1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_amdkfd.h" 41 #include "amdgpu_gmc.h" 42 #include "amdgpu_xgmi.h" 43 #include "amdgpu_dma_buf.h" 44 #include "amdgpu_res_cursor.h" 45 #include "kfd_svm.h" 46 47 /** 48 * DOC: GPUVM 49 * 50 * GPUVM is the MMU functionality provided on the GPU. 51 * GPUVM is similar to the legacy GART on older asics, however 52 * rather than there being a single global GART table 53 * for the entire GPU, there can be multiple GPUVM page tables active 54 * at any given time. The GPUVM page tables can contain a mix 55 * VRAM pages and system pages (both memory and MMIO) and system pages 56 * can be mapped as snooped (cached system pages) or unsnooped 57 * (uncached system pages). 58 * 59 * Each active GPUVM has an ID associated with it and there is a page table 60 * linked with each VMID. When executing a command buffer, 61 * the kernel tells the engine what VMID to use for that command 62 * buffer. VMIDs are allocated dynamically as commands are submitted. 63 * The userspace drivers maintain their own address space and the kernel 64 * sets up their pages tables accordingly when they submit their 65 * command buffers and a VMID is assigned. 66 * The hardware supports up to 16 active GPUVMs at any given time. 67 * 68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 69 * on the ASIC family. GPUVM supports RWX attributes on each page as well 70 * as other features such as encryption and caching attributes. 71 * 72 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 73 * addition to an aperture managed by a page table, VMID 0 also has 74 * several other apertures. There is an aperture for direct access to VRAM 75 * and there is a legacy AGP aperture which just forwards accesses directly 76 * to the matching system physical addresses (or IOVAs when an IOMMU is 77 * present). These apertures provide direct access to these memories without 78 * incurring the overhead of a page table. VMID 0 is used by the kernel 79 * driver for tasks like memory management. 80 * 81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 82 * For user applications, each application can have their own unique GPUVM 83 * address space. The application manages the address space and the kernel 84 * driver manages the GPUVM page tables for each process. If an GPU client 85 * accesses an invalid page, it will generate a GPU page fault, similar to 86 * accessing an invalid page on a CPU. 87 */ 88 89 #define START(node) ((node)->start) 90 #define LAST(node) ((node)->last) 91 92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 93 START, LAST, static, amdgpu_vm_it) 94 95 #undef START 96 #undef LAST 97 98 /** 99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 100 */ 101 struct amdgpu_prt_cb { 102 103 /** 104 * @adev: amdgpu device 105 */ 106 struct amdgpu_device *adev; 107 108 /** 109 * @cb: callback 110 */ 111 struct dma_fence_cb cb; 112 }; 113 114 /** 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 116 */ 117 struct amdgpu_vm_tlb_seq_struct { 118 /** 119 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 120 */ 121 struct amdgpu_vm *vm; 122 123 /** 124 * @cb: callback 125 */ 126 struct dma_fence_cb cb; 127 }; 128 129 /** 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 131 * 132 * @adev: amdgpu_device pointer 133 * @vm: amdgpu_vm pointer 134 * @pasid: the pasid the VM is using on this GPU 135 * 136 * Set the pasid this VM is using on this GPU, can also be used to remove the 137 * pasid by passing in zero. 138 * 139 */ 140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 141 u32 pasid) 142 { 143 int r; 144 145 if (vm->pasid == pasid) 146 return 0; 147 148 if (vm->pasid) { 149 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 150 if (r < 0) 151 return r; 152 153 vm->pasid = 0; 154 } 155 156 if (pasid) { 157 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 158 GFP_KERNEL)); 159 if (r < 0) 160 return r; 161 162 vm->pasid = pasid; 163 } 164 165 166 return 0; 167 } 168 169 /** 170 * amdgpu_vm_bo_evicted - vm_bo is evicted 171 * 172 * @vm_bo: vm_bo which is evicted 173 * 174 * State for PDs/PTs and per VM BOs which are not at the location they should 175 * be. 176 */ 177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 178 { 179 struct amdgpu_vm *vm = vm_bo->vm; 180 struct amdgpu_bo *bo = vm_bo->bo; 181 182 vm_bo->moved = true; 183 spin_lock(&vm_bo->vm->status_lock); 184 if (bo->tbo.type == ttm_bo_type_kernel) 185 list_move(&vm_bo->vm_status, &vm->evicted); 186 else 187 list_move_tail(&vm_bo->vm_status, &vm->evicted); 188 spin_unlock(&vm_bo->vm->status_lock); 189 } 190 /** 191 * amdgpu_vm_bo_moved - vm_bo is moved 192 * 193 * @vm_bo: vm_bo which is moved 194 * 195 * State for per VM BOs which are moved, but that change is not yet reflected 196 * in the page tables. 197 */ 198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 199 { 200 spin_lock(&vm_bo->vm->status_lock); 201 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 202 spin_unlock(&vm_bo->vm->status_lock); 203 } 204 205 /** 206 * amdgpu_vm_bo_idle - vm_bo is idle 207 * 208 * @vm_bo: vm_bo which is now idle 209 * 210 * State for PDs/PTs and per VM BOs which have gone through the state machine 211 * and are now idle. 212 */ 213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 214 { 215 spin_lock(&vm_bo->vm->status_lock); 216 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 217 spin_unlock(&vm_bo->vm->status_lock); 218 vm_bo->moved = false; 219 } 220 221 /** 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 223 * 224 * @vm_bo: vm_bo which is now invalidated 225 * 226 * State for normal BOs which are invalidated and that change not yet reflected 227 * in the PTs. 228 */ 229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 230 { 231 spin_lock(&vm_bo->vm->status_lock); 232 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 233 spin_unlock(&vm_bo->vm->status_lock); 234 } 235 236 /** 237 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 238 * 239 * @vm_bo: vm_bo which is evicted 240 * 241 * State for BOs used by user mode queues which are not at the location they 242 * should be. 243 */ 244 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 245 { 246 vm_bo->moved = true; 247 spin_lock(&vm_bo->vm->status_lock); 248 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 249 spin_unlock(&vm_bo->vm->status_lock); 250 } 251 252 /** 253 * amdgpu_vm_bo_relocated - vm_bo is reloacted 254 * 255 * @vm_bo: vm_bo which is relocated 256 * 257 * State for PDs/PTs which needs to update their parent PD. 258 * For the root PD, just move to idle state. 259 */ 260 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 261 { 262 if (vm_bo->bo->parent) { 263 spin_lock(&vm_bo->vm->status_lock); 264 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 265 spin_unlock(&vm_bo->vm->status_lock); 266 } else { 267 amdgpu_vm_bo_idle(vm_bo); 268 } 269 } 270 271 /** 272 * amdgpu_vm_bo_done - vm_bo is done 273 * 274 * @vm_bo: vm_bo which is now done 275 * 276 * State for normal BOs which are invalidated and that change has been updated 277 * in the PTs. 278 */ 279 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 280 { 281 spin_lock(&vm_bo->vm->status_lock); 282 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 283 spin_unlock(&vm_bo->vm->status_lock); 284 } 285 286 /** 287 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 288 * @vm: the VM which state machine to reset 289 * 290 * Move all vm_bo object in the VM into a state where they will be updated 291 * again during validation. 292 */ 293 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 294 { 295 struct amdgpu_vm_bo_base *vm_bo, *tmp; 296 297 spin_lock(&vm->status_lock); 298 list_splice_init(&vm->done, &vm->invalidated); 299 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 300 vm_bo->moved = true; 301 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 302 struct amdgpu_bo *bo = vm_bo->bo; 303 304 vm_bo->moved = true; 305 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 306 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 307 else if (bo->parent) 308 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 309 } 310 spin_unlock(&vm->status_lock); 311 } 312 313 /** 314 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 315 * 316 * @base: base structure for tracking BO usage in a VM 317 * @vm: vm to which bo is to be added 318 * @bo: amdgpu buffer object 319 * 320 * Initialize a bo_va_base structure and add it to the appropriate lists 321 * 322 */ 323 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 324 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 325 { 326 base->vm = vm; 327 base->bo = bo; 328 base->next = NULL; 329 INIT_LIST_HEAD(&base->vm_status); 330 331 if (!bo) 332 return; 333 base->next = bo->vm_bo; 334 bo->vm_bo = base; 335 336 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 337 return; 338 339 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 340 341 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 342 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 343 amdgpu_vm_bo_relocated(base); 344 else 345 amdgpu_vm_bo_idle(base); 346 347 if (bo->preferred_domains & 348 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 349 return; 350 351 /* 352 * we checked all the prerequisites, but it looks like this per vm bo 353 * is currently evicted. add the bo to the evicted list to make sure it 354 * is validated on next vm use to avoid fault. 355 * */ 356 amdgpu_vm_bo_evicted(base); 357 } 358 359 /** 360 * amdgpu_vm_lock_pd - lock PD in drm_exec 361 * 362 * @vm: vm providing the BOs 363 * @exec: drm execution context 364 * @num_fences: number of extra fences to reserve 365 * 366 * Lock the VM root PD in the DRM execution context. 367 */ 368 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 369 unsigned int num_fences) 370 { 371 /* We need at least two fences for the VM PD/PT updates */ 372 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 373 2 + num_fences); 374 } 375 376 /** 377 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 378 * 379 * @adev: amdgpu device pointer 380 * @vm: vm providing the BOs 381 * 382 * Move all BOs to the end of LRU and remember their positions to put them 383 * together. 384 */ 385 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 386 struct amdgpu_vm *vm) 387 { 388 spin_lock(&adev->mman.bdev.lru_lock); 389 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 390 spin_unlock(&adev->mman.bdev.lru_lock); 391 } 392 393 /* Create scheduler entities for page table updates */ 394 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 395 struct amdgpu_vm *vm) 396 { 397 int r; 398 399 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 400 adev->vm_manager.vm_pte_scheds, 401 adev->vm_manager.vm_pte_num_scheds, NULL); 402 if (r) 403 goto error; 404 405 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 406 adev->vm_manager.vm_pte_scheds, 407 adev->vm_manager.vm_pte_num_scheds, NULL); 408 409 error: 410 drm_sched_entity_destroy(&vm->immediate); 411 return r; 412 } 413 414 /* Destroy the entities for page table updates again */ 415 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 416 { 417 drm_sched_entity_destroy(&vm->immediate); 418 drm_sched_entity_destroy(&vm->delayed); 419 } 420 421 /** 422 * amdgpu_vm_generation - return the page table re-generation counter 423 * @adev: the amdgpu_device 424 * @vm: optional VM to check, might be NULL 425 * 426 * Returns a page table re-generation token to allow checking if submissions 427 * are still valid to use this VM. The VM parameter might be NULL in which case 428 * just the VRAM lost counter will be used. 429 */ 430 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 431 { 432 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 433 434 if (!vm) 435 return result; 436 437 result += vm->generation; 438 /* Add one if the page tables will be re-generated on next CS */ 439 if (drm_sched_entity_error(&vm->delayed)) 440 ++result; 441 442 return result; 443 } 444 445 /** 446 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 447 * 448 * @adev: amdgpu device pointer 449 * @vm: vm providing the BOs 450 * @ticket: optional reservation ticket used to reserve the VM 451 * @validate: callback to do the validation 452 * @param: parameter for the validation callback 453 * 454 * Validate the page table BOs and per-VM BOs on command submission if 455 * necessary. If a ticket is given, also try to validate evicted user queue 456 * BOs. They must already be reserved with the given ticket. 457 * 458 * Returns: 459 * Validation result. 460 */ 461 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 462 struct ww_acquire_ctx *ticket, 463 int (*validate)(void *p, struct amdgpu_bo *bo), 464 void *param) 465 { 466 struct amdgpu_vm_bo_base *bo_base; 467 struct amdgpu_bo *shadow; 468 struct amdgpu_bo *bo; 469 int r; 470 471 if (drm_sched_entity_error(&vm->delayed)) { 472 ++vm->generation; 473 amdgpu_vm_bo_reset_state_machine(vm); 474 amdgpu_vm_fini_entities(vm); 475 r = amdgpu_vm_init_entities(adev, vm); 476 if (r) 477 return r; 478 } 479 480 spin_lock(&vm->status_lock); 481 while (!list_empty(&vm->evicted)) { 482 bo_base = list_first_entry(&vm->evicted, 483 struct amdgpu_vm_bo_base, 484 vm_status); 485 spin_unlock(&vm->status_lock); 486 487 bo = bo_base->bo; 488 shadow = amdgpu_bo_shadowed(bo); 489 490 r = validate(param, bo); 491 if (r) 492 return r; 493 if (shadow) { 494 r = validate(param, shadow); 495 if (r) 496 return r; 497 } 498 499 if (bo->tbo.type != ttm_bo_type_kernel) { 500 amdgpu_vm_bo_moved(bo_base); 501 } else { 502 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 503 amdgpu_vm_bo_relocated(bo_base); 504 } 505 spin_lock(&vm->status_lock); 506 } 507 while (ticket && !list_empty(&vm->evicted_user)) { 508 bo_base = list_first_entry(&vm->evicted_user, 509 struct amdgpu_vm_bo_base, 510 vm_status); 511 spin_unlock(&vm->status_lock); 512 513 bo = bo_base->bo; 514 515 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 516 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 517 518 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 519 if (ti) { 520 pr_warn_ratelimited("pid %d\n", ti->pid); 521 amdgpu_vm_put_task_info(ti); 522 } 523 524 return -EINVAL; 525 } 526 527 r = validate(param, bo); 528 if (r) 529 return r; 530 531 amdgpu_vm_bo_invalidated(bo_base); 532 533 spin_lock(&vm->status_lock); 534 } 535 spin_unlock(&vm->status_lock); 536 537 amdgpu_vm_eviction_lock(vm); 538 vm->evicting = false; 539 amdgpu_vm_eviction_unlock(vm); 540 541 return 0; 542 } 543 544 /** 545 * amdgpu_vm_ready - check VM is ready for updates 546 * 547 * @vm: VM to check 548 * 549 * Check if all VM PDs/PTs are ready for updates 550 * 551 * Returns: 552 * True if VM is not evicting. 553 */ 554 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 555 { 556 bool empty; 557 bool ret; 558 559 amdgpu_vm_eviction_lock(vm); 560 ret = !vm->evicting; 561 amdgpu_vm_eviction_unlock(vm); 562 563 spin_lock(&vm->status_lock); 564 empty = list_empty(&vm->evicted); 565 spin_unlock(&vm->status_lock); 566 567 return ret && empty; 568 } 569 570 /** 571 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 572 * 573 * @adev: amdgpu_device pointer 574 */ 575 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 576 { 577 const struct amdgpu_ip_block *ip_block; 578 bool has_compute_vm_bug; 579 struct amdgpu_ring *ring; 580 int i; 581 582 has_compute_vm_bug = false; 583 584 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 585 if (ip_block) { 586 /* Compute has a VM bug for GFX version < 7. 587 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 588 if (ip_block->version->major <= 7) 589 has_compute_vm_bug = true; 590 else if (ip_block->version->major == 8) 591 if (adev->gfx.mec_fw_version < 673) 592 has_compute_vm_bug = true; 593 } 594 595 for (i = 0; i < adev->num_rings; i++) { 596 ring = adev->rings[i]; 597 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 598 /* only compute rings */ 599 ring->has_compute_vm_bug = has_compute_vm_bug; 600 else 601 ring->has_compute_vm_bug = false; 602 } 603 } 604 605 /** 606 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 607 * 608 * @ring: ring on which the job will be submitted 609 * @job: job to submit 610 * 611 * Returns: 612 * True if sync is needed. 613 */ 614 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 615 struct amdgpu_job *job) 616 { 617 struct amdgpu_device *adev = ring->adev; 618 unsigned vmhub = ring->vm_hub; 619 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 620 621 if (job->vmid == 0) 622 return false; 623 624 if (job->vm_needs_flush || ring->has_compute_vm_bug) 625 return true; 626 627 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 628 return true; 629 630 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 631 return true; 632 633 return false; 634 } 635 636 /** 637 * amdgpu_vm_flush - hardware flush the vm 638 * 639 * @ring: ring to use for flush 640 * @job: related job 641 * @need_pipe_sync: is pipe sync needed 642 * 643 * Emit a VM flush when it is necessary. 644 * 645 * Returns: 646 * 0 on success, errno otherwise. 647 */ 648 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 649 bool need_pipe_sync) 650 { 651 struct amdgpu_device *adev = ring->adev; 652 unsigned vmhub = ring->vm_hub; 653 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 654 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 655 bool spm_update_needed = job->spm_update_needed; 656 bool gds_switch_needed = ring->funcs->emit_gds_switch && 657 job->gds_switch_needed; 658 bool vm_flush_needed = job->vm_needs_flush; 659 struct dma_fence *fence = NULL; 660 bool pasid_mapping_needed = false; 661 unsigned int patch; 662 int r; 663 664 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 665 gds_switch_needed = true; 666 vm_flush_needed = true; 667 pasid_mapping_needed = true; 668 spm_update_needed = true; 669 } 670 671 mutex_lock(&id_mgr->lock); 672 if (id->pasid != job->pasid || !id->pasid_mapping || 673 !dma_fence_is_signaled(id->pasid_mapping)) 674 pasid_mapping_needed = true; 675 mutex_unlock(&id_mgr->lock); 676 677 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 678 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 679 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 680 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 681 ring->funcs->emit_wreg; 682 683 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 684 return 0; 685 686 amdgpu_ring_ib_begin(ring); 687 if (ring->funcs->init_cond_exec) 688 patch = amdgpu_ring_init_cond_exec(ring, 689 ring->cond_exe_gpu_addr); 690 691 if (need_pipe_sync) 692 amdgpu_ring_emit_pipeline_sync(ring); 693 694 if (vm_flush_needed) { 695 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 696 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 697 } 698 699 if (pasid_mapping_needed) 700 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 701 702 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 703 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 704 705 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 706 gds_switch_needed) { 707 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 708 job->gds_size, job->gws_base, 709 job->gws_size, job->oa_base, 710 job->oa_size); 711 } 712 713 if (vm_flush_needed || pasid_mapping_needed) { 714 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 715 if (r) 716 return r; 717 } 718 719 if (vm_flush_needed) { 720 mutex_lock(&id_mgr->lock); 721 dma_fence_put(id->last_flush); 722 id->last_flush = dma_fence_get(fence); 723 id->current_gpu_reset_count = 724 atomic_read(&adev->gpu_reset_counter); 725 mutex_unlock(&id_mgr->lock); 726 } 727 728 if (pasid_mapping_needed) { 729 mutex_lock(&id_mgr->lock); 730 id->pasid = job->pasid; 731 dma_fence_put(id->pasid_mapping); 732 id->pasid_mapping = dma_fence_get(fence); 733 mutex_unlock(&id_mgr->lock); 734 } 735 dma_fence_put(fence); 736 737 amdgpu_ring_patch_cond_exec(ring, patch); 738 739 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 740 if (ring->funcs->emit_switch_buffer) { 741 amdgpu_ring_emit_switch_buffer(ring); 742 amdgpu_ring_emit_switch_buffer(ring); 743 } 744 amdgpu_ring_ib_end(ring); 745 return 0; 746 } 747 748 /** 749 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 750 * 751 * @vm: requested vm 752 * @bo: requested buffer object 753 * 754 * Find @bo inside the requested vm. 755 * Search inside the @bos vm list for the requested vm 756 * Returns the found bo_va or NULL if none is found 757 * 758 * Object has to be reserved! 759 * 760 * Returns: 761 * Found bo_va or NULL. 762 */ 763 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 764 struct amdgpu_bo *bo) 765 { 766 struct amdgpu_vm_bo_base *base; 767 768 for (base = bo->vm_bo; base; base = base->next) { 769 if (base->vm != vm) 770 continue; 771 772 return container_of(base, struct amdgpu_bo_va, base); 773 } 774 return NULL; 775 } 776 777 /** 778 * amdgpu_vm_map_gart - Resolve gart mapping of addr 779 * 780 * @pages_addr: optional DMA address to use for lookup 781 * @addr: the unmapped addr 782 * 783 * Look up the physical address of the page that the pte resolves 784 * to. 785 * 786 * Returns: 787 * The pointer for the page table entry. 788 */ 789 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 790 { 791 uint64_t result; 792 793 /* page table offset */ 794 result = pages_addr[addr >> PAGE_SHIFT]; 795 796 /* in case cpu page size != gpu page size*/ 797 result |= addr & (~PAGE_MASK); 798 799 result &= 0xFFFFFFFFFFFFF000ULL; 800 801 return result; 802 } 803 804 /** 805 * amdgpu_vm_update_pdes - make sure that all directories are valid 806 * 807 * @adev: amdgpu_device pointer 808 * @vm: requested vm 809 * @immediate: submit immediately to the paging queue 810 * 811 * Makes sure all directories are up to date. 812 * 813 * Returns: 814 * 0 for success, error for failure. 815 */ 816 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 817 struct amdgpu_vm *vm, bool immediate) 818 { 819 struct amdgpu_vm_update_params params; 820 struct amdgpu_vm_bo_base *entry; 821 bool flush_tlb_needed = false; 822 LIST_HEAD(relocated); 823 int r, idx; 824 825 spin_lock(&vm->status_lock); 826 list_splice_init(&vm->relocated, &relocated); 827 spin_unlock(&vm->status_lock); 828 829 if (list_empty(&relocated)) 830 return 0; 831 832 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 833 return -ENODEV; 834 835 memset(¶ms, 0, sizeof(params)); 836 params.adev = adev; 837 params.vm = vm; 838 params.immediate = immediate; 839 840 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 841 if (r) 842 goto error; 843 844 list_for_each_entry(entry, &relocated, vm_status) { 845 /* vm_flush_needed after updating moved PDEs */ 846 flush_tlb_needed |= entry->moved; 847 848 r = amdgpu_vm_pde_update(¶ms, entry); 849 if (r) 850 goto error; 851 } 852 853 r = vm->update_funcs->commit(¶ms, &vm->last_update); 854 if (r) 855 goto error; 856 857 if (flush_tlb_needed) 858 atomic64_inc(&vm->tlb_seq); 859 860 while (!list_empty(&relocated)) { 861 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 862 vm_status); 863 amdgpu_vm_bo_idle(entry); 864 } 865 866 error: 867 drm_dev_exit(idx); 868 return r; 869 } 870 871 /** 872 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 873 * @fence: unused 874 * @cb: the callback structure 875 * 876 * Increments the tlb sequence to make sure that future CS execute a VM flush. 877 */ 878 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 879 struct dma_fence_cb *cb) 880 { 881 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 882 883 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 884 atomic64_inc(&tlb_cb->vm->tlb_seq); 885 kfree(tlb_cb); 886 } 887 888 /** 889 * amdgpu_vm_tlb_flush - prepare TLB flush 890 * 891 * @params: parameters for update 892 * @fence: input fence to sync TLB flush with 893 * @tlb_cb: the callback structure 894 * 895 * Increments the tlb sequence to make sure that future CS execute a VM flush. 896 */ 897 static void 898 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 899 struct dma_fence **fence, 900 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 901 { 902 struct amdgpu_vm *vm = params->vm; 903 904 if (!fence || !*fence) 905 return; 906 907 tlb_cb->vm = vm; 908 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 909 amdgpu_vm_tlb_seq_cb)) { 910 dma_fence_put(vm->last_tlb_flush); 911 vm->last_tlb_flush = dma_fence_get(*fence); 912 } else { 913 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 914 } 915 916 /* Prepare a TLB flush fence to be attached to PTs */ 917 if (!params->unlocked && vm->is_compute_context) { 918 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 919 920 /* Makes sure no PD/PT is freed before the flush */ 921 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 922 DMA_RESV_USAGE_BOOKKEEP); 923 } 924 } 925 926 /** 927 * amdgpu_vm_update_range - update a range in the vm page table 928 * 929 * @adev: amdgpu_device pointer to use for commands 930 * @vm: the VM to update the range 931 * @immediate: immediate submission in a page fault 932 * @unlocked: unlocked invalidation during MM callback 933 * @flush_tlb: trigger tlb invalidation after update completed 934 * @allow_override: change MTYPE for local NUMA nodes 935 * @resv: fences we need to sync to 936 * @start: start of mapped range 937 * @last: last mapped entry 938 * @flags: flags for the entries 939 * @offset: offset into nodes and pages_addr 940 * @vram_base: base for vram mappings 941 * @res: ttm_resource to map 942 * @pages_addr: DMA addresses to use for mapping 943 * @fence: optional resulting fence 944 * 945 * Fill in the page table entries between @start and @last. 946 * 947 * Returns: 948 * 0 for success, negative erro code for failure. 949 */ 950 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 951 bool immediate, bool unlocked, bool flush_tlb, bool allow_override, 952 struct dma_resv *resv, uint64_t start, uint64_t last, 953 uint64_t flags, uint64_t offset, uint64_t vram_base, 954 struct ttm_resource *res, dma_addr_t *pages_addr, 955 struct dma_fence **fence) 956 { 957 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 958 struct amdgpu_vm_update_params params; 959 struct amdgpu_res_cursor cursor; 960 enum amdgpu_sync_mode sync_mode; 961 int r, idx; 962 963 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 964 return -ENODEV; 965 966 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 967 if (!tlb_cb) { 968 drm_dev_exit(idx); 969 return -ENOMEM; 970 } 971 972 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 973 * heavy-weight flush TLB unconditionally. 974 */ 975 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 976 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 977 978 /* 979 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 980 */ 981 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 982 983 memset(¶ms, 0, sizeof(params)); 984 params.adev = adev; 985 params.vm = vm; 986 params.immediate = immediate; 987 params.pages_addr = pages_addr; 988 params.unlocked = unlocked; 989 params.needs_flush = flush_tlb; 990 params.allow_override = allow_override; 991 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 992 993 /* Implicitly sync to command submissions in the same VM before 994 * unmapping. Sync to moving fences before mapping. 995 */ 996 if (!(flags & AMDGPU_PTE_VALID)) 997 sync_mode = AMDGPU_SYNC_EQ_OWNER; 998 else 999 sync_mode = AMDGPU_SYNC_EXPLICIT; 1000 1001 amdgpu_vm_eviction_lock(vm); 1002 if (vm->evicting) { 1003 r = -EBUSY; 1004 goto error_free; 1005 } 1006 1007 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1008 struct dma_fence *tmp = dma_fence_get_stub(); 1009 1010 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1011 swap(vm->last_unlocked, tmp); 1012 dma_fence_put(tmp); 1013 } 1014 1015 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1016 if (r) 1017 goto error_free; 1018 1019 amdgpu_res_first(pages_addr ? NULL : res, offset, 1020 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1021 while (cursor.remaining) { 1022 uint64_t tmp, num_entries, addr; 1023 1024 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1025 if (pages_addr) { 1026 bool contiguous = true; 1027 1028 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1029 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1030 uint64_t count; 1031 1032 contiguous = pages_addr[pfn + 1] == 1033 pages_addr[pfn] + PAGE_SIZE; 1034 1035 tmp = num_entries / 1036 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1037 for (count = 2; count < tmp; ++count) { 1038 uint64_t idx = pfn + count; 1039 1040 if (contiguous != (pages_addr[idx] == 1041 pages_addr[idx - 1] + PAGE_SIZE)) 1042 break; 1043 } 1044 if (!contiguous) 1045 count--; 1046 num_entries = count * 1047 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1048 } 1049 1050 if (!contiguous) { 1051 addr = cursor.start; 1052 params.pages_addr = pages_addr; 1053 } else { 1054 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1055 params.pages_addr = NULL; 1056 } 1057 1058 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1059 addr = vram_base + cursor.start; 1060 } else { 1061 addr = 0; 1062 } 1063 1064 tmp = start + num_entries; 1065 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1066 if (r) 1067 goto error_free; 1068 1069 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1070 start = tmp; 1071 } 1072 1073 r = vm->update_funcs->commit(¶ms, fence); 1074 if (r) 1075 goto error_free; 1076 1077 if (params.needs_flush) { 1078 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1079 tlb_cb = NULL; 1080 } 1081 1082 amdgpu_vm_pt_free_list(adev, ¶ms); 1083 1084 error_free: 1085 kfree(tlb_cb); 1086 amdgpu_vm_eviction_unlock(vm); 1087 drm_dev_exit(idx); 1088 return r; 1089 } 1090 1091 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va, 1092 struct amdgpu_mem_stats *stats) 1093 { 1094 struct amdgpu_vm *vm = bo_va->base.vm; 1095 struct amdgpu_bo *bo = bo_va->base.bo; 1096 1097 if (!bo) 1098 return; 1099 1100 /* 1101 * For now ignore BOs which are currently locked and potentially 1102 * changing their location. 1103 */ 1104 if (!amdgpu_vm_is_bo_always_valid(vm, bo) && 1105 !dma_resv_trylock(bo->tbo.base.resv)) 1106 return; 1107 1108 amdgpu_bo_get_memory(bo, stats); 1109 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 1110 dma_resv_unlock(bo->tbo.base.resv); 1111 } 1112 1113 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1114 struct amdgpu_mem_stats *stats) 1115 { 1116 struct amdgpu_bo_va *bo_va, *tmp; 1117 1118 spin_lock(&vm->status_lock); 1119 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) 1120 amdgpu_vm_bo_get_memory(bo_va, stats); 1121 1122 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) 1123 amdgpu_vm_bo_get_memory(bo_va, stats); 1124 1125 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) 1126 amdgpu_vm_bo_get_memory(bo_va, stats); 1127 1128 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) 1129 amdgpu_vm_bo_get_memory(bo_va, stats); 1130 1131 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) 1132 amdgpu_vm_bo_get_memory(bo_va, stats); 1133 1134 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) 1135 amdgpu_vm_bo_get_memory(bo_va, stats); 1136 spin_unlock(&vm->status_lock); 1137 } 1138 1139 /** 1140 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1141 * 1142 * @adev: amdgpu_device pointer 1143 * @bo_va: requested BO and VM object 1144 * @clear: if true clear the entries 1145 * 1146 * Fill in the page table entries for @bo_va. 1147 * 1148 * Returns: 1149 * 0 for success, -EINVAL for failure. 1150 */ 1151 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1152 bool clear) 1153 { 1154 struct amdgpu_bo *bo = bo_va->base.bo; 1155 struct amdgpu_vm *vm = bo_va->base.vm; 1156 struct amdgpu_bo_va_mapping *mapping; 1157 dma_addr_t *pages_addr = NULL; 1158 struct ttm_resource *mem; 1159 struct dma_fence **last_update; 1160 bool flush_tlb = clear; 1161 bool uncached; 1162 struct dma_resv *resv; 1163 uint64_t vram_base; 1164 uint64_t flags; 1165 int r; 1166 1167 if (clear || !bo) { 1168 mem = NULL; 1169 resv = vm->root.bo->tbo.base.resv; 1170 } else { 1171 struct drm_gem_object *obj = &bo->tbo.base; 1172 1173 resv = bo->tbo.base.resv; 1174 if (obj->import_attach && bo_va->is_xgmi) { 1175 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1176 struct drm_gem_object *gobj = dma_buf->priv; 1177 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1178 1179 if (abo->tbo.resource && 1180 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1181 bo = gem_to_amdgpu_bo(gobj); 1182 } 1183 mem = bo->tbo.resource; 1184 if (mem && (mem->mem_type == TTM_PL_TT || 1185 mem->mem_type == AMDGPU_PL_PREEMPT)) 1186 pages_addr = bo->tbo.ttm->dma_address; 1187 } 1188 1189 if (bo) { 1190 struct amdgpu_device *bo_adev; 1191 1192 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1193 1194 if (amdgpu_bo_encrypted(bo)) 1195 flags |= AMDGPU_PTE_TMZ; 1196 1197 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1198 vram_base = bo_adev->vm_manager.vram_base_offset; 1199 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1200 } else { 1201 flags = 0x0; 1202 vram_base = 0; 1203 uncached = false; 1204 } 1205 1206 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1207 last_update = &vm->last_update; 1208 else 1209 last_update = &bo_va->last_pt_update; 1210 1211 if (!clear && bo_va->base.moved) { 1212 flush_tlb = true; 1213 list_splice_init(&bo_va->valids, &bo_va->invalids); 1214 1215 } else if (bo_va->cleared != clear) { 1216 list_splice_init(&bo_va->valids, &bo_va->invalids); 1217 } 1218 1219 list_for_each_entry(mapping, &bo_va->invalids, list) { 1220 uint64_t update_flags = flags; 1221 1222 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1223 * but in case of something, we filter the flags in first place 1224 */ 1225 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1226 update_flags &= ~AMDGPU_PTE_READABLE; 1227 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1228 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1229 1230 /* Apply ASIC specific mapping flags */ 1231 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1232 1233 trace_amdgpu_vm_bo_update(mapping); 1234 1235 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1236 !uncached, resv, mapping->start, mapping->last, 1237 update_flags, mapping->offset, 1238 vram_base, mem, pages_addr, 1239 last_update); 1240 if (r) 1241 return r; 1242 } 1243 1244 /* If the BO is not in its preferred location add it back to 1245 * the evicted list so that it gets validated again on the 1246 * next command submission. 1247 */ 1248 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1249 uint32_t mem_type = bo->tbo.resource->mem_type; 1250 1251 if (!(bo->preferred_domains & 1252 amdgpu_mem_type_to_domain(mem_type))) 1253 amdgpu_vm_bo_evicted(&bo_va->base); 1254 else 1255 amdgpu_vm_bo_idle(&bo_va->base); 1256 } else { 1257 amdgpu_vm_bo_done(&bo_va->base); 1258 } 1259 1260 list_splice_init(&bo_va->invalids, &bo_va->valids); 1261 bo_va->cleared = clear; 1262 bo_va->base.moved = false; 1263 1264 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1265 list_for_each_entry(mapping, &bo_va->valids, list) 1266 trace_amdgpu_vm_bo_mapping(mapping); 1267 } 1268 1269 return 0; 1270 } 1271 1272 /** 1273 * amdgpu_vm_update_prt_state - update the global PRT state 1274 * 1275 * @adev: amdgpu_device pointer 1276 */ 1277 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1278 { 1279 unsigned long flags; 1280 bool enable; 1281 1282 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1283 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1284 adev->gmc.gmc_funcs->set_prt(adev, enable); 1285 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1286 } 1287 1288 /** 1289 * amdgpu_vm_prt_get - add a PRT user 1290 * 1291 * @adev: amdgpu_device pointer 1292 */ 1293 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1294 { 1295 if (!adev->gmc.gmc_funcs->set_prt) 1296 return; 1297 1298 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1299 amdgpu_vm_update_prt_state(adev); 1300 } 1301 1302 /** 1303 * amdgpu_vm_prt_put - drop a PRT user 1304 * 1305 * @adev: amdgpu_device pointer 1306 */ 1307 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1308 { 1309 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1310 amdgpu_vm_update_prt_state(adev); 1311 } 1312 1313 /** 1314 * amdgpu_vm_prt_cb - callback for updating the PRT status 1315 * 1316 * @fence: fence for the callback 1317 * @_cb: the callback function 1318 */ 1319 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1320 { 1321 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1322 1323 amdgpu_vm_prt_put(cb->adev); 1324 kfree(cb); 1325 } 1326 1327 /** 1328 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1329 * 1330 * @adev: amdgpu_device pointer 1331 * @fence: fence for the callback 1332 */ 1333 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1334 struct dma_fence *fence) 1335 { 1336 struct amdgpu_prt_cb *cb; 1337 1338 if (!adev->gmc.gmc_funcs->set_prt) 1339 return; 1340 1341 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1342 if (!cb) { 1343 /* Last resort when we are OOM */ 1344 if (fence) 1345 dma_fence_wait(fence, false); 1346 1347 amdgpu_vm_prt_put(adev); 1348 } else { 1349 cb->adev = adev; 1350 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1351 amdgpu_vm_prt_cb)) 1352 amdgpu_vm_prt_cb(fence, &cb->cb); 1353 } 1354 } 1355 1356 /** 1357 * amdgpu_vm_free_mapping - free a mapping 1358 * 1359 * @adev: amdgpu_device pointer 1360 * @vm: requested vm 1361 * @mapping: mapping to be freed 1362 * @fence: fence of the unmap operation 1363 * 1364 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1365 */ 1366 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1367 struct amdgpu_vm *vm, 1368 struct amdgpu_bo_va_mapping *mapping, 1369 struct dma_fence *fence) 1370 { 1371 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1372 amdgpu_vm_add_prt_cb(adev, fence); 1373 kfree(mapping); 1374 } 1375 1376 /** 1377 * amdgpu_vm_prt_fini - finish all prt mappings 1378 * 1379 * @adev: amdgpu_device pointer 1380 * @vm: requested vm 1381 * 1382 * Register a cleanup callback to disable PRT support after VM dies. 1383 */ 1384 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1385 { 1386 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1387 struct dma_resv_iter cursor; 1388 struct dma_fence *fence; 1389 1390 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1391 /* Add a callback for each fence in the reservation object */ 1392 amdgpu_vm_prt_get(adev); 1393 amdgpu_vm_add_prt_cb(adev, fence); 1394 } 1395 } 1396 1397 /** 1398 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1399 * 1400 * @adev: amdgpu_device pointer 1401 * @vm: requested vm 1402 * @fence: optional resulting fence (unchanged if no work needed to be done 1403 * or if an error occurred) 1404 * 1405 * Make sure all freed BOs are cleared in the PT. 1406 * PTs have to be reserved and mutex must be locked! 1407 * 1408 * Returns: 1409 * 0 for success. 1410 * 1411 */ 1412 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1413 struct amdgpu_vm *vm, 1414 struct dma_fence **fence) 1415 { 1416 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1417 struct amdgpu_bo_va_mapping *mapping; 1418 uint64_t init_pte_value = 0; 1419 struct dma_fence *f = NULL; 1420 int r; 1421 1422 while (!list_empty(&vm->freed)) { 1423 mapping = list_first_entry(&vm->freed, 1424 struct amdgpu_bo_va_mapping, list); 1425 list_del(&mapping->list); 1426 1427 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1428 resv, mapping->start, mapping->last, 1429 init_pte_value, 0, 0, NULL, NULL, 1430 &f); 1431 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1432 if (r) { 1433 dma_fence_put(f); 1434 return r; 1435 } 1436 } 1437 1438 if (fence && f) { 1439 dma_fence_put(*fence); 1440 *fence = f; 1441 } else { 1442 dma_fence_put(f); 1443 } 1444 1445 return 0; 1446 1447 } 1448 1449 /** 1450 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1451 * 1452 * @adev: amdgpu_device pointer 1453 * @vm: requested vm 1454 * @ticket: optional reservation ticket used to reserve the VM 1455 * 1456 * Make sure all BOs which are moved are updated in the PTs. 1457 * 1458 * Returns: 1459 * 0 for success. 1460 * 1461 * PTs have to be reserved! 1462 */ 1463 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1464 struct amdgpu_vm *vm, 1465 struct ww_acquire_ctx *ticket) 1466 { 1467 struct amdgpu_bo_va *bo_va; 1468 struct dma_resv *resv; 1469 bool clear, unlock; 1470 int r; 1471 1472 spin_lock(&vm->status_lock); 1473 while (!list_empty(&vm->moved)) { 1474 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1475 base.vm_status); 1476 spin_unlock(&vm->status_lock); 1477 1478 /* Per VM BOs never need to bo cleared in the page tables */ 1479 r = amdgpu_vm_bo_update(adev, bo_va, false); 1480 if (r) 1481 return r; 1482 spin_lock(&vm->status_lock); 1483 } 1484 1485 while (!list_empty(&vm->invalidated)) { 1486 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1487 base.vm_status); 1488 resv = bo_va->base.bo->tbo.base.resv; 1489 spin_unlock(&vm->status_lock); 1490 1491 /* Try to reserve the BO to avoid clearing its ptes */ 1492 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1493 clear = false; 1494 unlock = true; 1495 /* The caller is already holding the reservation lock */ 1496 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1497 clear = false; 1498 unlock = false; 1499 /* Somebody else is using the BO right now */ 1500 } else { 1501 clear = true; 1502 unlock = false; 1503 } 1504 1505 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1506 1507 if (unlock) 1508 dma_resv_unlock(resv); 1509 if (r) 1510 return r; 1511 1512 /* Remember evicted DMABuf imports in compute VMs for later 1513 * validation 1514 */ 1515 if (vm->is_compute_context && 1516 bo_va->base.bo->tbo.base.import_attach && 1517 (!bo_va->base.bo->tbo.resource || 1518 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1519 amdgpu_vm_bo_evicted_user(&bo_va->base); 1520 1521 spin_lock(&vm->status_lock); 1522 } 1523 spin_unlock(&vm->status_lock); 1524 1525 return 0; 1526 } 1527 1528 /** 1529 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1530 * 1531 * @adev: amdgpu_device pointer 1532 * @vm: requested vm 1533 * @flush_type: flush type 1534 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1535 * 1536 * Flush TLB if needed for a compute VM. 1537 * 1538 * Returns: 1539 * 0 for success. 1540 */ 1541 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1542 struct amdgpu_vm *vm, 1543 uint32_t flush_type, 1544 uint32_t xcc_mask) 1545 { 1546 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1547 bool all_hub = false; 1548 int xcc = 0, r = 0; 1549 1550 WARN_ON_ONCE(!vm->is_compute_context); 1551 1552 /* 1553 * It can be that we race and lose here, but that is extremely unlikely 1554 * and the worst thing which could happen is that we flush the changes 1555 * into the TLB once more which is harmless. 1556 */ 1557 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1558 return 0; 1559 1560 if (adev->family == AMDGPU_FAMILY_AI || 1561 adev->family == AMDGPU_FAMILY_RV) 1562 all_hub = true; 1563 1564 for_each_inst(xcc, xcc_mask) { 1565 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1566 all_hub, xcc); 1567 if (r) 1568 break; 1569 } 1570 return r; 1571 } 1572 1573 /** 1574 * amdgpu_vm_bo_add - add a bo to a specific vm 1575 * 1576 * @adev: amdgpu_device pointer 1577 * @vm: requested vm 1578 * @bo: amdgpu buffer object 1579 * 1580 * Add @bo into the requested vm. 1581 * Add @bo to the list of bos associated with the vm 1582 * 1583 * Returns: 1584 * Newly added bo_va or NULL for failure 1585 * 1586 * Object has to be reserved! 1587 */ 1588 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1589 struct amdgpu_vm *vm, 1590 struct amdgpu_bo *bo) 1591 { 1592 struct amdgpu_bo_va *bo_va; 1593 1594 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1595 if (bo_va == NULL) { 1596 return NULL; 1597 } 1598 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1599 1600 bo_va->ref_count = 1; 1601 bo_va->last_pt_update = dma_fence_get_stub(); 1602 INIT_LIST_HEAD(&bo_va->valids); 1603 INIT_LIST_HEAD(&bo_va->invalids); 1604 1605 if (!bo) 1606 return bo_va; 1607 1608 dma_resv_assert_held(bo->tbo.base.resv); 1609 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1610 bo_va->is_xgmi = true; 1611 /* Power up XGMI if it can be potentially used */ 1612 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1613 } 1614 1615 return bo_va; 1616 } 1617 1618 1619 /** 1620 * amdgpu_vm_bo_insert_map - insert a new mapping 1621 * 1622 * @adev: amdgpu_device pointer 1623 * @bo_va: bo_va to store the address 1624 * @mapping: the mapping to insert 1625 * 1626 * Insert a new mapping into all structures. 1627 */ 1628 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1629 struct amdgpu_bo_va *bo_va, 1630 struct amdgpu_bo_va_mapping *mapping) 1631 { 1632 struct amdgpu_vm *vm = bo_va->base.vm; 1633 struct amdgpu_bo *bo = bo_va->base.bo; 1634 1635 mapping->bo_va = bo_va; 1636 list_add(&mapping->list, &bo_va->invalids); 1637 amdgpu_vm_it_insert(mapping, &vm->va); 1638 1639 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1640 amdgpu_vm_prt_get(adev); 1641 1642 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1643 amdgpu_vm_bo_moved(&bo_va->base); 1644 1645 trace_amdgpu_vm_bo_map(bo_va, mapping); 1646 } 1647 1648 /* Validate operation parameters to prevent potential abuse */ 1649 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1650 struct amdgpu_bo *bo, 1651 uint64_t saddr, 1652 uint64_t offset, 1653 uint64_t size) 1654 { 1655 uint64_t tmp, lpfn; 1656 1657 if (saddr & AMDGPU_GPU_PAGE_MASK 1658 || offset & AMDGPU_GPU_PAGE_MASK 1659 || size & AMDGPU_GPU_PAGE_MASK) 1660 return -EINVAL; 1661 1662 if (check_add_overflow(saddr, size, &tmp) 1663 || check_add_overflow(offset, size, &tmp) 1664 || size == 0 /* which also leads to end < begin */) 1665 return -EINVAL; 1666 1667 /* make sure object fit at this offset */ 1668 if (bo && offset + size > amdgpu_bo_size(bo)) 1669 return -EINVAL; 1670 1671 /* Ensure last pfn not exceed max_pfn */ 1672 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1673 if (lpfn >= adev->vm_manager.max_pfn) 1674 return -EINVAL; 1675 1676 return 0; 1677 } 1678 1679 /** 1680 * amdgpu_vm_bo_map - map bo inside a vm 1681 * 1682 * @adev: amdgpu_device pointer 1683 * @bo_va: bo_va to store the address 1684 * @saddr: where to map the BO 1685 * @offset: requested offset in the BO 1686 * @size: BO size in bytes 1687 * @flags: attributes of pages (read/write/valid/etc.) 1688 * 1689 * Add a mapping of the BO at the specefied addr into the VM. 1690 * 1691 * Returns: 1692 * 0 for success, error for failure. 1693 * 1694 * Object has to be reserved and unreserved outside! 1695 */ 1696 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1697 struct amdgpu_bo_va *bo_va, 1698 uint64_t saddr, uint64_t offset, 1699 uint64_t size, uint64_t flags) 1700 { 1701 struct amdgpu_bo_va_mapping *mapping, *tmp; 1702 struct amdgpu_bo *bo = bo_va->base.bo; 1703 struct amdgpu_vm *vm = bo_va->base.vm; 1704 uint64_t eaddr; 1705 int r; 1706 1707 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1708 if (r) 1709 return r; 1710 1711 saddr /= AMDGPU_GPU_PAGE_SIZE; 1712 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1713 1714 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1715 if (tmp) { 1716 /* bo and tmp overlap, invalid addr */ 1717 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1718 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1719 tmp->start, tmp->last + 1); 1720 return -EINVAL; 1721 } 1722 1723 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1724 if (!mapping) 1725 return -ENOMEM; 1726 1727 mapping->start = saddr; 1728 mapping->last = eaddr; 1729 mapping->offset = offset; 1730 mapping->flags = flags; 1731 1732 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1733 1734 return 0; 1735 } 1736 1737 /** 1738 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1739 * 1740 * @adev: amdgpu_device pointer 1741 * @bo_va: bo_va to store the address 1742 * @saddr: where to map the BO 1743 * @offset: requested offset in the BO 1744 * @size: BO size in bytes 1745 * @flags: attributes of pages (read/write/valid/etc.) 1746 * 1747 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1748 * mappings as we do so. 1749 * 1750 * Returns: 1751 * 0 for success, error for failure. 1752 * 1753 * Object has to be reserved and unreserved outside! 1754 */ 1755 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1756 struct amdgpu_bo_va *bo_va, 1757 uint64_t saddr, uint64_t offset, 1758 uint64_t size, uint64_t flags) 1759 { 1760 struct amdgpu_bo_va_mapping *mapping; 1761 struct amdgpu_bo *bo = bo_va->base.bo; 1762 uint64_t eaddr; 1763 int r; 1764 1765 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1766 if (r) 1767 return r; 1768 1769 /* Allocate all the needed memory */ 1770 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1771 if (!mapping) 1772 return -ENOMEM; 1773 1774 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1775 if (r) { 1776 kfree(mapping); 1777 return r; 1778 } 1779 1780 saddr /= AMDGPU_GPU_PAGE_SIZE; 1781 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1782 1783 mapping->start = saddr; 1784 mapping->last = eaddr; 1785 mapping->offset = offset; 1786 mapping->flags = flags; 1787 1788 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1789 1790 return 0; 1791 } 1792 1793 /** 1794 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1795 * 1796 * @adev: amdgpu_device pointer 1797 * @bo_va: bo_va to remove the address from 1798 * @saddr: where to the BO is mapped 1799 * 1800 * Remove a mapping of the BO at the specefied addr from the VM. 1801 * 1802 * Returns: 1803 * 0 for success, error for failure. 1804 * 1805 * Object has to be reserved and unreserved outside! 1806 */ 1807 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1808 struct amdgpu_bo_va *bo_va, 1809 uint64_t saddr) 1810 { 1811 struct amdgpu_bo_va_mapping *mapping; 1812 struct amdgpu_vm *vm = bo_va->base.vm; 1813 bool valid = true; 1814 1815 saddr /= AMDGPU_GPU_PAGE_SIZE; 1816 1817 list_for_each_entry(mapping, &bo_va->valids, list) { 1818 if (mapping->start == saddr) 1819 break; 1820 } 1821 1822 if (&mapping->list == &bo_va->valids) { 1823 valid = false; 1824 1825 list_for_each_entry(mapping, &bo_va->invalids, list) { 1826 if (mapping->start == saddr) 1827 break; 1828 } 1829 1830 if (&mapping->list == &bo_va->invalids) 1831 return -ENOENT; 1832 } 1833 1834 list_del(&mapping->list); 1835 amdgpu_vm_it_remove(mapping, &vm->va); 1836 mapping->bo_va = NULL; 1837 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1838 1839 if (valid) 1840 list_add(&mapping->list, &vm->freed); 1841 else 1842 amdgpu_vm_free_mapping(adev, vm, mapping, 1843 bo_va->last_pt_update); 1844 1845 return 0; 1846 } 1847 1848 /** 1849 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1850 * 1851 * @adev: amdgpu_device pointer 1852 * @vm: VM structure to use 1853 * @saddr: start of the range 1854 * @size: size of the range 1855 * 1856 * Remove all mappings in a range, split them as appropriate. 1857 * 1858 * Returns: 1859 * 0 for success, error for failure. 1860 */ 1861 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1862 struct amdgpu_vm *vm, 1863 uint64_t saddr, uint64_t size) 1864 { 1865 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1866 LIST_HEAD(removed); 1867 uint64_t eaddr; 1868 int r; 1869 1870 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 1871 if (r) 1872 return r; 1873 1874 saddr /= AMDGPU_GPU_PAGE_SIZE; 1875 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1876 1877 /* Allocate all the needed memory */ 1878 before = kzalloc(sizeof(*before), GFP_KERNEL); 1879 if (!before) 1880 return -ENOMEM; 1881 INIT_LIST_HEAD(&before->list); 1882 1883 after = kzalloc(sizeof(*after), GFP_KERNEL); 1884 if (!after) { 1885 kfree(before); 1886 return -ENOMEM; 1887 } 1888 INIT_LIST_HEAD(&after->list); 1889 1890 /* Now gather all removed mappings */ 1891 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1892 while (tmp) { 1893 /* Remember mapping split at the start */ 1894 if (tmp->start < saddr) { 1895 before->start = tmp->start; 1896 before->last = saddr - 1; 1897 before->offset = tmp->offset; 1898 before->flags = tmp->flags; 1899 before->bo_va = tmp->bo_va; 1900 list_add(&before->list, &tmp->bo_va->invalids); 1901 } 1902 1903 /* Remember mapping split at the end */ 1904 if (tmp->last > eaddr) { 1905 after->start = eaddr + 1; 1906 after->last = tmp->last; 1907 after->offset = tmp->offset; 1908 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 1909 after->flags = tmp->flags; 1910 after->bo_va = tmp->bo_va; 1911 list_add(&after->list, &tmp->bo_va->invalids); 1912 } 1913 1914 list_del(&tmp->list); 1915 list_add(&tmp->list, &removed); 1916 1917 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1918 } 1919 1920 /* And free them up */ 1921 list_for_each_entry_safe(tmp, next, &removed, list) { 1922 amdgpu_vm_it_remove(tmp, &vm->va); 1923 list_del(&tmp->list); 1924 1925 if (tmp->start < saddr) 1926 tmp->start = saddr; 1927 if (tmp->last > eaddr) 1928 tmp->last = eaddr; 1929 1930 tmp->bo_va = NULL; 1931 list_add(&tmp->list, &vm->freed); 1932 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1933 } 1934 1935 /* Insert partial mapping before the range */ 1936 if (!list_empty(&before->list)) { 1937 struct amdgpu_bo *bo = before->bo_va->base.bo; 1938 1939 amdgpu_vm_it_insert(before, &vm->va); 1940 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1941 amdgpu_vm_prt_get(adev); 1942 1943 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1944 !before->bo_va->base.moved) 1945 amdgpu_vm_bo_moved(&before->bo_va->base); 1946 } else { 1947 kfree(before); 1948 } 1949 1950 /* Insert partial mapping after the range */ 1951 if (!list_empty(&after->list)) { 1952 struct amdgpu_bo *bo = after->bo_va->base.bo; 1953 1954 amdgpu_vm_it_insert(after, &vm->va); 1955 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1956 amdgpu_vm_prt_get(adev); 1957 1958 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1959 !after->bo_va->base.moved) 1960 amdgpu_vm_bo_moved(&after->bo_va->base); 1961 } else { 1962 kfree(after); 1963 } 1964 1965 return 0; 1966 } 1967 1968 /** 1969 * amdgpu_vm_bo_lookup_mapping - find mapping by address 1970 * 1971 * @vm: the requested VM 1972 * @addr: the address 1973 * 1974 * Find a mapping by it's address. 1975 * 1976 * Returns: 1977 * The amdgpu_bo_va_mapping matching for addr or NULL 1978 * 1979 */ 1980 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 1981 uint64_t addr) 1982 { 1983 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 1984 } 1985 1986 /** 1987 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 1988 * 1989 * @vm: the requested vm 1990 * @ticket: CS ticket 1991 * 1992 * Trace all mappings of BOs reserved during a command submission. 1993 */ 1994 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 1995 { 1996 struct amdgpu_bo_va_mapping *mapping; 1997 1998 if (!trace_amdgpu_vm_bo_cs_enabled()) 1999 return; 2000 2001 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2002 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2003 if (mapping->bo_va && mapping->bo_va->base.bo) { 2004 struct amdgpu_bo *bo; 2005 2006 bo = mapping->bo_va->base.bo; 2007 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2008 ticket) 2009 continue; 2010 } 2011 2012 trace_amdgpu_vm_bo_cs(mapping); 2013 } 2014 } 2015 2016 /** 2017 * amdgpu_vm_bo_del - remove a bo from a specific vm 2018 * 2019 * @adev: amdgpu_device pointer 2020 * @bo_va: requested bo_va 2021 * 2022 * Remove @bo_va->bo from the requested vm. 2023 * 2024 * Object have to be reserved! 2025 */ 2026 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2027 struct amdgpu_bo_va *bo_va) 2028 { 2029 struct amdgpu_bo_va_mapping *mapping, *next; 2030 struct amdgpu_bo *bo = bo_va->base.bo; 2031 struct amdgpu_vm *vm = bo_va->base.vm; 2032 struct amdgpu_vm_bo_base **base; 2033 2034 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2035 2036 if (bo) { 2037 dma_resv_assert_held(bo->tbo.base.resv); 2038 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2039 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2040 2041 for (base = &bo_va->base.bo->vm_bo; *base; 2042 base = &(*base)->next) { 2043 if (*base != &bo_va->base) 2044 continue; 2045 2046 *base = bo_va->base.next; 2047 break; 2048 } 2049 } 2050 2051 spin_lock(&vm->status_lock); 2052 list_del(&bo_va->base.vm_status); 2053 spin_unlock(&vm->status_lock); 2054 2055 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2056 list_del(&mapping->list); 2057 amdgpu_vm_it_remove(mapping, &vm->va); 2058 mapping->bo_va = NULL; 2059 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2060 list_add(&mapping->list, &vm->freed); 2061 } 2062 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2063 list_del(&mapping->list); 2064 amdgpu_vm_it_remove(mapping, &vm->va); 2065 amdgpu_vm_free_mapping(adev, vm, mapping, 2066 bo_va->last_pt_update); 2067 } 2068 2069 dma_fence_put(bo_va->last_pt_update); 2070 2071 if (bo && bo_va->is_xgmi) 2072 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2073 2074 kfree(bo_va); 2075 } 2076 2077 /** 2078 * amdgpu_vm_evictable - check if we can evict a VM 2079 * 2080 * @bo: A page table of the VM. 2081 * 2082 * Check if it is possible to evict a VM. 2083 */ 2084 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2085 { 2086 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2087 2088 /* Page tables of a destroyed VM can go away immediately */ 2089 if (!bo_base || !bo_base->vm) 2090 return true; 2091 2092 /* Don't evict VM page tables while they are busy */ 2093 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2094 return false; 2095 2096 /* Try to block ongoing updates */ 2097 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2098 return false; 2099 2100 /* Don't evict VM page tables while they are updated */ 2101 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2102 amdgpu_vm_eviction_unlock(bo_base->vm); 2103 return false; 2104 } 2105 2106 bo_base->vm->evicting = true; 2107 amdgpu_vm_eviction_unlock(bo_base->vm); 2108 return true; 2109 } 2110 2111 /** 2112 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2113 * 2114 * @adev: amdgpu_device pointer 2115 * @bo: amdgpu buffer object 2116 * @evicted: is the BO evicted 2117 * 2118 * Mark @bo as invalid. 2119 */ 2120 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2121 struct amdgpu_bo *bo, bool evicted) 2122 { 2123 struct amdgpu_vm_bo_base *bo_base; 2124 2125 /* shadow bo doesn't have bo base, its validation needs its parent */ 2126 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2127 bo = bo->parent; 2128 2129 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2130 struct amdgpu_vm *vm = bo_base->vm; 2131 2132 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2133 amdgpu_vm_bo_evicted(bo_base); 2134 continue; 2135 } 2136 2137 if (bo_base->moved) 2138 continue; 2139 bo_base->moved = true; 2140 2141 if (bo->tbo.type == ttm_bo_type_kernel) 2142 amdgpu_vm_bo_relocated(bo_base); 2143 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2144 amdgpu_vm_bo_moved(bo_base); 2145 else 2146 amdgpu_vm_bo_invalidated(bo_base); 2147 } 2148 } 2149 2150 /** 2151 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2152 * 2153 * @vm_size: VM size 2154 * 2155 * Returns: 2156 * VM page table as power of two 2157 */ 2158 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2159 { 2160 /* Total bits covered by PD + PTs */ 2161 unsigned bits = ilog2(vm_size) + 18; 2162 2163 /* Make sure the PD is 4K in size up to 8GB address space. 2164 Above that split equal between PD and PTs */ 2165 if (vm_size <= 8) 2166 return (bits - 9); 2167 else 2168 return ((bits + 3) / 2); 2169 } 2170 2171 /** 2172 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2173 * 2174 * @adev: amdgpu_device pointer 2175 * @min_vm_size: the minimum vm size in GB if it's set auto 2176 * @fragment_size_default: Default PTE fragment size 2177 * @max_level: max VMPT level 2178 * @max_bits: max address space size in bits 2179 * 2180 */ 2181 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2182 uint32_t fragment_size_default, unsigned max_level, 2183 unsigned max_bits) 2184 { 2185 unsigned int max_size = 1 << (max_bits - 30); 2186 unsigned int vm_size; 2187 uint64_t tmp; 2188 2189 /* adjust vm size first */ 2190 if (amdgpu_vm_size != -1) { 2191 vm_size = amdgpu_vm_size; 2192 if (vm_size > max_size) { 2193 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2194 amdgpu_vm_size, max_size); 2195 vm_size = max_size; 2196 } 2197 } else { 2198 struct sysinfo si; 2199 unsigned int phys_ram_gb; 2200 2201 /* Optimal VM size depends on the amount of physical 2202 * RAM available. Underlying requirements and 2203 * assumptions: 2204 * 2205 * - Need to map system memory and VRAM from all GPUs 2206 * - VRAM from other GPUs not known here 2207 * - Assume VRAM <= system memory 2208 * - On GFX8 and older, VM space can be segmented for 2209 * different MTYPEs 2210 * - Need to allow room for fragmentation, guard pages etc. 2211 * 2212 * This adds up to a rough guess of system memory x3. 2213 * Round up to power of two to maximize the available 2214 * VM size with the given page table size. 2215 */ 2216 si_meminfo(&si); 2217 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2218 (1 << 30) - 1) >> 30; 2219 vm_size = roundup_pow_of_two( 2220 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2221 } 2222 2223 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2224 2225 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2226 if (amdgpu_vm_block_size != -1) 2227 tmp >>= amdgpu_vm_block_size - 9; 2228 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2229 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2230 switch (adev->vm_manager.num_level) { 2231 case 3: 2232 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2233 break; 2234 case 2: 2235 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2236 break; 2237 case 1: 2238 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2239 break; 2240 default: 2241 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2242 } 2243 /* block size depends on vm size and hw setup*/ 2244 if (amdgpu_vm_block_size != -1) 2245 adev->vm_manager.block_size = 2246 min((unsigned)amdgpu_vm_block_size, max_bits 2247 - AMDGPU_GPU_PAGE_SHIFT 2248 - 9 * adev->vm_manager.num_level); 2249 else if (adev->vm_manager.num_level > 1) 2250 adev->vm_manager.block_size = 9; 2251 else 2252 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2253 2254 if (amdgpu_vm_fragment_size == -1) 2255 adev->vm_manager.fragment_size = fragment_size_default; 2256 else 2257 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2258 2259 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2260 vm_size, adev->vm_manager.num_level + 1, 2261 adev->vm_manager.block_size, 2262 adev->vm_manager.fragment_size); 2263 } 2264 2265 /** 2266 * amdgpu_vm_wait_idle - wait for the VM to become idle 2267 * 2268 * @vm: VM object to wait for 2269 * @timeout: timeout to wait for VM to become idle 2270 */ 2271 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2272 { 2273 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2274 DMA_RESV_USAGE_BOOKKEEP, 2275 true, timeout); 2276 if (timeout <= 0) 2277 return timeout; 2278 2279 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2280 } 2281 2282 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2283 { 2284 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2285 2286 kfree(ti); 2287 } 2288 2289 static inline struct amdgpu_vm * 2290 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2291 { 2292 struct amdgpu_vm *vm; 2293 unsigned long flags; 2294 2295 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2296 vm = xa_load(&adev->vm_manager.pasids, pasid); 2297 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2298 2299 return vm; 2300 } 2301 2302 /** 2303 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2304 * 2305 * @task_info: task_info struct under discussion. 2306 * 2307 * frees the vm task_info ptr at the last put 2308 */ 2309 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2310 { 2311 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2312 } 2313 2314 /** 2315 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2316 * 2317 * @vm: VM to get info from 2318 * 2319 * Returns the reference counted task_info structure, which must be 2320 * referenced down with amdgpu_vm_put_task_info. 2321 */ 2322 struct amdgpu_task_info * 2323 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2324 { 2325 struct amdgpu_task_info *ti = NULL; 2326 2327 if (vm) { 2328 ti = vm->task_info; 2329 kref_get(&vm->task_info->refcount); 2330 } 2331 2332 return ti; 2333 } 2334 2335 /** 2336 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2337 * 2338 * @adev: drm device pointer 2339 * @pasid: PASID identifier for VM 2340 * 2341 * Returns the reference counted task_info structure, which must be 2342 * referenced down with amdgpu_vm_put_task_info. 2343 */ 2344 struct amdgpu_task_info * 2345 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2346 { 2347 return amdgpu_vm_get_task_info_vm( 2348 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2349 } 2350 2351 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2352 { 2353 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2354 if (!vm->task_info) 2355 return -ENOMEM; 2356 2357 kref_init(&vm->task_info->refcount); 2358 return 0; 2359 } 2360 2361 /** 2362 * amdgpu_vm_set_task_info - Sets VMs task info. 2363 * 2364 * @vm: vm for which to set the info 2365 */ 2366 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2367 { 2368 if (!vm->task_info) 2369 return; 2370 2371 if (vm->task_info->pid == current->pid) 2372 return; 2373 2374 vm->task_info->pid = current->pid; 2375 get_task_comm(vm->task_info->task_name, current); 2376 2377 if (current->group_leader->mm != current->mm) 2378 return; 2379 2380 vm->task_info->tgid = current->group_leader->pid; 2381 get_task_comm(vm->task_info->process_name, current->group_leader); 2382 } 2383 2384 /** 2385 * amdgpu_vm_init - initialize a vm instance 2386 * 2387 * @adev: amdgpu_device pointer 2388 * @vm: requested vm 2389 * @xcp_id: GPU partition selection id 2390 * 2391 * Init @vm fields. 2392 * 2393 * Returns: 2394 * 0 for success, error for failure. 2395 */ 2396 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2397 int32_t xcp_id) 2398 { 2399 struct amdgpu_bo *root_bo; 2400 struct amdgpu_bo_vm *root; 2401 int r, i; 2402 2403 vm->va = RB_ROOT_CACHED; 2404 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2405 vm->reserved_vmid[i] = NULL; 2406 INIT_LIST_HEAD(&vm->evicted); 2407 INIT_LIST_HEAD(&vm->evicted_user); 2408 INIT_LIST_HEAD(&vm->relocated); 2409 INIT_LIST_HEAD(&vm->moved); 2410 INIT_LIST_HEAD(&vm->idle); 2411 INIT_LIST_HEAD(&vm->invalidated); 2412 spin_lock_init(&vm->status_lock); 2413 INIT_LIST_HEAD(&vm->freed); 2414 INIT_LIST_HEAD(&vm->done); 2415 INIT_LIST_HEAD(&vm->pt_freed); 2416 INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); 2417 INIT_KFIFO(vm->faults); 2418 2419 r = amdgpu_vm_init_entities(adev, vm); 2420 if (r) 2421 return r; 2422 2423 vm->is_compute_context = false; 2424 2425 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2426 AMDGPU_VM_USE_CPU_FOR_GFX); 2427 2428 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2429 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2430 WARN_ONCE((vm->use_cpu_for_update && 2431 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2432 "CPU update of VM recommended only for large BAR system\n"); 2433 2434 if (vm->use_cpu_for_update) 2435 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2436 else 2437 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2438 2439 vm->last_update = dma_fence_get_stub(); 2440 vm->last_unlocked = dma_fence_get_stub(); 2441 vm->last_tlb_flush = dma_fence_get_stub(); 2442 vm->generation = 0; 2443 2444 mutex_init(&vm->eviction_lock); 2445 vm->evicting = false; 2446 vm->tlb_fence_context = dma_fence_context_alloc(1); 2447 2448 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2449 false, &root, xcp_id); 2450 if (r) 2451 goto error_free_delayed; 2452 2453 root_bo = amdgpu_bo_ref(&root->bo); 2454 r = amdgpu_bo_reserve(root_bo, true); 2455 if (r) { 2456 amdgpu_bo_unref(&root->shadow); 2457 amdgpu_bo_unref(&root_bo); 2458 goto error_free_delayed; 2459 } 2460 2461 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2462 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2463 if (r) 2464 goto error_free_root; 2465 2466 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2467 if (r) 2468 goto error_free_root; 2469 2470 r = amdgpu_vm_create_task_info(vm); 2471 if (r) 2472 DRM_DEBUG("Failed to create task info for VM\n"); 2473 2474 amdgpu_bo_unreserve(vm->root.bo); 2475 amdgpu_bo_unref(&root_bo); 2476 2477 return 0; 2478 2479 error_free_root: 2480 amdgpu_vm_pt_free_root(adev, vm); 2481 amdgpu_bo_unreserve(vm->root.bo); 2482 amdgpu_bo_unref(&root_bo); 2483 2484 error_free_delayed: 2485 dma_fence_put(vm->last_tlb_flush); 2486 dma_fence_put(vm->last_unlocked); 2487 amdgpu_vm_fini_entities(vm); 2488 2489 return r; 2490 } 2491 2492 /** 2493 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2494 * 2495 * @adev: amdgpu_device pointer 2496 * @vm: requested vm 2497 * 2498 * This only works on GFX VMs that don't have any BOs added and no 2499 * page tables allocated yet. 2500 * 2501 * Changes the following VM parameters: 2502 * - use_cpu_for_update 2503 * - pte_supports_ats 2504 * 2505 * Reinitializes the page directory to reflect the changed ATS 2506 * setting. 2507 * 2508 * Returns: 2509 * 0 for success, -errno for errors. 2510 */ 2511 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2512 { 2513 int r; 2514 2515 r = amdgpu_bo_reserve(vm->root.bo, true); 2516 if (r) 2517 return r; 2518 2519 /* Update VM state */ 2520 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2521 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2522 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2523 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2524 WARN_ONCE((vm->use_cpu_for_update && 2525 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2526 "CPU update of VM recommended only for large BAR system\n"); 2527 2528 if (vm->use_cpu_for_update) { 2529 /* Sync with last SDMA update/clear before switching to CPU */ 2530 r = amdgpu_bo_sync_wait(vm->root.bo, 2531 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2532 if (r) 2533 goto unreserve_bo; 2534 2535 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2536 r = amdgpu_vm_pt_map_tables(adev, vm); 2537 if (r) 2538 goto unreserve_bo; 2539 2540 } else { 2541 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2542 } 2543 2544 dma_fence_put(vm->last_update); 2545 vm->last_update = dma_fence_get_stub(); 2546 vm->is_compute_context = true; 2547 2548 /* Free the shadow bo for compute VM */ 2549 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 2550 2551 goto unreserve_bo; 2552 2553 unreserve_bo: 2554 amdgpu_bo_unreserve(vm->root.bo); 2555 return r; 2556 } 2557 2558 /** 2559 * amdgpu_vm_release_compute - release a compute vm 2560 * @adev: amdgpu_device pointer 2561 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2562 * 2563 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2564 * pasid from vm. Compute should stop use of vm after this call. 2565 */ 2566 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2567 { 2568 amdgpu_vm_set_pasid(adev, vm, 0); 2569 vm->is_compute_context = false; 2570 } 2571 2572 /** 2573 * amdgpu_vm_fini - tear down a vm instance 2574 * 2575 * @adev: amdgpu_device pointer 2576 * @vm: requested vm 2577 * 2578 * Tear down @vm. 2579 * Unbind the VM and remove all bos from the vm bo list 2580 */ 2581 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2582 { 2583 struct amdgpu_bo_va_mapping *mapping, *tmp; 2584 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2585 struct amdgpu_bo *root; 2586 unsigned long flags; 2587 int i; 2588 2589 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2590 2591 flush_work(&vm->pt_free_work); 2592 2593 root = amdgpu_bo_ref(vm->root.bo); 2594 amdgpu_bo_reserve(root, true); 2595 amdgpu_vm_put_task_info(vm->task_info); 2596 amdgpu_vm_set_pasid(adev, vm, 0); 2597 dma_fence_wait(vm->last_unlocked, false); 2598 dma_fence_put(vm->last_unlocked); 2599 dma_fence_wait(vm->last_tlb_flush, false); 2600 /* Make sure that all fence callbacks have completed */ 2601 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2602 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2603 dma_fence_put(vm->last_tlb_flush); 2604 2605 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2606 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2607 amdgpu_vm_prt_fini(adev, vm); 2608 prt_fini_needed = false; 2609 } 2610 2611 list_del(&mapping->list); 2612 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2613 } 2614 2615 amdgpu_vm_pt_free_root(adev, vm); 2616 amdgpu_bo_unreserve(root); 2617 amdgpu_bo_unref(&root); 2618 WARN_ON(vm->root.bo); 2619 2620 amdgpu_vm_fini_entities(vm); 2621 2622 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2623 dev_err(adev->dev, "still active bo inside vm\n"); 2624 } 2625 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2626 &vm->va.rb_root, rb) { 2627 /* Don't remove the mapping here, we don't want to trigger a 2628 * rebalance and the tree is about to be destroyed anyway. 2629 */ 2630 list_del(&mapping->list); 2631 kfree(mapping); 2632 } 2633 2634 dma_fence_put(vm->last_update); 2635 2636 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2637 if (vm->reserved_vmid[i]) { 2638 amdgpu_vmid_free_reserved(adev, i); 2639 vm->reserved_vmid[i] = false; 2640 } 2641 } 2642 2643 } 2644 2645 /** 2646 * amdgpu_vm_manager_init - init the VM manager 2647 * 2648 * @adev: amdgpu_device pointer 2649 * 2650 * Initialize the VM manager structures 2651 */ 2652 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2653 { 2654 unsigned i; 2655 2656 /* Concurrent flushes are only possible starting with Vega10 and 2657 * are broken on Navi10 and Navi14. 2658 */ 2659 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2660 adev->asic_type == CHIP_NAVI10 || 2661 adev->asic_type == CHIP_NAVI14); 2662 amdgpu_vmid_mgr_init(adev); 2663 2664 adev->vm_manager.fence_context = 2665 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2666 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2667 adev->vm_manager.seqno[i] = 0; 2668 2669 spin_lock_init(&adev->vm_manager.prt_lock); 2670 atomic_set(&adev->vm_manager.num_prt_users, 0); 2671 2672 /* If not overridden by the user, by default, only in large BAR systems 2673 * Compute VM tables will be updated by CPU 2674 */ 2675 #ifdef CONFIG_X86_64 2676 if (amdgpu_vm_update_mode == -1) { 2677 /* For asic with VF MMIO access protection 2678 * avoid using CPU for VM table updates 2679 */ 2680 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2681 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2682 adev->vm_manager.vm_update_mode = 2683 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2684 else 2685 adev->vm_manager.vm_update_mode = 0; 2686 } else 2687 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2688 #else 2689 adev->vm_manager.vm_update_mode = 0; 2690 #endif 2691 2692 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2693 } 2694 2695 /** 2696 * amdgpu_vm_manager_fini - cleanup VM manager 2697 * 2698 * @adev: amdgpu_device pointer 2699 * 2700 * Cleanup the VM manager and free resources. 2701 */ 2702 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2703 { 2704 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2705 xa_destroy(&adev->vm_manager.pasids); 2706 2707 amdgpu_vmid_mgr_fini(adev); 2708 } 2709 2710 /** 2711 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2712 * 2713 * @dev: drm device pointer 2714 * @data: drm_amdgpu_vm 2715 * @filp: drm file pointer 2716 * 2717 * Returns: 2718 * 0 for success, -errno for errors. 2719 */ 2720 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2721 { 2722 union drm_amdgpu_vm *args = data; 2723 struct amdgpu_device *adev = drm_to_adev(dev); 2724 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2725 2726 /* No valid flags defined yet */ 2727 if (args->in.flags) 2728 return -EINVAL; 2729 2730 switch (args->in.op) { 2731 case AMDGPU_VM_OP_RESERVE_VMID: 2732 /* We only have requirement to reserve vmid from gfxhub */ 2733 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2734 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2735 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2736 } 2737 2738 break; 2739 case AMDGPU_VM_OP_UNRESERVE_VMID: 2740 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2741 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2742 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2743 } 2744 break; 2745 default: 2746 return -EINVAL; 2747 } 2748 2749 return 0; 2750 } 2751 2752 /** 2753 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2754 * @adev: amdgpu device pointer 2755 * @pasid: PASID of the VM 2756 * @vmid: VMID, only used for GFX 9.4.3. 2757 * @node_id: Node_id received in IH cookie. Only applicable for 2758 * GFX 9.4.3. 2759 * @addr: Address of the fault 2760 * @write_fault: true is write fault, false is read fault 2761 * 2762 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2763 * shouldn't be reported any more. 2764 */ 2765 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2766 u32 vmid, u32 node_id, uint64_t addr, 2767 bool write_fault) 2768 { 2769 bool is_compute_context = false; 2770 struct amdgpu_bo *root; 2771 unsigned long irqflags; 2772 uint64_t value, flags; 2773 struct amdgpu_vm *vm; 2774 int r; 2775 2776 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2777 vm = xa_load(&adev->vm_manager.pasids, pasid); 2778 if (vm) { 2779 root = amdgpu_bo_ref(vm->root.bo); 2780 is_compute_context = vm->is_compute_context; 2781 } else { 2782 root = NULL; 2783 } 2784 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2785 2786 if (!root) 2787 return false; 2788 2789 addr /= AMDGPU_GPU_PAGE_SIZE; 2790 2791 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2792 node_id, addr, write_fault)) { 2793 amdgpu_bo_unref(&root); 2794 return true; 2795 } 2796 2797 r = amdgpu_bo_reserve(root, true); 2798 if (r) 2799 goto error_unref; 2800 2801 /* Double check that the VM still exists */ 2802 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2803 vm = xa_load(&adev->vm_manager.pasids, pasid); 2804 if (vm && vm->root.bo != root) 2805 vm = NULL; 2806 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2807 if (!vm) 2808 goto error_unlock; 2809 2810 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2811 AMDGPU_PTE_SYSTEM; 2812 2813 if (is_compute_context) { 2814 /* Intentionally setting invalid PTE flag 2815 * combination to force a no-retry-fault 2816 */ 2817 flags = AMDGPU_VM_NORETRY_FLAGS; 2818 value = 0; 2819 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2820 /* Redirect the access to the dummy page */ 2821 value = adev->dummy_page_addr; 2822 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2823 AMDGPU_PTE_WRITEABLE; 2824 2825 } else { 2826 /* Let the hw retry silently on the PTE */ 2827 value = 0; 2828 } 2829 2830 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2831 if (r) { 2832 pr_debug("failed %d to reserve fence slot\n", r); 2833 goto error_unlock; 2834 } 2835 2836 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2837 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2838 if (r) 2839 goto error_unlock; 2840 2841 r = amdgpu_vm_update_pdes(adev, vm, true); 2842 2843 error_unlock: 2844 amdgpu_bo_unreserve(root); 2845 if (r < 0) 2846 DRM_ERROR("Can't handle page fault (%d)\n", r); 2847 2848 error_unref: 2849 amdgpu_bo_unref(&root); 2850 2851 return false; 2852 } 2853 2854 #if defined(CONFIG_DEBUG_FS) 2855 /** 2856 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2857 * 2858 * @vm: Requested VM for printing BO info 2859 * @m: debugfs file 2860 * 2861 * Print BO information in debugfs file for the VM 2862 */ 2863 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 2864 { 2865 struct amdgpu_bo_va *bo_va, *tmp; 2866 u64 total_idle = 0; 2867 u64 total_evicted = 0; 2868 u64 total_relocated = 0; 2869 u64 total_moved = 0; 2870 u64 total_invalidated = 0; 2871 u64 total_done = 0; 2872 unsigned int total_idle_objs = 0; 2873 unsigned int total_evicted_objs = 0; 2874 unsigned int total_relocated_objs = 0; 2875 unsigned int total_moved_objs = 0; 2876 unsigned int total_invalidated_objs = 0; 2877 unsigned int total_done_objs = 0; 2878 unsigned int id = 0; 2879 2880 spin_lock(&vm->status_lock); 2881 seq_puts(m, "\tIdle BOs:\n"); 2882 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 2883 if (!bo_va->base.bo) 2884 continue; 2885 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2886 } 2887 total_idle_objs = id; 2888 id = 0; 2889 2890 seq_puts(m, "\tEvicted BOs:\n"); 2891 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 2892 if (!bo_va->base.bo) 2893 continue; 2894 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2895 } 2896 total_evicted_objs = id; 2897 id = 0; 2898 2899 seq_puts(m, "\tRelocated BOs:\n"); 2900 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 2901 if (!bo_va->base.bo) 2902 continue; 2903 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2904 } 2905 total_relocated_objs = id; 2906 id = 0; 2907 2908 seq_puts(m, "\tMoved BOs:\n"); 2909 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2910 if (!bo_va->base.bo) 2911 continue; 2912 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2913 } 2914 total_moved_objs = id; 2915 id = 0; 2916 2917 seq_puts(m, "\tInvalidated BOs:\n"); 2918 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 2919 if (!bo_va->base.bo) 2920 continue; 2921 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2922 } 2923 total_invalidated_objs = id; 2924 id = 0; 2925 2926 seq_puts(m, "\tDone BOs:\n"); 2927 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 2928 if (!bo_va->base.bo) 2929 continue; 2930 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2931 } 2932 spin_unlock(&vm->status_lock); 2933 total_done_objs = id; 2934 2935 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 2936 total_idle_objs); 2937 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 2938 total_evicted_objs); 2939 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 2940 total_relocated_objs); 2941 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 2942 total_moved_objs); 2943 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 2944 total_invalidated_objs); 2945 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 2946 total_done_objs); 2947 } 2948 #endif 2949 2950 /** 2951 * amdgpu_vm_update_fault_cache - update cached fault into. 2952 * @adev: amdgpu device pointer 2953 * @pasid: PASID of the VM 2954 * @addr: Address of the fault 2955 * @status: GPUVM fault status register 2956 * @vmhub: which vmhub got the fault 2957 * 2958 * Cache the fault info for later use by userspace in debugging. 2959 */ 2960 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 2961 unsigned int pasid, 2962 uint64_t addr, 2963 uint32_t status, 2964 unsigned int vmhub) 2965 { 2966 struct amdgpu_vm *vm; 2967 unsigned long flags; 2968 2969 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2970 2971 vm = xa_load(&adev->vm_manager.pasids, pasid); 2972 /* Don't update the fault cache if status is 0. In the multiple 2973 * fault case, subsequent faults will return a 0 status which is 2974 * useless for userspace and replaces the useful fault status, so 2975 * only update if status is non-0. 2976 */ 2977 if (vm && status) { 2978 vm->fault_info.addr = addr; 2979 vm->fault_info.status = status; 2980 /* 2981 * Update the fault information globally for later usage 2982 * when vm could be stale or freed. 2983 */ 2984 adev->vm_manager.fault_info.addr = addr; 2985 adev->vm_manager.fault_info.vmhub = vmhub; 2986 adev->vm_manager.fault_info.status = status; 2987 2988 if (AMDGPU_IS_GFXHUB(vmhub)) { 2989 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 2990 vm->fault_info.vmhub |= 2991 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 2992 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 2993 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 2994 vm->fault_info.vmhub |= 2995 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 2996 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 2997 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 2998 vm->fault_info.vmhub |= 2999 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3000 } else { 3001 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3002 } 3003 } 3004 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3005 } 3006 3007 /** 3008 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3009 * 3010 * @vm: VM to test against. 3011 * @bo: BO to be tested. 3012 * 3013 * Returns true if the BO shares the dma_resv object with the root PD and is 3014 * always guaranteed to be valid inside the VM. 3015 */ 3016 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3017 { 3018 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3019 } 3020