1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_vm.h" 40 #include "amdgpu_trace.h" 41 #include "amdgpu_amdkfd.h" 42 #include "amdgpu_gmc.h" 43 #include "amdgpu_xgmi.h" 44 #include "amdgpu_dma_buf.h" 45 #include "amdgpu_res_cursor.h" 46 #include "kfd_svm.h" 47 48 /** 49 * DOC: GPUVM 50 * 51 * GPUVM is the MMU functionality provided on the GPU. 52 * GPUVM is similar to the legacy GART on older asics, however 53 * rather than there being a single global GART table 54 * for the entire GPU, there can be multiple GPUVM page tables active 55 * at any given time. The GPUVM page tables can contain a mix 56 * VRAM pages and system pages (both memory and MMIO) and system pages 57 * can be mapped as snooped (cached system pages) or unsnooped 58 * (uncached system pages). 59 * 60 * Each active GPUVM has an ID associated with it and there is a page table 61 * linked with each VMID. When executing a command buffer, 62 * the kernel tells the engine what VMID to use for that command 63 * buffer. VMIDs are allocated dynamically as commands are submitted. 64 * The userspace drivers maintain their own address space and the kernel 65 * sets up their pages tables accordingly when they submit their 66 * command buffers and a VMID is assigned. 67 * The hardware supports up to 16 active GPUVMs at any given time. 68 * 69 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 70 * on the ASIC family. GPUVM supports RWX attributes on each page as well 71 * as other features such as encryption and caching attributes. 72 * 73 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 74 * addition to an aperture managed by a page table, VMID 0 also has 75 * several other apertures. There is an aperture for direct access to VRAM 76 * and there is a legacy AGP aperture which just forwards accesses directly 77 * to the matching system physical addresses (or IOVAs when an IOMMU is 78 * present). These apertures provide direct access to these memories without 79 * incurring the overhead of a page table. VMID 0 is used by the kernel 80 * driver for tasks like memory management. 81 * 82 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 83 * For user applications, each application can have their own unique GPUVM 84 * address space. The application manages the address space and the kernel 85 * driver manages the GPUVM page tables for each process. If an GPU client 86 * accesses an invalid page, it will generate a GPU page fault, similar to 87 * accessing an invalid page on a CPU. 88 */ 89 90 #define START(node) ((node)->start) 91 #define LAST(node) ((node)->last) 92 93 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 94 START, LAST, static, amdgpu_vm_it) 95 96 #undef START 97 #undef LAST 98 99 /** 100 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 101 */ 102 struct amdgpu_prt_cb { 103 104 /** 105 * @adev: amdgpu device 106 */ 107 struct amdgpu_device *adev; 108 109 /** 110 * @cb: callback 111 */ 112 struct dma_fence_cb cb; 113 }; 114 115 /** 116 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 117 */ 118 struct amdgpu_vm_tlb_seq_struct { 119 /** 120 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 121 */ 122 struct amdgpu_vm *vm; 123 124 /** 125 * @cb: callback 126 */ 127 struct dma_fence_cb cb; 128 }; 129 130 /** 131 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 132 * 133 * @adev: amdgpu_device pointer 134 * @vm: amdgpu_vm pointer 135 * @pasid: the pasid the VM is using on this GPU 136 * 137 * Set the pasid this VM is using on this GPU, can also be used to remove the 138 * pasid by passing in zero. 139 * 140 */ 141 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 142 u32 pasid) 143 { 144 int r; 145 146 if (vm->pasid == pasid) 147 return 0; 148 149 if (vm->pasid) { 150 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 151 if (r < 0) 152 return r; 153 154 vm->pasid = 0; 155 } 156 157 if (pasid) { 158 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 159 GFP_KERNEL)); 160 if (r < 0) 161 return r; 162 163 vm->pasid = pasid; 164 } 165 166 167 return 0; 168 } 169 170 /** 171 * amdgpu_vm_bo_evicted - vm_bo is evicted 172 * 173 * @vm_bo: vm_bo which is evicted 174 * 175 * State for PDs/PTs and per VM BOs which are not at the location they should 176 * be. 177 */ 178 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 179 { 180 struct amdgpu_vm *vm = vm_bo->vm; 181 struct amdgpu_bo *bo = vm_bo->bo; 182 183 vm_bo->moved = true; 184 spin_lock(&vm_bo->vm->status_lock); 185 if (bo->tbo.type == ttm_bo_type_kernel) 186 list_move(&vm_bo->vm_status, &vm->evicted); 187 else 188 list_move_tail(&vm_bo->vm_status, &vm->evicted); 189 spin_unlock(&vm_bo->vm->status_lock); 190 } 191 /** 192 * amdgpu_vm_bo_moved - vm_bo is moved 193 * 194 * @vm_bo: vm_bo which is moved 195 * 196 * State for per VM BOs which are moved, but that change is not yet reflected 197 * in the page tables. 198 */ 199 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 200 { 201 spin_lock(&vm_bo->vm->status_lock); 202 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 203 spin_unlock(&vm_bo->vm->status_lock); 204 } 205 206 /** 207 * amdgpu_vm_bo_idle - vm_bo is idle 208 * 209 * @vm_bo: vm_bo which is now idle 210 * 211 * State for PDs/PTs and per VM BOs which have gone through the state machine 212 * and are now idle. 213 */ 214 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 215 { 216 spin_lock(&vm_bo->vm->status_lock); 217 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 218 spin_unlock(&vm_bo->vm->status_lock); 219 vm_bo->moved = false; 220 } 221 222 /** 223 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 224 * 225 * @vm_bo: vm_bo which is now invalidated 226 * 227 * State for normal BOs which are invalidated and that change not yet reflected 228 * in the PTs. 229 */ 230 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 231 { 232 spin_lock(&vm_bo->vm->status_lock); 233 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 234 spin_unlock(&vm_bo->vm->status_lock); 235 } 236 237 /** 238 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 239 * 240 * @vm_bo: vm_bo which is evicted 241 * 242 * State for BOs used by user mode queues which are not at the location they 243 * should be. 244 */ 245 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 246 { 247 vm_bo->moved = true; 248 spin_lock(&vm_bo->vm->status_lock); 249 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 250 spin_unlock(&vm_bo->vm->status_lock); 251 } 252 253 /** 254 * amdgpu_vm_bo_relocated - vm_bo is reloacted 255 * 256 * @vm_bo: vm_bo which is relocated 257 * 258 * State for PDs/PTs which needs to update their parent PD. 259 * For the root PD, just move to idle state. 260 */ 261 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 262 { 263 if (vm_bo->bo->parent) { 264 spin_lock(&vm_bo->vm->status_lock); 265 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 266 spin_unlock(&vm_bo->vm->status_lock); 267 } else { 268 amdgpu_vm_bo_idle(vm_bo); 269 } 270 } 271 272 /** 273 * amdgpu_vm_bo_done - vm_bo is done 274 * 275 * @vm_bo: vm_bo which is now done 276 * 277 * State for normal BOs which are invalidated and that change has been updated 278 * in the PTs. 279 */ 280 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 spin_lock(&vm_bo->vm->status_lock); 283 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 284 spin_unlock(&vm_bo->vm->status_lock); 285 } 286 287 /** 288 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 289 * @vm: the VM which state machine to reset 290 * 291 * Move all vm_bo object in the VM into a state where they will be updated 292 * again during validation. 293 */ 294 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 295 { 296 struct amdgpu_vm_bo_base *vm_bo, *tmp; 297 298 spin_lock(&vm->status_lock); 299 list_splice_init(&vm->done, &vm->invalidated); 300 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 301 vm_bo->moved = true; 302 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 303 struct amdgpu_bo *bo = vm_bo->bo; 304 305 vm_bo->moved = true; 306 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 307 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 308 else if (bo->parent) 309 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 310 } 311 spin_unlock(&vm->status_lock); 312 } 313 314 /** 315 * amdgpu_vm_update_shared - helper to update shared memory stat 316 * @base: base structure for tracking BO usage in a VM 317 * 318 * Takes the vm status_lock and updates the shared memory stat. If the basic 319 * stat changed (e.g. buffer was moved) amdgpu_vm_update_stats need to be called 320 * as well. 321 */ 322 static void amdgpu_vm_update_shared(struct amdgpu_vm_bo_base *base) 323 { 324 struct amdgpu_vm *vm = base->vm; 325 struct amdgpu_bo *bo = base->bo; 326 uint64_t size = amdgpu_bo_size(bo); 327 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 328 bool shared; 329 330 spin_lock(&vm->status_lock); 331 shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 332 if (base->shared != shared) { 333 base->shared = shared; 334 if (shared) { 335 vm->stats[bo_memtype].drm.shared += size; 336 vm->stats[bo_memtype].drm.private -= size; 337 } else { 338 vm->stats[bo_memtype].drm.shared -= size; 339 vm->stats[bo_memtype].drm.private += size; 340 } 341 } 342 spin_unlock(&vm->status_lock); 343 } 344 345 /** 346 * amdgpu_vm_bo_update_shared - callback when bo gets shared/unshared 347 * @bo: amdgpu buffer object 348 * 349 * Update the per VM stats for all the vm if needed from private to shared or 350 * vice versa. 351 */ 352 void amdgpu_vm_bo_update_shared(struct amdgpu_bo *bo) 353 { 354 struct amdgpu_vm_bo_base *base; 355 356 for (base = bo->vm_bo; base; base = base->next) 357 amdgpu_vm_update_shared(base); 358 } 359 360 /** 361 * amdgpu_vm_update_stats_locked - helper to update normal memory stat 362 * @base: base structure for tracking BO usage in a VM 363 * @res: the ttm_resource to use for the purpose of accounting, may or may not 364 * be bo->tbo.resource 365 * @sign: if we should add (+1) or subtract (-1) from the stat 366 * 367 * Caller need to have the vm status_lock held. Useful for when multiple update 368 * need to happen at the same time. 369 */ 370 static void amdgpu_vm_update_stats_locked(struct amdgpu_vm_bo_base *base, 371 struct ttm_resource *res, int sign) 372 { 373 struct amdgpu_vm *vm = base->vm; 374 struct amdgpu_bo *bo = base->bo; 375 int64_t size = sign * amdgpu_bo_size(bo); 376 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 377 378 /* For drm-total- and drm-shared-, BO are accounted by their preferred 379 * placement, see also amdgpu_bo_mem_stats_placement. 380 */ 381 if (base->shared) 382 vm->stats[bo_memtype].drm.shared += size; 383 else 384 vm->stats[bo_memtype].drm.private += size; 385 386 if (res && res->mem_type < __AMDGPU_PL_NUM) { 387 uint32_t res_memtype = res->mem_type; 388 389 vm->stats[res_memtype].drm.resident += size; 390 /* BO only count as purgeable if it is resident, 391 * since otherwise there's nothing to purge. 392 */ 393 if (bo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) 394 vm->stats[res_memtype].drm.purgeable += size; 395 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(res_memtype))) 396 vm->stats[bo_memtype].evicted += size; 397 } 398 } 399 400 /** 401 * amdgpu_vm_update_stats - helper to update normal memory stat 402 * @base: base structure for tracking BO usage in a VM 403 * @res: the ttm_resource to use for the purpose of accounting, may or may not 404 * be bo->tbo.resource 405 * @sign: if we should add (+1) or subtract (-1) from the stat 406 * 407 * Updates the basic memory stat when bo is added/deleted/moved. 408 */ 409 void amdgpu_vm_update_stats(struct amdgpu_vm_bo_base *base, 410 struct ttm_resource *res, int sign) 411 { 412 struct amdgpu_vm *vm = base->vm; 413 414 spin_lock(&vm->status_lock); 415 amdgpu_vm_update_stats_locked(base, res, sign); 416 spin_unlock(&vm->status_lock); 417 } 418 419 /** 420 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 421 * 422 * @base: base structure for tracking BO usage in a VM 423 * @vm: vm to which bo is to be added 424 * @bo: amdgpu buffer object 425 * 426 * Initialize a bo_va_base structure and add it to the appropriate lists 427 * 428 */ 429 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 430 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 431 { 432 base->vm = vm; 433 base->bo = bo; 434 base->next = NULL; 435 INIT_LIST_HEAD(&base->vm_status); 436 437 if (!bo) 438 return; 439 base->next = bo->vm_bo; 440 bo->vm_bo = base; 441 442 spin_lock(&vm->status_lock); 443 base->shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 444 amdgpu_vm_update_stats_locked(base, bo->tbo.resource, +1); 445 spin_unlock(&vm->status_lock); 446 447 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 448 return; 449 450 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 451 452 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 453 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 454 amdgpu_vm_bo_relocated(base); 455 else 456 amdgpu_vm_bo_idle(base); 457 458 if (bo->preferred_domains & 459 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 460 return; 461 462 /* 463 * we checked all the prerequisites, but it looks like this per vm bo 464 * is currently evicted. add the bo to the evicted list to make sure it 465 * is validated on next vm use to avoid fault. 466 * */ 467 amdgpu_vm_bo_evicted(base); 468 } 469 470 /** 471 * amdgpu_vm_lock_pd - lock PD in drm_exec 472 * 473 * @vm: vm providing the BOs 474 * @exec: drm execution context 475 * @num_fences: number of extra fences to reserve 476 * 477 * Lock the VM root PD in the DRM execution context. 478 */ 479 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 480 unsigned int num_fences) 481 { 482 /* We need at least two fences for the VM PD/PT updates */ 483 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 484 2 + num_fences); 485 } 486 487 /** 488 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 489 * 490 * @adev: amdgpu device pointer 491 * @vm: vm providing the BOs 492 * 493 * Move all BOs to the end of LRU and remember their positions to put them 494 * together. 495 */ 496 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 497 struct amdgpu_vm *vm) 498 { 499 spin_lock(&adev->mman.bdev.lru_lock); 500 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 501 spin_unlock(&adev->mman.bdev.lru_lock); 502 } 503 504 /* Create scheduler entities for page table updates */ 505 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 506 struct amdgpu_vm *vm) 507 { 508 int r; 509 510 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 511 adev->vm_manager.vm_pte_scheds, 512 adev->vm_manager.vm_pte_num_scheds, NULL); 513 if (r) 514 goto error; 515 516 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 517 adev->vm_manager.vm_pte_scheds, 518 adev->vm_manager.vm_pte_num_scheds, NULL); 519 520 error: 521 drm_sched_entity_destroy(&vm->immediate); 522 return r; 523 } 524 525 /* Destroy the entities for page table updates again */ 526 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 527 { 528 drm_sched_entity_destroy(&vm->immediate); 529 drm_sched_entity_destroy(&vm->delayed); 530 } 531 532 /** 533 * amdgpu_vm_generation - return the page table re-generation counter 534 * @adev: the amdgpu_device 535 * @vm: optional VM to check, might be NULL 536 * 537 * Returns a page table re-generation token to allow checking if submissions 538 * are still valid to use this VM. The VM parameter might be NULL in which case 539 * just the VRAM lost counter will be used. 540 */ 541 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 542 { 543 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 544 545 if (!vm) 546 return result; 547 548 result += lower_32_bits(vm->generation); 549 /* Add one if the page tables will be re-generated on next CS */ 550 if (drm_sched_entity_error(&vm->delayed)) 551 ++result; 552 553 return result; 554 } 555 556 /** 557 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 558 * 559 * @adev: amdgpu device pointer 560 * @vm: vm providing the BOs 561 * @ticket: optional reservation ticket used to reserve the VM 562 * @validate: callback to do the validation 563 * @param: parameter for the validation callback 564 * 565 * Validate the page table BOs and per-VM BOs on command submission if 566 * necessary. If a ticket is given, also try to validate evicted user queue 567 * BOs. They must already be reserved with the given ticket. 568 * 569 * Returns: 570 * Validation result. 571 */ 572 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 573 struct ww_acquire_ctx *ticket, 574 int (*validate)(void *p, struct amdgpu_bo *bo), 575 void *param) 576 { 577 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 578 struct amdgpu_vm_bo_base *bo_base; 579 struct amdgpu_bo *bo; 580 int r; 581 582 if (vm->generation != new_vm_generation) { 583 vm->generation = new_vm_generation; 584 amdgpu_vm_bo_reset_state_machine(vm); 585 amdgpu_vm_fini_entities(vm); 586 r = amdgpu_vm_init_entities(adev, vm); 587 if (r) 588 return r; 589 } 590 591 spin_lock(&vm->status_lock); 592 while (!list_empty(&vm->evicted)) { 593 bo_base = list_first_entry(&vm->evicted, 594 struct amdgpu_vm_bo_base, 595 vm_status); 596 spin_unlock(&vm->status_lock); 597 598 bo = bo_base->bo; 599 600 r = validate(param, bo); 601 if (r) 602 return r; 603 604 if (bo->tbo.type != ttm_bo_type_kernel) { 605 amdgpu_vm_bo_moved(bo_base); 606 } else { 607 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 608 amdgpu_vm_bo_relocated(bo_base); 609 } 610 spin_lock(&vm->status_lock); 611 } 612 while (ticket && !list_empty(&vm->evicted_user)) { 613 bo_base = list_first_entry(&vm->evicted_user, 614 struct amdgpu_vm_bo_base, 615 vm_status); 616 spin_unlock(&vm->status_lock); 617 618 bo = bo_base->bo; 619 620 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 621 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 622 623 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 624 if (ti) { 625 pr_warn_ratelimited("pid %d\n", ti->task.pid); 626 amdgpu_vm_put_task_info(ti); 627 } 628 629 return -EINVAL; 630 } 631 632 r = validate(param, bo); 633 if (r) 634 return r; 635 636 amdgpu_vm_bo_invalidated(bo_base); 637 638 spin_lock(&vm->status_lock); 639 } 640 spin_unlock(&vm->status_lock); 641 642 amdgpu_vm_eviction_lock(vm); 643 vm->evicting = false; 644 amdgpu_vm_eviction_unlock(vm); 645 646 return 0; 647 } 648 649 /** 650 * amdgpu_vm_ready - check VM is ready for updates 651 * 652 * @vm: VM to check 653 * 654 * Check if all VM PDs/PTs are ready for updates 655 * 656 * Returns: 657 * True if VM is not evicting. 658 */ 659 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 660 { 661 bool empty; 662 bool ret; 663 664 amdgpu_vm_eviction_lock(vm); 665 ret = !vm->evicting; 666 amdgpu_vm_eviction_unlock(vm); 667 668 spin_lock(&vm->status_lock); 669 empty = list_empty(&vm->evicted); 670 spin_unlock(&vm->status_lock); 671 672 return ret && empty; 673 } 674 675 /** 676 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 677 * 678 * @adev: amdgpu_device pointer 679 */ 680 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 681 { 682 const struct amdgpu_ip_block *ip_block; 683 bool has_compute_vm_bug; 684 struct amdgpu_ring *ring; 685 int i; 686 687 has_compute_vm_bug = false; 688 689 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 690 if (ip_block) { 691 /* Compute has a VM bug for GFX version < 7. 692 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 693 if (ip_block->version->major <= 7) 694 has_compute_vm_bug = true; 695 else if (ip_block->version->major == 8) 696 if (adev->gfx.mec_fw_version < 673) 697 has_compute_vm_bug = true; 698 } 699 700 for (i = 0; i < adev->num_rings; i++) { 701 ring = adev->rings[i]; 702 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 703 /* only compute rings */ 704 ring->has_compute_vm_bug = has_compute_vm_bug; 705 else 706 ring->has_compute_vm_bug = false; 707 } 708 } 709 710 /** 711 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 712 * 713 * @ring: ring on which the job will be submitted 714 * @job: job to submit 715 * 716 * Returns: 717 * True if sync is needed. 718 */ 719 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 720 struct amdgpu_job *job) 721 { 722 struct amdgpu_device *adev = ring->adev; 723 unsigned vmhub = ring->vm_hub; 724 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 725 726 if (job->vmid == 0) 727 return false; 728 729 if (job->vm_needs_flush || ring->has_compute_vm_bug) 730 return true; 731 732 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 733 return true; 734 735 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 736 return true; 737 738 return false; 739 } 740 741 /** 742 * amdgpu_vm_flush - hardware flush the vm 743 * 744 * @ring: ring to use for flush 745 * @job: related job 746 * @need_pipe_sync: is pipe sync needed 747 * 748 * Emit a VM flush when it is necessary. 749 * 750 * Returns: 751 * 0 on success, errno otherwise. 752 */ 753 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 754 bool need_pipe_sync) 755 { 756 struct amdgpu_device *adev = ring->adev; 757 struct amdgpu_isolation *isolation = &adev->isolation[ring->xcp_id]; 758 unsigned vmhub = ring->vm_hub; 759 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 760 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 761 bool spm_update_needed = job->spm_update_needed; 762 bool gds_switch_needed = ring->funcs->emit_gds_switch && 763 job->gds_switch_needed; 764 bool vm_flush_needed = job->vm_needs_flush; 765 bool cleaner_shader_needed = false; 766 bool pasid_mapping_needed = false; 767 struct dma_fence *fence = NULL; 768 unsigned int patch; 769 int r; 770 771 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 772 gds_switch_needed = true; 773 vm_flush_needed = true; 774 pasid_mapping_needed = true; 775 spm_update_needed = true; 776 } 777 778 mutex_lock(&id_mgr->lock); 779 if (id->pasid != job->pasid || !id->pasid_mapping || 780 !dma_fence_is_signaled(id->pasid_mapping)) 781 pasid_mapping_needed = true; 782 mutex_unlock(&id_mgr->lock); 783 784 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 785 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 786 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 787 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 788 ring->funcs->emit_wreg; 789 790 cleaner_shader_needed = job->run_cleaner_shader && 791 adev->gfx.enable_cleaner_shader && 792 ring->funcs->emit_cleaner_shader && job->base.s_fence && 793 &job->base.s_fence->scheduled == isolation->spearhead; 794 795 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync && 796 !cleaner_shader_needed) 797 return 0; 798 799 amdgpu_ring_ib_begin(ring); 800 if (ring->funcs->init_cond_exec) 801 patch = amdgpu_ring_init_cond_exec(ring, 802 ring->cond_exe_gpu_addr); 803 804 if (need_pipe_sync) 805 amdgpu_ring_emit_pipeline_sync(ring); 806 807 if (cleaner_shader_needed) 808 ring->funcs->emit_cleaner_shader(ring); 809 810 if (vm_flush_needed) { 811 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 812 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 813 } 814 815 if (pasid_mapping_needed) 816 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 817 818 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 819 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 820 821 if (ring->funcs->emit_gds_switch && 822 gds_switch_needed) { 823 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 824 job->gds_size, job->gws_base, 825 job->gws_size, job->oa_base, 826 job->oa_size); 827 } 828 829 if (vm_flush_needed || pasid_mapping_needed || cleaner_shader_needed) { 830 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 831 if (r) 832 return r; 833 } 834 835 if (vm_flush_needed) { 836 mutex_lock(&id_mgr->lock); 837 dma_fence_put(id->last_flush); 838 id->last_flush = dma_fence_get(fence); 839 id->current_gpu_reset_count = 840 atomic_read(&adev->gpu_reset_counter); 841 mutex_unlock(&id_mgr->lock); 842 } 843 844 if (pasid_mapping_needed) { 845 mutex_lock(&id_mgr->lock); 846 id->pasid = job->pasid; 847 dma_fence_put(id->pasid_mapping); 848 id->pasid_mapping = dma_fence_get(fence); 849 mutex_unlock(&id_mgr->lock); 850 } 851 852 /* 853 * Make sure that all other submissions wait for the cleaner shader to 854 * finish before we push them to the HW. 855 */ 856 if (cleaner_shader_needed) { 857 trace_amdgpu_cleaner_shader(ring, fence); 858 mutex_lock(&adev->enforce_isolation_mutex); 859 dma_fence_put(isolation->spearhead); 860 isolation->spearhead = dma_fence_get(fence); 861 mutex_unlock(&adev->enforce_isolation_mutex); 862 } 863 dma_fence_put(fence); 864 865 amdgpu_ring_patch_cond_exec(ring, patch); 866 867 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 868 if (ring->funcs->emit_switch_buffer) { 869 amdgpu_ring_emit_switch_buffer(ring); 870 amdgpu_ring_emit_switch_buffer(ring); 871 } 872 873 amdgpu_ring_ib_end(ring); 874 return 0; 875 } 876 877 /** 878 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 879 * 880 * @vm: requested vm 881 * @bo: requested buffer object 882 * 883 * Find @bo inside the requested vm. 884 * Search inside the @bos vm list for the requested vm 885 * Returns the found bo_va or NULL if none is found 886 * 887 * Object has to be reserved! 888 * 889 * Returns: 890 * Found bo_va or NULL. 891 */ 892 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 893 struct amdgpu_bo *bo) 894 { 895 struct amdgpu_vm_bo_base *base; 896 897 for (base = bo->vm_bo; base; base = base->next) { 898 if (base->vm != vm) 899 continue; 900 901 return container_of(base, struct amdgpu_bo_va, base); 902 } 903 return NULL; 904 } 905 906 /** 907 * amdgpu_vm_map_gart - Resolve gart mapping of addr 908 * 909 * @pages_addr: optional DMA address to use for lookup 910 * @addr: the unmapped addr 911 * 912 * Look up the physical address of the page that the pte resolves 913 * to. 914 * 915 * Returns: 916 * The pointer for the page table entry. 917 */ 918 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 919 { 920 uint64_t result; 921 922 /* page table offset */ 923 result = pages_addr[addr >> PAGE_SHIFT]; 924 925 /* in case cpu page size != gpu page size*/ 926 result |= addr & (~PAGE_MASK); 927 928 result &= 0xFFFFFFFFFFFFF000ULL; 929 930 return result; 931 } 932 933 /** 934 * amdgpu_vm_update_pdes - make sure that all directories are valid 935 * 936 * @adev: amdgpu_device pointer 937 * @vm: requested vm 938 * @immediate: submit immediately to the paging queue 939 * 940 * Makes sure all directories are up to date. 941 * 942 * Returns: 943 * 0 for success, error for failure. 944 */ 945 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 946 struct amdgpu_vm *vm, bool immediate) 947 { 948 struct amdgpu_vm_update_params params; 949 struct amdgpu_vm_bo_base *entry; 950 bool flush_tlb_needed = false; 951 LIST_HEAD(relocated); 952 int r, idx; 953 954 spin_lock(&vm->status_lock); 955 list_splice_init(&vm->relocated, &relocated); 956 spin_unlock(&vm->status_lock); 957 958 if (list_empty(&relocated)) 959 return 0; 960 961 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 962 return -ENODEV; 963 964 memset(¶ms, 0, sizeof(params)); 965 params.adev = adev; 966 params.vm = vm; 967 params.immediate = immediate; 968 969 r = vm->update_funcs->prepare(¶ms, NULL); 970 if (r) 971 goto error; 972 973 list_for_each_entry(entry, &relocated, vm_status) { 974 /* vm_flush_needed after updating moved PDEs */ 975 flush_tlb_needed |= entry->moved; 976 977 r = amdgpu_vm_pde_update(¶ms, entry); 978 if (r) 979 goto error; 980 } 981 982 r = vm->update_funcs->commit(¶ms, &vm->last_update); 983 if (r) 984 goto error; 985 986 if (flush_tlb_needed) 987 atomic64_inc(&vm->tlb_seq); 988 989 while (!list_empty(&relocated)) { 990 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 991 vm_status); 992 amdgpu_vm_bo_idle(entry); 993 } 994 995 error: 996 drm_dev_exit(idx); 997 return r; 998 } 999 1000 /** 1001 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 1002 * @fence: unused 1003 * @cb: the callback structure 1004 * 1005 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1006 */ 1007 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 1008 struct dma_fence_cb *cb) 1009 { 1010 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1011 1012 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 1013 atomic64_inc(&tlb_cb->vm->tlb_seq); 1014 kfree(tlb_cb); 1015 } 1016 1017 /** 1018 * amdgpu_vm_tlb_flush - prepare TLB flush 1019 * 1020 * @params: parameters for update 1021 * @fence: input fence to sync TLB flush with 1022 * @tlb_cb: the callback structure 1023 * 1024 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1025 */ 1026 static void 1027 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 1028 struct dma_fence **fence, 1029 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 1030 { 1031 struct amdgpu_vm *vm = params->vm; 1032 1033 tlb_cb->vm = vm; 1034 if (!fence || !*fence) { 1035 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1036 return; 1037 } 1038 1039 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 1040 amdgpu_vm_tlb_seq_cb)) { 1041 dma_fence_put(vm->last_tlb_flush); 1042 vm->last_tlb_flush = dma_fence_get(*fence); 1043 } else { 1044 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1045 } 1046 1047 /* Prepare a TLB flush fence to be attached to PTs */ 1048 if (!params->unlocked && vm->is_compute_context) { 1049 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 1050 1051 /* Makes sure no PD/PT is freed before the flush */ 1052 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 1053 DMA_RESV_USAGE_BOOKKEEP); 1054 } 1055 } 1056 1057 /** 1058 * amdgpu_vm_update_range - update a range in the vm page table 1059 * 1060 * @adev: amdgpu_device pointer to use for commands 1061 * @vm: the VM to update the range 1062 * @immediate: immediate submission in a page fault 1063 * @unlocked: unlocked invalidation during MM callback 1064 * @flush_tlb: trigger tlb invalidation after update completed 1065 * @allow_override: change MTYPE for local NUMA nodes 1066 * @sync: fences we need to sync to 1067 * @start: start of mapped range 1068 * @last: last mapped entry 1069 * @flags: flags for the entries 1070 * @offset: offset into nodes and pages_addr 1071 * @vram_base: base for vram mappings 1072 * @res: ttm_resource to map 1073 * @pages_addr: DMA addresses to use for mapping 1074 * @fence: optional resulting fence 1075 * 1076 * Fill in the page table entries between @start and @last. 1077 * 1078 * Returns: 1079 * 0 for success, negative erro code for failure. 1080 */ 1081 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1082 bool immediate, bool unlocked, bool flush_tlb, 1083 bool allow_override, struct amdgpu_sync *sync, 1084 uint64_t start, uint64_t last, uint64_t flags, 1085 uint64_t offset, uint64_t vram_base, 1086 struct ttm_resource *res, dma_addr_t *pages_addr, 1087 struct dma_fence **fence) 1088 { 1089 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1090 struct amdgpu_vm_update_params params; 1091 struct amdgpu_res_cursor cursor; 1092 int r, idx; 1093 1094 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1095 return -ENODEV; 1096 1097 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 1098 if (!tlb_cb) { 1099 drm_dev_exit(idx); 1100 return -ENOMEM; 1101 } 1102 1103 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 1104 * heavy-weight flush TLB unconditionally. 1105 */ 1106 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 1107 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 1108 1109 /* 1110 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 1111 */ 1112 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 1113 1114 memset(¶ms, 0, sizeof(params)); 1115 params.adev = adev; 1116 params.vm = vm; 1117 params.immediate = immediate; 1118 params.pages_addr = pages_addr; 1119 params.unlocked = unlocked; 1120 params.needs_flush = flush_tlb; 1121 params.allow_override = allow_override; 1122 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 1123 1124 amdgpu_vm_eviction_lock(vm); 1125 if (vm->evicting) { 1126 r = -EBUSY; 1127 goto error_free; 1128 } 1129 1130 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1131 struct dma_fence *tmp = dma_fence_get_stub(); 1132 1133 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1134 swap(vm->last_unlocked, tmp); 1135 dma_fence_put(tmp); 1136 } 1137 1138 r = vm->update_funcs->prepare(¶ms, sync); 1139 if (r) 1140 goto error_free; 1141 1142 amdgpu_res_first(pages_addr ? NULL : res, offset, 1143 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1144 while (cursor.remaining) { 1145 uint64_t tmp, num_entries, addr; 1146 1147 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1148 if (pages_addr) { 1149 bool contiguous = true; 1150 1151 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1152 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1153 uint64_t count; 1154 1155 contiguous = pages_addr[pfn + 1] == 1156 pages_addr[pfn] + PAGE_SIZE; 1157 1158 tmp = num_entries / 1159 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1160 for (count = 2; count < tmp; ++count) { 1161 uint64_t idx = pfn + count; 1162 1163 if (contiguous != (pages_addr[idx] == 1164 pages_addr[idx - 1] + PAGE_SIZE)) 1165 break; 1166 } 1167 if (!contiguous) 1168 count--; 1169 num_entries = count * 1170 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1171 } 1172 1173 if (!contiguous) { 1174 addr = cursor.start; 1175 params.pages_addr = pages_addr; 1176 } else { 1177 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1178 params.pages_addr = NULL; 1179 } 1180 1181 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1182 addr = vram_base + cursor.start; 1183 } else { 1184 addr = 0; 1185 } 1186 1187 tmp = start + num_entries; 1188 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1189 if (r) 1190 goto error_free; 1191 1192 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1193 start = tmp; 1194 } 1195 1196 r = vm->update_funcs->commit(¶ms, fence); 1197 if (r) 1198 goto error_free; 1199 1200 if (params.needs_flush) { 1201 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1202 tlb_cb = NULL; 1203 } 1204 1205 amdgpu_vm_pt_free_list(adev, ¶ms); 1206 1207 error_free: 1208 kfree(tlb_cb); 1209 amdgpu_vm_eviction_unlock(vm); 1210 drm_dev_exit(idx); 1211 return r; 1212 } 1213 1214 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1215 struct amdgpu_mem_stats stats[__AMDGPU_PL_NUM]) 1216 { 1217 spin_lock(&vm->status_lock); 1218 memcpy(stats, vm->stats, sizeof(*stats) * __AMDGPU_PL_NUM); 1219 spin_unlock(&vm->status_lock); 1220 } 1221 1222 /** 1223 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1224 * 1225 * @adev: amdgpu_device pointer 1226 * @bo_va: requested BO and VM object 1227 * @clear: if true clear the entries 1228 * 1229 * Fill in the page table entries for @bo_va. 1230 * 1231 * Returns: 1232 * 0 for success, -EINVAL for failure. 1233 */ 1234 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1235 bool clear) 1236 { 1237 struct amdgpu_bo *bo = bo_va->base.bo; 1238 struct amdgpu_vm *vm = bo_va->base.vm; 1239 struct amdgpu_bo_va_mapping *mapping; 1240 struct dma_fence **last_update; 1241 dma_addr_t *pages_addr = NULL; 1242 struct ttm_resource *mem; 1243 struct amdgpu_sync sync; 1244 bool flush_tlb = clear; 1245 uint64_t vram_base; 1246 uint64_t flags; 1247 bool uncached; 1248 int r; 1249 1250 amdgpu_sync_create(&sync); 1251 if (clear) { 1252 mem = NULL; 1253 1254 /* Implicitly sync to command submissions in the same VM before 1255 * unmapping. 1256 */ 1257 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1258 AMDGPU_SYNC_EQ_OWNER, vm); 1259 if (r) 1260 goto error_free; 1261 if (bo) { 1262 r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv); 1263 if (r) 1264 goto error_free; 1265 } 1266 } else if (!bo) { 1267 mem = NULL; 1268 1269 /* PRT map operations don't need to sync to anything. */ 1270 1271 } else { 1272 struct drm_gem_object *obj = &bo->tbo.base; 1273 1274 if (drm_gem_is_imported(obj) && bo_va->is_xgmi) { 1275 struct dma_buf *dma_buf = obj->dma_buf; 1276 struct drm_gem_object *gobj = dma_buf->priv; 1277 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1278 1279 if (abo->tbo.resource && 1280 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1281 bo = gem_to_amdgpu_bo(gobj); 1282 } 1283 mem = bo->tbo.resource; 1284 if (mem && (mem->mem_type == TTM_PL_TT || 1285 mem->mem_type == AMDGPU_PL_PREEMPT)) 1286 pages_addr = bo->tbo.ttm->dma_address; 1287 1288 /* Implicitly sync to moving fences before mapping anything */ 1289 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1290 AMDGPU_SYNC_EXPLICIT, vm); 1291 if (r) 1292 goto error_free; 1293 } 1294 1295 if (bo) { 1296 struct amdgpu_device *bo_adev; 1297 1298 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1299 1300 if (amdgpu_bo_encrypted(bo)) 1301 flags |= AMDGPU_PTE_TMZ; 1302 1303 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1304 vram_base = bo_adev->vm_manager.vram_base_offset; 1305 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1306 } else { 1307 flags = 0x0; 1308 vram_base = 0; 1309 uncached = false; 1310 } 1311 1312 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1313 last_update = &vm->last_update; 1314 else 1315 last_update = &bo_va->last_pt_update; 1316 1317 if (!clear && bo_va->base.moved) { 1318 flush_tlb = true; 1319 list_splice_init(&bo_va->valids, &bo_va->invalids); 1320 1321 } else if (bo_va->cleared != clear) { 1322 list_splice_init(&bo_va->valids, &bo_va->invalids); 1323 } 1324 1325 list_for_each_entry(mapping, &bo_va->invalids, list) { 1326 uint64_t update_flags = flags; 1327 1328 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1329 * but in case of something, we filter the flags in first place 1330 */ 1331 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1332 update_flags &= ~AMDGPU_PTE_READABLE; 1333 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1334 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1335 1336 /* Apply ASIC specific mapping flags */ 1337 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1338 1339 trace_amdgpu_vm_bo_update(mapping); 1340 1341 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1342 !uncached, &sync, mapping->start, 1343 mapping->last, update_flags, 1344 mapping->offset, vram_base, mem, 1345 pages_addr, last_update); 1346 if (r) 1347 goto error_free; 1348 } 1349 1350 /* If the BO is not in its preferred location add it back to 1351 * the evicted list so that it gets validated again on the 1352 * next command submission. 1353 */ 1354 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1355 if (bo->tbo.resource && 1356 !(bo->preferred_domains & 1357 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))) 1358 amdgpu_vm_bo_evicted(&bo_va->base); 1359 else 1360 amdgpu_vm_bo_idle(&bo_va->base); 1361 } else { 1362 amdgpu_vm_bo_done(&bo_va->base); 1363 } 1364 1365 list_splice_init(&bo_va->invalids, &bo_va->valids); 1366 bo_va->cleared = clear; 1367 bo_va->base.moved = false; 1368 1369 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1370 list_for_each_entry(mapping, &bo_va->valids, list) 1371 trace_amdgpu_vm_bo_mapping(mapping); 1372 } 1373 1374 error_free: 1375 amdgpu_sync_free(&sync); 1376 return r; 1377 } 1378 1379 /** 1380 * amdgpu_vm_update_prt_state - update the global PRT state 1381 * 1382 * @adev: amdgpu_device pointer 1383 */ 1384 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1385 { 1386 unsigned long flags; 1387 bool enable; 1388 1389 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1390 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1391 adev->gmc.gmc_funcs->set_prt(adev, enable); 1392 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1393 } 1394 1395 /** 1396 * amdgpu_vm_prt_get - add a PRT user 1397 * 1398 * @adev: amdgpu_device pointer 1399 */ 1400 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1401 { 1402 if (!adev->gmc.gmc_funcs->set_prt) 1403 return; 1404 1405 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1406 amdgpu_vm_update_prt_state(adev); 1407 } 1408 1409 /** 1410 * amdgpu_vm_prt_put - drop a PRT user 1411 * 1412 * @adev: amdgpu_device pointer 1413 */ 1414 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1415 { 1416 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1417 amdgpu_vm_update_prt_state(adev); 1418 } 1419 1420 /** 1421 * amdgpu_vm_prt_cb - callback for updating the PRT status 1422 * 1423 * @fence: fence for the callback 1424 * @_cb: the callback function 1425 */ 1426 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1427 { 1428 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1429 1430 amdgpu_vm_prt_put(cb->adev); 1431 kfree(cb); 1432 } 1433 1434 /** 1435 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1436 * 1437 * @adev: amdgpu_device pointer 1438 * @fence: fence for the callback 1439 */ 1440 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1441 struct dma_fence *fence) 1442 { 1443 struct amdgpu_prt_cb *cb; 1444 1445 if (!adev->gmc.gmc_funcs->set_prt) 1446 return; 1447 1448 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1449 if (!cb) { 1450 /* Last resort when we are OOM */ 1451 if (fence) 1452 dma_fence_wait(fence, false); 1453 1454 amdgpu_vm_prt_put(adev); 1455 } else { 1456 cb->adev = adev; 1457 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1458 amdgpu_vm_prt_cb)) 1459 amdgpu_vm_prt_cb(fence, &cb->cb); 1460 } 1461 } 1462 1463 /** 1464 * amdgpu_vm_free_mapping - free a mapping 1465 * 1466 * @adev: amdgpu_device pointer 1467 * @vm: requested vm 1468 * @mapping: mapping to be freed 1469 * @fence: fence of the unmap operation 1470 * 1471 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1472 */ 1473 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1474 struct amdgpu_vm *vm, 1475 struct amdgpu_bo_va_mapping *mapping, 1476 struct dma_fence *fence) 1477 { 1478 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1479 amdgpu_vm_add_prt_cb(adev, fence); 1480 kfree(mapping); 1481 } 1482 1483 /** 1484 * amdgpu_vm_prt_fini - finish all prt mappings 1485 * 1486 * @adev: amdgpu_device pointer 1487 * @vm: requested vm 1488 * 1489 * Register a cleanup callback to disable PRT support after VM dies. 1490 */ 1491 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1492 { 1493 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1494 struct dma_resv_iter cursor; 1495 struct dma_fence *fence; 1496 1497 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1498 /* Add a callback for each fence in the reservation object */ 1499 amdgpu_vm_prt_get(adev); 1500 amdgpu_vm_add_prt_cb(adev, fence); 1501 } 1502 } 1503 1504 /** 1505 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1506 * 1507 * @adev: amdgpu_device pointer 1508 * @vm: requested vm 1509 * @fence: optional resulting fence (unchanged if no work needed to be done 1510 * or if an error occurred) 1511 * 1512 * Make sure all freed BOs are cleared in the PT. 1513 * PTs have to be reserved and mutex must be locked! 1514 * 1515 * Returns: 1516 * 0 for success. 1517 * 1518 */ 1519 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1520 struct amdgpu_vm *vm, 1521 struct dma_fence **fence) 1522 { 1523 struct amdgpu_bo_va_mapping *mapping; 1524 struct dma_fence *f = NULL; 1525 struct amdgpu_sync sync; 1526 int r; 1527 1528 1529 /* 1530 * Implicitly sync to command submissions in the same VM before 1531 * unmapping. 1532 */ 1533 amdgpu_sync_create(&sync); 1534 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1535 AMDGPU_SYNC_EQ_OWNER, vm); 1536 if (r) 1537 goto error_free; 1538 1539 while (!list_empty(&vm->freed)) { 1540 mapping = list_first_entry(&vm->freed, 1541 struct amdgpu_bo_va_mapping, list); 1542 list_del(&mapping->list); 1543 1544 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1545 &sync, mapping->start, mapping->last, 1546 0, 0, 0, NULL, NULL, &f); 1547 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1548 if (r) { 1549 dma_fence_put(f); 1550 goto error_free; 1551 } 1552 } 1553 1554 if (fence && f) { 1555 dma_fence_put(*fence); 1556 *fence = f; 1557 } else { 1558 dma_fence_put(f); 1559 } 1560 1561 error_free: 1562 amdgpu_sync_free(&sync); 1563 return r; 1564 1565 } 1566 1567 /** 1568 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1569 * 1570 * @adev: amdgpu_device pointer 1571 * @vm: requested vm 1572 * @ticket: optional reservation ticket used to reserve the VM 1573 * 1574 * Make sure all BOs which are moved are updated in the PTs. 1575 * 1576 * Returns: 1577 * 0 for success. 1578 * 1579 * PTs have to be reserved! 1580 */ 1581 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1582 struct amdgpu_vm *vm, 1583 struct ww_acquire_ctx *ticket) 1584 { 1585 struct amdgpu_bo_va *bo_va; 1586 struct dma_resv *resv; 1587 bool clear, unlock; 1588 int r; 1589 1590 spin_lock(&vm->status_lock); 1591 while (!list_empty(&vm->moved)) { 1592 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1593 base.vm_status); 1594 spin_unlock(&vm->status_lock); 1595 1596 /* Per VM BOs never need to bo cleared in the page tables */ 1597 r = amdgpu_vm_bo_update(adev, bo_va, false); 1598 if (r) 1599 return r; 1600 spin_lock(&vm->status_lock); 1601 } 1602 1603 while (!list_empty(&vm->invalidated)) { 1604 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1605 base.vm_status); 1606 resv = bo_va->base.bo->tbo.base.resv; 1607 spin_unlock(&vm->status_lock); 1608 1609 /* Try to reserve the BO to avoid clearing its ptes */ 1610 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1611 clear = false; 1612 unlock = true; 1613 /* The caller is already holding the reservation lock */ 1614 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1615 clear = false; 1616 unlock = false; 1617 /* Somebody else is using the BO right now */ 1618 } else { 1619 clear = true; 1620 unlock = false; 1621 } 1622 1623 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1624 1625 if (unlock) 1626 dma_resv_unlock(resv); 1627 if (r) 1628 return r; 1629 1630 /* Remember evicted DMABuf imports in compute VMs for later 1631 * validation 1632 */ 1633 if (vm->is_compute_context && 1634 drm_gem_is_imported(&bo_va->base.bo->tbo.base) && 1635 (!bo_va->base.bo->tbo.resource || 1636 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1637 amdgpu_vm_bo_evicted_user(&bo_va->base); 1638 1639 spin_lock(&vm->status_lock); 1640 } 1641 spin_unlock(&vm->status_lock); 1642 1643 return 0; 1644 } 1645 1646 /** 1647 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1648 * 1649 * @adev: amdgpu_device pointer 1650 * @vm: requested vm 1651 * @flush_type: flush type 1652 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1653 * 1654 * Flush TLB if needed for a compute VM. 1655 * 1656 * Returns: 1657 * 0 for success. 1658 */ 1659 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1660 struct amdgpu_vm *vm, 1661 uint32_t flush_type, 1662 uint32_t xcc_mask) 1663 { 1664 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1665 bool all_hub = false; 1666 int xcc = 0, r = 0; 1667 1668 WARN_ON_ONCE(!vm->is_compute_context); 1669 1670 /* 1671 * It can be that we race and lose here, but that is extremely unlikely 1672 * and the worst thing which could happen is that we flush the changes 1673 * into the TLB once more which is harmless. 1674 */ 1675 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1676 return 0; 1677 1678 if (adev->family == AMDGPU_FAMILY_AI || 1679 adev->family == AMDGPU_FAMILY_RV) 1680 all_hub = true; 1681 1682 for_each_inst(xcc, xcc_mask) { 1683 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1684 all_hub, xcc); 1685 if (r) 1686 break; 1687 } 1688 return r; 1689 } 1690 1691 /** 1692 * amdgpu_vm_bo_add - add a bo to a specific vm 1693 * 1694 * @adev: amdgpu_device pointer 1695 * @vm: requested vm 1696 * @bo: amdgpu buffer object 1697 * 1698 * Add @bo into the requested vm. 1699 * Add @bo to the list of bos associated with the vm 1700 * 1701 * Returns: 1702 * Newly added bo_va or NULL for failure 1703 * 1704 * Object has to be reserved! 1705 */ 1706 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1707 struct amdgpu_vm *vm, 1708 struct amdgpu_bo *bo) 1709 { 1710 struct amdgpu_bo_va *bo_va; 1711 1712 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1713 if (bo_va == NULL) { 1714 return NULL; 1715 } 1716 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1717 1718 bo_va->ref_count = 1; 1719 bo_va->last_pt_update = dma_fence_get_stub(); 1720 INIT_LIST_HEAD(&bo_va->valids); 1721 INIT_LIST_HEAD(&bo_va->invalids); 1722 1723 if (!bo) 1724 return bo_va; 1725 1726 dma_resv_assert_held(bo->tbo.base.resv); 1727 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1728 bo_va->is_xgmi = true; 1729 /* Power up XGMI if it can be potentially used */ 1730 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1731 } 1732 1733 return bo_va; 1734 } 1735 1736 1737 /** 1738 * amdgpu_vm_bo_insert_map - insert a new mapping 1739 * 1740 * @adev: amdgpu_device pointer 1741 * @bo_va: bo_va to store the address 1742 * @mapping: the mapping to insert 1743 * 1744 * Insert a new mapping into all structures. 1745 */ 1746 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1747 struct amdgpu_bo_va *bo_va, 1748 struct amdgpu_bo_va_mapping *mapping) 1749 { 1750 struct amdgpu_vm *vm = bo_va->base.vm; 1751 struct amdgpu_bo *bo = bo_va->base.bo; 1752 1753 mapping->bo_va = bo_va; 1754 list_add(&mapping->list, &bo_va->invalids); 1755 amdgpu_vm_it_insert(mapping, &vm->va); 1756 1757 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1758 amdgpu_vm_prt_get(adev); 1759 1760 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1761 amdgpu_vm_bo_moved(&bo_va->base); 1762 1763 trace_amdgpu_vm_bo_map(bo_va, mapping); 1764 } 1765 1766 /* Validate operation parameters to prevent potential abuse */ 1767 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1768 struct amdgpu_bo *bo, 1769 uint64_t saddr, 1770 uint64_t offset, 1771 uint64_t size) 1772 { 1773 uint64_t tmp, lpfn; 1774 1775 if (saddr & AMDGPU_GPU_PAGE_MASK 1776 || offset & AMDGPU_GPU_PAGE_MASK 1777 || size & AMDGPU_GPU_PAGE_MASK) 1778 return -EINVAL; 1779 1780 if (check_add_overflow(saddr, size, &tmp) 1781 || check_add_overflow(offset, size, &tmp) 1782 || size == 0 /* which also leads to end < begin */) 1783 return -EINVAL; 1784 1785 /* make sure object fit at this offset */ 1786 if (bo && offset + size > amdgpu_bo_size(bo)) 1787 return -EINVAL; 1788 1789 /* Ensure last pfn not exceed max_pfn */ 1790 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1791 if (lpfn >= adev->vm_manager.max_pfn) 1792 return -EINVAL; 1793 1794 return 0; 1795 } 1796 1797 /** 1798 * amdgpu_vm_bo_map - map bo inside a vm 1799 * 1800 * @adev: amdgpu_device pointer 1801 * @bo_va: bo_va to store the address 1802 * @saddr: where to map the BO 1803 * @offset: requested offset in the BO 1804 * @size: BO size in bytes 1805 * @flags: attributes of pages (read/write/valid/etc.) 1806 * 1807 * Add a mapping of the BO at the specefied addr into the VM. 1808 * 1809 * Returns: 1810 * 0 for success, error for failure. 1811 * 1812 * Object has to be reserved and unreserved outside! 1813 */ 1814 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1815 struct amdgpu_bo_va *bo_va, 1816 uint64_t saddr, uint64_t offset, 1817 uint64_t size, uint64_t flags) 1818 { 1819 struct amdgpu_bo_va_mapping *mapping, *tmp; 1820 struct amdgpu_bo *bo = bo_va->base.bo; 1821 struct amdgpu_vm *vm = bo_va->base.vm; 1822 uint64_t eaddr; 1823 int r; 1824 1825 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1826 if (r) 1827 return r; 1828 1829 saddr /= AMDGPU_GPU_PAGE_SIZE; 1830 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1831 1832 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1833 if (tmp) { 1834 /* bo and tmp overlap, invalid addr */ 1835 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1836 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1837 tmp->start, tmp->last + 1); 1838 return -EINVAL; 1839 } 1840 1841 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1842 if (!mapping) 1843 return -ENOMEM; 1844 1845 mapping->start = saddr; 1846 mapping->last = eaddr; 1847 mapping->offset = offset; 1848 mapping->flags = flags; 1849 1850 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1851 1852 return 0; 1853 } 1854 1855 /** 1856 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1857 * 1858 * @adev: amdgpu_device pointer 1859 * @bo_va: bo_va to store the address 1860 * @saddr: where to map the BO 1861 * @offset: requested offset in the BO 1862 * @size: BO size in bytes 1863 * @flags: attributes of pages (read/write/valid/etc.) 1864 * 1865 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1866 * mappings as we do so. 1867 * 1868 * Returns: 1869 * 0 for success, error for failure. 1870 * 1871 * Object has to be reserved and unreserved outside! 1872 */ 1873 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1874 struct amdgpu_bo_va *bo_va, 1875 uint64_t saddr, uint64_t offset, 1876 uint64_t size, uint64_t flags) 1877 { 1878 struct amdgpu_bo_va_mapping *mapping; 1879 struct amdgpu_bo *bo = bo_va->base.bo; 1880 uint64_t eaddr; 1881 int r; 1882 1883 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1884 if (r) 1885 return r; 1886 1887 /* Allocate all the needed memory */ 1888 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1889 if (!mapping) 1890 return -ENOMEM; 1891 1892 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1893 if (r) { 1894 kfree(mapping); 1895 return r; 1896 } 1897 1898 saddr /= AMDGPU_GPU_PAGE_SIZE; 1899 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1900 1901 mapping->start = saddr; 1902 mapping->last = eaddr; 1903 mapping->offset = offset; 1904 mapping->flags = flags; 1905 1906 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1907 1908 return 0; 1909 } 1910 1911 /** 1912 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1913 * 1914 * @adev: amdgpu_device pointer 1915 * @bo_va: bo_va to remove the address from 1916 * @saddr: where to the BO is mapped 1917 * 1918 * Remove a mapping of the BO at the specefied addr from the VM. 1919 * 1920 * Returns: 1921 * 0 for success, error for failure. 1922 * 1923 * Object has to be reserved and unreserved outside! 1924 */ 1925 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1926 struct amdgpu_bo_va *bo_va, 1927 uint64_t saddr) 1928 { 1929 struct amdgpu_bo_va_mapping *mapping; 1930 struct amdgpu_vm *vm = bo_va->base.vm; 1931 bool valid = true; 1932 1933 saddr /= AMDGPU_GPU_PAGE_SIZE; 1934 1935 list_for_each_entry(mapping, &bo_va->valids, list) { 1936 if (mapping->start == saddr) 1937 break; 1938 } 1939 1940 if (&mapping->list == &bo_va->valids) { 1941 valid = false; 1942 1943 list_for_each_entry(mapping, &bo_va->invalids, list) { 1944 if (mapping->start == saddr) 1945 break; 1946 } 1947 1948 if (&mapping->list == &bo_va->invalids) 1949 return -ENOENT; 1950 } 1951 1952 list_del(&mapping->list); 1953 amdgpu_vm_it_remove(mapping, &vm->va); 1954 mapping->bo_va = NULL; 1955 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1956 1957 if (valid) 1958 list_add(&mapping->list, &vm->freed); 1959 else 1960 amdgpu_vm_free_mapping(adev, vm, mapping, 1961 bo_va->last_pt_update); 1962 1963 return 0; 1964 } 1965 1966 /** 1967 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1968 * 1969 * @adev: amdgpu_device pointer 1970 * @vm: VM structure to use 1971 * @saddr: start of the range 1972 * @size: size of the range 1973 * 1974 * Remove all mappings in a range, split them as appropriate. 1975 * 1976 * Returns: 1977 * 0 for success, error for failure. 1978 */ 1979 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1980 struct amdgpu_vm *vm, 1981 uint64_t saddr, uint64_t size) 1982 { 1983 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1984 LIST_HEAD(removed); 1985 uint64_t eaddr; 1986 int r; 1987 1988 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 1989 if (r) 1990 return r; 1991 1992 saddr /= AMDGPU_GPU_PAGE_SIZE; 1993 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1994 1995 /* Allocate all the needed memory */ 1996 before = kzalloc(sizeof(*before), GFP_KERNEL); 1997 if (!before) 1998 return -ENOMEM; 1999 INIT_LIST_HEAD(&before->list); 2000 2001 after = kzalloc(sizeof(*after), GFP_KERNEL); 2002 if (!after) { 2003 kfree(before); 2004 return -ENOMEM; 2005 } 2006 INIT_LIST_HEAD(&after->list); 2007 2008 /* Now gather all removed mappings */ 2009 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2010 while (tmp) { 2011 /* Remember mapping split at the start */ 2012 if (tmp->start < saddr) { 2013 before->start = tmp->start; 2014 before->last = saddr - 1; 2015 before->offset = tmp->offset; 2016 before->flags = tmp->flags; 2017 before->bo_va = tmp->bo_va; 2018 list_add(&before->list, &tmp->bo_va->invalids); 2019 } 2020 2021 /* Remember mapping split at the end */ 2022 if (tmp->last > eaddr) { 2023 after->start = eaddr + 1; 2024 after->last = tmp->last; 2025 after->offset = tmp->offset; 2026 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2027 after->flags = tmp->flags; 2028 after->bo_va = tmp->bo_va; 2029 list_add(&after->list, &tmp->bo_va->invalids); 2030 } 2031 2032 list_del(&tmp->list); 2033 list_add(&tmp->list, &removed); 2034 2035 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2036 } 2037 2038 /* And free them up */ 2039 list_for_each_entry_safe(tmp, next, &removed, list) { 2040 amdgpu_vm_it_remove(tmp, &vm->va); 2041 list_del(&tmp->list); 2042 2043 if (tmp->start < saddr) 2044 tmp->start = saddr; 2045 if (tmp->last > eaddr) 2046 tmp->last = eaddr; 2047 2048 tmp->bo_va = NULL; 2049 list_add(&tmp->list, &vm->freed); 2050 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2051 } 2052 2053 /* Insert partial mapping before the range */ 2054 if (!list_empty(&before->list)) { 2055 struct amdgpu_bo *bo = before->bo_va->base.bo; 2056 2057 amdgpu_vm_it_insert(before, &vm->va); 2058 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2059 amdgpu_vm_prt_get(adev); 2060 2061 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2062 !before->bo_va->base.moved) 2063 amdgpu_vm_bo_moved(&before->bo_va->base); 2064 } else { 2065 kfree(before); 2066 } 2067 2068 /* Insert partial mapping after the range */ 2069 if (!list_empty(&after->list)) { 2070 struct amdgpu_bo *bo = after->bo_va->base.bo; 2071 2072 amdgpu_vm_it_insert(after, &vm->va); 2073 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2074 amdgpu_vm_prt_get(adev); 2075 2076 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2077 !after->bo_va->base.moved) 2078 amdgpu_vm_bo_moved(&after->bo_va->base); 2079 } else { 2080 kfree(after); 2081 } 2082 2083 return 0; 2084 } 2085 2086 /** 2087 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2088 * 2089 * @vm: the requested VM 2090 * @addr: the address 2091 * 2092 * Find a mapping by it's address. 2093 * 2094 * Returns: 2095 * The amdgpu_bo_va_mapping matching for addr or NULL 2096 * 2097 */ 2098 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2099 uint64_t addr) 2100 { 2101 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2102 } 2103 2104 /** 2105 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2106 * 2107 * @vm: the requested vm 2108 * @ticket: CS ticket 2109 * 2110 * Trace all mappings of BOs reserved during a command submission. 2111 */ 2112 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2113 { 2114 struct amdgpu_bo_va_mapping *mapping; 2115 2116 if (!trace_amdgpu_vm_bo_cs_enabled()) 2117 return; 2118 2119 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2120 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2121 if (mapping->bo_va && mapping->bo_va->base.bo) { 2122 struct amdgpu_bo *bo; 2123 2124 bo = mapping->bo_va->base.bo; 2125 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2126 ticket) 2127 continue; 2128 } 2129 2130 trace_amdgpu_vm_bo_cs(mapping); 2131 } 2132 } 2133 2134 /** 2135 * amdgpu_vm_bo_del - remove a bo from a specific vm 2136 * 2137 * @adev: amdgpu_device pointer 2138 * @bo_va: requested bo_va 2139 * 2140 * Remove @bo_va->bo from the requested vm. 2141 * 2142 * Object have to be reserved! 2143 */ 2144 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2145 struct amdgpu_bo_va *bo_va) 2146 { 2147 struct amdgpu_bo_va_mapping *mapping, *next; 2148 struct amdgpu_bo *bo = bo_va->base.bo; 2149 struct amdgpu_vm *vm = bo_va->base.vm; 2150 struct amdgpu_vm_bo_base **base; 2151 2152 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2153 2154 if (bo) { 2155 dma_resv_assert_held(bo->tbo.base.resv); 2156 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2157 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2158 2159 for (base = &bo_va->base.bo->vm_bo; *base; 2160 base = &(*base)->next) { 2161 if (*base != &bo_va->base) 2162 continue; 2163 2164 amdgpu_vm_update_stats(*base, bo->tbo.resource, -1); 2165 *base = bo_va->base.next; 2166 break; 2167 } 2168 } 2169 2170 spin_lock(&vm->status_lock); 2171 list_del(&bo_va->base.vm_status); 2172 spin_unlock(&vm->status_lock); 2173 2174 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2175 list_del(&mapping->list); 2176 amdgpu_vm_it_remove(mapping, &vm->va); 2177 mapping->bo_va = NULL; 2178 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2179 list_add(&mapping->list, &vm->freed); 2180 } 2181 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2182 list_del(&mapping->list); 2183 amdgpu_vm_it_remove(mapping, &vm->va); 2184 amdgpu_vm_free_mapping(adev, vm, mapping, 2185 bo_va->last_pt_update); 2186 } 2187 2188 dma_fence_put(bo_va->last_pt_update); 2189 2190 if (bo && bo_va->is_xgmi) 2191 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2192 2193 kfree(bo_va); 2194 } 2195 2196 /** 2197 * amdgpu_vm_evictable - check if we can evict a VM 2198 * 2199 * @bo: A page table of the VM. 2200 * 2201 * Check if it is possible to evict a VM. 2202 */ 2203 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2204 { 2205 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2206 2207 /* Page tables of a destroyed VM can go away immediately */ 2208 if (!bo_base || !bo_base->vm) 2209 return true; 2210 2211 /* Don't evict VM page tables while they are busy */ 2212 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2213 return false; 2214 2215 /* Try to block ongoing updates */ 2216 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2217 return false; 2218 2219 /* Don't evict VM page tables while they are updated */ 2220 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2221 amdgpu_vm_eviction_unlock(bo_base->vm); 2222 return false; 2223 } 2224 2225 bo_base->vm->evicting = true; 2226 amdgpu_vm_eviction_unlock(bo_base->vm); 2227 return true; 2228 } 2229 2230 /** 2231 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2232 * 2233 * @bo: amdgpu buffer object 2234 * @evicted: is the BO evicted 2235 * 2236 * Mark @bo as invalid. 2237 */ 2238 void amdgpu_vm_bo_invalidate(struct amdgpu_bo *bo, bool evicted) 2239 { 2240 struct amdgpu_vm_bo_base *bo_base; 2241 2242 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2243 struct amdgpu_vm *vm = bo_base->vm; 2244 2245 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2246 amdgpu_vm_bo_evicted(bo_base); 2247 continue; 2248 } 2249 2250 if (bo_base->moved) 2251 continue; 2252 bo_base->moved = true; 2253 2254 if (bo->tbo.type == ttm_bo_type_kernel) 2255 amdgpu_vm_bo_relocated(bo_base); 2256 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2257 amdgpu_vm_bo_moved(bo_base); 2258 else 2259 amdgpu_vm_bo_invalidated(bo_base); 2260 } 2261 } 2262 2263 /** 2264 * amdgpu_vm_bo_move - handle BO move 2265 * 2266 * @bo: amdgpu buffer object 2267 * @new_mem: the new placement of the BO move 2268 * @evicted: is the BO evicted 2269 * 2270 * Update the memory stats for the new placement and mark @bo as invalid. 2271 */ 2272 void amdgpu_vm_bo_move(struct amdgpu_bo *bo, struct ttm_resource *new_mem, 2273 bool evicted) 2274 { 2275 struct amdgpu_vm_bo_base *bo_base; 2276 2277 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2278 struct amdgpu_vm *vm = bo_base->vm; 2279 2280 spin_lock(&vm->status_lock); 2281 amdgpu_vm_update_stats_locked(bo_base, bo->tbo.resource, -1); 2282 amdgpu_vm_update_stats_locked(bo_base, new_mem, +1); 2283 spin_unlock(&vm->status_lock); 2284 } 2285 2286 amdgpu_vm_bo_invalidate(bo, evicted); 2287 } 2288 2289 /** 2290 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2291 * 2292 * @vm_size: VM size 2293 * 2294 * Returns: 2295 * VM page table as power of two 2296 */ 2297 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2298 { 2299 /* Total bits covered by PD + PTs */ 2300 unsigned bits = ilog2(vm_size) + 18; 2301 2302 /* Make sure the PD is 4K in size up to 8GB address space. 2303 Above that split equal between PD and PTs */ 2304 if (vm_size <= 8) 2305 return (bits - 9); 2306 else 2307 return ((bits + 3) / 2); 2308 } 2309 2310 /** 2311 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2312 * 2313 * @adev: amdgpu_device pointer 2314 * @min_vm_size: the minimum vm size in GB if it's set auto 2315 * @fragment_size_default: Default PTE fragment size 2316 * @max_level: max VMPT level 2317 * @max_bits: max address space size in bits 2318 * 2319 */ 2320 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2321 uint32_t fragment_size_default, unsigned max_level, 2322 unsigned max_bits) 2323 { 2324 unsigned int max_size = 1 << (max_bits - 30); 2325 unsigned int vm_size; 2326 uint64_t tmp; 2327 2328 /* adjust vm size first */ 2329 if (amdgpu_vm_size != -1) { 2330 vm_size = amdgpu_vm_size; 2331 if (vm_size > max_size) { 2332 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2333 amdgpu_vm_size, max_size); 2334 vm_size = max_size; 2335 } 2336 } else { 2337 struct sysinfo si; 2338 unsigned int phys_ram_gb; 2339 2340 /* Optimal VM size depends on the amount of physical 2341 * RAM available. Underlying requirements and 2342 * assumptions: 2343 * 2344 * - Need to map system memory and VRAM from all GPUs 2345 * - VRAM from other GPUs not known here 2346 * - Assume VRAM <= system memory 2347 * - On GFX8 and older, VM space can be segmented for 2348 * different MTYPEs 2349 * - Need to allow room for fragmentation, guard pages etc. 2350 * 2351 * This adds up to a rough guess of system memory x3. 2352 * Round up to power of two to maximize the available 2353 * VM size with the given page table size. 2354 */ 2355 si_meminfo(&si); 2356 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2357 (1 << 30) - 1) >> 30; 2358 vm_size = roundup_pow_of_two( 2359 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2360 } 2361 2362 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2363 2364 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2365 if (amdgpu_vm_block_size != -1) 2366 tmp >>= amdgpu_vm_block_size - 9; 2367 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2368 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2369 switch (adev->vm_manager.num_level) { 2370 case 3: 2371 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2372 break; 2373 case 2: 2374 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2375 break; 2376 case 1: 2377 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2378 break; 2379 default: 2380 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2381 } 2382 /* block size depends on vm size and hw setup*/ 2383 if (amdgpu_vm_block_size != -1) 2384 adev->vm_manager.block_size = 2385 min((unsigned)amdgpu_vm_block_size, max_bits 2386 - AMDGPU_GPU_PAGE_SHIFT 2387 - 9 * adev->vm_manager.num_level); 2388 else if (adev->vm_manager.num_level > 1) 2389 adev->vm_manager.block_size = 9; 2390 else 2391 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2392 2393 if (amdgpu_vm_fragment_size == -1) 2394 adev->vm_manager.fragment_size = fragment_size_default; 2395 else 2396 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2397 2398 dev_info( 2399 adev->dev, 2400 "vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2401 vm_size, adev->vm_manager.num_level + 1, 2402 adev->vm_manager.block_size, adev->vm_manager.fragment_size); 2403 } 2404 2405 /** 2406 * amdgpu_vm_wait_idle - wait for the VM to become idle 2407 * 2408 * @vm: VM object to wait for 2409 * @timeout: timeout to wait for VM to become idle 2410 */ 2411 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2412 { 2413 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2414 DMA_RESV_USAGE_BOOKKEEP, 2415 true, timeout); 2416 if (timeout <= 0) 2417 return timeout; 2418 2419 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2420 } 2421 2422 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2423 { 2424 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2425 2426 kfree(ti); 2427 } 2428 2429 static inline struct amdgpu_vm * 2430 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2431 { 2432 struct amdgpu_vm *vm; 2433 unsigned long flags; 2434 2435 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2436 vm = xa_load(&adev->vm_manager.pasids, pasid); 2437 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2438 2439 return vm; 2440 } 2441 2442 /** 2443 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2444 * 2445 * @task_info: task_info struct under discussion. 2446 * 2447 * frees the vm task_info ptr at the last put 2448 */ 2449 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2450 { 2451 if (task_info) 2452 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2453 } 2454 2455 /** 2456 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2457 * 2458 * @vm: VM to get info from 2459 * 2460 * Returns the reference counted task_info structure, which must be 2461 * referenced down with amdgpu_vm_put_task_info. 2462 */ 2463 struct amdgpu_task_info * 2464 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2465 { 2466 struct amdgpu_task_info *ti = NULL; 2467 2468 if (vm) { 2469 ti = vm->task_info; 2470 kref_get(&vm->task_info->refcount); 2471 } 2472 2473 return ti; 2474 } 2475 2476 /** 2477 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2478 * 2479 * @adev: drm device pointer 2480 * @pasid: PASID identifier for VM 2481 * 2482 * Returns the reference counted task_info structure, which must be 2483 * referenced down with amdgpu_vm_put_task_info. 2484 */ 2485 struct amdgpu_task_info * 2486 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2487 { 2488 return amdgpu_vm_get_task_info_vm( 2489 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2490 } 2491 2492 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2493 { 2494 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2495 if (!vm->task_info) 2496 return -ENOMEM; 2497 2498 kref_init(&vm->task_info->refcount); 2499 return 0; 2500 } 2501 2502 /** 2503 * amdgpu_vm_set_task_info - Sets VMs task info. 2504 * 2505 * @vm: vm for which to set the info 2506 */ 2507 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2508 { 2509 if (!vm->task_info) 2510 return; 2511 2512 if (vm->task_info->task.pid == current->pid) 2513 return; 2514 2515 vm->task_info->task.pid = current->pid; 2516 get_task_comm(vm->task_info->task.comm, current); 2517 2518 if (current->group_leader->mm != current->mm) 2519 return; 2520 2521 vm->task_info->tgid = current->group_leader->pid; 2522 get_task_comm(vm->task_info->process_name, current->group_leader); 2523 } 2524 2525 /** 2526 * amdgpu_vm_init - initialize a vm instance 2527 * 2528 * @adev: amdgpu_device pointer 2529 * @vm: requested vm 2530 * @xcp_id: GPU partition selection id 2531 * 2532 * Init @vm fields. 2533 * 2534 * Returns: 2535 * 0 for success, error for failure. 2536 */ 2537 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2538 int32_t xcp_id) 2539 { 2540 struct amdgpu_bo *root_bo; 2541 struct amdgpu_bo_vm *root; 2542 int r, i; 2543 2544 vm->va = RB_ROOT_CACHED; 2545 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2546 vm->reserved_vmid[i] = NULL; 2547 INIT_LIST_HEAD(&vm->evicted); 2548 INIT_LIST_HEAD(&vm->evicted_user); 2549 INIT_LIST_HEAD(&vm->relocated); 2550 INIT_LIST_HEAD(&vm->moved); 2551 INIT_LIST_HEAD(&vm->idle); 2552 INIT_LIST_HEAD(&vm->invalidated); 2553 spin_lock_init(&vm->status_lock); 2554 INIT_LIST_HEAD(&vm->freed); 2555 INIT_LIST_HEAD(&vm->done); 2556 INIT_KFIFO(vm->faults); 2557 2558 r = amdgpu_vm_init_entities(adev, vm); 2559 if (r) 2560 return r; 2561 2562 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2563 2564 vm->is_compute_context = false; 2565 2566 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2567 AMDGPU_VM_USE_CPU_FOR_GFX); 2568 2569 dev_dbg(adev->dev, "VM update mode is %s\n", 2570 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2571 WARN_ONCE((vm->use_cpu_for_update && 2572 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2573 "CPU update of VM recommended only for large BAR system\n"); 2574 2575 if (vm->use_cpu_for_update) 2576 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2577 else 2578 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2579 2580 vm->last_update = dma_fence_get_stub(); 2581 vm->last_unlocked = dma_fence_get_stub(); 2582 vm->last_tlb_flush = dma_fence_get_stub(); 2583 vm->generation = amdgpu_vm_generation(adev, NULL); 2584 2585 mutex_init(&vm->eviction_lock); 2586 vm->evicting = false; 2587 vm->tlb_fence_context = dma_fence_context_alloc(1); 2588 2589 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2590 false, &root, xcp_id); 2591 if (r) 2592 goto error_free_delayed; 2593 2594 root_bo = amdgpu_bo_ref(&root->bo); 2595 r = amdgpu_bo_reserve(root_bo, true); 2596 if (r) { 2597 amdgpu_bo_unref(&root_bo); 2598 goto error_free_delayed; 2599 } 2600 2601 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2602 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2603 if (r) 2604 goto error_free_root; 2605 2606 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2607 if (r) 2608 goto error_free_root; 2609 2610 r = amdgpu_vm_create_task_info(vm); 2611 if (r) 2612 dev_dbg(adev->dev, "Failed to create task info for VM\n"); 2613 2614 amdgpu_bo_unreserve(vm->root.bo); 2615 amdgpu_bo_unref(&root_bo); 2616 2617 return 0; 2618 2619 error_free_root: 2620 amdgpu_vm_pt_free_root(adev, vm); 2621 amdgpu_bo_unreserve(vm->root.bo); 2622 amdgpu_bo_unref(&root_bo); 2623 2624 error_free_delayed: 2625 dma_fence_put(vm->last_tlb_flush); 2626 dma_fence_put(vm->last_unlocked); 2627 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2628 amdgpu_vm_fini_entities(vm); 2629 2630 return r; 2631 } 2632 2633 /** 2634 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2635 * 2636 * @adev: amdgpu_device pointer 2637 * @vm: requested vm 2638 * 2639 * This only works on GFX VMs that don't have any BOs added and no 2640 * page tables allocated yet. 2641 * 2642 * Changes the following VM parameters: 2643 * - use_cpu_for_update 2644 * - pte_supports_ats 2645 * 2646 * Reinitializes the page directory to reflect the changed ATS 2647 * setting. 2648 * 2649 * Returns: 2650 * 0 for success, -errno for errors. 2651 */ 2652 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2653 { 2654 int r; 2655 2656 r = amdgpu_bo_reserve(vm->root.bo, true); 2657 if (r) 2658 return r; 2659 2660 /* Update VM state */ 2661 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2662 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2663 dev_dbg(adev->dev, "VM update mode is %s\n", 2664 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2665 WARN_ONCE((vm->use_cpu_for_update && 2666 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2667 "CPU update of VM recommended only for large BAR system\n"); 2668 2669 if (vm->use_cpu_for_update) { 2670 /* Sync with last SDMA update/clear before switching to CPU */ 2671 r = amdgpu_bo_sync_wait(vm->root.bo, 2672 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2673 if (r) 2674 goto unreserve_bo; 2675 2676 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2677 r = amdgpu_vm_pt_map_tables(adev, vm); 2678 if (r) 2679 goto unreserve_bo; 2680 2681 } else { 2682 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2683 } 2684 2685 dma_fence_put(vm->last_update); 2686 vm->last_update = dma_fence_get_stub(); 2687 vm->is_compute_context = true; 2688 2689 unreserve_bo: 2690 amdgpu_bo_unreserve(vm->root.bo); 2691 return r; 2692 } 2693 2694 static int amdgpu_vm_stats_is_zero(struct amdgpu_vm *vm) 2695 { 2696 for (int i = 0; i < __AMDGPU_PL_NUM; ++i) { 2697 if (!(drm_memory_stats_is_zero(&vm->stats[i].drm) && 2698 vm->stats[i].evicted == 0)) 2699 return false; 2700 } 2701 return true; 2702 } 2703 2704 /** 2705 * amdgpu_vm_fini - tear down a vm instance 2706 * 2707 * @adev: amdgpu_device pointer 2708 * @vm: requested vm 2709 * 2710 * Tear down @vm. 2711 * Unbind the VM and remove all bos from the vm bo list 2712 */ 2713 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2714 { 2715 struct amdgpu_bo_va_mapping *mapping, *tmp; 2716 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2717 struct amdgpu_bo *root; 2718 unsigned long flags; 2719 int i; 2720 2721 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2722 2723 root = amdgpu_bo_ref(vm->root.bo); 2724 amdgpu_bo_reserve(root, true); 2725 amdgpu_vm_set_pasid(adev, vm, 0); 2726 dma_fence_wait(vm->last_unlocked, false); 2727 dma_fence_put(vm->last_unlocked); 2728 dma_fence_wait(vm->last_tlb_flush, false); 2729 /* Make sure that all fence callbacks have completed */ 2730 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2731 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2732 dma_fence_put(vm->last_tlb_flush); 2733 2734 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2735 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2736 amdgpu_vm_prt_fini(adev, vm); 2737 prt_fini_needed = false; 2738 } 2739 2740 list_del(&mapping->list); 2741 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2742 } 2743 2744 amdgpu_vm_pt_free_root(adev, vm); 2745 amdgpu_bo_unreserve(root); 2746 amdgpu_bo_unref(&root); 2747 WARN_ON(vm->root.bo); 2748 2749 amdgpu_vm_fini_entities(vm); 2750 2751 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2752 dev_err(adev->dev, "still active bo inside vm\n"); 2753 } 2754 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2755 &vm->va.rb_root, rb) { 2756 /* Don't remove the mapping here, we don't want to trigger a 2757 * rebalance and the tree is about to be destroyed anyway. 2758 */ 2759 list_del(&mapping->list); 2760 kfree(mapping); 2761 } 2762 2763 dma_fence_put(vm->last_update); 2764 2765 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2766 if (vm->reserved_vmid[i]) { 2767 amdgpu_vmid_free_reserved(adev, i); 2768 vm->reserved_vmid[i] = false; 2769 } 2770 } 2771 2772 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2773 2774 if (!amdgpu_vm_stats_is_zero(vm)) { 2775 struct amdgpu_task_info *ti = vm->task_info; 2776 2777 dev_warn(adev->dev, 2778 "VM memory stats for proc %s(%d) task %s(%d) is non-zero when fini\n", 2779 ti->process_name, ti->task.pid, ti->task.comm, ti->tgid); 2780 } 2781 2782 amdgpu_vm_put_task_info(vm->task_info); 2783 } 2784 2785 /** 2786 * amdgpu_vm_manager_init - init the VM manager 2787 * 2788 * @adev: amdgpu_device pointer 2789 * 2790 * Initialize the VM manager structures 2791 */ 2792 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2793 { 2794 unsigned i; 2795 2796 /* Concurrent flushes are only possible starting with Vega10 and 2797 * are broken on Navi10 and Navi14. 2798 */ 2799 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2800 adev->asic_type == CHIP_NAVI10 || 2801 adev->asic_type == CHIP_NAVI14); 2802 amdgpu_vmid_mgr_init(adev); 2803 2804 adev->vm_manager.fence_context = 2805 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2806 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2807 adev->vm_manager.seqno[i] = 0; 2808 2809 spin_lock_init(&adev->vm_manager.prt_lock); 2810 atomic_set(&adev->vm_manager.num_prt_users, 0); 2811 2812 /* If not overridden by the user, by default, only in large BAR systems 2813 * Compute VM tables will be updated by CPU 2814 */ 2815 #ifdef CONFIG_X86_64 2816 if (amdgpu_vm_update_mode == -1) { 2817 /* For asic with VF MMIO access protection 2818 * avoid using CPU for VM table updates 2819 */ 2820 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2821 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2822 adev->vm_manager.vm_update_mode = 2823 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2824 else 2825 adev->vm_manager.vm_update_mode = 0; 2826 } else 2827 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2828 #else 2829 adev->vm_manager.vm_update_mode = 0; 2830 #endif 2831 2832 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2833 } 2834 2835 /** 2836 * amdgpu_vm_manager_fini - cleanup VM manager 2837 * 2838 * @adev: amdgpu_device pointer 2839 * 2840 * Cleanup the VM manager and free resources. 2841 */ 2842 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2843 { 2844 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2845 xa_destroy(&adev->vm_manager.pasids); 2846 2847 amdgpu_vmid_mgr_fini(adev); 2848 } 2849 2850 /** 2851 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2852 * 2853 * @dev: drm device pointer 2854 * @data: drm_amdgpu_vm 2855 * @filp: drm file pointer 2856 * 2857 * Returns: 2858 * 0 for success, -errno for errors. 2859 */ 2860 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2861 { 2862 union drm_amdgpu_vm *args = data; 2863 struct amdgpu_device *adev = drm_to_adev(dev); 2864 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2865 2866 /* No valid flags defined yet */ 2867 if (args->in.flags) 2868 return -EINVAL; 2869 2870 switch (args->in.op) { 2871 case AMDGPU_VM_OP_RESERVE_VMID: 2872 /* We only have requirement to reserve vmid from gfxhub */ 2873 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2874 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2875 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2876 } 2877 2878 break; 2879 case AMDGPU_VM_OP_UNRESERVE_VMID: 2880 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2881 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2882 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2883 } 2884 break; 2885 default: 2886 return -EINVAL; 2887 } 2888 2889 return 0; 2890 } 2891 2892 /** 2893 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2894 * @adev: amdgpu device pointer 2895 * @pasid: PASID of the VM 2896 * @ts: Timestamp of the fault 2897 * @vmid: VMID, only used for GFX 9.4.3. 2898 * @node_id: Node_id received in IH cookie. Only applicable for 2899 * GFX 9.4.3. 2900 * @addr: Address of the fault 2901 * @write_fault: true is write fault, false is read fault 2902 * 2903 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2904 * shouldn't be reported any more. 2905 */ 2906 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2907 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2908 bool write_fault) 2909 { 2910 bool is_compute_context = false; 2911 struct amdgpu_bo *root; 2912 unsigned long irqflags; 2913 uint64_t value, flags; 2914 struct amdgpu_vm *vm; 2915 int r; 2916 2917 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2918 vm = xa_load(&adev->vm_manager.pasids, pasid); 2919 if (vm) { 2920 root = amdgpu_bo_ref(vm->root.bo); 2921 is_compute_context = vm->is_compute_context; 2922 } else { 2923 root = NULL; 2924 } 2925 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2926 2927 if (!root) 2928 return false; 2929 2930 addr /= AMDGPU_GPU_PAGE_SIZE; 2931 2932 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2933 node_id, addr, ts, write_fault)) { 2934 amdgpu_bo_unref(&root); 2935 return true; 2936 } 2937 2938 r = amdgpu_bo_reserve(root, true); 2939 if (r) 2940 goto error_unref; 2941 2942 /* Double check that the VM still exists */ 2943 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2944 vm = xa_load(&adev->vm_manager.pasids, pasid); 2945 if (vm && vm->root.bo != root) 2946 vm = NULL; 2947 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2948 if (!vm) 2949 goto error_unlock; 2950 2951 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2952 AMDGPU_PTE_SYSTEM; 2953 2954 if (is_compute_context) { 2955 /* Intentionally setting invalid PTE flag 2956 * combination to force a no-retry-fault 2957 */ 2958 flags = AMDGPU_VM_NORETRY_FLAGS; 2959 value = 0; 2960 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2961 /* Redirect the access to the dummy page */ 2962 value = adev->dummy_page_addr; 2963 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2964 AMDGPU_PTE_WRITEABLE; 2965 2966 } else { 2967 /* Let the hw retry silently on the PTE */ 2968 value = 0; 2969 } 2970 2971 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2972 if (r) { 2973 pr_debug("failed %d to reserve fence slot\n", r); 2974 goto error_unlock; 2975 } 2976 2977 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2978 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2979 if (r) 2980 goto error_unlock; 2981 2982 r = amdgpu_vm_update_pdes(adev, vm, true); 2983 2984 error_unlock: 2985 amdgpu_bo_unreserve(root); 2986 if (r < 0) 2987 dev_err(adev->dev, "Can't handle page fault (%d)\n", r); 2988 2989 error_unref: 2990 amdgpu_bo_unref(&root); 2991 2992 return false; 2993 } 2994 2995 #if defined(CONFIG_DEBUG_FS) 2996 /** 2997 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2998 * 2999 * @vm: Requested VM for printing BO info 3000 * @m: debugfs file 3001 * 3002 * Print BO information in debugfs file for the VM 3003 */ 3004 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3005 { 3006 struct amdgpu_bo_va *bo_va, *tmp; 3007 u64 total_idle = 0; 3008 u64 total_evicted = 0; 3009 u64 total_relocated = 0; 3010 u64 total_moved = 0; 3011 u64 total_invalidated = 0; 3012 u64 total_done = 0; 3013 unsigned int total_idle_objs = 0; 3014 unsigned int total_evicted_objs = 0; 3015 unsigned int total_relocated_objs = 0; 3016 unsigned int total_moved_objs = 0; 3017 unsigned int total_invalidated_objs = 0; 3018 unsigned int total_done_objs = 0; 3019 unsigned int id = 0; 3020 3021 spin_lock(&vm->status_lock); 3022 seq_puts(m, "\tIdle BOs:\n"); 3023 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3024 if (!bo_va->base.bo) 3025 continue; 3026 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3027 } 3028 total_idle_objs = id; 3029 id = 0; 3030 3031 seq_puts(m, "\tEvicted BOs:\n"); 3032 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3033 if (!bo_va->base.bo) 3034 continue; 3035 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3036 } 3037 total_evicted_objs = id; 3038 id = 0; 3039 3040 seq_puts(m, "\tRelocated BOs:\n"); 3041 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3042 if (!bo_va->base.bo) 3043 continue; 3044 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3045 } 3046 total_relocated_objs = id; 3047 id = 0; 3048 3049 seq_puts(m, "\tMoved BOs:\n"); 3050 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3051 if (!bo_va->base.bo) 3052 continue; 3053 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3054 } 3055 total_moved_objs = id; 3056 id = 0; 3057 3058 seq_puts(m, "\tInvalidated BOs:\n"); 3059 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3060 if (!bo_va->base.bo) 3061 continue; 3062 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3063 } 3064 total_invalidated_objs = id; 3065 id = 0; 3066 3067 seq_puts(m, "\tDone BOs:\n"); 3068 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3069 if (!bo_va->base.bo) 3070 continue; 3071 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3072 } 3073 spin_unlock(&vm->status_lock); 3074 total_done_objs = id; 3075 3076 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3077 total_idle_objs); 3078 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3079 total_evicted_objs); 3080 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3081 total_relocated_objs); 3082 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3083 total_moved_objs); 3084 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3085 total_invalidated_objs); 3086 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3087 total_done_objs); 3088 } 3089 #endif 3090 3091 /** 3092 * amdgpu_vm_update_fault_cache - update cached fault into. 3093 * @adev: amdgpu device pointer 3094 * @pasid: PASID of the VM 3095 * @addr: Address of the fault 3096 * @status: GPUVM fault status register 3097 * @vmhub: which vmhub got the fault 3098 * 3099 * Cache the fault info for later use by userspace in debugging. 3100 */ 3101 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 3102 unsigned int pasid, 3103 uint64_t addr, 3104 uint32_t status, 3105 unsigned int vmhub) 3106 { 3107 struct amdgpu_vm *vm; 3108 unsigned long flags; 3109 3110 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3111 3112 vm = xa_load(&adev->vm_manager.pasids, pasid); 3113 /* Don't update the fault cache if status is 0. In the multiple 3114 * fault case, subsequent faults will return a 0 status which is 3115 * useless for userspace and replaces the useful fault status, so 3116 * only update if status is non-0. 3117 */ 3118 if (vm && status) { 3119 vm->fault_info.addr = addr; 3120 vm->fault_info.status = status; 3121 /* 3122 * Update the fault information globally for later usage 3123 * when vm could be stale or freed. 3124 */ 3125 adev->vm_manager.fault_info.addr = addr; 3126 adev->vm_manager.fault_info.vmhub = vmhub; 3127 adev->vm_manager.fault_info.status = status; 3128 3129 if (AMDGPU_IS_GFXHUB(vmhub)) { 3130 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3131 vm->fault_info.vmhub |= 3132 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3133 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3134 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3135 vm->fault_info.vmhub |= 3136 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3137 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3138 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3139 vm->fault_info.vmhub |= 3140 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3141 } else { 3142 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3143 } 3144 } 3145 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3146 } 3147 3148 /** 3149 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3150 * 3151 * @vm: VM to test against. 3152 * @bo: BO to be tested. 3153 * 3154 * Returns true if the BO shares the dma_resv object with the root PD and is 3155 * always guaranteed to be valid inside the VM. 3156 */ 3157 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3158 { 3159 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3160 } 3161 3162 void amdgpu_vm_print_task_info(struct amdgpu_device *adev, 3163 struct amdgpu_task_info *task_info) 3164 { 3165 dev_err(adev->dev, 3166 " Process %s pid %d thread %s pid %d\n", 3167 task_info->process_name, task_info->tgid, 3168 task_info->task.comm, task_info->task.pid); 3169 } 3170