated,
630 			 struct amdgpu_bo_list_entry *entry)
631 {
632 	entry->priority = 0;
633 	entry->tv.bo = &vm->root.bo->tbo;
634 	/* Two for VM updates, one for TTM and one for the CS job */
635 	entry->tv.num_shared = 4;
636 	entry->user_pages = NULL;
637 	list_add(&entry->tv.head, validated);
638 }
639 
640 /**
641  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
642  *
643  * @bo: BO which was removed from the LRU
644  *
645  * Make sure the bulk_moveable flag is updated when a BO is removed from the
646  * LRU.
647  */
648 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
649 {
650 	struct amdgpu_bo *abo;
651 	struct amdgpu_vm_bo_base *bo_base;
652 
653 	if (!amdgpu_bo_is_amdgpu_bo(bo))
654 		return;
655 
656 	if (bo->pin_count)
657 		return;
658 
659 	abo = ttm_to_amdgpu_bo(bo);
660 	if (!abo->parent)
661 		return;
662 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
663 		struct amdgpu_vm *vm = bo_base->vm;
664 
665 		if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
666 			vm->bulk_moveable = false;
667 	}
668 
669 }
670 /**
671  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
672  *
673  * @adev: amdgpu device pointer
674  * @vm: vm providing the BOs
675  *
676  * Move all BOs to the end of LRU and remember their positions to put them
677  * together.
678  */
679 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
680 				struct amdgpu_vm *vm)
681 {
682 	struct amdgpu_vm_bo_base *bo_base;
683 
684 	if (vm->bulk_moveable) {
685 		spin_lock(&adev->mman.bdev.lru_lock);
686 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
687 		spin_unlock(&adev->mman.bdev.lru_lock);
688 		return;
689 	}
690 
691 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
692 
693 	spin_lock(&adev->mman.bdev.lru_lock);
694 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
695 		struct amdgpu_bo *bo = bo_base->bo;
696 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
697 
698 		if (!bo->parent)
699 			continue;
700 
701 		ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
702 					&vm->lru_bulk_move);
703 		if (shadow)
704 			ttm_bo_move_to_lru_tail(&shadow->tbo,
705 						shadow->tbo.resource,
706 						&vm->lru_bulk_move);
707 	}
708 	spin_unlock(&adev->mman.bdev.lru_lock);
709 
710 	vm->bulk_moveable = true;
711 }
712 
713 /**
714  * amdgpu_vm_validate_pt_bos - validate the page table BOs
715  *
716  * @adev: amdgpu device pointer
717  * @vm: vm providing the BOs
718  * @validate: callback to do the validation
719  * @param: parameter for the validation callback
720  *
721  * Validate the page table BOs on command submission if neccessary.
722  *
723  * Returns:
724  * Validation result.
725  */
726 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
727 			      int (*validate)(void *p, struct amdgpu_bo *bo),
728 			      void *param)
729 {
730 	struct amdgpu_vm_bo_base *bo_base, *tmp;
731 	int r;
732 
733 	vm->bulk_moveable &= list_empty(&vm->evicted);
734 
735 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
736 		struct amdgpu_bo *bo = bo_base->bo;
737 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
738 
739 		r = validate(param, bo);
740 		if (r)
741 			return r;
742 		if (shadow) {
743 			r = validate(param, shadow);
744 			if (r)
745 				return r;
746 		}
747 
748 		if (bo->tbo.type != ttm_bo_type_kernel) {
749 			amdgpu_vm_bo_moved(bo_base);
750 		} else {
751 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
752 			amdgpu_vm_bo_relocated(bo_base);
753 		}
754 	}
755 
756 	amdgpu_vm_eviction_lock(vm);
757 	vm->evicting = false;
758 	amdgpu_vm_eviction_unlock(vm);
759 
760 	return 0;
761 }
762 
763 /**
764  * amdgpu_vm_ready - check VM is ready for updates
765  *
766  * @vm: VM to check
767  *
768  * Check if all VM PDs/PTs are ready for updates
769  *
770  * Returns:
771  * True if VM is not evicting.
772  */
773 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
774 {
775 	bool ret;
776 
777 	amdgpu_vm_eviction_lock(vm);
778 	ret = !vm->evicting;
779 	amdgpu_vm_eviction_unlock(vm);
780 	return ret;
781 }
782 
783 /**
784  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
785  *
786  * @adev: amdgpu_device pointer
787  * @vm: VM to clear BO from
788  * @vmbo: BO to clear
789  * @immediate: use an immediate update
790  *
791  * Root PD needs to be reserved when calling this.
792  *
793  * Returns:
794  * 0 on success, errno otherwise.
795  */
796 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
797 			      struct amdgpu_vm *vm,
798 			      struct amdgpu_bo_vm *vmbo,
799 			      bool immediate)
800 {
801 	struct ttm_operation_ctx ctx = { true, false };
802 	unsigned level = adev->vm_manager.root_level;
803 	struct amdgpu_vm_update_params params;
804 	struct amdgpu_bo *ancestor = &vmbo->bo;
805 	struct amdgpu_bo *bo = &vmbo->bo;
806 	unsigned entries, ats_entries;
807 	uint64_t addr;
808 	int r, idx;
809 
810 	/* Figure out our place in the hierarchy */
811 	if (ancestor->parent) {
812 		++level;
813 		while (ancestor->parent->parent) {
814 			++level;
815 			ancestor = ancestor->parent;
816 		}
817 	}
818 
819 	entries = amdgpu_bo_size(bo) / 8;
820 	if (!vm->pte_support_ats) {
821 		ats_entries = 0;
822 
823 	} else if (!bo->parent) {
824 		ats_entries = amdgpu_vm_num_ats_entries(adev);
825 		ats_entries = min(ats_entries, entries);
826 		entries -= ats_entries;
827 
828 	} else {
829 		struct amdgpu_vm_bo_base *pt;
830 
831 		pt = ancestor->vm_bo;
832 		ats_entries = amdgpu_vm_num_ats_entries(adev);
833 		if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
834 			ats_entries = 0;
835 		} else {
836 			ats_entries = entries;
837 			entries = 0;
838 		}
839 	}
840 
841 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
842 	if (r)
843 		return r;
844 
845 	if (vmbo->shadow) {
846 		struct amdgpu_bo *shadow = vmbo->shadow;
847 
848 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
849 		if (r)
850 			return r;
851 	}
852 
853 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
854 		return -ENODEV;
855 
856 	r = vm->update_funcs->map_table(vmbo);
857 	if (r)
858 		goto exit;
859 
860 	memset(&params, 0, sizeof(params));
861 	params.adev = adev;
862 	params.vm = vm;
863 	params.immediate = immediate;
864 
865 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
866 	if (r)
867 		goto exit;
868 
869 	addr = 0;
870 	if (ats_entries) {
871 		uint64_t value = 0, flags;
872 
873 		flags = AMDGPU_PTE_DEFAULT_ATC;
874 		if (level != AMDGPU_VM_PTB) {
875 			/* Handle leaf PDEs as PTEs */
876 			flags |= AMDGPU_PDE_PTE;
877 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
878 		}
879 
880 		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
881 					     value, flags);
882 		if (r)
883 			goto exit;
884 
885 		addr += ats_entries * 8;
886 	}
887 
888 	if (entries) {
889 		uint64_t value = 0, flags = 0;
890 
891 		if (adev->asic_type >= CHIP_VEGA10) {
892 			if (level != AMDGPU_VM_PTB) {
893 				/* Handle leaf PDEs as PTEs */
894 				flags |= AMDGPU_PDE_PTE;
895 				amdgpu_gmc_get_vm_pde(adev, level,
896 						      &value, &flags);
897 			} else {
898 				/* Workaround for fault priority problem on GMC9 */
899 				flags = AMDGPU_PTE_EXECUTABLE;
900 			}
901 		}
902 
903 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
904 					     value, flags);
905 		if (r)
906 			goto exit;
907 	}
908 
909 	r = vm->update_funcs->commit(&params, NULL);
910 exit:
911 	drm_dev_exit(idx);
912 	return r;
913 }
914 
915 /**
916  * amdgpu_vm_pt_create - create bo for PD/PT
917  *
918  * @adev: amdgpu_device pointer
919  * @vm: requesting vm
920  * @level: the page table level
921  * @immediate: use a immediate update
922  * @vmbo: pointer to the buffer object pointer
923  */
924 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
925 			       struct amdgpu_vm *vm,
926 			       int level, bool immediate,
927 			       struct amdgpu_bo_vm **vmbo)
928 {
929 	struct amdgpu_bo_param bp;
930 	struct amdgpu_bo *bo;
931 	struct dma_resv *resv;
932 	unsigned int num_entries;
933 	int r;
934 
935 	memset(&bp, 0, sizeof(bp));
936 
937 	bp.size = amdgpu_vm_bo_size(adev, level);
938 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
939 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
940 	bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
941 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
942 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
943 
944 	if (level < AMDGPU_VM_PTB)
945 		num_entries = amdgpu_vm_num_entries(adev, level);
946 	else
947 		num_entries = 0;
948 
949 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
950 
951 	if (vm->use_cpu_for_update)
952 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
953 
954 	bp.type = ttm_bo_type_kernel;
955 	bp.no_wait_gpu = immediate;
956 	if (vm->root.bo)
957 		bp.resv = vm->root.bo->tbo.base.resv;
958 
959 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
960 	if (r)
961 		return r;
962 
963 	bo = &(*vmbo)->bo;
964 	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
965 		(*vmbo)->shadow = NULL;
966 		return 0;
967 	}
968 
969 	if (!bp.resv)
970 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
971 				      NULL));
972 	resv = bp.resv;
973 	memset(&bp, 0, sizeof(bp));
974 	bp.size = amdgpu_vm_bo_size(adev, level);
975 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
976 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
977 	bp.type = ttm_bo_type_kernel;
978 	bp.resv = bo->tbo.base.resv;
979 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
980 
981 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
982 
983 	if (!resv)
984 		dma_resv_unlock(bo->tbo.base.resv);
985 
986 	if (r) {
987 		amdgpu_bo_unref(&bo);
988 		return r;
989 	}
990 
991 	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
992 	amdgpu_bo_add_to_shadow_list(*vmbo);
993 
994 	return 0;
995 }
996 
997 /**
998  * amdgpu_vm_alloc_pts - Allocate a specific page table
999  *
1000  * @adev: amdgpu_device pointer
1001  * @vm: VM to allocate page tables for
1002  * @cursor: Which page table to allocate
1003  * @immediate: use an immediate update
1004  *
1005  * Make sure a specific page table or directory is allocated.
1006  *
1007  * Returns:
1008  * 1 if page table needed to be allocated, 0 if page table was already
1009  * allocated, negative errno if an error occurred.
1010  */
1011 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
1012 			       struct amdgpu_vm *vm,
1013 			       struct amdgpu_vm_pt_cursor *cursor,
1014 			       bool immediate)
1015 {
1016 	struct amdgpu_vm_bo_base *entry = cursor->entry;
1017 	struct amdgpu_bo *pt_bo;
1018 	struct amdgpu_bo_vm *pt;
1019 	int r;
1020 
1021 	if (entry->bo)
1022 		return 0;
1023 
1024 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
1025 	if (r)
1026 		return r;
1027 
1028 	/* Keep a reference to the root directory to avoid
1029 	 * freeing them up in the wrong order.
1030 	 */
1031 	pt_bo = &pt->bo;
1032 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
1033 	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
1034 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
1035 	if (r)
1036 		goto error_free_pt;
1037 
1038 	return 0;
1039 
1040 error_free_pt:
1041 	amdgpu_bo_unref(&pt->shadow);
1042 	amdgpu_bo_unref(&pt_bo);
1043 	return r;
1044 }
1045 
1046 /**
1047  * amdgpu_vm_free_table - fre one PD/PT
1048  *
1049  * @entry: PDE to free
1050  */
1051 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1052 {
1053 	struct amdgpu_bo *shadow;
1054 
1055 	if (!entry->bo)
1056 		return;
1057 	shadow = amdgpu_bo_shadowed(entry->bo);
1058 	entry->bo->vm_bo = NULL;
1059 	list_del(&entry->vm_status);
1060 	amdgpu_bo_unref(&shadow);
1061 	amdgpu_bo_unref(&entry->bo);
1062 }
1063 
1064 /**
1065  * amdgpu_vm_free_pts - free PD/PT levels
1066  *
1067  * @adev: amdgpu device structure
1068  * @vm: amdgpu vm structure
1069  * @start: optional cursor where to start freeing PDs/PTs
1070  *
1071  * Free the page directory or page table level and all sub levels.
1072  */
1073 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1074 			       struct amdgpu_vm *vm,
1075 			       struct amdgpu_vm_pt_cursor *start)
1076 {
1077 	struct amdgpu_vm_pt_cursor cursor;
1078 	struct amdgpu_vm_bo_base *entry;
1079 
1080 	vm->bulk_moveable = false;
1081 
1082 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1083 		amdgpu_vm_free_table(entry);
1084 
1085 	if (start)
1086 		amdgpu_vm_free_table(start->entry);
1087 }
1088 
1089 /**
1090  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1091  *
1092  * @adev: amdgpu_device pointer
1093  */
1094 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1095 {
1096 	const struct amdgpu_ip_block *ip_block;
1097 	bool has_compute_vm_bug;
1098 	struct amdgpu_ring *ring;
1099 	int i;
1100 
1101 	has_compute_vm_bug = false;
1102 
1103 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1104 	if (ip_block) {
1105 		/* Compute has a VM bug for GFX version < 7.
1106 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1107 		if (ip_block->version->major <= 7)
1108 			has_compute_vm_bug = true;
1109 		else if (ip_block->version->major == 8)
1110 			if (adev->gfx.mec_fw_version < 673)
1111 				has_compute_vm_bug = true;
1112 	}
1113 
1114 	for (i = 0; i < adev->num_rings; i++) {
1115 		ring = adev->rings[i];
1116 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1117 			/* only compute rings */
1118 			ring->has_compute_vm_bug = has_compute_vm_bug;
1119 		else
1120 			ring->has_compute_vm_bug = false;
1121 	}
1122 }
1123 
1124 /**
1125  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1126  *
1127  * @ring: ring on which the job will be submitted
1128  * @job: job to submit
1129  *
1130  * Returns:
1131  * True if sync is needed.
1132  */
1133 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1134 				  struct amdgpu_job *job)
1135 {
1136 	struct amdgpu_device *adev = ring->adev;
1137 	unsigned vmhub = ring->funcs->vmhub;
1138 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1139 	struct amdgpu_vmid *id;
1140 	bool gds_switch_needed;
1141 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1142 
1143 	if (job->vmid == 0)
1144 		return false;
1145 	id = &id_mgr->ids[job->vmid];
1146 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1147 		id->gds_base != job->gds_base ||
1148 		id->gds_size != job->gds_size ||
1149 		id->gws_base != job->gws_base ||
1150 		id->gws_size != job->gws_size ||
1151 		id->oa_base != job->oa_base ||
1152 		id->oa_size != job->oa_size);
1153 
1154 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1155 		return true;
1156 
1157 	return vm_flush_needed || gds_switch_needed;
1158 }
1159 
1160 /**
1161  * amdgpu_vm_flush - hardware flush the vm
1162  *
1163  * @ring: ring to use for flush
1164  * @job:  related job
1165  * @need_pipe_sync: is pipe sync needed
1166  *
1167  * Emit a VM flush when it is necessary.
1168  *
1169  * Returns:
1170  * 0 on success, errno otherwise.
1171  */
1172 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1173 		    bool need_pipe_sync)
1174 {
1175 	struct amdgpu_device *adev = ring->adev;
1176 	unsigned vmhub = ring->funcs->vmhub;
1177 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1178 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1179 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1180 		id->gds_base != job->gds_base ||
1181 		id->gds_size != job->gds_size ||
1182 		id->gws_base != job->gws_base ||
1183 		id->gws_size != job->gws_size ||
1184 		id->oa_base != job->oa_base ||
1185 		id->oa_size != job->oa_size);
1186 	bool vm_flush_needed = job->vm_needs_flush;
1187 	struct dma_fence *fence = NULL;
1188 	bool pasid_mapping_needed = false;
1189 	unsigned patch_offset = 0;
1190 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1191 	int r;
1192 
1193 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1194 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1195 
1196 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1197 		gds_switch_needed = true;
1198 		vm_flush_needed = true;
1199 		pasid_mapping_needed = true;
1200 	}
1201 
1202 	mutex_lock(&id_mgr->lock);
1203 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1204 	    !dma_fence_is_signaled(id->pasid_mapping))
1205 		pasid_mapping_needed = true;
1206 	mutex_unlock(&id_mgr->lock);
1207 
1208 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1209 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1210 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1211 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1212 		ring->funcs->emit_wreg;
1213 
1214 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1215 		return 0;
1216 
1217 	if (ring->funcs->init_cond_exec)
1218 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1219 
1220 	if (need_pipe_sync)
1221 		amdgpu_ring_emit_pipeline_sync(ring);
1222 
1223 	if (vm_flush_needed) {
1224 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1225 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1226 	}
1227 
1228 	if (pasid_mapping_needed)
1229 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1230 
1231 	if (vm_flush_needed || pasid_mapping_needed) {
1232 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
1233 		if (r)
1234 			return r;
1235 	}
1236 
1237 	if (vm_flush_needed) {
1238 		mutex_lock(&id_mgr->lock);
1239 		dma_fence_put(id->last_flush);
1240 		id->last_flush = dma_fence_get(fence);
1241 		id->current_gpu_reset_count =
1242 			atomic_read(&adev->gpu_reset_counter);
1243 		mutex_unlock(&id_mgr->lock);
1244 	}
1245 
1246 	if (pasid_mapping_needed) {
1247 		mutex_lock(&id_mgr->lock);
1248 		id->pasid = job->pasid;
1249 		dma_fence_put(id->pasid_mapping);
1250 		id->pasid_mapping = dma_fence_get(fence);
1251 		mutex_unlock(&id_mgr->lock);
1252 	}
1253 	dma_fence_put(fence);
1254 
1255 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1256 		id->gds_base = job->gds_base;
1257 		id->gds_size = job->gds_size;
1258 		id->gws_base = job->gws_base;
1259 		id->gws_size = job->gws_size;
1260 		id->oa_base = job->oa_base;
1261 		id->oa_size = job->oa_size;
1262 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1263 					    job->gds_size, job->gws_base,
1264 					    job->gws_size, job->oa_base,
1265 					    job->oa_size);
1266 	}
1267 
1268 	if (ring->funcs->patch_cond_exec)
1269 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1270 
1271 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1272 	if (ring->funcs->emit_switch_buffer) {
1273 		amdgpu_ring_emit_switch_buffer(ring);
1274 		amdgpu_ring_emit_switch_buffer(ring);
1275 	}
1276 	return 0;
1277 }
1278 
1279 /**
1280  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1281  *
1282  * @vm: requested vm
1283  * @bo: requested buffer object
1284  *
1285  * Find @bo inside the requested vm.
1286  * Search inside the @bos vm list for the requested vm
1287  * Returns the found bo_va or NULL if none is found
1288  *
1289  * Object has to be reserved!
1290  *
1291  * Returns:
1292  * Found bo_va or NULL.
1293  */
1294 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1295 				       struct amdgpu_bo *bo)
1296 {
1297 	struct amdgpu_vm_bo_base *base;
1298 
1299 	for (base = bo->vm_bo; base; base = base->next) {
1300 		if (base->vm != vm)
1301 			continue;
1302 
1303 		return container_of(base, struct amdgpu_bo_va, base);
1304 	}
1305 	return NULL;
1306 }
1307 
1308 /**
1309  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1310  *
1311  * @pages_addr: optional DMA address to use for lookup
1312  * @addr: the unmapped addr
1313  *
1314  * Look up the physical address of the page that the pte resolves
1315  * to.
1316  *
1317  * Returns:
1318  * The pointer for the page table entry.
1319  */
1320 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1321 {
1322 	uint64_t result;
1323 
1324 	/* page table offset */
1325 	result = pages_addr[addr >> PAGE_SHIFT];
1326 
1327 	/* in case cpu page size != gpu page size*/
1328 	result |= addr & (~PAGE_MASK);
1329 
1330 	result &= 0xFFFFFFFFFFFFF000ULL;
1331 
1332 	return result;
1333 }
1334 
1335 /**
1336  * amdgpu_vm_update_pde - update a single level in the hierarchy
1337  *
1338  * @params: parameters for the update
1339  * @vm: requested vm
1340  * @entry: entry to update
1341  *
1342  * Makes sure the requested entry in parent is up to date.
1343  */
1344 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1345 				struct amdgpu_vm *vm,
1346 				struct amdgpu_vm_bo_base *entry)
1347 {
1348 	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1349 	struct amdgpu_bo *bo = parent->bo, *pbo;
1350 	uint64_t pde, pt, flags;
1351 	unsigned level;
1352 
1353 	for (level = 0, pbo = bo->parent; pbo; ++level)
1354 		pbo = pbo->parent;
1355 
1356 	level += params->adev->vm_manager.root_level;
1357 	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1358 	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1359 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1360 					1, 0, flags);
1361 }
1362 
1363 /**
1364  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1365  *
1366  * @adev: amdgpu_device pointer
1367  * @vm: related vm
1368  *
1369  * Mark all PD level as invalid after an error.
1370  */
1371 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1372 				     struct amdgpu_vm *vm)
1373 {
1374 	struct amdgpu_vm_pt_cursor cursor;
1375 	struct amdgpu_vm_bo_base *entry;
1376 
1377 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1378 		if (entry->bo && !entry->moved)
1379 			amdgpu_vm_bo_relocated(entry);
1380 }
1381 
1382 /**
1383  * amdgpu_vm_update_pdes - make sure that all directories are valid
1384  *
1385  * @adev: amdgpu_device pointer
1386  * @vm: requested vm
1387  * @immediate: submit immediately to the paging queue
1388  *
1389  * Makes sure all directories are up to date.
1390  *
1391  * Returns:
1392  * 0 for success, error for failure.
1393  */
1394 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1395 			  struct amdgpu_vm *vm, bool immediate)
1396 {
1397 	struct amdgpu_vm_update_params params;
1398 	int r, idx;
1399 
1400 	if (list_empty(&vm->relocated))
1401 		return 0;
1402 
1403 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1404 		return -ENODEV;
1405 
1406 	memset(&params, 0, sizeof(params));
1407 	params.adev = adev;
1408 	params.vm = vm;
1409 	params.immediate = immediate;
1410 
1411 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1412 	if (r)
1413 		goto exit;
1414 
1415 	while (!list_empty(&vm->relocated)) {
1416 		struct amdgpu_vm_bo_base *entry;
1417 
1418 		entry = list_first_entry(&vm->relocated,
1419 					 struct amdgpu_vm_bo_base,
1420 					 vm_status);
1421 		amdgpu_vm_bo_idle(entry);
1422 
1423 		r = amdgpu_vm_update_pde(&params, vm, entry);
1424 		if (r)
1425 			goto error;
1426 	}
1427 
1428 	r = vm->update_funcs->commit(&params, &vm->last_update);
1429 	if (r)
1430 		goto error;
1431 	drm_dev_exit(idx);
1432 	return 0;
1433 
1434 error:
1435 	amdgpu_vm_invalidate_pds(adev, vm);
1436 exit:
1437 	drm_dev_exit(idx);
1438 	return r;
1439 }
1440 
1441 /*
1442  * amdgpu_vm_update_flags - figure out flags for PTE updates
1443  *
1444  * Make sure to set the right flags for the PTEs at the desired level.
1445  */
1446 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1447 				   struct amdgpu_bo_vm *pt, unsigned int level,
1448 				   uint64_t pe, uint64_t addr,
1449 				   unsigned int count, uint32_t incr,
1450 				   uint64_t flags)
1451 
1452 {
1453 	if (level != AMDGPU_VM_PTB) {
1454 		flags |= AMDGPU_PDE_PTE;
1455 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1456 
1457 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1458 		   !(flags & AMDGPU_PTE_VALID) &&
1459 		   !(flags & AMDGPU_PTE_PRT)) {
1460 
1461 		/* Workaround for fault priority problem on GMC9 */
1462 		flags |= AMDGPU_PTE_EXECUTABLE;
1463 	}
1464 
1465 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1466 					 flags);
1467 }
1468 
1469 /**
1470  * amdgpu_vm_fragment - get fragment for PTEs
1471  *
1472  * @params: see amdgpu_vm_update_params definition
1473  * @start: first PTE to handle
1474  * @end: last PTE to handle
1475  * @flags: hw mapping flags
1476  * @frag: resulting fragment size
1477  * @frag_end: end of this fragment
1478  *
1479  * Returns the first possible fragment for the start and end address.
1480  */
1481 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1482 			       uint64_t start, uint64_t end, uint64_t flags,
1483 			       unsigned int *frag, uint64_t *frag_end)
1484 {
1485 	/**
1486 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1487 	 * field in the PTE. When this field is set to a non-zero value, page
1488 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1489 	 * flags are considered valid for all PTEs within the fragment range
1490 	 * and corresponding mappings are assumed to be physically contiguous.
1491 	 *
1492 	 * The L1 TLB can store a single PTE for the whole fragment,
1493 	 * significantly increasing the space available for translation
1494 	 * caching. This leads to large improvements in throughput when the
1495 	 * TLB is under pressure.
1496 	 *
1497 	 * The L2 TLB distributes small and large fragments into two
1498 	 * asymmetric partitions. The large fragment cache is significantly
1499 	 * larger. Thus, we try to use large fragments wherever possible.
1500 	 * Userspace can support this by aligning virtual base address and
1501 	 * allocation size to the fragment size.
1502 	 *
1503 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1504 	 * is now directly feed with small/huge/giant pages from the walker.
1505 	 */
1506 	unsigned max_frag;
1507 
1508 	if (params->adev->asic_type < CHIP_VEGA10)
1509 		max_frag = params->adev->vm_manager.fragment_size;
1510 	else
1511 		max_frag = 31;
1512 
1513 	/* system pages are non continuously */
1514 	if (params->pages_addr) {
1515 		*frag = 0;
1516 		*frag_end = end;
1517 		return;
1518 	}
1519 
1520 	/* This intentionally wraps around if no bit is set */
1521 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1522 	if (*frag >= max_frag) {
1523 		*frag = max_frag;
1524 		*frag_end = end & ~((1ULL << max_frag) - 1);
1525 	} else {
1526 		*frag_end = start + (1 << *frag);
1527 	}
1528 }
1529 
1530 /**
1531  * amdgpu_vm_update_ptes - make sure that page tables are valid
1532  *
1533  * @params: see amdgpu_vm_update_params definition
1534  * @start: start of GPU address range
1535  * @end: end of GPU address range
1536  * @dst: destination address to map to, the next dst inside the function
1537  * @flags: mapping flags
1538  *
1539  * Update the page tables in the range @start - @end.
1540  *
1541  * Returns:
1542  * 0 for success, -EINVAL for failure.
1543  */
1544 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1545 				 uint64_t start, uint64_t end,
1546 				 uint64_t dst, uint64_t flags)
1547 {
1548 	struct amdgpu_device *adev = params->adev;
1549 	struct amdgpu_vm_pt_cursor cursor;
1550 	uint64_t frag_start = start, frag_end;
1551 	unsigned int frag;
1552 	int r;
1553 
1554 	/* figure out the initial fragment */
1555 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1556 
1557 	/* walk over the address space and update the PTs */
1558 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1559 	while (cursor.pfn < end) {
1560 		unsigned shift, parent_shift, mask;
1561 		uint64_t incr, entry_end, pe_start;
1562 		struct amdgpu_bo *pt;
1563 
1564 		if (!params->unlocked) {
1565 			/* make sure that the page tables covering the
1566 			 * address range are actually allocated
1567 			 */
1568 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1569 						&cursor, params->immediate);
1570 			if (r)
1571 				return r;
1572 		}
1573 
1574 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1575 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1576 		if (params->unlocked) {
1577 			/* Unlocked updates are only allowed on the leaves */
1578 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1579 				continue;
1580 		} else if (adev->asic_type < CHIP_VEGA10 &&
1581 			   (flags & AMDGPU_PTE_VALID)) {
1582 			/* No huge page support before GMC v9 */
1583 			if (cursor.level != AMDGPU_VM_PTB) {
1584 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1585 					return -ENOENT;
1586 				continue;
1587 			}
1588 		} else if (frag < shift) {
1589 			/* We can't use this level when the fragment size is
1590 			 * smaller than the address shift. Go to the next
1591 			 * child entry and try again.
1592 			 */
1593 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1594 				continue;
1595 		} else if (frag >= parent_shift) {
1596 			/* If the fragment size is even larger than the parent
1597 			 * shift we should go up one level and check it again.
1598 			 */
1599 			if (!amdgpu_vm_pt_ancestor(&cursor))
1600 				return -EINVAL;
1601 			continue;
1602 		}
1603 
1604 		pt = cursor.entry->bo;
1605 		if (!pt) {
1606 			/* We need all PDs and PTs for mapping something, */
1607 			if (flags & AMDGPU_PTE_VALID)
1608 				return -ENOENT;
1609 
1610 			/* but unmapping something can happen at a higher
1611 			 * level.
1612 			 */
1613 			if (!amdgpu_vm_pt_ancestor(&cursor))
1614 				return -EINVAL;
1615 
1616 			pt = cursor.entry->bo;
1617 			shift = parent_shift;
1618 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1619 				   1ULL << shift));
1620 		}
1621 
1622 		/* Looks good so far, calculate parameters for the update */
1623 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1624 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1625 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1626 		entry_end = ((uint64_t)mask + 1) << shift;
1627 		entry_end += cursor.pfn & ~(entry_end - 1);
1628 		entry_end = min(entry_end, end);
1629 
1630 		do {
1631 			struct amdgpu_vm *vm = params->vm;
1632 			uint64_t upd_end = min(entry_end, frag_end);
1633 			unsigned nptes = (upd_end - frag_start) >> shift;
1634 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1635 
1636 			/* This can happen when we set higher level PDs to
1637 			 * silent to stop fault floods.
1638 			 */
1639 			nptes = max(nptes, 1u);
1640 
1641 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1642 						    nptes, dst, incr, upd_flags,
1643 						    vm->task_info.pid,
1644 						    vm->immediate.fence_context);
1645 			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1646 					       cursor.level, pe_start, dst,
1647 					       nptes, incr, upd_flags);
1648 
1649 			pe_start += nptes * 8;
1650 			dst += nptes * incr;
1651 
1652 			frag_start = upd_end;
1653 			if (frag_start >= frag_end) {
1654 				/* figure out the next fragment */
1655 				amdgpu_vm_fragment(params, frag_start, end,
1656 						   flags, &frag, &frag_end);
1657 				if (frag < shift)
1658 					break;
1659 			}
1660 		} while (frag_start < entry_end);
1661 
1662 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1663 			/* Free all child entries.
1664 			 * Update the tables with the flags and addresses and free up subsequent
1665 			 * tables in the case of huge pages or freed up areas.
1666 			 * This is the maximum you can free, because all other page tables are not
1667 			 * completely covered by the range and so potentially still in use.
1668 			 */
1669 			while (cursor.pfn < frag_start) {
1670 				/* Make sure previous mapping is freed */
1671 				if (cursor.entry->bo) {
1672 					params->table_freed = true;
1673 					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1674 				}
1675 				amdgpu_vm_pt_next(adev, &cursor);
1676 			}
1677 
1678 		} else if (frag >= shift) {
1679 			/* or just move on to the next on the same level. */
1680 			amdgpu_vm_pt_next(adev, &cursor);
1681 		}
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 /**
1688  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1689  *
1690  * @adev: amdgpu_device pointer of the VM
1691  * @bo_adev: amdgpu_device pointer of the mapped BO
1692  * @vm: requested vm
1693  * @immediate: immediate submission in a page fault
1694  * @unlocked: unlocked invalidation during MM callback
1695  * @resv: fences we need to sync to
1696  * @start: start of mapped range
1697  * @last: last mapped entry
1698  * @flags: flags for the entries
1699  * @offset: offset into nodes and pages_addr
1700  * @res: ttm_resource to map
1701  * @pages_addr: DMA addresses to use for mapping
1702  * @fence: optional resulting fence
1703  * @table_freed: return true if page table is freed
1704  *
1705  * Fill in the page table entries between @start and @last.
1706  *
1707  * Returns:
1708  * 0 for success, -EINVAL for failure.
1709  */
1710 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1711 				struct amdgpu_device *bo_adev,
1712 				struct amdgpu_vm *vm, bool immediate,
1713 				bool unlocked, struct dma_resv *resv,
1714 				uint64_t start, uint64_t last,
1715 				uint64_t flags, uint64_t offset,
1716 				struct ttm_resource *res,
1717 				dma_addr_t *pages_addr,
1718 				struct dma_fence **fence,
1719 				bool *table_freed)
1720 {
1721 	struct amdgpu_vm_update_params params;
1722 	struct amdgpu_res_cursor cursor;
1723 	enum amdgpu_sync_mode sync_mode;
1724 	int r, idx;
1725 
1726 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1727 		return -ENODEV;
1728 
1729 	memset(&params, 0, sizeof(params));
1730 	params.adev = adev;
1731 	params.vm = vm;
1732 	params.immediate = immediate;
1733 	params.pages_addr = pages_addr;
1734 	params.unlocked = unlocked;
1735 
1736 	/* Implicitly sync to command submissions in the same VM before
1737 	 * unmapping. Sync to moving fences before mapping.
1738 	 */
1739 	if (!(flags & AMDGPU_PTE_VALID))
1740 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1741 	else
1742 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1743 
1744 	amdgpu_vm_eviction_lock(vm);
1745 	if (vm->evicting) {
1746 		r = -EBUSY;
1747 		goto error_unlock;
1748 	}
1749 
1750 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1751 		struct dma_fence *tmp = dma_fence_get_stub();
1752 
1753 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1754 		swap(vm->last_unlocked, tmp);
1755 		dma_fence_put(tmp);
1756 	}
1757 
1758 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1759 	if (r)
1760 		goto error_unlock;
1761 
1762 	amdgpu_res_first(pages_addr ? NULL : res, offset,
1763 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1764 	while (cursor.remaining) {
1765 		uint64_t tmp, num_entries, addr;
1766 
1767 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1768 		if (pages_addr) {
1769 			bool contiguous = true;
1770 
1771 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1772 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1773 				uint64_t count;
1774 
1775 				contiguous = pages_addr[pfn + 1] ==
1776 					pages_addr[pfn] + PAGE_SIZE;
1777 
1778 				tmp = num_entries /
1779 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1780 				for (count = 2; count < tmp; ++count) {
1781 					uint64_t idx = pfn + count;
1782 
1783 					if (contiguous != (pages_addr[idx] ==
1784 					    pages_addr[idx - 1] + PAGE_SIZE))
1785 						break;
1786 				}
1787 				num_entries = count *
1788 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1789 			}
1790 
1791 			if (!contiguous) {
1792 				addr = cursor.start;
1793 				params.pages_addr = pages_addr;
1794 			} else {
1795 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1796 				params.pages_addr = NULL;
1797 			}
1798 
1799 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1800 			addr = bo_adev->vm_manager.vram_base_offset +
1801 				cursor.start;
1802 		} else {
1803 			addr = 0;
1804 		}
1805 
1806 		tmp = start + num_entries;
1807 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1808 		if (r)
1809 			goto error_unlock;
1810 
1811 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1812 		start = tmp;
1813 	}
1814 
1815 	r = vm->update_funcs->commit(&params, fence);
1816 
1817 	if (table_freed)
1818 		*table_freed = *table_freed || params.table_freed;
1819 
1820 error_unlock:
1821 	amdgpu_vm_eviction_unlock(vm);
1822 	drm_dev_exit(idx);
1823 	return r;
1824 }
1825 
1826 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1827 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1828 {
1829 	struct amdgpu_bo_va *bo_va, *tmp;
1830 
1831 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1832 		if (!bo_va->base.bo)
1833 			continue;
1834 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1835 				gtt_mem, cpu_mem);
1836 	}
1837 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1838 		if (!bo_va->base.bo)
1839 			continue;
1840 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1841 				gtt_mem, cpu_mem);
1842 	}
1843 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1844 		if (!bo_va->base.bo)
1845 			continue;
1846 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1847 				gtt_mem, cpu_mem);
1848 	}
1849 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1850 		if (!bo_va->base.bo)
1851 			continue;
1852 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1853 				gtt_mem, cpu_mem);
1854 	}
1855 	spin_lock(&vm->invalidated_lock);
1856 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1857 		if (!bo_va->base.bo)
1858 			continue;
1859 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1860 				gtt_mem, cpu_mem);
1861 	}
1862 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1863 		if (!bo_va->base.bo)
1864 			continue;
1865 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1866 				gtt_mem, cpu_mem);
1867 	}
1868 	spin_unlock(&vm->invalidated_lock);
1869 }
1870 /**
1871  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1872  *
1873  * @adev: amdgpu_device pointer
1874  * @bo_va: requested BO and VM object
1875  * @clear: if true clear the entries
1876  * @table_freed: return true if page table is freed
1877  *
1878  * Fill in the page table entries for @bo_va.
1879  *
1880  * Returns:
1881  * 0 for success, -EINVAL for failure.
1882  */
1883 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1884 			bool clear, bool *table_freed)
1885 {
1886 	struct amdgpu_bo *bo = bo_va->base.bo;
1887 	struct amdgpu_vm *vm = bo_va->base.vm;
1888 	struct amdgpu_bo_va_mapping *mapping;
1889 	dma_addr_t *pages_addr = NULL;
1890 	struct ttm_resource *mem;
1891 	struct dma_fence **last_update;
1892 	struct dma_resv *resv;
1893 	uint64_t flags;
1894 	struct amdgpu_device *bo_adev = adev;
1895 	int r;
1896 
1897 	if (clear || !bo) {
1898 		mem = NULL;
1899 		resv = vm->root.bo->tbo.base.resv;
1900 	} else {
1901 		struct drm_gem_object *obj = &bo->tbo.base;
1902 
1903 		resv = bo->tbo.base.resv;
1904 		if (obj->import_attach && bo_va->is_xgmi) {
1905 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1906 			struct drm_gem_object *gobj = dma_buf->priv;
1907 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1908 
1909 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1910 				bo = gem_to_amdgpu_bo(gobj);
1911 		}
1912 		mem = bo->tbo.resource;
1913 		if (mem->mem_type == TTM_PL_TT ||
1914 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1915 			pages_addr = bo->tbo.ttm->dma_address;
1916 	}
1917 
1918 	if (bo) {
1919 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1920 
1921 		if (amdgpu_bo_encrypted(bo))
1922 			flags |= AMDGPU_PTE_TMZ;
1923 
1924 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1925 	} else {
1926 		flags = 0x0;
1927 	}
1928 
1929 	if (clear || (bo && bo->tbo.base.resv ==
1930 		      vm->root.bo->tbo.base.resv))
1931 		last_update = &vm->last_update;
1932 	else
1933 		last_update = &bo_va->last_pt_update;
1934 
1935 	if (!clear && bo_va->base.moved) {
1936 		bo_va->base.moved = false;
1937 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1938 
1939 	} else if (bo_va->cleared != clear) {
1940 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1941 	}
1942 
1943 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1944 		uint64_t update_flags = flags;
1945 
1946 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1947 		 * but in case of something, we filter the flags in first place
1948 		 */
1949 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1950 			update_flags &= ~AMDGPU_PTE_READABLE;
1951 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1952 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1953 
1954 		/* Apply ASIC specific mapping flags */
1955 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1956 
1957 		trace_amdgpu_vm_bo_update(mapping);
1958 
1959 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1960 						resv, mapping->start,
1961 						mapping->last, update_flags,
1962 						mapping->offset, mem,
1963 						pages_addr, last_update, table_freed);
1964 		if (r)
1965 			return r;
1966 	}
1967 
1968 	/* If the BO is not in its preferred location add it back to
1969 	 * the evicted list so that it gets validated again on the
1970 	 * next command submission.
1971 	 */
1972 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1973 		uint32_t mem_type = bo->tbo.resource->mem_type;
1974 
1975 		if (!(bo->preferred_domains &
1976 		      amdgpu_mem_type_to_domain(mem_type)))
1977 			amdgpu_vm_bo_evicted(&bo_va->base);
1978 		else
1979 			amdgpu_vm_bo_idle(&bo_va->base);
1980 	} else {
1981 		amdgpu_vm_bo_done(&bo_va->base);
1982 	}
1983 
1984 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1985 	bo_va->cleared = clear;
1986 
1987 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1988 		list_for_each_entry(mapping, &bo_va->valids, list)
1989 			trace_amdgpu_vm_bo_mapping(mapping);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /**
1996  * amdgpu_vm_update_prt_state - update the global PRT state
1997  *
1998  * @adev: amdgpu_device pointer
1999  */
2000 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
2001 {
2002 	unsigned long flags;
2003 	bool enable;
2004 
2005 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
2006 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
2007 	adev->gmc.gmc_funcs->set_prt(adev, enable);
2008 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
2009 }
2010 
2011 /**
2012  * amdgpu_vm_prt_get - add a PRT user
2013  *
2014  * @adev: amdgpu_device pointer
2015  */
2016 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2017 {
2018 	if (!adev->gmc.gmc_funcs->set_prt)
2019 		return;
2020 
2021 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2022 		amdgpu_vm_update_prt_state(adev);
2023 }
2024 
2025 /**
2026  * amdgpu_vm_prt_put - drop a PRT user
2027  *
2028  * @adev: amdgpu_device pointer
2029  */
2030 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2031 {
2032 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2033 		amdgpu_vm_update_prt_state(adev);
2034 }
2035 
2036 /**
2037  * amdgpu_vm_prt_cb - callback for updating the PRT status
2038  *
2039  * @fence: fence for the callback
2040  * @_cb: the callback function
2041  */
2042 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2043 {
2044 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2045 
2046 	amdgpu_vm_prt_put(cb->adev);
2047 	kfree(cb);
2048 }
2049 
2050 /**
2051  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2052  *
2053  * @adev: amdgpu_device pointer
2054  * @fence: fence for the callback
2055  */
2056 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2057 				 struct dma_fence *fence)
2058 {
2059 	struct amdgpu_prt_cb *cb;
2060 
2061 	if (!adev->gmc.gmc_funcs->set_prt)
2062 		return;
2063 
2064 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2065 	if (!cb) {
2066 		/* Last resort when we are OOM */
2067 		if (fence)
2068 			dma_fence_wait(fence, false);
2069 
2070 		amdgpu_vm_prt_put(adev);
2071 	} else {
2072 		cb->adev = adev;
2073 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2074 						     amdgpu_vm_prt_cb))
2075 			amdgpu_vm_prt_cb(fence, &cb->cb);
2076 	}
2077 }
2078 
2079 /**
2080  * amdgpu_vm_free_mapping - free a mapping
2081  *
2082  * @adev: amdgpu_device pointer
2083  * @vm: requested vm
2084  * @mapping: mapping to be freed
2085  * @fence: fence of the unmap operation
2086  *
2087  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2088  */
2089 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2090 				   struct amdgpu_vm *vm,
2091 				   struct amdgpu_bo_va_mapping *mapping,
2092 				   struct dma_fence *fence)
2093 {
2094 	if (mapping->flags & AMDGPU_PTE_PRT)
2095 		amdgpu_vm_add_prt_cb(adev, fence);
2096 	kfree(mapping);
2097 }
2098 
2099 /**
2100  * amdgpu_vm_prt_fini - finish all prt mappings
2101  *
2102  * @adev: amdgpu_device pointer
2103  * @vm: requested vm
2104  *
2105  * Register a cleanup callback to disable PRT support after VM dies.
2106  */
2107 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2108 {
2109 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2110 	struct dma_resv_iter cursor;
2111 	struct dma_fence *fence;
2112 
2113 	dma_resv_for_each_fence(&cursor, resv, true, fence) {
2114 		/* Add a callback for each fence in the reservation object */
2115 		amdgpu_vm_prt_get(adev);
2116 		amdgpu_vm_add_prt_cb(adev, fence);
2117 	}
2118 }
2119 
2120 /**
2121  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2122  *
2123  * @adev: amdgpu_device pointer
2124  * @vm: requested vm
2125  * @fence: optional resulting fence (unchanged if no work needed to be done
2126  * or if an error occurred)
2127  *
2128  * Make sure all freed BOs are cleared in the PT.
2129  * PTs have to be reserved and mutex must be locked!
2130  *
2131  * Returns:
2132  * 0 for success.
2133  *
2134  */
2135 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2136 			  struct amdgpu_vm *vm,
2137 			  struct dma_fence **fence)
2138 {
2139 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2140 	struct amdgpu_bo_va_mapping *mapping;
2141 	uint64_t init_pte_value = 0;
2142 	struct dma_fence *f = NULL;
2143 	int r;
2144 
2145 	while (!list_empty(&vm->freed)) {
2146 		mapping = list_first_entry(&vm->freed,
2147 			struct amdgpu_bo_va_mapping, list);
2148 		list_del(&mapping->list);
2149 
2150 		if (vm->pte_support_ats &&
2151 		    mapping->start < AMDGPU_GMC_HOLE_START)
2152 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2153 
2154 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2155 						resv, mapping->start,
2156 						mapping->last, init_pte_value,
2157 						0, NULL, NULL, &f, NULL);
2158 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2159 		if (r) {
2160 			dma_fence_put(f);
2161 			return r;
2162 		}
2163 	}
2164 
2165 	if (fence && f) {
2166 		dma_fence_put(*fence);
2167 		*fence = f;
2168 	} else {
2169 		dma_fence_put(f);
2170 	}
2171 
2172 	return 0;
2173 
2174 }
2175 
2176 /**
2177  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2178  *
2179  * @adev: amdgpu_device pointer
2180  * @vm: requested vm
2181  *
2182  * Make sure all BOs which are moved are updated in the PTs.
2183  *
2184  * Returns:
2185  * 0 for success.
2186  *
2187  * PTs have to be reserved!
2188  */
2189 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2190 			   struct amdgpu_vm *vm)
2191 {
2192 	struct amdgpu_bo_va *bo_va, *tmp;
2193 	struct dma_resv *resv;
2194 	bool clear;
2195 	int r;
2196 
2197 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2198 		/* Per VM BOs never need to bo cleared in the page tables */
2199 		r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2200 		if (r)
2201 			return r;
2202 	}
2203 
2204 	spin_lock(&vm->invalidated_lock);
2205 	while (!list_empty(&vm->invalidated)) {
2206 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2207 					 base.vm_status);
2208 		resv = bo_va->base.bo->tbo.base.resv;
2209 		spin_unlock(&vm->invalidated_lock);
2210 
2211 		/* Try to reserve the BO to avoid clearing its ptes */
2212 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2213 			clear = false;
2214 		/* Somebody else is using the BO right now */
2215 		else
2216 			clear = true;
2217 
2218 		r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2219 		if (r)
2220 			return r;
2221 
2222 		if (!clear)
2223 			dma_resv_unlock(resv);
2224 		spin_lock(&vm->invalidated_lock);
2225 	}
2226 	spin_unlock(&vm->invalidated_lock);
2227 
2228 	return 0;
2229 }
2230 
2231 /**
2232  * amdgpu_vm_bo_add - add a bo to a specific vm
2233  *
2234  * @adev: amdgpu_device pointer
2235  * @vm: requested vm
2236  * @bo: amdgpu buffer object
2237  *
2238  * Add @bo into the requested vm.
2239  * Add @bo to the list of bos associated with the vm
2240  *
2241  * Returns:
2242  * Newly added bo_va or NULL for failure
2243  *
2244  * Object has to be reserved!
2245  */
2246 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2247 				      struct amdgpu_vm *vm,
2248 				      struct amdgpu_bo *bo)
2249 {
2250 	struct amdgpu_bo_va *bo_va;
2251 
2252 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2253 	if (bo_va == NULL) {
2254 		return NULL;
2255 	}
2256 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2257 
2258 	bo_va->ref_count = 1;
2259 	INIT_LIST_HEAD(&bo_va->valids);
2260 	INIT_LIST_HEAD(&bo_va->invalids);
2261 
2262 	if (!bo)
2263 		return bo_va;
2264 
2265 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2266 		bo_va->is_xgmi = true;
2267 		/* Power up XGMI if it can be potentially used */
2268 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2269 	}
2270 
2271 	return bo_va;
2272 }
2273 
2274 
2275 /**
2276  * amdgpu_vm_bo_insert_map - insert a new mapping
2277  *
2278  * @adev: amdgpu_device pointer
2279  * @bo_va: bo_va to store the address
2280  * @mapping: the mapping to insert
2281  *
2282  * Insert a new mapping into all structures.
2283  */
2284 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2285 				    struct amdgpu_bo_va *bo_va,
2286 				    struct amdgpu_bo_va_mapping *mapping)
2287 {
2288 	struct amdgpu_vm *vm = bo_va->base.vm;
2289 	struct amdgpu_bo *bo = bo_va->base.bo;
2290 
2291 	mapping->bo_va = bo_va;
2292 	list_add(&mapping->list, &bo_va->invalids);
2293 	amdgpu_vm_it_insert(mapping, &vm->va);
2294 
2295 	if (mapping->flags & AMDGPU_PTE_PRT)
2296 		amdgpu_vm_prt_get(adev);
2297 
2298 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2299 	    !bo_va->base.moved) {
2300 		list_move(&bo_va->base.vm_status, &vm->moved);
2301 	}
2302 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2303 }
2304 
2305 /**
2306  * amdgpu_vm_bo_map - map bo inside a vm
2307  *
2308  * @adev: amdgpu_device pointer
2309  * @bo_va: bo_va to store the address
2310  * @saddr: where to map the BO
2311  * @offset: requested offset in the BO
2312  * @size: BO size in bytes
2313  * @flags: attributes of pages (read/write/valid/etc.)
2314  *
2315  * Add a mapping of the BO at the specefied addr into the VM.
2316  *
2317  * Returns:
2318  * 0 for success, error for failure.
2319  *
2320  * Object has to be reserved and unreserved outside!
2321  */
2322 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2323 		     struct amdgpu_bo_va *bo_va,
2324 		     uint64_t saddr, uint64_t offset,
2325 		     uint64_t size, uint64_t flags)
2326 {
2327 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2328 	struct amdgpu_bo *bo = bo_va->base.bo;
2329 	struct amdgpu_vm *vm = bo_va->base.vm;
2330 	uint64_t eaddr;
2331 
2332 	/* validate the parameters */
2333 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2334 	    size == 0 || size & ~PAGE_MASK)
2335 		return -EINVAL;
2336 
2337 	/* make sure object fit at this offset */
2338 	eaddr = saddr + size - 1;
2339 	if (saddr >= eaddr ||
2340 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2341 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2342 		return -EINVAL;
2343 
2344 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2345 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2346 
2347 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2348 	if (tmp) {
2349 		/* bo and tmp overlap, invalid addr */
2350 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2351 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2352 			tmp->start, tmp->last + 1);
2353 		return -EINVAL;
2354 	}
2355 
2356 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2357 	if (!mapping)
2358 		return -ENOMEM;
2359 
2360 	mapping->start = saddr;
2361 	mapping->last = eaddr;
2362 	mapping->offset = offset;
2363 	mapping->flags = flags;
2364 
2365 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2366 
2367 	return 0;
2368 }
2369 
2370 /**
2371  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2372  *
2373  * @adev: amdgpu_device pointer
2374  * @bo_va: bo_va to store the address
2375  * @saddr: where to map the BO
2376  * @offset: requested offset in the BO
2377  * @size: BO size in bytes
2378  * @flags: attributes of pages (read/write/valid/etc.)
2379  *
2380  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2381  * mappings as we do so.
2382  *
2383  * Returns:
2384  * 0 for success, error for failure.
2385  *
2386  * Object has to be reserved and unreserved outside!
2387  */
2388 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2389 			     struct amdgpu_bo_va *bo_va,
2390 			     uint64_t saddr, uint64_t offset,
2391 			     uint64_t size, uint64_t flags)
2392 {
2393 	struct amdgpu_bo_va_mapping *mapping;
2394 	struct amdgpu_bo *bo = bo_va->base.bo;
2395 	uint64_t eaddr;
2396 	int r;
2397 
2398 	/* validate the parameters */
2399 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2400 	    size == 0 || size & ~PAGE_MASK)
2401 		return -EINVAL;
2402 
2403 	/* make sure object fit at this offset */
2404 	eaddr = saddr + size - 1;
2405 	if (saddr >= eaddr ||
2406 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2407 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2408 		return -EINVAL;
2409 
2410 	/* Allocate all the needed memory */
2411 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2412 	if (!mapping)
2413 		return -ENOMEM;
2414 
2415 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2416 	if (r) {
2417 		kfree(mapping);
2418 		return r;
2419 	}
2420 
2421 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2422 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2423 
2424 	mapping->start = saddr;
2425 	mapping->last = eaddr;
2426 	mapping->offset = offset;
2427 	mapping->flags = flags;
2428 
2429 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2430 
2431 	return 0;
2432 }
2433 
2434 /**
2435  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2436  *
2437  * @adev: amdgpu_device pointer
2438  * @bo_va: bo_va to remove the address from
2439  * @saddr: where to the BO is mapped
2440  *
2441  * Remove a mapping of the BO at the specefied addr from the VM.
2442  *
2443  * Returns:
2444  * 0 for success, error for failure.
2445  *
2446  * Object has to be reserved and unreserved outside!
2447  */
2448 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2449 		       struct amdgpu_bo_va *bo_va,
2450 		       uint64_t saddr)
2451 {
2452 	struct amdgpu_bo_va_mapping *mapping;
2453 	struct amdgpu_vm *vm = bo_va->base.vm;
2454 	bool valid = true;
2455 
2456 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2457 
2458 	list_for_each_entry(mapping, &bo_va->valids, list) {
2459 		if (mapping->start == saddr)
2460 			break;
2461 	}
2462 
2463 	if (&mapping->list == &bo_va->valids) {
2464 		valid = false;
2465 
2466 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2467 			if (mapping->start == saddr)
2468 				break;
2469 		}
2470 
2471 		if (&mapping->list == &bo_va->invalids)
2472 			return -ENOENT;
2473 	}
2474 
2475 	list_del(&mapping->list);
2476 	amdgpu_vm_it_remove(mapping, &vm->va);
2477 	mapping->bo_va = NULL;
2478 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2479 
2480 	if (valid)
2481 		list_add(&mapping->list, &vm->freed);
2482 	else
2483 		amdgpu_vm_free_mapping(adev, vm, mapping,
2484 				       bo_va->last_pt_update);
2485 
2486 	return 0;
2487 }
2488 
2489 /**
2490  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2491  *
2492  * @adev: amdgpu_device pointer
2493  * @vm: VM structure to use
2494  * @saddr: start of the range
2495  * @size: size of the range
2496  *
2497  * Remove all mappings in a range, split them as appropriate.
2498  *
2499  * Returns:
2500  * 0 for success, error for failure.
2501  */
2502 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2503 				struct amdgpu_vm *vm,
2504 				uint64_t saddr, uint64_t size)
2505 {
2506 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2507 	LIST_HEAD(removed);
2508 	uint64_t eaddr;
2509 
2510 	eaddr = saddr + size - 1;
2511 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2512 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2513 
2514 	/* Allocate all the needed memory */
2515 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2516 	if (!before)
2517 		return -ENOMEM;
2518 	INIT_LIST_HEAD(&before->list);
2519 
2520 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2521 	if (!after) {
2522 		kfree(before);
2523 		return -ENOMEM;
2524 	}
2525 	INIT_LIST_HEAD(&after->list);
2526 
2527 	/* Now gather all removed mappings */
2528 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2529 	while (tmp) {
2530 		/* Remember mapping split at the start */
2531 		if (tmp->start < saddr) {
2532 			before->start = tmp->start;
2533 			before->last = saddr - 1;
2534 			before->offset = tmp->offset;
2535 			before->flags = tmp->flags;
2536 			before->bo_va = tmp->bo_va;
2537 			list_add(&before->list, &tmp->bo_va->invalids);
2538 		}
2539 
2540 		/* Remember mapping split at the end */
2541 		if (tmp->last > eaddr) {
2542 			after->start = eaddr + 1;
2543 			after->last = tmp->last;
2544 			after->offset = tmp->offset;
2545 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2546 			after->flags = tmp->flags;
2547 			after->bo_va = tmp->bo_va;
2548 			list_add(&after->list, &tmp->bo_va->invalids);
2549 		}
2550 
2551 		list_del(&tmp->list);
2552 		list_add(&tmp->list, &removed);
2553 
2554 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2555 	}
2556 
2557 	/* And free them up */
2558 	list_for_each_entry_safe(tmp, next, &removed, list) {
2559 		amdgpu_vm_it_remove(tmp, &vm->va);
2560 		list_del(&tmp->list);
2561 
2562 		if (tmp->start < saddr)
2563 		    tmp->start = saddr;
2564 		if (tmp->last > eaddr)
2565 		    tmp->last = eaddr;
2566 
2567 		tmp->bo_va = NULL;
2568 		list_add(&tmp->list, &vm->freed);
2569 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2570 	}
2571 
2572 	/* Insert partial mapping before the range */
2573 	if (!list_empty(&before->list)) {
2574 		amdgpu_vm_it_insert(before, &vm->va);
2575 		if (before->flags & AMDGPU_PTE_PRT)
2576 			amdgpu_vm_prt_get(adev);
2577 	} else {
2578 		kfree(before);
2579 	}
2580 
2581 	/* Insert partial mapping after the range */
2582 	if (!list_empty(&after->list)) {
2583 		amdgpu_vm_it_insert(after, &vm->va);
2584 		if (after->flags & AMDGPU_PTE_PRT)
2585 			amdgpu_vm_prt_get(adev);
2586 	} else {
2587 		kfree(after);
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 /**
2594  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2595  *
2596  * @vm: the requested VM
2597  * @addr: the address
2598  *
2599  * Find a mapping by it's address.
2600  *
2601  * Returns:
2602  * The amdgpu_bo_va_mapping matching for addr or NULL
2603  *
2604  */
2605 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2606 							 uint64_t addr)
2607 {
2608 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2609 }
2610 
2611 /**
2612  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2613  *
2614  * @vm: the requested vm
2615  * @ticket: CS ticket
2616  *
2617  * Trace all mappings of BOs reserved during a command submission.
2618  */
2619 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2620 {
2621 	struct amdgpu_bo_va_mapping *mapping;
2622 
2623 	if (!trace_amdgpu_vm_bo_cs_enabled())
2624 		return;
2625 
2626 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2627 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2628 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2629 			struct amdgpu_bo *bo;
2630 
2631 			bo = mapping->bo_va->base.bo;
2632 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2633 			    ticket)
2634 				continue;
2635 		}
2636 
2637 		trace_amdgpu_vm_bo_cs(mapping);
2638 	}
2639 }
2640 
2641 /**
2642  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2643  *
2644  * @adev: amdgpu_device pointer
2645  * @bo_va: requested bo_va
2646  *
2647  * Remove @bo_va->bo from the requested vm.
2648  *
2649  * Object have to be reserved!
2650  */
2651 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2652 		      struct amdgpu_bo_va *bo_va)
2653 {
2654 	struct amdgpu_bo_va_mapping *mapping, *next;
2655 	struct amdgpu_bo *bo = bo_va->base.bo;
2656 	struct amdgpu_vm *vm = bo_va->base.vm;
2657 	struct amdgpu_vm_bo_base **base;
2658 
2659 	if (bo) {
2660 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2661 			vm->bulk_moveable = false;
2662 
2663 		for (base = &bo_va->base.bo->vm_bo; *base;
2664 		     base = &(*base)->next) {
2665 			if (*base != &bo_va->base)
2666 				continue;
2667 
2668 			*base = bo_va->base.next;
2669 			break;
2670 		}
2671 	}
2672 
2673 	spin_lock(&vm->invalidated_lock);
2674 	list_del(&bo_va->base.vm_status);
2675 	spin_unlock(&vm->invalidated_lock);
2676 
2677 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2678 		list_del(&mapping->list);
2679 		amdgpu_vm_it_remove(mapping, &vm->va);
2680 		mapping->bo_va = NULL;
2681 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2682 		list_add(&mapping->list, &vm->freed);
2683 	}
2684 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2685 		list_del(&mapping->list);
2686 		amdgpu_vm_it_remove(mapping, &vm->va);
2687 		amdgpu_vm_free_mapping(adev, vm, mapping,
2688 				       bo_va->last_pt_update);
2689 	}
2690 
2691 	dma_fence_put(bo_va->last_pt_update);
2692 
2693 	if (bo && bo_va->is_xgmi)
2694 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2695 
2696 	kfree(bo_va);
2697 }
2698 
2699 /**
2700  * amdgpu_vm_evictable - check if we can evict a VM
2701  *
2702  * @bo: A page table of the VM.
2703  *
2704  * Check if it is possible to evict a VM.
2705  */
2706 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2707 {
2708 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2709 
2710 	/* Page tables of a destroyed VM can go away immediately */
2711 	if (!bo_base || !bo_base->vm)
2712 		return true;
2713 
2714 	/* Don't evict VM page tables while they are busy */
2715 	if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2716 		return false;
2717 
2718 	/* Try to block ongoing updates */
2719 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2720 		return false;
2721 
2722 	/* Don't evict VM page tables while they are updated */
2723 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2724 		amdgpu_vm_eviction_unlock(bo_base->vm);
2725 		return false;
2726 	}
2727 
2728 	bo_base->vm->evicting = true;
2729 	amdgpu_vm_eviction_unlock(bo_base->vm);
2730 	return true;
2731 }
2732 
2733 /**
2734  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2735  *
2736  * @adev: amdgpu_device pointer
2737  * @bo: amdgpu buffer object
2738  * @evicted: is the BO evicted
2739  *
2740  * Mark @bo as invalid.
2741  */
2742 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2743 			     struct amdgpu_bo *bo, bool evicted)
2744 {
2745 	struct amdgpu_vm_bo_base *bo_base;
2746 
2747 	/* shadow bo doesn't have bo base, its validation needs its parent */
2748 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2749 		bo = bo->parent;
2750 
2751 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2752 		struct amdgpu_vm *vm = bo_base->vm;
2753 
2754 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2755 			amdgpu_vm_bo_evicted(bo_base);
2756 			continue;
2757 		}
2758 
2759 		if (bo_base->moved)
2760 			continue;
2761 		bo_base->moved = true;
2762 
2763 		if (bo->tbo.type == ttm_bo_type_kernel)
2764 			amdgpu_vm_bo_relocated(bo_base);
2765 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2766 			amdgpu_vm_bo_moved(bo_base);
2767 		else
2768 			amdgpu_vm_bo_invalidated(bo_base);
2769 	}
2770 }
2771 
2772 /**
2773  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2774  *
2775  * @vm_size: VM size
2776  *
2777  * Returns:
2778  * VM page table as power of two
2779  */
2780 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2781 {
2782 	/* Total bits covered by PD + PTs */
2783 	unsigned bits = ilog2(vm_size) + 18;
2784 
2785 	/* Make sure the PD is 4K in size up to 8GB address space.
2786 	   Above that split equal between PD and PTs */
2787 	if (vm_size <= 8)
2788 		return (bits - 9);
2789 	else
2790 		return ((bits + 3) / 2);
2791 }
2792 
2793 /**
2794  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2795  *
2796  * @adev: amdgpu_device pointer
2797  * @min_vm_size: the minimum vm size in GB if it's set auto
2798  * @fragment_size_default: Default PTE fragment size
2799  * @max_level: max VMPT level
2800  * @max_bits: max address space size in bits
2801  *
2802  */
2803 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2804 			   uint32_t fragment_size_default, unsigned max_level,
2805 			   unsigned max_bits)
2806 {
2807 	unsigned int max_size = 1 << (max_bits - 30);
2808 	unsigned int vm_size;
2809 	uint64_t tmp;
2810 
2811 	/* adjust vm size first */
2812 	if (amdgpu_vm_size != -1) {
2813 		vm_size = amdgpu_vm_size;
2814 		if (vm_size > max_size) {
2815 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2816 				 amdgpu_vm_size, max_size);
2817 			vm_size = max_size;
2818 		}
2819 	} else {
2820 		struct sysinfo si;
2821 		unsigned int phys_ram_gb;
2822 
2823 		/* Optimal VM size depends on the amount of physical
2824 		 * RAM available. Underlying requirements and
2825 		 * assumptions:
2826 		 *
2827 		 *  - Need to map system memory and VRAM from all GPUs
2828 		 *     - VRAM from other GPUs not known here
2829 		 *     - Assume VRAM <= system memory
2830 		 *  - On GFX8 and older, VM space can be segmented for
2831 		 *    different MTYPEs
2832 		 *  - Need to allow room for fragmentation, guard pages etc.
2833 		 *
2834 		 * This adds up to a rough guess of system memory x3.
2835 		 * Round up to power of two to maximize the available
2836 		 * VM size with the given page table size.
2837 		 */
2838 		si_meminfo(&si);
2839 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2840 			       (1 << 30) - 1) >> 30;
2841 		vm_size = roundup_pow_of_two(
2842 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2843 	}
2844 
2845 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2846 
2847 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2848 	if (amdgpu_vm_block_size != -1)
2849 		tmp >>= amdgpu_vm_block_size - 9;
2850 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2851 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2852 	switch (adev->vm_manager.num_level) {
2853 	case 3:
2854 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2855 		break;
2856 	case 2:
2857 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2858 		break;
2859 	case 1:
2860 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2861 		break;
2862 	default:
2863 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2864 	}
2865 	/* block size depends on vm size and hw setup*/
2866 	if (amdgpu_vm_block_size != -1)
2867 		adev->vm_manager.block_size =
2868 			min((unsigned)amdgpu_vm_block_size, max_bits
2869 			    - AMDGPU_GPU_PAGE_SHIFT
2870 			    - 9 * adev->vm_manager.num_level);
2871 	else if (adev->vm_manager.num_level > 1)
2872 		adev->vm_manager.block_size = 9;
2873 	else
2874 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2875 
2876 	if (amdgpu_vm_fragment_size == -1)
2877 		adev->vm_manager.fragment_size = fragment_size_default;
2878 	else
2879 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2880 
2881 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2882 		 vm_size, adev->vm_manager.num_level + 1,
2883 		 adev->vm_manager.block_size,
2884 		 adev->vm_manager.fragment_size);
2885 }
2886 
2887 /**
2888  * amdgpu_vm_wait_idle - wait for the VM to become idle
2889  *
2890  * @vm: VM object to wait for
2891  * @timeout: timeout to wait for VM to become idle
2892  */
2893 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2894 {
2895 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2896 					true, timeout);
2897 	if (timeout <= 0)
2898 		return timeout;
2899 
2900 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2901 }
2902 
2903 /**
2904  * amdgpu_vm_init - initialize a vm instance
2905  *
2906  * @adev: amdgpu_device pointer
2907  * @vm: requested vm
2908  *
2909  * Init @vm fields.
2910  *
2911  * Returns:
2912  * 0 for success, error for failure.
2913  */
2914 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2915 {
2916 	struct amdgpu_bo *root_bo;
2917 	struct amdgpu_bo_vm *root;
2918 	int r, i;
2919 
2920 	vm->va = RB_ROOT_CACHED;
2921 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2922 		vm->reserved_vmid[i] = NULL;
2923 	INIT_LIST_HEAD(&vm->evicted);
2924 	INIT_LIST_HEAD(&vm->relocated);
2925 	INIT_LIST_HEAD(&vm->moved);
2926 	INIT_LIST_HEAD(&vm->idle);
2927 	INIT_LIST_HEAD(&vm->invalidated);
2928 	spin_lock_init(&vm->invalidated_lock);
2929 	INIT_LIST_HEAD(&vm->freed);
2930 	INIT_LIST_HEAD(&vm->done);
2931 
2932 	/* create scheduler entities for page table updates */
2933 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2934 				  adev->vm_manager.vm_pte_scheds,
2935 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2936 	if (r)
2937 		return r;
2938 
2939 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2940 				  adev->vm_manager.vm_pte_scheds,
2941 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2942 	if (r)
2943 		goto error_free_immediate;
2944 
2945 	vm->pte_support_ats = false;
2946 	vm->is_compute_context = false;
2947 
2948 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2949 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2950 
2951 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2952 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2953 	WARN_ONCE((vm->use_cpu_for_update &&
2954 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2955 		  "CPU update of VM recommended only for large BAR system\n");
2956 
2957 	if (vm->use_cpu_for_update)
2958 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2959 	else
2960 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2961 	vm->last_update = NULL;
2962 	vm->last_unlocked = dma_fence_get_stub();
2963 
2964 	mutex_init(&vm->eviction_lock);
2965 	vm->evicting = false;
2966 
2967 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2968 				false, &root);
2969 	if (r)
2970 		goto error_free_delayed;
2971 	root_bo = &root->bo;
2972 	r = amdgpu_bo_reserve(root_bo, true);
2973 	if (r)
2974 		goto error_free_root;
2975 
2976 	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2977 	if (r)
2978 		goto error_unreserve;
2979 
2980 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2981 
2982 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2983 	if (r)
2984 		goto error_unreserve;
2985 
2986 	amdgpu_bo_unreserve(vm->root.bo);
2987 
2988 	INIT_KFIFO(vm->faults);
2989 
2990 	return 0;
2991 
2992 error_unreserve:
2993 	amdgpu_bo_unreserve(vm->root.bo);
2994 
2995 error_free_root:
2996 	amdgpu_bo_unref(&root->shadow);
2997 	amdgpu_bo_unref(&root_bo);
2998 	vm->root.bo = NULL;
2999 
3000 error_free_delayed:
3001 	dma_fence_put(vm->last_unlocked);
3002 	drm_sched_entity_destroy(&vm->delayed);
3003 
3004 error_free_immediate:
3005 	drm_sched_entity_destroy(&vm->immediate);
3006 
3007 	return r;
3008 }
3009 
3010 /**
3011  * amdgpu_vm_check_clean_reserved - check if a VM is clean
3012  *
3013  * @adev: amdgpu_device pointer
3014  * @vm: the VM to check
3015  *
3016  * check all entries of the root PD, if any subsequent PDs are allocated,
3017  * it means there are page table creating and filling, and is no a clean
3018  * VM
3019  *
3020  * Returns:
3021  *	0 if this VM is clean
3022  */
3023 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3024 					  struct amdgpu_vm *vm)
3025 {
3026 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
3027 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
3028 	unsigned int i = 0;
3029 
3030 	for (i = 0; i < entries; i++) {
3031 		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3032 			return -EINVAL;
3033 	}
3034 
3035 	return 0;
3036 }
3037 
3038 /**
3039  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3040  *
3041  * @adev: amdgpu_device pointer
3042  * @vm: requested vm
3043  *
3044  * This only works on GFX VMs that don't have any BOs added and no
3045  * page tables allocated yet.
3046  *
3047  * Changes the following VM parameters:
3048  * - use_cpu_for_update
3049  * - pte_supports_ats
3050  *
3051  * Reinitializes the page directory to reflect the changed ATS
3052  * setting.
3053  *
3054  * Returns:
3055  * 0 for success, -errno for errors.
3056  */
3057 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3058 {
3059 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3060 	int r;
3061 
3062 	r = amdgpu_bo_reserve(vm->root.bo, true);
3063 	if (r)
3064 		return r;
3065 
3066 	/* Sanity checks */
3067 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3068 	if (r)
3069 		goto unreserve_bo;
3070 
3071 	/* Check if PD needs to be reinitialized and do it before
3072 	 * changing any other state, in case it fails.
3073 	 */
3074 	if (pte_support_ats != vm->pte_support_ats) {
3075 		vm->pte_support_ats = pte_support_ats;
3076 		r = amdgpu_vm_clear_bo(adev, vm,
3077 				       to_amdgpu_bo_vm(vm->root.bo),
3078 				       false);
3079 		if (r)
3080 			goto unreserve_bo;
3081 	}
3082 
3083 	/* Update VM state */
3084 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3085 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3086 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3087 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3088 	WARN_ONCE((vm->use_cpu_for_update &&
3089 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3090 		  "CPU update of VM recommended only for large BAR system\n");
3091 
3092 	if (vm->use_cpu_for_update) {
3093 		/* Sync with last SDMA update/clear before switching to CPU */
3094 		r = amdgpu_bo_sync_wait(vm->root.bo,
3095 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3096 		if (r)
3097 			goto unreserve_bo;
3098 
3099 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3100 	} else {
3101 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3102 	}
3103 	dma_fence_put(vm->last_update);
3104 	vm->last_update = NULL;
3105 	vm->is_compute_context = true;
3106 
3107 	/* Free the shadow bo for compute VM */
3108 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3109 
3110 	goto unreserve_bo;
3111 
3112 unreserve_bo:
3113 	amdgpu_bo_unreserve(vm->root.bo);
3114 	return r;
3115 }
3116 
3117 /**
3118  * amdgpu_vm_release_compute - release a compute vm
3119  * @adev: amdgpu_device pointer
3120  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3121  *
3122  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3123  * pasid from vm. Compute should stop use of vm after this call.
3124  */
3125 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3126 {
3127 	amdgpu_vm_set_pasid(adev, vm, 0);
3128 	vm->is_compute_context = false;
3129 }
3130 
3131 /**
3132  * amdgpu_vm_fini - tear down a vm instance
3133  *
3134  * @adev: amdgpu_device pointer
3135  * @vm: requested vm
3136  *
3137  * Tear down @vm.
3138  * Unbind the VM and remove all bos from the vm bo list
3139  */
3140 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3141 {
3142 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3143 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3144 	struct amdgpu_bo *root;
3145 	int i;
3146 
3147 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3148 
3149 	root = amdgpu_bo_ref(vm->root.bo);
3150 	amdgpu_bo_reserve(root, true);
3151 	amdgpu_vm_set_pasid(adev, vm, 0);
3152 	dma_fence_wait(vm->last_unlocked, false);
3153 	dma_fence_put(vm->last_unlocked);
3154 
3155 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3156 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3157 			amdgpu_vm_prt_fini(adev, vm);
3158 			prt_fini_needed = false;
3159 		}
3160 
3161 		list_del(&mapping->list);
3162 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3163 	}
3164 
3165 	amdgpu_vm_free_pts(adev, vm, NULL);
3166 	amdgpu_bo_unreserve(root);
3167 	amdgpu_bo_unref(&root);
3168 	WARN_ON(vm->root.bo);
3169 
3170 	drm_sched_entity_destroy(&vm->immediate);
3171 	drm_sched_entity_destroy(&vm->delayed);
3172 
3173 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3174 		dev_err(adev->dev, "still active bo inside vm\n");
3175 	}
3176 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3177 					     &vm->va.rb_root, rb) {
3178 		/* Don't remove the mapping here, we don't want to trigger a
3179 		 * rebalance and the tree is about to be destroyed anyway.
3180 		 */
3181 		list_del(&mapping->list);
3182 		kfree(mapping);
3183 	}
3184 
3185 	dma_fence_put(vm->last_update);
3186 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3187 		amdgpu_vmid_free_reserved(adev, vm, i);
3188 }
3189 
3190 /**
3191  * amdgpu_vm_manager_init - init the VM manager
3192  *
3193  * @adev: amdgpu_device pointer
3194  *
3195  * Initialize the VM manager structures
3196  */
3197 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3198 {
3199 	unsigned i;
3200 
3201 	/* Concurrent flushes are only possible starting with Vega10 and
3202 	 * are broken on Navi10 and Navi14.
3203 	 */
3204 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3205 					      adev->asic_type == CHIP_NAVI10 ||
3206 					      adev->asic_type == CHIP_NAVI14);
3207 	amdgpu_vmid_mgr_init(adev);
3208 
3209 	adev->vm_manager.fence_context =
3210 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3211 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3212 		adev->vm_manager.seqno[i] = 0;
3213 
3214 	spin_lock_init(&adev->vm_manager.prt_lock);
3215 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3216 
3217 	/* If not overridden by the user, by default, only in large BAR systems
3218 	 * Compute VM tables will be updated by CPU
3219 	 */
3220 #ifdef CONFIG_X86_64
3221 	if (amdgpu_vm_update_mode == -1) {
3222 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3223 			adev->vm_manager.vm_update_mode =
3224 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3225 		else
3226 			adev->vm_manager.vm_update_mode = 0;
3227 	} else
3228 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3229 #else
3230 	adev->vm_manager.vm_update_mode = 0;
3231 #endif
3232 
3233 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
3234 }
3235 
3236 /**
3237  * amdgpu_vm_manager_fini - cleanup VM manager
3238  *
3239  * @adev: amdgpu_device pointer
3240  *
3241  * Cleanup the VM manager and free resources.
3242  */
3243 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3244 {
3245 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
3246 	xa_destroy(&adev->vm_manager.pasids);
3247 
3248 	amdgpu_vmid_mgr_fini(adev);
3249 }
3250 
3251 /**
3252  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3253  *
3254  * @dev: drm device pointer
3255  * @data: drm_amdgpu_vm
3256  * @filp: drm file pointer
3257  *
3258  * Returns:
3259  * 0 for success, -errno for errors.
3260  */
3261 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3262 {
3263 	union drm_amdgpu_vm *args = data;
3264 	struct amdgpu_device *adev = drm_to_adev(dev);
3265 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3266 	long timeout = msecs_to_jiffies(2000);
3267 	int r;
3268 
3269 	switch (args->in.op) {
3270 	case AMDGPU_VM_OP_RESERVE_VMID:
3271 		/* We only have requirement to reserve vmid from gfxhub */
3272 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3273 					       AMDGPU_GFXHUB_0);
3274 		if (r)
3275 			return r;
3276 		break;
3277 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3278 		if (amdgpu_sriov_runtime(adev))
3279 			timeout = 8 * timeout;
3280 
3281 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3282 		 * not referenced anymore.
3283 		 */
3284 		r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3285 		if (r)
3286 			return r;
3287 
3288 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3289 		if (r < 0)
3290 			return r;
3291 
3292 		amdgpu_bo_unreserve(fpriv->vm.root.bo);
3293 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3294 		break;
3295 	default:
3296 		return -EINVAL;
3297 	}
3298 
3299 	return 0;
3300 }
3301 
3302 /**
3303  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3304  *
3305  * @adev: drm device pointer
3306  * @pasid: PASID identifier for VM
3307  * @task_info: task_info to fill.
3308  */
3309 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3310 			 struct amdgpu_task_info *task_info)
3311 {
3312 	struct amdgpu_vm *vm;
3313 	unsigned long flags;
3314 
3315 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
3316 
3317 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3318 	if (vm)
3319 		*task_info = vm->task_info;
3320 
3321 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3322 }
3323 
3324 /**
3325  * amdgpu_vm_set_task_info - Sets VMs task info.
3326  *
3327  * @vm: vm for which to set the info
3328  */
3329 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3330 {
3331 	if (vm->task_info.pid)
3332 		return;
3333 
3334 	vm->task_info.pid = current->pid;
3335 	get_task_comm(vm->task_info.task_name, current);
3336 
3337 	if (current->group_leader->mm != current->mm)
3338 		return;
3339 
3340 	vm->task_info.tgid = current->group_leader->pid;
3341 	get_task_comm(vm->task_info.process_name, current->group_leader);
3342 }
3343 
3344 /**
3345  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3346  * @adev: amdgpu device pointer
3347  * @pasid: PASID of the VM
3348  * @addr: Address of the fault
3349  * @write_fault: true is write fault, false is read fault
3350  *
3351  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3352  * shouldn't be reported any more.
3353  */
3354 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3355 			    uint64_t addr, bool write_fault)
3356 {
3357 	bool is_compute_context = false;
3358 	struct amdgpu_bo *root;
3359 	unsigned long irqflags;
3360 	uint64_t value, flags;
3361 	struct amdgpu_vm *vm;
3362 	int r;
3363 
3364 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3365 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3366 	if (vm) {
3367 		root = amdgpu_bo_ref(vm->root.bo);
3368 		is_compute_context = vm->is_compute_context;
3369 	} else {
3370 		root = NULL;
3371 	}
3372 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3373 
3374 	if (!root)
3375 		return false;
3376 
3377 	addr /= AMDGPU_GPU_PAGE_SIZE;
3378 
3379 	if (is_compute_context &&
3380 	    !svm_range_restore_pages(adev, pasid, addr, write_fault)) {
3381 		amdgpu_bo_unref(&root);
3382 		return true;
3383 	}
3384 
3385 	r = amdgpu_bo_reserve(root, true);
3386 	if (r)
3387 		goto error_unref;
3388 
3389 	/* Double check that the VM still exists */
3390 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3391 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3392 	if (vm && vm->root.bo != root)
3393 		vm = NULL;
3394 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3395 	if (!vm)
3396 		goto error_unlock;
3397 
3398 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3399 		AMDGPU_PTE_SYSTEM;
3400 
3401 	if (is_compute_context) {
3402 		/* Intentionally setting invalid PTE flag
3403 		 * combination to force a no-retry-fault
3404 		 */
3405 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3406 			AMDGPU_PTE_TF;
3407 		value = 0;
3408 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3409 		/* Redirect the access to the dummy page */
3410 		value = adev->dummy_page_addr;
3411 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3412 			AMDGPU_PTE_WRITEABLE;
3413 
3414 	} else {
3415 		/* Let the hw retry silently on the PTE */
3416 		value = 0;
3417 	}
3418 
3419 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3420 	if (r) {
3421 		pr_debug("failed %d to reserve fence slot\n", r);
3422 		goto error_unlock;
3423 	}
3424 
3425 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3426 					addr, flags, value, NULL, NULL, NULL,
3427 					NULL);
3428 	if (r)
3429 		goto error_unlock;
3430 
3431 	r = amdgpu_vm_update_pdes(adev, vm, true);
3432 
3433 error_unlock:
3434 	amdgpu_bo_unreserve(root);
3435 	if (r < 0)
3436 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3437 
3438 error_unref:
3439 	amdgpu_bo_unref(&root);
3440 
3441 	return false;
3442 }
3443 
3444 #if defined(CONFIG_DEBUG_FS)
3445 /**
3446  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3447  *
3448  * @vm: Requested VM for printing BO info
3449  * @m: debugfs file
3450  *
3451  * Print BO information in debugfs file for the VM
3452  */
3453 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3454 {
3455 	struct amdgpu_bo_va *bo_va, *tmp;
3456 	u64 total_idle = 0;
3457 	u64 total_evicted = 0;
3458 	u64 total_relocated = 0;
3459 	u64 total_moved = 0;
3460 	u64 total_invalidated = 0;
3461 	u64 total_done = 0;
3462 	unsigned int total_idle_objs = 0;
3463 	unsigned int total_evicted_objs = 0;
3464 	unsigned int total_relocated_objs = 0;
3465 	unsigned int total_moved_objs = 0;
3466 	unsigned int total_invalidated_objs = 0;
3467 	unsigned int total_done_objs = 0;
3468 	unsigned int id = 0;
3469 
3470 	seq_puts(m, "\tIdle BOs:\n");
3471 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3472 		if (!bo_va->base.bo)
3473 			continue;
3474 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3475 	}
3476 	total_idle_objs = id;
3477 	id = 0;
3478 
3479 	seq_puts(m, "\tEvicted BOs:\n");
3480 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3481 		if (!bo_va->base.bo)
3482 			continue;
3483 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3484 	}
3485 	total_evicted_objs = id;
3486 	id = 0;
3487 
3488 	seq_puts(m, "\tRelocated BOs:\n");
3489 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3490 		if (!bo_va->base.bo)
3491 			continue;
3492 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3493 	}
3494 	total_relocated_objs = id;
3495 	id = 0;
3496 
3497 	seq_puts(m, "\tMoved BOs:\n");
3498 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3499 		if (!bo_va->base.bo)
3500 			continue;
3501 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3502 	}
3503 	total_moved_objs = id;
3504 	id = 0;
3505 
3506 	seq_puts(m, "\tInvalidated BOs:\n");
3507 	spin_lock(&vm->invalidated_lock);
3508 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3509 		if (!bo_va->base.bo)
3510 			continue;
3511 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3512 	}
3513 	total_invalidated_objs = id;
3514 	id = 0;
3515 
3516 	seq_puts(m, "\tDone BOs:\n");
3517 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3518 		if (!bo_va->base.bo)
3519 			continue;
3520 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3521 	}
3522 	spin_unlock(&vm->invalidated_lock);
3523 	total_done_objs = id;
3524 
3525 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3526 		   total_idle_objs);
3527 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3528 		   total_evicted_objs);
3529 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3530 		   total_relocated_objs);
3531 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3532 		   total_moved_objs);
3533 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3534 		   total_invalidated_objs);
3535 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3536 		   total_done_objs);
3537 }
3538 #endif
3539