1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_amdkfd.h" 41 #include "amdgpu_gmc.h" 42 #include "amdgpu_xgmi.h" 43 #include "amdgpu_dma_buf.h" 44 #include "amdgpu_res_cursor.h" 45 #include "kfd_svm.h" 46 47 /** 48 * DOC: GPUVM 49 * 50 * GPUVM is the MMU functionality provided on the GPU. 51 * GPUVM is similar to the legacy GART on older asics, however 52 * rather than there being a single global GART table 53 * for the entire GPU, there can be multiple GPUVM page tables active 54 * at any given time. The GPUVM page tables can contain a mix 55 * VRAM pages and system pages (both memory and MMIO) and system pages 56 * can be mapped as snooped (cached system pages) or unsnooped 57 * (uncached system pages). 58 * 59 * Each active GPUVM has an ID associated with it and there is a page table 60 * linked with each VMID. When executing a command buffer, 61 * the kernel tells the engine what VMID to use for that command 62 * buffer. VMIDs are allocated dynamically as commands are submitted. 63 * The userspace drivers maintain their own address space and the kernel 64 * sets up their pages tables accordingly when they submit their 65 * command buffers and a VMID is assigned. 66 * The hardware supports up to 16 active GPUVMs at any given time. 67 * 68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 69 * on the ASIC family. GPUVM supports RWX attributes on each page as well 70 * as other features such as encryption and caching attributes. 71 * 72 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 73 * addition to an aperture managed by a page table, VMID 0 also has 74 * several other apertures. There is an aperture for direct access to VRAM 75 * and there is a legacy AGP aperture which just forwards accesses directly 76 * to the matching system physical addresses (or IOVAs when an IOMMU is 77 * present). These apertures provide direct access to these memories without 78 * incurring the overhead of a page table. VMID 0 is used by the kernel 79 * driver for tasks like memory management. 80 * 81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 82 * For user applications, each application can have their own unique GPUVM 83 * address space. The application manages the address space and the kernel 84 * driver manages the GPUVM page tables for each process. If an GPU client 85 * accesses an invalid page, it will generate a GPU page fault, similar to 86 * accessing an invalid page on a CPU. 87 */ 88 89 #define START(node) ((node)->start) 90 #define LAST(node) ((node)->last) 91 92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 93 START, LAST, static, amdgpu_vm_it) 94 95 #undef START 96 #undef LAST 97 98 /** 99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 100 */ 101 struct amdgpu_prt_cb { 102 103 /** 104 * @adev: amdgpu device 105 */ 106 struct amdgpu_device *adev; 107 108 /** 109 * @cb: callback 110 */ 111 struct dma_fence_cb cb; 112 }; 113 114 /** 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 116 */ 117 struct amdgpu_vm_tlb_seq_struct { 118 /** 119 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 120 */ 121 struct amdgpu_vm *vm; 122 123 /** 124 * @cb: callback 125 */ 126 struct dma_fence_cb cb; 127 }; 128 129 /** 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 131 * 132 * @adev: amdgpu_device pointer 133 * @vm: amdgpu_vm pointer 134 * @pasid: the pasid the VM is using on this GPU 135 * 136 * Set the pasid this VM is using on this GPU, can also be used to remove the 137 * pasid by passing in zero. 138 * 139 */ 140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 141 u32 pasid) 142 { 143 int r; 144 145 if (vm->pasid == pasid) 146 return 0; 147 148 if (vm->pasid) { 149 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 150 if (r < 0) 151 return r; 152 153 vm->pasid = 0; 154 } 155 156 if (pasid) { 157 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 158 GFP_KERNEL)); 159 if (r < 0) 160 return r; 161 162 vm->pasid = pasid; 163 } 164 165 166 return 0; 167 } 168 169 /** 170 * amdgpu_vm_bo_evicted - vm_bo is evicted 171 * 172 * @vm_bo: vm_bo which is evicted 173 * 174 * State for PDs/PTs and per VM BOs which are not at the location they should 175 * be. 176 */ 177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 178 { 179 struct amdgpu_vm *vm = vm_bo->vm; 180 struct amdgpu_bo *bo = vm_bo->bo; 181 182 vm_bo->moved = true; 183 spin_lock(&vm_bo->vm->status_lock); 184 if (bo->tbo.type == ttm_bo_type_kernel) 185 list_move(&vm_bo->vm_status, &vm->evicted); 186 else 187 list_move_tail(&vm_bo->vm_status, &vm->evicted); 188 spin_unlock(&vm_bo->vm->status_lock); 189 } 190 /** 191 * amdgpu_vm_bo_moved - vm_bo is moved 192 * 193 * @vm_bo: vm_bo which is moved 194 * 195 * State for per VM BOs which are moved, but that change is not yet reflected 196 * in the page tables. 197 */ 198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 199 { 200 spin_lock(&vm_bo->vm->status_lock); 201 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 202 spin_unlock(&vm_bo->vm->status_lock); 203 } 204 205 /** 206 * amdgpu_vm_bo_idle - vm_bo is idle 207 * 208 * @vm_bo: vm_bo which is now idle 209 * 210 * State for PDs/PTs and per VM BOs which have gone through the state machine 211 * and are now idle. 212 */ 213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 214 { 215 spin_lock(&vm_bo->vm->status_lock); 216 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 217 spin_unlock(&vm_bo->vm->status_lock); 218 vm_bo->moved = false; 219 } 220 221 /** 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 223 * 224 * @vm_bo: vm_bo which is now invalidated 225 * 226 * State for normal BOs which are invalidated and that change not yet reflected 227 * in the PTs. 228 */ 229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 230 { 231 spin_lock(&vm_bo->vm->status_lock); 232 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 233 spin_unlock(&vm_bo->vm->status_lock); 234 } 235 236 /** 237 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 238 * 239 * @vm_bo: vm_bo which is evicted 240 * 241 * State for BOs used by user mode queues which are not at the location they 242 * should be. 243 */ 244 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 245 { 246 vm_bo->moved = true; 247 spin_lock(&vm_bo->vm->status_lock); 248 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 249 spin_unlock(&vm_bo->vm->status_lock); 250 } 251 252 /** 253 * amdgpu_vm_bo_relocated - vm_bo is reloacted 254 * 255 * @vm_bo: vm_bo which is relocated 256 * 257 * State for PDs/PTs which needs to update their parent PD. 258 * For the root PD, just move to idle state. 259 */ 260 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 261 { 262 if (vm_bo->bo->parent) { 263 spin_lock(&vm_bo->vm->status_lock); 264 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 265 spin_unlock(&vm_bo->vm->status_lock); 266 } else { 267 amdgpu_vm_bo_idle(vm_bo); 268 } 269 } 270 271 /** 272 * amdgpu_vm_bo_done - vm_bo is done 273 * 274 * @vm_bo: vm_bo which is now done 275 * 276 * State for normal BOs which are invalidated and that change has been updated 277 * in the PTs. 278 */ 279 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 280 { 281 spin_lock(&vm_bo->vm->status_lock); 282 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 283 spin_unlock(&vm_bo->vm->status_lock); 284 } 285 286 /** 287 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 288 * @vm: the VM which state machine to reset 289 * 290 * Move all vm_bo object in the VM into a state where they will be updated 291 * again during validation. 292 */ 293 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 294 { 295 struct amdgpu_vm_bo_base *vm_bo, *tmp; 296 297 spin_lock(&vm->status_lock); 298 list_splice_init(&vm->done, &vm->invalidated); 299 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 300 vm_bo->moved = true; 301 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 302 struct amdgpu_bo *bo = vm_bo->bo; 303 304 vm_bo->moved = true; 305 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 306 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 307 else if (bo->parent) 308 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 309 } 310 spin_unlock(&vm->status_lock); 311 } 312 313 /** 314 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 315 * 316 * @base: base structure for tracking BO usage in a VM 317 * @vm: vm to which bo is to be added 318 * @bo: amdgpu buffer object 319 * 320 * Initialize a bo_va_base structure and add it to the appropriate lists 321 * 322 */ 323 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 324 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 325 { 326 base->vm = vm; 327 base->bo = bo; 328 base->next = NULL; 329 INIT_LIST_HEAD(&base->vm_status); 330 331 if (!bo) 332 return; 333 base->next = bo->vm_bo; 334 bo->vm_bo = base; 335 336 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 337 return; 338 339 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 340 341 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 342 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 343 amdgpu_vm_bo_relocated(base); 344 else 345 amdgpu_vm_bo_idle(base); 346 347 if (bo->preferred_domains & 348 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 349 return; 350 351 /* 352 * we checked all the prerequisites, but it looks like this per vm bo 353 * is currently evicted. add the bo to the evicted list to make sure it 354 * is validated on next vm use to avoid fault. 355 * */ 356 amdgpu_vm_bo_evicted(base); 357 } 358 359 /** 360 * amdgpu_vm_lock_pd - lock PD in drm_exec 361 * 362 * @vm: vm providing the BOs 363 * @exec: drm execution context 364 * @num_fences: number of extra fences to reserve 365 * 366 * Lock the VM root PD in the DRM execution context. 367 */ 368 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 369 unsigned int num_fences) 370 { 371 /* We need at least two fences for the VM PD/PT updates */ 372 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 373 2 + num_fences); 374 } 375 376 /** 377 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 378 * 379 * @adev: amdgpu device pointer 380 * @vm: vm providing the BOs 381 * 382 * Move all BOs to the end of LRU and remember their positions to put them 383 * together. 384 */ 385 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 386 struct amdgpu_vm *vm) 387 { 388 spin_lock(&adev->mman.bdev.lru_lock); 389 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 390 spin_unlock(&adev->mman.bdev.lru_lock); 391 } 392 393 /* Create scheduler entities for page table updates */ 394 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 395 struct amdgpu_vm *vm) 396 { 397 int r; 398 399 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 400 adev->vm_manager.vm_pte_scheds, 401 adev->vm_manager.vm_pte_num_scheds, NULL); 402 if (r) 403 goto error; 404 405 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 406 adev->vm_manager.vm_pte_scheds, 407 adev->vm_manager.vm_pte_num_scheds, NULL); 408 409 error: 410 drm_sched_entity_destroy(&vm->immediate); 411 return r; 412 } 413 414 /* Destroy the entities for page table updates again */ 415 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 416 { 417 drm_sched_entity_destroy(&vm->immediate); 418 drm_sched_entity_destroy(&vm->delayed); 419 } 420 421 /** 422 * amdgpu_vm_generation - return the page table re-generation counter 423 * @adev: the amdgpu_device 424 * @vm: optional VM to check, might be NULL 425 * 426 * Returns a page table re-generation token to allow checking if submissions 427 * are still valid to use this VM. The VM parameter might be NULL in which case 428 * just the VRAM lost counter will be used. 429 */ 430 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 431 { 432 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 433 434 if (!vm) 435 return result; 436 437 result += lower_32_bits(vm->generation); 438 /* Add one if the page tables will be re-generated on next CS */ 439 if (drm_sched_entity_error(&vm->delayed)) 440 ++result; 441 442 return result; 443 } 444 445 /** 446 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 447 * 448 * @adev: amdgpu device pointer 449 * @vm: vm providing the BOs 450 * @ticket: optional reservation ticket used to reserve the VM 451 * @validate: callback to do the validation 452 * @param: parameter for the validation callback 453 * 454 * Validate the page table BOs and per-VM BOs on command submission if 455 * necessary. If a ticket is given, also try to validate evicted user queue 456 * BOs. They must already be reserved with the given ticket. 457 * 458 * Returns: 459 * Validation result. 460 */ 461 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 462 struct ww_acquire_ctx *ticket, 463 int (*validate)(void *p, struct amdgpu_bo *bo), 464 void *param) 465 { 466 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 467 struct amdgpu_vm_bo_base *bo_base; 468 struct amdgpu_bo *bo; 469 int r; 470 471 if (vm->generation != new_vm_generation) { 472 vm->generation = new_vm_generation; 473 amdgpu_vm_bo_reset_state_machine(vm); 474 amdgpu_vm_fini_entities(vm); 475 r = amdgpu_vm_init_entities(adev, vm); 476 if (r) 477 return r; 478 } 479 480 spin_lock(&vm->status_lock); 481 while (!list_empty(&vm->evicted)) { 482 bo_base = list_first_entry(&vm->evicted, 483 struct amdgpu_vm_bo_base, 484 vm_status); 485 spin_unlock(&vm->status_lock); 486 487 bo = bo_base->bo; 488 489 r = validate(param, bo); 490 if (r) 491 return r; 492 493 if (bo->tbo.type != ttm_bo_type_kernel) { 494 amdgpu_vm_bo_moved(bo_base); 495 } else { 496 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 497 amdgpu_vm_bo_relocated(bo_base); 498 } 499 spin_lock(&vm->status_lock); 500 } 501 while (ticket && !list_empty(&vm->evicted_user)) { 502 bo_base = list_first_entry(&vm->evicted_user, 503 struct amdgpu_vm_bo_base, 504 vm_status); 505 spin_unlock(&vm->status_lock); 506 507 bo = bo_base->bo; 508 509 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 510 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 511 512 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 513 if (ti) { 514 pr_warn_ratelimited("pid %d\n", ti->pid); 515 amdgpu_vm_put_task_info(ti); 516 } 517 518 return -EINVAL; 519 } 520 521 r = validate(param, bo); 522 if (r) 523 return r; 524 525 amdgpu_vm_bo_invalidated(bo_base); 526 527 spin_lock(&vm->status_lock); 528 } 529 spin_unlock(&vm->status_lock); 530 531 amdgpu_vm_eviction_lock(vm); 532 vm->evicting = false; 533 amdgpu_vm_eviction_unlock(vm); 534 535 return 0; 536 } 537 538 /** 539 * amdgpu_vm_ready - check VM is ready for updates 540 * 541 * @vm: VM to check 542 * 543 * Check if all VM PDs/PTs are ready for updates 544 * 545 * Returns: 546 * True if VM is not evicting. 547 */ 548 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 549 { 550 bool empty; 551 bool ret; 552 553 amdgpu_vm_eviction_lock(vm); 554 ret = !vm->evicting; 555 amdgpu_vm_eviction_unlock(vm); 556 557 spin_lock(&vm->status_lock); 558 empty = list_empty(&vm->evicted); 559 spin_unlock(&vm->status_lock); 560 561 return ret && empty; 562 } 563 564 /** 565 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 566 * 567 * @adev: amdgpu_device pointer 568 */ 569 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 570 { 571 const struct amdgpu_ip_block *ip_block; 572 bool has_compute_vm_bug; 573 struct amdgpu_ring *ring; 574 int i; 575 576 has_compute_vm_bug = false; 577 578 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 579 if (ip_block) { 580 /* Compute has a VM bug for GFX version < 7. 581 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 582 if (ip_block->version->major <= 7) 583 has_compute_vm_bug = true; 584 else if (ip_block->version->major == 8) 585 if (adev->gfx.mec_fw_version < 673) 586 has_compute_vm_bug = true; 587 } 588 589 for (i = 0; i < adev->num_rings; i++) { 590 ring = adev->rings[i]; 591 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 592 /* only compute rings */ 593 ring->has_compute_vm_bug = has_compute_vm_bug; 594 else 595 ring->has_compute_vm_bug = false; 596 } 597 } 598 599 /** 600 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 601 * 602 * @ring: ring on which the job will be submitted 603 * @job: job to submit 604 * 605 * Returns: 606 * True if sync is needed. 607 */ 608 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 609 struct amdgpu_job *job) 610 { 611 struct amdgpu_device *adev = ring->adev; 612 unsigned vmhub = ring->vm_hub; 613 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 614 615 if (job->vmid == 0) 616 return false; 617 618 if (job->vm_needs_flush || ring->has_compute_vm_bug) 619 return true; 620 621 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 622 return true; 623 624 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 625 return true; 626 627 return false; 628 } 629 630 /** 631 * amdgpu_vm_flush - hardware flush the vm 632 * 633 * @ring: ring to use for flush 634 * @job: related job 635 * @need_pipe_sync: is pipe sync needed 636 * 637 * Emit a VM flush when it is necessary. 638 * 639 * Returns: 640 * 0 on success, errno otherwise. 641 */ 642 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 643 bool need_pipe_sync) 644 { 645 struct amdgpu_device *adev = ring->adev; 646 unsigned vmhub = ring->vm_hub; 647 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 648 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 649 bool spm_update_needed = job->spm_update_needed; 650 bool gds_switch_needed = ring->funcs->emit_gds_switch && 651 job->gds_switch_needed; 652 bool vm_flush_needed = job->vm_needs_flush; 653 struct dma_fence *fence = NULL; 654 bool pasid_mapping_needed = false; 655 unsigned int patch; 656 int r; 657 658 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 659 gds_switch_needed = true; 660 vm_flush_needed = true; 661 pasid_mapping_needed = true; 662 spm_update_needed = true; 663 } 664 665 mutex_lock(&id_mgr->lock); 666 if (id->pasid != job->pasid || !id->pasid_mapping || 667 !dma_fence_is_signaled(id->pasid_mapping)) 668 pasid_mapping_needed = true; 669 mutex_unlock(&id_mgr->lock); 670 671 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 672 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 673 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 674 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 675 ring->funcs->emit_wreg; 676 677 if (adev->gfx.enable_cleaner_shader && 678 ring->funcs->emit_cleaner_shader && 679 job->enforce_isolation) 680 ring->funcs->emit_cleaner_shader(ring); 681 682 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 683 return 0; 684 685 amdgpu_ring_ib_begin(ring); 686 if (ring->funcs->init_cond_exec) 687 patch = amdgpu_ring_init_cond_exec(ring, 688 ring->cond_exe_gpu_addr); 689 690 if (need_pipe_sync) 691 amdgpu_ring_emit_pipeline_sync(ring); 692 693 if (vm_flush_needed) { 694 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 695 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 696 } 697 698 if (pasid_mapping_needed) 699 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 700 701 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 702 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 703 704 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 705 gds_switch_needed) { 706 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 707 job->gds_size, job->gws_base, 708 job->gws_size, job->oa_base, 709 job->oa_size); 710 } 711 712 if (vm_flush_needed || pasid_mapping_needed) { 713 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 714 if (r) 715 return r; 716 } 717 718 if (vm_flush_needed) { 719 mutex_lock(&id_mgr->lock); 720 dma_fence_put(id->last_flush); 721 id->last_flush = dma_fence_get(fence); 722 id->current_gpu_reset_count = 723 atomic_read(&adev->gpu_reset_counter); 724 mutex_unlock(&id_mgr->lock); 725 } 726 727 if (pasid_mapping_needed) { 728 mutex_lock(&id_mgr->lock); 729 id->pasid = job->pasid; 730 dma_fence_put(id->pasid_mapping); 731 id->pasid_mapping = dma_fence_get(fence); 732 mutex_unlock(&id_mgr->lock); 733 } 734 dma_fence_put(fence); 735 736 amdgpu_ring_patch_cond_exec(ring, patch); 737 738 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 739 if (ring->funcs->emit_switch_buffer) { 740 amdgpu_ring_emit_switch_buffer(ring); 741 amdgpu_ring_emit_switch_buffer(ring); 742 } 743 744 amdgpu_ring_ib_end(ring); 745 return 0; 746 } 747 748 /** 749 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 750 * 751 * @vm: requested vm 752 * @bo: requested buffer object 753 * 754 * Find @bo inside the requested vm. 755 * Search inside the @bos vm list for the requested vm 756 * Returns the found bo_va or NULL if none is found 757 * 758 * Object has to be reserved! 759 * 760 * Returns: 761 * Found bo_va or NULL. 762 */ 763 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 764 struct amdgpu_bo *bo) 765 { 766 struct amdgpu_vm_bo_base *base; 767 768 for (base = bo->vm_bo; base; base = base->next) { 769 if (base->vm != vm) 770 continue; 771 772 return container_of(base, struct amdgpu_bo_va, base); 773 } 774 return NULL; 775 } 776 777 /** 778 * amdgpu_vm_map_gart - Resolve gart mapping of addr 779 * 780 * @pages_addr: optional DMA address to use for lookup 781 * @addr: the unmapped addr 782 * 783 * Look up the physical address of the page that the pte resolves 784 * to. 785 * 786 * Returns: 787 * The pointer for the page table entry. 788 */ 789 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 790 { 791 uint64_t result; 792 793 /* page table offset */ 794 result = pages_addr[addr >> PAGE_SHIFT]; 795 796 /* in case cpu page size != gpu page size*/ 797 result |= addr & (~PAGE_MASK); 798 799 result &= 0xFFFFFFFFFFFFF000ULL; 800 801 return result; 802 } 803 804 /** 805 * amdgpu_vm_update_pdes - make sure that all directories are valid 806 * 807 * @adev: amdgpu_device pointer 808 * @vm: requested vm 809 * @immediate: submit immediately to the paging queue 810 * 811 * Makes sure all directories are up to date. 812 * 813 * Returns: 814 * 0 for success, error for failure. 815 */ 816 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 817 struct amdgpu_vm *vm, bool immediate) 818 { 819 struct amdgpu_vm_update_params params; 820 struct amdgpu_vm_bo_base *entry; 821 bool flush_tlb_needed = false; 822 LIST_HEAD(relocated); 823 int r, idx; 824 825 spin_lock(&vm->status_lock); 826 list_splice_init(&vm->relocated, &relocated); 827 spin_unlock(&vm->status_lock); 828 829 if (list_empty(&relocated)) 830 return 0; 831 832 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 833 return -ENODEV; 834 835 memset(¶ms, 0, sizeof(params)); 836 params.adev = adev; 837 params.vm = vm; 838 params.immediate = immediate; 839 840 r = vm->update_funcs->prepare(¶ms, NULL); 841 if (r) 842 goto error; 843 844 list_for_each_entry(entry, &relocated, vm_status) { 845 /* vm_flush_needed after updating moved PDEs */ 846 flush_tlb_needed |= entry->moved; 847 848 r = amdgpu_vm_pde_update(¶ms, entry); 849 if (r) 850 goto error; 851 } 852 853 r = vm->update_funcs->commit(¶ms, &vm->last_update); 854 if (r) 855 goto error; 856 857 if (flush_tlb_needed) 858 atomic64_inc(&vm->tlb_seq); 859 860 while (!list_empty(&relocated)) { 861 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 862 vm_status); 863 amdgpu_vm_bo_idle(entry); 864 } 865 866 error: 867 drm_dev_exit(idx); 868 return r; 869 } 870 871 /** 872 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 873 * @fence: unused 874 * @cb: the callback structure 875 * 876 * Increments the tlb sequence to make sure that future CS execute a VM flush. 877 */ 878 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 879 struct dma_fence_cb *cb) 880 { 881 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 882 883 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 884 atomic64_inc(&tlb_cb->vm->tlb_seq); 885 kfree(tlb_cb); 886 } 887 888 /** 889 * amdgpu_vm_tlb_flush - prepare TLB flush 890 * 891 * @params: parameters for update 892 * @fence: input fence to sync TLB flush with 893 * @tlb_cb: the callback structure 894 * 895 * Increments the tlb sequence to make sure that future CS execute a VM flush. 896 */ 897 static void 898 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 899 struct dma_fence **fence, 900 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 901 { 902 struct amdgpu_vm *vm = params->vm; 903 904 tlb_cb->vm = vm; 905 if (!fence || !*fence) { 906 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 907 return; 908 } 909 910 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 911 amdgpu_vm_tlb_seq_cb)) { 912 dma_fence_put(vm->last_tlb_flush); 913 vm->last_tlb_flush = dma_fence_get(*fence); 914 } else { 915 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 916 } 917 918 /* Prepare a TLB flush fence to be attached to PTs */ 919 if (!params->unlocked && vm->is_compute_context) { 920 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 921 922 /* Makes sure no PD/PT is freed before the flush */ 923 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 924 DMA_RESV_USAGE_BOOKKEEP); 925 } 926 } 927 928 /** 929 * amdgpu_vm_update_range - update a range in the vm page table 930 * 931 * @adev: amdgpu_device pointer to use for commands 932 * @vm: the VM to update the range 933 * @immediate: immediate submission in a page fault 934 * @unlocked: unlocked invalidation during MM callback 935 * @flush_tlb: trigger tlb invalidation after update completed 936 * @allow_override: change MTYPE for local NUMA nodes 937 * @sync: fences we need to sync to 938 * @start: start of mapped range 939 * @last: last mapped entry 940 * @flags: flags for the entries 941 * @offset: offset into nodes and pages_addr 942 * @vram_base: base for vram mappings 943 * @res: ttm_resource to map 944 * @pages_addr: DMA addresses to use for mapping 945 * @fence: optional resulting fence 946 * 947 * Fill in the page table entries between @start and @last. 948 * 949 * Returns: 950 * 0 for success, negative erro code for failure. 951 */ 952 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 953 bool immediate, bool unlocked, bool flush_tlb, 954 bool allow_override, struct amdgpu_sync *sync, 955 uint64_t start, uint64_t last, uint64_t flags, 956 uint64_t offset, uint64_t vram_base, 957 struct ttm_resource *res, dma_addr_t *pages_addr, 958 struct dma_fence **fence) 959 { 960 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 961 struct amdgpu_vm_update_params params; 962 struct amdgpu_res_cursor cursor; 963 int r, idx; 964 965 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 966 return -ENODEV; 967 968 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 969 if (!tlb_cb) { 970 drm_dev_exit(idx); 971 return -ENOMEM; 972 } 973 974 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 975 * heavy-weight flush TLB unconditionally. 976 */ 977 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 978 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 979 980 /* 981 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 982 */ 983 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 984 985 memset(¶ms, 0, sizeof(params)); 986 params.adev = adev; 987 params.vm = vm; 988 params.immediate = immediate; 989 params.pages_addr = pages_addr; 990 params.unlocked = unlocked; 991 params.needs_flush = flush_tlb; 992 params.allow_override = allow_override; 993 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 994 995 amdgpu_vm_eviction_lock(vm); 996 if (vm->evicting) { 997 r = -EBUSY; 998 goto error_free; 999 } 1000 1001 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1002 struct dma_fence *tmp = dma_fence_get_stub(); 1003 1004 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1005 swap(vm->last_unlocked, tmp); 1006 dma_fence_put(tmp); 1007 } 1008 1009 r = vm->update_funcs->prepare(¶ms, sync); 1010 if (r) 1011 goto error_free; 1012 1013 amdgpu_res_first(pages_addr ? NULL : res, offset, 1014 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1015 while (cursor.remaining) { 1016 uint64_t tmp, num_entries, addr; 1017 1018 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1019 if (pages_addr) { 1020 bool contiguous = true; 1021 1022 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1023 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1024 uint64_t count; 1025 1026 contiguous = pages_addr[pfn + 1] == 1027 pages_addr[pfn] + PAGE_SIZE; 1028 1029 tmp = num_entries / 1030 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1031 for (count = 2; count < tmp; ++count) { 1032 uint64_t idx = pfn + count; 1033 1034 if (contiguous != (pages_addr[idx] == 1035 pages_addr[idx - 1] + PAGE_SIZE)) 1036 break; 1037 } 1038 if (!contiguous) 1039 count--; 1040 num_entries = count * 1041 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1042 } 1043 1044 if (!contiguous) { 1045 addr = cursor.start; 1046 params.pages_addr = pages_addr; 1047 } else { 1048 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1049 params.pages_addr = NULL; 1050 } 1051 1052 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1053 addr = vram_base + cursor.start; 1054 } else { 1055 addr = 0; 1056 } 1057 1058 tmp = start + num_entries; 1059 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1060 if (r) 1061 goto error_free; 1062 1063 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1064 start = tmp; 1065 } 1066 1067 r = vm->update_funcs->commit(¶ms, fence); 1068 if (r) 1069 goto error_free; 1070 1071 if (params.needs_flush) { 1072 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1073 tlb_cb = NULL; 1074 } 1075 1076 amdgpu_vm_pt_free_list(adev, ¶ms); 1077 1078 error_free: 1079 kfree(tlb_cb); 1080 amdgpu_vm_eviction_unlock(vm); 1081 drm_dev_exit(idx); 1082 return r; 1083 } 1084 1085 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va, 1086 struct amdgpu_mem_stats *stats) 1087 { 1088 struct amdgpu_vm *vm = bo_va->base.vm; 1089 struct amdgpu_bo *bo = bo_va->base.bo; 1090 1091 if (!bo) 1092 return; 1093 1094 /* 1095 * For now ignore BOs which are currently locked and potentially 1096 * changing their location. 1097 */ 1098 if (!amdgpu_vm_is_bo_always_valid(vm, bo) && 1099 !dma_resv_trylock(bo->tbo.base.resv)) 1100 return; 1101 1102 amdgpu_bo_get_memory(bo, stats); 1103 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 1104 dma_resv_unlock(bo->tbo.base.resv); 1105 } 1106 1107 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1108 struct amdgpu_mem_stats *stats) 1109 { 1110 struct amdgpu_bo_va *bo_va, *tmp; 1111 1112 spin_lock(&vm->status_lock); 1113 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) 1114 amdgpu_vm_bo_get_memory(bo_va, stats); 1115 1116 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) 1117 amdgpu_vm_bo_get_memory(bo_va, stats); 1118 1119 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) 1120 amdgpu_vm_bo_get_memory(bo_va, stats); 1121 1122 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) 1123 amdgpu_vm_bo_get_memory(bo_va, stats); 1124 1125 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) 1126 amdgpu_vm_bo_get_memory(bo_va, stats); 1127 1128 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) 1129 amdgpu_vm_bo_get_memory(bo_va, stats); 1130 spin_unlock(&vm->status_lock); 1131 } 1132 1133 /** 1134 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1135 * 1136 * @adev: amdgpu_device pointer 1137 * @bo_va: requested BO and VM object 1138 * @clear: if true clear the entries 1139 * 1140 * Fill in the page table entries for @bo_va. 1141 * 1142 * Returns: 1143 * 0 for success, -EINVAL for failure. 1144 */ 1145 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1146 bool clear) 1147 { 1148 struct amdgpu_bo *bo = bo_va->base.bo; 1149 struct amdgpu_vm *vm = bo_va->base.vm; 1150 struct amdgpu_bo_va_mapping *mapping; 1151 struct dma_fence **last_update; 1152 dma_addr_t *pages_addr = NULL; 1153 struct ttm_resource *mem; 1154 struct amdgpu_sync sync; 1155 bool flush_tlb = clear; 1156 uint64_t vram_base; 1157 uint64_t flags; 1158 bool uncached; 1159 int r; 1160 1161 amdgpu_sync_create(&sync); 1162 if (clear || !bo) { 1163 mem = NULL; 1164 1165 /* Implicitly sync to command submissions in the same VM before 1166 * unmapping. 1167 */ 1168 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1169 AMDGPU_SYNC_EQ_OWNER, vm); 1170 if (r) 1171 goto error_free; 1172 if (bo) { 1173 r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv); 1174 if (r) 1175 goto error_free; 1176 } 1177 1178 } else { 1179 struct drm_gem_object *obj = &bo->tbo.base; 1180 1181 if (obj->import_attach && bo_va->is_xgmi) { 1182 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1183 struct drm_gem_object *gobj = dma_buf->priv; 1184 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1185 1186 if (abo->tbo.resource && 1187 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1188 bo = gem_to_amdgpu_bo(gobj); 1189 } 1190 mem = bo->tbo.resource; 1191 if (mem && (mem->mem_type == TTM_PL_TT || 1192 mem->mem_type == AMDGPU_PL_PREEMPT)) 1193 pages_addr = bo->tbo.ttm->dma_address; 1194 1195 /* Implicitly sync to moving fences before mapping anything */ 1196 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1197 AMDGPU_SYNC_EXPLICIT, vm); 1198 if (r) 1199 goto error_free; 1200 } 1201 1202 if (bo) { 1203 struct amdgpu_device *bo_adev; 1204 1205 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1206 1207 if (amdgpu_bo_encrypted(bo)) 1208 flags |= AMDGPU_PTE_TMZ; 1209 1210 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1211 vram_base = bo_adev->vm_manager.vram_base_offset; 1212 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1213 } else { 1214 flags = 0x0; 1215 vram_base = 0; 1216 uncached = false; 1217 } 1218 1219 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1220 last_update = &vm->last_update; 1221 else 1222 last_update = &bo_va->last_pt_update; 1223 1224 if (!clear && bo_va->base.moved) { 1225 flush_tlb = true; 1226 list_splice_init(&bo_va->valids, &bo_va->invalids); 1227 1228 } else if (bo_va->cleared != clear) { 1229 list_splice_init(&bo_va->valids, &bo_va->invalids); 1230 } 1231 1232 list_for_each_entry(mapping, &bo_va->invalids, list) { 1233 uint64_t update_flags = flags; 1234 1235 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1236 * but in case of something, we filter the flags in first place 1237 */ 1238 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1239 update_flags &= ~AMDGPU_PTE_READABLE; 1240 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1241 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1242 1243 /* Apply ASIC specific mapping flags */ 1244 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1245 1246 trace_amdgpu_vm_bo_update(mapping); 1247 1248 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1249 !uncached, &sync, mapping->start, 1250 mapping->last, update_flags, 1251 mapping->offset, vram_base, mem, 1252 pages_addr, last_update); 1253 if (r) 1254 goto error_free; 1255 } 1256 1257 /* If the BO is not in its preferred location add it back to 1258 * the evicted list so that it gets validated again on the 1259 * next command submission. 1260 */ 1261 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1262 uint32_t mem_type = bo->tbo.resource->mem_type; 1263 1264 if (!(bo->preferred_domains & 1265 amdgpu_mem_type_to_domain(mem_type))) 1266 amdgpu_vm_bo_evicted(&bo_va->base); 1267 else 1268 amdgpu_vm_bo_idle(&bo_va->base); 1269 } else { 1270 amdgpu_vm_bo_done(&bo_va->base); 1271 } 1272 1273 list_splice_init(&bo_va->invalids, &bo_va->valids); 1274 bo_va->cleared = clear; 1275 bo_va->base.moved = false; 1276 1277 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1278 list_for_each_entry(mapping, &bo_va->valids, list) 1279 trace_amdgpu_vm_bo_mapping(mapping); 1280 } 1281 1282 error_free: 1283 amdgpu_sync_free(&sync); 1284 return r; 1285 } 1286 1287 /** 1288 * amdgpu_vm_update_prt_state - update the global PRT state 1289 * 1290 * @adev: amdgpu_device pointer 1291 */ 1292 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1293 { 1294 unsigned long flags; 1295 bool enable; 1296 1297 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1298 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1299 adev->gmc.gmc_funcs->set_prt(adev, enable); 1300 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1301 } 1302 1303 /** 1304 * amdgpu_vm_prt_get - add a PRT user 1305 * 1306 * @adev: amdgpu_device pointer 1307 */ 1308 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1309 { 1310 if (!adev->gmc.gmc_funcs->set_prt) 1311 return; 1312 1313 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1314 amdgpu_vm_update_prt_state(adev); 1315 } 1316 1317 /** 1318 * amdgpu_vm_prt_put - drop a PRT user 1319 * 1320 * @adev: amdgpu_device pointer 1321 */ 1322 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1323 { 1324 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1325 amdgpu_vm_update_prt_state(adev); 1326 } 1327 1328 /** 1329 * amdgpu_vm_prt_cb - callback for updating the PRT status 1330 * 1331 * @fence: fence for the callback 1332 * @_cb: the callback function 1333 */ 1334 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1335 { 1336 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1337 1338 amdgpu_vm_prt_put(cb->adev); 1339 kfree(cb); 1340 } 1341 1342 /** 1343 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1344 * 1345 * @adev: amdgpu_device pointer 1346 * @fence: fence for the callback 1347 */ 1348 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1349 struct dma_fence *fence) 1350 { 1351 struct amdgpu_prt_cb *cb; 1352 1353 if (!adev->gmc.gmc_funcs->set_prt) 1354 return; 1355 1356 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1357 if (!cb) { 1358 /* Last resort when we are OOM */ 1359 if (fence) 1360 dma_fence_wait(fence, false); 1361 1362 amdgpu_vm_prt_put(adev); 1363 } else { 1364 cb->adev = adev; 1365 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1366 amdgpu_vm_prt_cb)) 1367 amdgpu_vm_prt_cb(fence, &cb->cb); 1368 } 1369 } 1370 1371 /** 1372 * amdgpu_vm_free_mapping - free a mapping 1373 * 1374 * @adev: amdgpu_device pointer 1375 * @vm: requested vm 1376 * @mapping: mapping to be freed 1377 * @fence: fence of the unmap operation 1378 * 1379 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1380 */ 1381 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1382 struct amdgpu_vm *vm, 1383 struct amdgpu_bo_va_mapping *mapping, 1384 struct dma_fence *fence) 1385 { 1386 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1387 amdgpu_vm_add_prt_cb(adev, fence); 1388 kfree(mapping); 1389 } 1390 1391 /** 1392 * amdgpu_vm_prt_fini - finish all prt mappings 1393 * 1394 * @adev: amdgpu_device pointer 1395 * @vm: requested vm 1396 * 1397 * Register a cleanup callback to disable PRT support after VM dies. 1398 */ 1399 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1400 { 1401 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1402 struct dma_resv_iter cursor; 1403 struct dma_fence *fence; 1404 1405 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1406 /* Add a callback for each fence in the reservation object */ 1407 amdgpu_vm_prt_get(adev); 1408 amdgpu_vm_add_prt_cb(adev, fence); 1409 } 1410 } 1411 1412 /** 1413 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1414 * 1415 * @adev: amdgpu_device pointer 1416 * @vm: requested vm 1417 * @fence: optional resulting fence (unchanged if no work needed to be done 1418 * or if an error occurred) 1419 * 1420 * Make sure all freed BOs are cleared in the PT. 1421 * PTs have to be reserved and mutex must be locked! 1422 * 1423 * Returns: 1424 * 0 for success. 1425 * 1426 */ 1427 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1428 struct amdgpu_vm *vm, 1429 struct dma_fence **fence) 1430 { 1431 struct amdgpu_bo_va_mapping *mapping; 1432 struct dma_fence *f = NULL; 1433 struct amdgpu_sync sync; 1434 int r; 1435 1436 1437 /* 1438 * Implicitly sync to command submissions in the same VM before 1439 * unmapping. 1440 */ 1441 amdgpu_sync_create(&sync); 1442 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1443 AMDGPU_SYNC_EQ_OWNER, vm); 1444 if (r) 1445 goto error_free; 1446 1447 while (!list_empty(&vm->freed)) { 1448 mapping = list_first_entry(&vm->freed, 1449 struct amdgpu_bo_va_mapping, list); 1450 list_del(&mapping->list); 1451 1452 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1453 &sync, mapping->start, mapping->last, 1454 0, 0, 0, NULL, NULL, &f); 1455 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1456 if (r) { 1457 dma_fence_put(f); 1458 goto error_free; 1459 } 1460 } 1461 1462 if (fence && f) { 1463 dma_fence_put(*fence); 1464 *fence = f; 1465 } else { 1466 dma_fence_put(f); 1467 } 1468 1469 error_free: 1470 amdgpu_sync_free(&sync); 1471 return r; 1472 1473 } 1474 1475 /** 1476 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1477 * 1478 * @adev: amdgpu_device pointer 1479 * @vm: requested vm 1480 * @ticket: optional reservation ticket used to reserve the VM 1481 * 1482 * Make sure all BOs which are moved are updated in the PTs. 1483 * 1484 * Returns: 1485 * 0 for success. 1486 * 1487 * PTs have to be reserved! 1488 */ 1489 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1490 struct amdgpu_vm *vm, 1491 struct ww_acquire_ctx *ticket) 1492 { 1493 struct amdgpu_bo_va *bo_va; 1494 struct dma_resv *resv; 1495 bool clear, unlock; 1496 int r; 1497 1498 spin_lock(&vm->status_lock); 1499 while (!list_empty(&vm->moved)) { 1500 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1501 base.vm_status); 1502 spin_unlock(&vm->status_lock); 1503 1504 /* Per VM BOs never need to bo cleared in the page tables */ 1505 r = amdgpu_vm_bo_update(adev, bo_va, false); 1506 if (r) 1507 return r; 1508 spin_lock(&vm->status_lock); 1509 } 1510 1511 while (!list_empty(&vm->invalidated)) { 1512 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1513 base.vm_status); 1514 resv = bo_va->base.bo->tbo.base.resv; 1515 spin_unlock(&vm->status_lock); 1516 1517 /* Try to reserve the BO to avoid clearing its ptes */ 1518 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1519 clear = false; 1520 unlock = true; 1521 /* The caller is already holding the reservation lock */ 1522 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1523 clear = false; 1524 unlock = false; 1525 /* Somebody else is using the BO right now */ 1526 } else { 1527 clear = true; 1528 unlock = false; 1529 } 1530 1531 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1532 1533 if (unlock) 1534 dma_resv_unlock(resv); 1535 if (r) 1536 return r; 1537 1538 /* Remember evicted DMABuf imports in compute VMs for later 1539 * validation 1540 */ 1541 if (vm->is_compute_context && 1542 bo_va->base.bo->tbo.base.import_attach && 1543 (!bo_va->base.bo->tbo.resource || 1544 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1545 amdgpu_vm_bo_evicted_user(&bo_va->base); 1546 1547 spin_lock(&vm->status_lock); 1548 } 1549 spin_unlock(&vm->status_lock); 1550 1551 return 0; 1552 } 1553 1554 /** 1555 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1556 * 1557 * @adev: amdgpu_device pointer 1558 * @vm: requested vm 1559 * @flush_type: flush type 1560 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1561 * 1562 * Flush TLB if needed for a compute VM. 1563 * 1564 * Returns: 1565 * 0 for success. 1566 */ 1567 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1568 struct amdgpu_vm *vm, 1569 uint32_t flush_type, 1570 uint32_t xcc_mask) 1571 { 1572 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1573 bool all_hub = false; 1574 int xcc = 0, r = 0; 1575 1576 WARN_ON_ONCE(!vm->is_compute_context); 1577 1578 /* 1579 * It can be that we race and lose here, but that is extremely unlikely 1580 * and the worst thing which could happen is that we flush the changes 1581 * into the TLB once more which is harmless. 1582 */ 1583 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1584 return 0; 1585 1586 if (adev->family == AMDGPU_FAMILY_AI || 1587 adev->family == AMDGPU_FAMILY_RV) 1588 all_hub = true; 1589 1590 for_each_inst(xcc, xcc_mask) { 1591 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1592 all_hub, xcc); 1593 if (r) 1594 break; 1595 } 1596 return r; 1597 } 1598 1599 /** 1600 * amdgpu_vm_bo_add - add a bo to a specific vm 1601 * 1602 * @adev: amdgpu_device pointer 1603 * @vm: requested vm 1604 * @bo: amdgpu buffer object 1605 * 1606 * Add @bo into the requested vm. 1607 * Add @bo to the list of bos associated with the vm 1608 * 1609 * Returns: 1610 * Newly added bo_va or NULL for failure 1611 * 1612 * Object has to be reserved! 1613 */ 1614 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1615 struct amdgpu_vm *vm, 1616 struct amdgpu_bo *bo) 1617 { 1618 struct amdgpu_bo_va *bo_va; 1619 1620 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1621 if (bo_va == NULL) { 1622 return NULL; 1623 } 1624 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1625 1626 bo_va->ref_count = 1; 1627 bo_va->last_pt_update = dma_fence_get_stub(); 1628 INIT_LIST_HEAD(&bo_va->valids); 1629 INIT_LIST_HEAD(&bo_va->invalids); 1630 1631 if (!bo) 1632 return bo_va; 1633 1634 dma_resv_assert_held(bo->tbo.base.resv); 1635 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1636 bo_va->is_xgmi = true; 1637 /* Power up XGMI if it can be potentially used */ 1638 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1639 } 1640 1641 return bo_va; 1642 } 1643 1644 1645 /** 1646 * amdgpu_vm_bo_insert_map - insert a new mapping 1647 * 1648 * @adev: amdgpu_device pointer 1649 * @bo_va: bo_va to store the address 1650 * @mapping: the mapping to insert 1651 * 1652 * Insert a new mapping into all structures. 1653 */ 1654 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1655 struct amdgpu_bo_va *bo_va, 1656 struct amdgpu_bo_va_mapping *mapping) 1657 { 1658 struct amdgpu_vm *vm = bo_va->base.vm; 1659 struct amdgpu_bo *bo = bo_va->base.bo; 1660 1661 mapping->bo_va = bo_va; 1662 list_add(&mapping->list, &bo_va->invalids); 1663 amdgpu_vm_it_insert(mapping, &vm->va); 1664 1665 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1666 amdgpu_vm_prt_get(adev); 1667 1668 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1669 amdgpu_vm_bo_moved(&bo_va->base); 1670 1671 trace_amdgpu_vm_bo_map(bo_va, mapping); 1672 } 1673 1674 /* Validate operation parameters to prevent potential abuse */ 1675 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1676 struct amdgpu_bo *bo, 1677 uint64_t saddr, 1678 uint64_t offset, 1679 uint64_t size) 1680 { 1681 uint64_t tmp, lpfn; 1682 1683 if (saddr & AMDGPU_GPU_PAGE_MASK 1684 || offset & AMDGPU_GPU_PAGE_MASK 1685 || size & AMDGPU_GPU_PAGE_MASK) 1686 return -EINVAL; 1687 1688 if (check_add_overflow(saddr, size, &tmp) 1689 || check_add_overflow(offset, size, &tmp) 1690 || size == 0 /* which also leads to end < begin */) 1691 return -EINVAL; 1692 1693 /* make sure object fit at this offset */ 1694 if (bo && offset + size > amdgpu_bo_size(bo)) 1695 return -EINVAL; 1696 1697 /* Ensure last pfn not exceed max_pfn */ 1698 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1699 if (lpfn >= adev->vm_manager.max_pfn) 1700 return -EINVAL; 1701 1702 return 0; 1703 } 1704 1705 /** 1706 * amdgpu_vm_bo_map - map bo inside a vm 1707 * 1708 * @adev: amdgpu_device pointer 1709 * @bo_va: bo_va to store the address 1710 * @saddr: where to map the BO 1711 * @offset: requested offset in the BO 1712 * @size: BO size in bytes 1713 * @flags: attributes of pages (read/write/valid/etc.) 1714 * 1715 * Add a mapping of the BO at the specefied addr into the VM. 1716 * 1717 * Returns: 1718 * 0 for success, error for failure. 1719 * 1720 * Object has to be reserved and unreserved outside! 1721 */ 1722 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1723 struct amdgpu_bo_va *bo_va, 1724 uint64_t saddr, uint64_t offset, 1725 uint64_t size, uint64_t flags) 1726 { 1727 struct amdgpu_bo_va_mapping *mapping, *tmp; 1728 struct amdgpu_bo *bo = bo_va->base.bo; 1729 struct amdgpu_vm *vm = bo_va->base.vm; 1730 uint64_t eaddr; 1731 int r; 1732 1733 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1734 if (r) 1735 return r; 1736 1737 saddr /= AMDGPU_GPU_PAGE_SIZE; 1738 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1739 1740 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1741 if (tmp) { 1742 /* bo and tmp overlap, invalid addr */ 1743 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1744 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1745 tmp->start, tmp->last + 1); 1746 return -EINVAL; 1747 } 1748 1749 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1750 if (!mapping) 1751 return -ENOMEM; 1752 1753 mapping->start = saddr; 1754 mapping->last = eaddr; 1755 mapping->offset = offset; 1756 mapping->flags = flags; 1757 1758 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1759 1760 return 0; 1761 } 1762 1763 /** 1764 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1765 * 1766 * @adev: amdgpu_device pointer 1767 * @bo_va: bo_va to store the address 1768 * @saddr: where to map the BO 1769 * @offset: requested offset in the BO 1770 * @size: BO size in bytes 1771 * @flags: attributes of pages (read/write/valid/etc.) 1772 * 1773 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1774 * mappings as we do so. 1775 * 1776 * Returns: 1777 * 0 for success, error for failure. 1778 * 1779 * Object has to be reserved and unreserved outside! 1780 */ 1781 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1782 struct amdgpu_bo_va *bo_va, 1783 uint64_t saddr, uint64_t offset, 1784 uint64_t size, uint64_t flags) 1785 { 1786 struct amdgpu_bo_va_mapping *mapping; 1787 struct amdgpu_bo *bo = bo_va->base.bo; 1788 uint64_t eaddr; 1789 int r; 1790 1791 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1792 if (r) 1793 return r; 1794 1795 /* Allocate all the needed memory */ 1796 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1797 if (!mapping) 1798 return -ENOMEM; 1799 1800 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1801 if (r) { 1802 kfree(mapping); 1803 return r; 1804 } 1805 1806 saddr /= AMDGPU_GPU_PAGE_SIZE; 1807 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1808 1809 mapping->start = saddr; 1810 mapping->last = eaddr; 1811 mapping->offset = offset; 1812 mapping->flags = flags; 1813 1814 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1815 1816 return 0; 1817 } 1818 1819 /** 1820 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1821 * 1822 * @adev: amdgpu_device pointer 1823 * @bo_va: bo_va to remove the address from 1824 * @saddr: where to the BO is mapped 1825 * 1826 * Remove a mapping of the BO at the specefied addr from the VM. 1827 * 1828 * Returns: 1829 * 0 for success, error for failure. 1830 * 1831 * Object has to be reserved and unreserved outside! 1832 */ 1833 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1834 struct amdgpu_bo_va *bo_va, 1835 uint64_t saddr) 1836 { 1837 struct amdgpu_bo_va_mapping *mapping; 1838 struct amdgpu_vm *vm = bo_va->base.vm; 1839 bool valid = true; 1840 1841 saddr /= AMDGPU_GPU_PAGE_SIZE; 1842 1843 list_for_each_entry(mapping, &bo_va->valids, list) { 1844 if (mapping->start == saddr) 1845 break; 1846 } 1847 1848 if (&mapping->list == &bo_va->valids) { 1849 valid = false; 1850 1851 list_for_each_entry(mapping, &bo_va->invalids, list) { 1852 if (mapping->start == saddr) 1853 break; 1854 } 1855 1856 if (&mapping->list == &bo_va->invalids) 1857 return -ENOENT; 1858 } 1859 1860 list_del(&mapping->list); 1861 amdgpu_vm_it_remove(mapping, &vm->va); 1862 mapping->bo_va = NULL; 1863 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1864 1865 if (valid) 1866 list_add(&mapping->list, &vm->freed); 1867 else 1868 amdgpu_vm_free_mapping(adev, vm, mapping, 1869 bo_va->last_pt_update); 1870 1871 return 0; 1872 } 1873 1874 /** 1875 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1876 * 1877 * @adev: amdgpu_device pointer 1878 * @vm: VM structure to use 1879 * @saddr: start of the range 1880 * @size: size of the range 1881 * 1882 * Remove all mappings in a range, split them as appropriate. 1883 * 1884 * Returns: 1885 * 0 for success, error for failure. 1886 */ 1887 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1888 struct amdgpu_vm *vm, 1889 uint64_t saddr, uint64_t size) 1890 { 1891 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1892 LIST_HEAD(removed); 1893 uint64_t eaddr; 1894 int r; 1895 1896 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 1897 if (r) 1898 return r; 1899 1900 saddr /= AMDGPU_GPU_PAGE_SIZE; 1901 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1902 1903 /* Allocate all the needed memory */ 1904 before = kzalloc(sizeof(*before), GFP_KERNEL); 1905 if (!before) 1906 return -ENOMEM; 1907 INIT_LIST_HEAD(&before->list); 1908 1909 after = kzalloc(sizeof(*after), GFP_KERNEL); 1910 if (!after) { 1911 kfree(before); 1912 return -ENOMEM; 1913 } 1914 INIT_LIST_HEAD(&after->list); 1915 1916 /* Now gather all removed mappings */ 1917 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1918 while (tmp) { 1919 /* Remember mapping split at the start */ 1920 if (tmp->start < saddr) { 1921 before->start = tmp->start; 1922 before->last = saddr - 1; 1923 before->offset = tmp->offset; 1924 before->flags = tmp->flags; 1925 before->bo_va = tmp->bo_va; 1926 list_add(&before->list, &tmp->bo_va->invalids); 1927 } 1928 1929 /* Remember mapping split at the end */ 1930 if (tmp->last > eaddr) { 1931 after->start = eaddr + 1; 1932 after->last = tmp->last; 1933 after->offset = tmp->offset; 1934 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 1935 after->flags = tmp->flags; 1936 after->bo_va = tmp->bo_va; 1937 list_add(&after->list, &tmp->bo_va->invalids); 1938 } 1939 1940 list_del(&tmp->list); 1941 list_add(&tmp->list, &removed); 1942 1943 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1944 } 1945 1946 /* And free them up */ 1947 list_for_each_entry_safe(tmp, next, &removed, list) { 1948 amdgpu_vm_it_remove(tmp, &vm->va); 1949 list_del(&tmp->list); 1950 1951 if (tmp->start < saddr) 1952 tmp->start = saddr; 1953 if (tmp->last > eaddr) 1954 tmp->last = eaddr; 1955 1956 tmp->bo_va = NULL; 1957 list_add(&tmp->list, &vm->freed); 1958 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1959 } 1960 1961 /* Insert partial mapping before the range */ 1962 if (!list_empty(&before->list)) { 1963 struct amdgpu_bo *bo = before->bo_va->base.bo; 1964 1965 amdgpu_vm_it_insert(before, &vm->va); 1966 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1967 amdgpu_vm_prt_get(adev); 1968 1969 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1970 !before->bo_va->base.moved) 1971 amdgpu_vm_bo_moved(&before->bo_va->base); 1972 } else { 1973 kfree(before); 1974 } 1975 1976 /* Insert partial mapping after the range */ 1977 if (!list_empty(&after->list)) { 1978 struct amdgpu_bo *bo = after->bo_va->base.bo; 1979 1980 amdgpu_vm_it_insert(after, &vm->va); 1981 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1982 amdgpu_vm_prt_get(adev); 1983 1984 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 1985 !after->bo_va->base.moved) 1986 amdgpu_vm_bo_moved(&after->bo_va->base); 1987 } else { 1988 kfree(after); 1989 } 1990 1991 return 0; 1992 } 1993 1994 /** 1995 * amdgpu_vm_bo_lookup_mapping - find mapping by address 1996 * 1997 * @vm: the requested VM 1998 * @addr: the address 1999 * 2000 * Find a mapping by it's address. 2001 * 2002 * Returns: 2003 * The amdgpu_bo_va_mapping matching for addr or NULL 2004 * 2005 */ 2006 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2007 uint64_t addr) 2008 { 2009 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2010 } 2011 2012 /** 2013 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2014 * 2015 * @vm: the requested vm 2016 * @ticket: CS ticket 2017 * 2018 * Trace all mappings of BOs reserved during a command submission. 2019 */ 2020 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2021 { 2022 struct amdgpu_bo_va_mapping *mapping; 2023 2024 if (!trace_amdgpu_vm_bo_cs_enabled()) 2025 return; 2026 2027 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2028 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2029 if (mapping->bo_va && mapping->bo_va->base.bo) { 2030 struct amdgpu_bo *bo; 2031 2032 bo = mapping->bo_va->base.bo; 2033 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2034 ticket) 2035 continue; 2036 } 2037 2038 trace_amdgpu_vm_bo_cs(mapping); 2039 } 2040 } 2041 2042 /** 2043 * amdgpu_vm_bo_del - remove a bo from a specific vm 2044 * 2045 * @adev: amdgpu_device pointer 2046 * @bo_va: requested bo_va 2047 * 2048 * Remove @bo_va->bo from the requested vm. 2049 * 2050 * Object have to be reserved! 2051 */ 2052 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2053 struct amdgpu_bo_va *bo_va) 2054 { 2055 struct amdgpu_bo_va_mapping *mapping, *next; 2056 struct amdgpu_bo *bo = bo_va->base.bo; 2057 struct amdgpu_vm *vm = bo_va->base.vm; 2058 struct amdgpu_vm_bo_base **base; 2059 2060 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2061 2062 if (bo) { 2063 dma_resv_assert_held(bo->tbo.base.resv); 2064 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2065 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2066 2067 for (base = &bo_va->base.bo->vm_bo; *base; 2068 base = &(*base)->next) { 2069 if (*base != &bo_va->base) 2070 continue; 2071 2072 *base = bo_va->base.next; 2073 break; 2074 } 2075 } 2076 2077 spin_lock(&vm->status_lock); 2078 list_del(&bo_va->base.vm_status); 2079 spin_unlock(&vm->status_lock); 2080 2081 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2082 list_del(&mapping->list); 2083 amdgpu_vm_it_remove(mapping, &vm->va); 2084 mapping->bo_va = NULL; 2085 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2086 list_add(&mapping->list, &vm->freed); 2087 } 2088 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2089 list_del(&mapping->list); 2090 amdgpu_vm_it_remove(mapping, &vm->va); 2091 amdgpu_vm_free_mapping(adev, vm, mapping, 2092 bo_va->last_pt_update); 2093 } 2094 2095 dma_fence_put(bo_va->last_pt_update); 2096 2097 if (bo && bo_va->is_xgmi) 2098 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2099 2100 kfree(bo_va); 2101 } 2102 2103 /** 2104 * amdgpu_vm_evictable - check if we can evict a VM 2105 * 2106 * @bo: A page table of the VM. 2107 * 2108 * Check if it is possible to evict a VM. 2109 */ 2110 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2111 { 2112 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2113 2114 /* Page tables of a destroyed VM can go away immediately */ 2115 if (!bo_base || !bo_base->vm) 2116 return true; 2117 2118 /* Don't evict VM page tables while they are busy */ 2119 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2120 return false; 2121 2122 /* Try to block ongoing updates */ 2123 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2124 return false; 2125 2126 /* Don't evict VM page tables while they are updated */ 2127 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2128 amdgpu_vm_eviction_unlock(bo_base->vm); 2129 return false; 2130 } 2131 2132 bo_base->vm->evicting = true; 2133 amdgpu_vm_eviction_unlock(bo_base->vm); 2134 return true; 2135 } 2136 2137 /** 2138 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2139 * 2140 * @adev: amdgpu_device pointer 2141 * @bo: amdgpu buffer object 2142 * @evicted: is the BO evicted 2143 * 2144 * Mark @bo as invalid. 2145 */ 2146 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2147 struct amdgpu_bo *bo, bool evicted) 2148 { 2149 struct amdgpu_vm_bo_base *bo_base; 2150 2151 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2152 struct amdgpu_vm *vm = bo_base->vm; 2153 2154 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2155 amdgpu_vm_bo_evicted(bo_base); 2156 continue; 2157 } 2158 2159 if (bo_base->moved) 2160 continue; 2161 bo_base->moved = true; 2162 2163 if (bo->tbo.type == ttm_bo_type_kernel) 2164 amdgpu_vm_bo_relocated(bo_base); 2165 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2166 amdgpu_vm_bo_moved(bo_base); 2167 else 2168 amdgpu_vm_bo_invalidated(bo_base); 2169 } 2170 } 2171 2172 /** 2173 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2174 * 2175 * @vm_size: VM size 2176 * 2177 * Returns: 2178 * VM page table as power of two 2179 */ 2180 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2181 { 2182 /* Total bits covered by PD + PTs */ 2183 unsigned bits = ilog2(vm_size) + 18; 2184 2185 /* Make sure the PD is 4K in size up to 8GB address space. 2186 Above that split equal between PD and PTs */ 2187 if (vm_size <= 8) 2188 return (bits - 9); 2189 else 2190 return ((bits + 3) / 2); 2191 } 2192 2193 /** 2194 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2195 * 2196 * @adev: amdgpu_device pointer 2197 * @min_vm_size: the minimum vm size in GB if it's set auto 2198 * @fragment_size_default: Default PTE fragment size 2199 * @max_level: max VMPT level 2200 * @max_bits: max address space size in bits 2201 * 2202 */ 2203 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2204 uint32_t fragment_size_default, unsigned max_level, 2205 unsigned max_bits) 2206 { 2207 unsigned int max_size = 1 << (max_bits - 30); 2208 unsigned int vm_size; 2209 uint64_t tmp; 2210 2211 /* adjust vm size first */ 2212 if (amdgpu_vm_size != -1) { 2213 vm_size = amdgpu_vm_size; 2214 if (vm_size > max_size) { 2215 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2216 amdgpu_vm_size, max_size); 2217 vm_size = max_size; 2218 } 2219 } else { 2220 struct sysinfo si; 2221 unsigned int phys_ram_gb; 2222 2223 /* Optimal VM size depends on the amount of physical 2224 * RAM available. Underlying requirements and 2225 * assumptions: 2226 * 2227 * - Need to map system memory and VRAM from all GPUs 2228 * - VRAM from other GPUs not known here 2229 * - Assume VRAM <= system memory 2230 * - On GFX8 and older, VM space can be segmented for 2231 * different MTYPEs 2232 * - Need to allow room for fragmentation, guard pages etc. 2233 * 2234 * This adds up to a rough guess of system memory x3. 2235 * Round up to power of two to maximize the available 2236 * VM size with the given page table size. 2237 */ 2238 si_meminfo(&si); 2239 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2240 (1 << 30) - 1) >> 30; 2241 vm_size = roundup_pow_of_two( 2242 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2243 } 2244 2245 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2246 2247 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2248 if (amdgpu_vm_block_size != -1) 2249 tmp >>= amdgpu_vm_block_size - 9; 2250 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2251 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2252 switch (adev->vm_manager.num_level) { 2253 case 3: 2254 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2255 break; 2256 case 2: 2257 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2258 break; 2259 case 1: 2260 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2261 break; 2262 default: 2263 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2264 } 2265 /* block size depends on vm size and hw setup*/ 2266 if (amdgpu_vm_block_size != -1) 2267 adev->vm_manager.block_size = 2268 min((unsigned)amdgpu_vm_block_size, max_bits 2269 - AMDGPU_GPU_PAGE_SHIFT 2270 - 9 * adev->vm_manager.num_level); 2271 else if (adev->vm_manager.num_level > 1) 2272 adev->vm_manager.block_size = 9; 2273 else 2274 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2275 2276 if (amdgpu_vm_fragment_size == -1) 2277 adev->vm_manager.fragment_size = fragment_size_default; 2278 else 2279 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2280 2281 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2282 vm_size, adev->vm_manager.num_level + 1, 2283 adev->vm_manager.block_size, 2284 adev->vm_manager.fragment_size); 2285 } 2286 2287 /** 2288 * amdgpu_vm_wait_idle - wait for the VM to become idle 2289 * 2290 * @vm: VM object to wait for 2291 * @timeout: timeout to wait for VM to become idle 2292 */ 2293 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2294 { 2295 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2296 DMA_RESV_USAGE_BOOKKEEP, 2297 true, timeout); 2298 if (timeout <= 0) 2299 return timeout; 2300 2301 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2302 } 2303 2304 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2305 { 2306 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2307 2308 kfree(ti); 2309 } 2310 2311 static inline struct amdgpu_vm * 2312 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2313 { 2314 struct amdgpu_vm *vm; 2315 unsigned long flags; 2316 2317 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2318 vm = xa_load(&adev->vm_manager.pasids, pasid); 2319 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2320 2321 return vm; 2322 } 2323 2324 /** 2325 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2326 * 2327 * @task_info: task_info struct under discussion. 2328 * 2329 * frees the vm task_info ptr at the last put 2330 */ 2331 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2332 { 2333 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2334 } 2335 2336 /** 2337 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2338 * 2339 * @vm: VM to get info from 2340 * 2341 * Returns the reference counted task_info structure, which must be 2342 * referenced down with amdgpu_vm_put_task_info. 2343 */ 2344 struct amdgpu_task_info * 2345 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2346 { 2347 struct amdgpu_task_info *ti = NULL; 2348 2349 if (vm) { 2350 ti = vm->task_info; 2351 kref_get(&vm->task_info->refcount); 2352 } 2353 2354 return ti; 2355 } 2356 2357 /** 2358 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2359 * 2360 * @adev: drm device pointer 2361 * @pasid: PASID identifier for VM 2362 * 2363 * Returns the reference counted task_info structure, which must be 2364 * referenced down with amdgpu_vm_put_task_info. 2365 */ 2366 struct amdgpu_task_info * 2367 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2368 { 2369 return amdgpu_vm_get_task_info_vm( 2370 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2371 } 2372 2373 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2374 { 2375 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2376 if (!vm->task_info) 2377 return -ENOMEM; 2378 2379 kref_init(&vm->task_info->refcount); 2380 return 0; 2381 } 2382 2383 /** 2384 * amdgpu_vm_set_task_info - Sets VMs task info. 2385 * 2386 * @vm: vm for which to set the info 2387 */ 2388 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2389 { 2390 if (!vm->task_info) 2391 return; 2392 2393 if (vm->task_info->pid == current->pid) 2394 return; 2395 2396 vm->task_info->pid = current->pid; 2397 get_task_comm(vm->task_info->task_name, current); 2398 2399 if (current->group_leader->mm != current->mm) 2400 return; 2401 2402 vm->task_info->tgid = current->group_leader->pid; 2403 get_task_comm(vm->task_info->process_name, current->group_leader); 2404 } 2405 2406 /** 2407 * amdgpu_vm_init - initialize a vm instance 2408 * 2409 * @adev: amdgpu_device pointer 2410 * @vm: requested vm 2411 * @xcp_id: GPU partition selection id 2412 * 2413 * Init @vm fields. 2414 * 2415 * Returns: 2416 * 0 for success, error for failure. 2417 */ 2418 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2419 int32_t xcp_id) 2420 { 2421 struct amdgpu_bo *root_bo; 2422 struct amdgpu_bo_vm *root; 2423 int r, i; 2424 2425 vm->va = RB_ROOT_CACHED; 2426 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2427 vm->reserved_vmid[i] = NULL; 2428 INIT_LIST_HEAD(&vm->evicted); 2429 INIT_LIST_HEAD(&vm->evicted_user); 2430 INIT_LIST_HEAD(&vm->relocated); 2431 INIT_LIST_HEAD(&vm->moved); 2432 INIT_LIST_HEAD(&vm->idle); 2433 INIT_LIST_HEAD(&vm->invalidated); 2434 spin_lock_init(&vm->status_lock); 2435 INIT_LIST_HEAD(&vm->freed); 2436 INIT_LIST_HEAD(&vm->done); 2437 INIT_LIST_HEAD(&vm->pt_freed); 2438 INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); 2439 INIT_KFIFO(vm->faults); 2440 2441 r = amdgpu_vm_init_entities(adev, vm); 2442 if (r) 2443 return r; 2444 2445 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2446 2447 vm->is_compute_context = false; 2448 2449 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2450 AMDGPU_VM_USE_CPU_FOR_GFX); 2451 2452 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2453 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2454 WARN_ONCE((vm->use_cpu_for_update && 2455 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2456 "CPU update of VM recommended only for large BAR system\n"); 2457 2458 if (vm->use_cpu_for_update) 2459 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2460 else 2461 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2462 2463 vm->last_update = dma_fence_get_stub(); 2464 vm->last_unlocked = dma_fence_get_stub(); 2465 vm->last_tlb_flush = dma_fence_get_stub(); 2466 vm->generation = amdgpu_vm_generation(adev, NULL); 2467 2468 mutex_init(&vm->eviction_lock); 2469 vm->evicting = false; 2470 vm->tlb_fence_context = dma_fence_context_alloc(1); 2471 2472 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2473 false, &root, xcp_id); 2474 if (r) 2475 goto error_free_delayed; 2476 2477 root_bo = amdgpu_bo_ref(&root->bo); 2478 r = amdgpu_bo_reserve(root_bo, true); 2479 if (r) { 2480 amdgpu_bo_unref(&root_bo); 2481 goto error_free_delayed; 2482 } 2483 2484 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2485 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2486 if (r) 2487 goto error_free_root; 2488 2489 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2490 if (r) 2491 goto error_free_root; 2492 2493 r = amdgpu_vm_create_task_info(vm); 2494 if (r) 2495 DRM_DEBUG("Failed to create task info for VM\n"); 2496 2497 amdgpu_bo_unreserve(vm->root.bo); 2498 amdgpu_bo_unref(&root_bo); 2499 2500 return 0; 2501 2502 error_free_root: 2503 amdgpu_vm_pt_free_root(adev, vm); 2504 amdgpu_bo_unreserve(vm->root.bo); 2505 amdgpu_bo_unref(&root_bo); 2506 2507 error_free_delayed: 2508 dma_fence_put(vm->last_tlb_flush); 2509 dma_fence_put(vm->last_unlocked); 2510 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2511 amdgpu_vm_fini_entities(vm); 2512 2513 return r; 2514 } 2515 2516 /** 2517 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2518 * 2519 * @adev: amdgpu_device pointer 2520 * @vm: requested vm 2521 * 2522 * This only works on GFX VMs that don't have any BOs added and no 2523 * page tables allocated yet. 2524 * 2525 * Changes the following VM parameters: 2526 * - use_cpu_for_update 2527 * - pte_supports_ats 2528 * 2529 * Reinitializes the page directory to reflect the changed ATS 2530 * setting. 2531 * 2532 * Returns: 2533 * 0 for success, -errno for errors. 2534 */ 2535 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2536 { 2537 int r; 2538 2539 r = amdgpu_bo_reserve(vm->root.bo, true); 2540 if (r) 2541 return r; 2542 2543 /* Update VM state */ 2544 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2545 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2546 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2547 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2548 WARN_ONCE((vm->use_cpu_for_update && 2549 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2550 "CPU update of VM recommended only for large BAR system\n"); 2551 2552 if (vm->use_cpu_for_update) { 2553 /* Sync with last SDMA update/clear before switching to CPU */ 2554 r = amdgpu_bo_sync_wait(vm->root.bo, 2555 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2556 if (r) 2557 goto unreserve_bo; 2558 2559 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2560 r = amdgpu_vm_pt_map_tables(adev, vm); 2561 if (r) 2562 goto unreserve_bo; 2563 2564 } else { 2565 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2566 } 2567 2568 dma_fence_put(vm->last_update); 2569 vm->last_update = dma_fence_get_stub(); 2570 vm->is_compute_context = true; 2571 2572 unreserve_bo: 2573 amdgpu_bo_unreserve(vm->root.bo); 2574 return r; 2575 } 2576 2577 /** 2578 * amdgpu_vm_release_compute - release a compute vm 2579 * @adev: amdgpu_device pointer 2580 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2581 * 2582 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2583 * pasid from vm. Compute should stop use of vm after this call. 2584 */ 2585 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2586 { 2587 amdgpu_vm_set_pasid(adev, vm, 0); 2588 vm->is_compute_context = false; 2589 } 2590 2591 /** 2592 * amdgpu_vm_fini - tear down a vm instance 2593 * 2594 * @adev: amdgpu_device pointer 2595 * @vm: requested vm 2596 * 2597 * Tear down @vm. 2598 * Unbind the VM and remove all bos from the vm bo list 2599 */ 2600 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2601 { 2602 struct amdgpu_bo_va_mapping *mapping, *tmp; 2603 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2604 struct amdgpu_bo *root; 2605 unsigned long flags; 2606 int i; 2607 2608 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2609 2610 flush_work(&vm->pt_free_work); 2611 2612 root = amdgpu_bo_ref(vm->root.bo); 2613 amdgpu_bo_reserve(root, true); 2614 amdgpu_vm_put_task_info(vm->task_info); 2615 amdgpu_vm_set_pasid(adev, vm, 0); 2616 dma_fence_wait(vm->last_unlocked, false); 2617 dma_fence_put(vm->last_unlocked); 2618 dma_fence_wait(vm->last_tlb_flush, false); 2619 /* Make sure that all fence callbacks have completed */ 2620 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2621 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2622 dma_fence_put(vm->last_tlb_flush); 2623 2624 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2625 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2626 amdgpu_vm_prt_fini(adev, vm); 2627 prt_fini_needed = false; 2628 } 2629 2630 list_del(&mapping->list); 2631 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2632 } 2633 2634 amdgpu_vm_pt_free_root(adev, vm); 2635 amdgpu_bo_unreserve(root); 2636 amdgpu_bo_unref(&root); 2637 WARN_ON(vm->root.bo); 2638 2639 amdgpu_vm_fini_entities(vm); 2640 2641 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2642 dev_err(adev->dev, "still active bo inside vm\n"); 2643 } 2644 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2645 &vm->va.rb_root, rb) { 2646 /* Don't remove the mapping here, we don't want to trigger a 2647 * rebalance and the tree is about to be destroyed anyway. 2648 */ 2649 list_del(&mapping->list); 2650 kfree(mapping); 2651 } 2652 2653 dma_fence_put(vm->last_update); 2654 2655 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2656 if (vm->reserved_vmid[i]) { 2657 amdgpu_vmid_free_reserved(adev, i); 2658 vm->reserved_vmid[i] = false; 2659 } 2660 } 2661 2662 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2663 } 2664 2665 /** 2666 * amdgpu_vm_manager_init - init the VM manager 2667 * 2668 * @adev: amdgpu_device pointer 2669 * 2670 * Initialize the VM manager structures 2671 */ 2672 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2673 { 2674 unsigned i; 2675 2676 /* Concurrent flushes are only possible starting with Vega10 and 2677 * are broken on Navi10 and Navi14. 2678 */ 2679 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2680 adev->asic_type == CHIP_NAVI10 || 2681 adev->asic_type == CHIP_NAVI14); 2682 amdgpu_vmid_mgr_init(adev); 2683 2684 adev->vm_manager.fence_context = 2685 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2686 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2687 adev->vm_manager.seqno[i] = 0; 2688 2689 spin_lock_init(&adev->vm_manager.prt_lock); 2690 atomic_set(&adev->vm_manager.num_prt_users, 0); 2691 2692 /* If not overridden by the user, by default, only in large BAR systems 2693 * Compute VM tables will be updated by CPU 2694 */ 2695 #ifdef CONFIG_X86_64 2696 if (amdgpu_vm_update_mode == -1) { 2697 /* For asic with VF MMIO access protection 2698 * avoid using CPU for VM table updates 2699 */ 2700 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2701 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2702 adev->vm_manager.vm_update_mode = 2703 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2704 else 2705 adev->vm_manager.vm_update_mode = 0; 2706 } else 2707 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2708 #else 2709 adev->vm_manager.vm_update_mode = 0; 2710 #endif 2711 2712 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2713 } 2714 2715 /** 2716 * amdgpu_vm_manager_fini - cleanup VM manager 2717 * 2718 * @adev: amdgpu_device pointer 2719 * 2720 * Cleanup the VM manager and free resources. 2721 */ 2722 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2723 { 2724 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2725 xa_destroy(&adev->vm_manager.pasids); 2726 2727 amdgpu_vmid_mgr_fini(adev); 2728 } 2729 2730 /** 2731 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2732 * 2733 * @dev: drm device pointer 2734 * @data: drm_amdgpu_vm 2735 * @filp: drm file pointer 2736 * 2737 * Returns: 2738 * 0 for success, -errno for errors. 2739 */ 2740 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2741 { 2742 union drm_amdgpu_vm *args = data; 2743 struct amdgpu_device *adev = drm_to_adev(dev); 2744 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2745 2746 /* No valid flags defined yet */ 2747 if (args->in.flags) 2748 return -EINVAL; 2749 2750 switch (args->in.op) { 2751 case AMDGPU_VM_OP_RESERVE_VMID: 2752 /* We only have requirement to reserve vmid from gfxhub */ 2753 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2754 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2755 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2756 } 2757 2758 break; 2759 case AMDGPU_VM_OP_UNRESERVE_VMID: 2760 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2761 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2762 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2763 } 2764 break; 2765 default: 2766 return -EINVAL; 2767 } 2768 2769 return 0; 2770 } 2771 2772 /** 2773 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2774 * @adev: amdgpu device pointer 2775 * @pasid: PASID of the VM 2776 * @ts: Timestamp of the fault 2777 * @vmid: VMID, only used for GFX 9.4.3. 2778 * @node_id: Node_id received in IH cookie. Only applicable for 2779 * GFX 9.4.3. 2780 * @addr: Address of the fault 2781 * @write_fault: true is write fault, false is read fault 2782 * 2783 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2784 * shouldn't be reported any more. 2785 */ 2786 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2787 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2788 bool write_fault) 2789 { 2790 bool is_compute_context = false; 2791 struct amdgpu_bo *root; 2792 unsigned long irqflags; 2793 uint64_t value, flags; 2794 struct amdgpu_vm *vm; 2795 int r; 2796 2797 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2798 vm = xa_load(&adev->vm_manager.pasids, pasid); 2799 if (vm) { 2800 root = amdgpu_bo_ref(vm->root.bo); 2801 is_compute_context = vm->is_compute_context; 2802 } else { 2803 root = NULL; 2804 } 2805 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2806 2807 if (!root) 2808 return false; 2809 2810 addr /= AMDGPU_GPU_PAGE_SIZE; 2811 2812 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2813 node_id, addr, ts, write_fault)) { 2814 amdgpu_bo_unref(&root); 2815 return true; 2816 } 2817 2818 r = amdgpu_bo_reserve(root, true); 2819 if (r) 2820 goto error_unref; 2821 2822 /* Double check that the VM still exists */ 2823 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2824 vm = xa_load(&adev->vm_manager.pasids, pasid); 2825 if (vm && vm->root.bo != root) 2826 vm = NULL; 2827 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2828 if (!vm) 2829 goto error_unlock; 2830 2831 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2832 AMDGPU_PTE_SYSTEM; 2833 2834 if (is_compute_context) { 2835 /* Intentionally setting invalid PTE flag 2836 * combination to force a no-retry-fault 2837 */ 2838 flags = AMDGPU_VM_NORETRY_FLAGS; 2839 value = 0; 2840 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2841 /* Redirect the access to the dummy page */ 2842 value = adev->dummy_page_addr; 2843 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2844 AMDGPU_PTE_WRITEABLE; 2845 2846 } else { 2847 /* Let the hw retry silently on the PTE */ 2848 value = 0; 2849 } 2850 2851 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2852 if (r) { 2853 pr_debug("failed %d to reserve fence slot\n", r); 2854 goto error_unlock; 2855 } 2856 2857 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2858 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2859 if (r) 2860 goto error_unlock; 2861 2862 r = amdgpu_vm_update_pdes(adev, vm, true); 2863 2864 error_unlock: 2865 amdgpu_bo_unreserve(root); 2866 if (r < 0) 2867 DRM_ERROR("Can't handle page fault (%d)\n", r); 2868 2869 error_unref: 2870 amdgpu_bo_unref(&root); 2871 2872 return false; 2873 } 2874 2875 #if defined(CONFIG_DEBUG_FS) 2876 /** 2877 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2878 * 2879 * @vm: Requested VM for printing BO info 2880 * @m: debugfs file 2881 * 2882 * Print BO information in debugfs file for the VM 2883 */ 2884 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 2885 { 2886 struct amdgpu_bo_va *bo_va, *tmp; 2887 u64 total_idle = 0; 2888 u64 total_evicted = 0; 2889 u64 total_relocated = 0; 2890 u64 total_moved = 0; 2891 u64 total_invalidated = 0; 2892 u64 total_done = 0; 2893 unsigned int total_idle_objs = 0; 2894 unsigned int total_evicted_objs = 0; 2895 unsigned int total_relocated_objs = 0; 2896 unsigned int total_moved_objs = 0; 2897 unsigned int total_invalidated_objs = 0; 2898 unsigned int total_done_objs = 0; 2899 unsigned int id = 0; 2900 2901 spin_lock(&vm->status_lock); 2902 seq_puts(m, "\tIdle BOs:\n"); 2903 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 2904 if (!bo_va->base.bo) 2905 continue; 2906 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2907 } 2908 total_idle_objs = id; 2909 id = 0; 2910 2911 seq_puts(m, "\tEvicted BOs:\n"); 2912 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 2913 if (!bo_va->base.bo) 2914 continue; 2915 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2916 } 2917 total_evicted_objs = id; 2918 id = 0; 2919 2920 seq_puts(m, "\tRelocated BOs:\n"); 2921 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 2922 if (!bo_va->base.bo) 2923 continue; 2924 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2925 } 2926 total_relocated_objs = id; 2927 id = 0; 2928 2929 seq_puts(m, "\tMoved BOs:\n"); 2930 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2931 if (!bo_va->base.bo) 2932 continue; 2933 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2934 } 2935 total_moved_objs = id; 2936 id = 0; 2937 2938 seq_puts(m, "\tInvalidated BOs:\n"); 2939 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 2940 if (!bo_va->base.bo) 2941 continue; 2942 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2943 } 2944 total_invalidated_objs = id; 2945 id = 0; 2946 2947 seq_puts(m, "\tDone BOs:\n"); 2948 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 2949 if (!bo_va->base.bo) 2950 continue; 2951 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2952 } 2953 spin_unlock(&vm->status_lock); 2954 total_done_objs = id; 2955 2956 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 2957 total_idle_objs); 2958 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 2959 total_evicted_objs); 2960 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 2961 total_relocated_objs); 2962 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 2963 total_moved_objs); 2964 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 2965 total_invalidated_objs); 2966 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 2967 total_done_objs); 2968 } 2969 #endif 2970 2971 /** 2972 * amdgpu_vm_update_fault_cache - update cached fault into. 2973 * @adev: amdgpu device pointer 2974 * @pasid: PASID of the VM 2975 * @addr: Address of the fault 2976 * @status: GPUVM fault status register 2977 * @vmhub: which vmhub got the fault 2978 * 2979 * Cache the fault info for later use by userspace in debugging. 2980 */ 2981 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 2982 unsigned int pasid, 2983 uint64_t addr, 2984 uint32_t status, 2985 unsigned int vmhub) 2986 { 2987 struct amdgpu_vm *vm; 2988 unsigned long flags; 2989 2990 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2991 2992 vm = xa_load(&adev->vm_manager.pasids, pasid); 2993 /* Don't update the fault cache if status is 0. In the multiple 2994 * fault case, subsequent faults will return a 0 status which is 2995 * useless for userspace and replaces the useful fault status, so 2996 * only update if status is non-0. 2997 */ 2998 if (vm && status) { 2999 vm->fault_info.addr = addr; 3000 vm->fault_info.status = status; 3001 /* 3002 * Update the fault information globally for later usage 3003 * when vm could be stale or freed. 3004 */ 3005 adev->vm_manager.fault_info.addr = addr; 3006 adev->vm_manager.fault_info.vmhub = vmhub; 3007 adev->vm_manager.fault_info.status = status; 3008 3009 if (AMDGPU_IS_GFXHUB(vmhub)) { 3010 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3011 vm->fault_info.vmhub |= 3012 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3013 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3014 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3015 vm->fault_info.vmhub |= 3016 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3017 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3018 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3019 vm->fault_info.vmhub |= 3020 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3021 } else { 3022 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3023 } 3024 } 3025 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3026 } 3027 3028 /** 3029 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3030 * 3031 * @vm: VM to test against. 3032 * @bo: BO to be tested. 3033 * 3034 * Returns true if the BO shares the dma_resv object with the root PD and is 3035 * always guaranteed to be valid inside the VM. 3036 */ 3037 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3038 { 3039 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3040 } 3041