1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 #include "amdgpu_xgmi.h" 38 39 /** 40 * DOC: GPUVM 41 * 42 * GPUVM is similar to the legacy gart on older asics, however 43 * rather than there being a single global gart table 44 * for the entire GPU, there are multiple VM page tables active 45 * at any given time. The VM page tables can contain a mix 46 * vram pages and system memory pages and system memory pages 47 * can be mapped as snooped (cached system pages) or unsnooped 48 * (uncached system pages). 49 * Each VM has an ID associated with it and there is a page table 50 * associated with each VMID. When execting a command buffer, 51 * the kernel tells the the ring what VMID to use for that command 52 * buffer. VMIDs are allocated dynamically as commands are submitted. 53 * The userspace drivers maintain their own address space and the kernel 54 * sets up their pages tables accordingly when they submit their 55 * command buffers and a VMID is assigned. 56 * Cayman/Trinity support up to 8 active VMs at any given time; 57 * SI supports 16. 58 */ 59 60 #define START(node) ((node)->start) 61 #define LAST(node) ((node)->last) 62 63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 64 START, LAST, static, amdgpu_vm_it) 65 66 #undef START 67 #undef LAST 68 69 /** 70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 71 */ 72 struct amdgpu_prt_cb { 73 74 /** 75 * @adev: amdgpu device 76 */ 77 struct amdgpu_device *adev; 78 79 /** 80 * @cb: callback 81 */ 82 struct dma_fence_cb cb; 83 }; 84 85 /** 86 * amdgpu_vm_level_shift - return the addr shift for each level 87 * 88 * @adev: amdgpu_device pointer 89 * @level: VMPT level 90 * 91 * Returns: 92 * The number of bits the pfn needs to be right shifted for a level. 93 */ 94 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 95 unsigned level) 96 { 97 unsigned shift = 0xff; 98 99 switch (level) { 100 case AMDGPU_VM_PDB2: 101 case AMDGPU_VM_PDB1: 102 case AMDGPU_VM_PDB0: 103 shift = 9 * (AMDGPU_VM_PDB0 - level) + 104 adev->vm_manager.block_size; 105 break; 106 case AMDGPU_VM_PTB: 107 shift = 0; 108 break; 109 default: 110 dev_err(adev->dev, "the level%d isn't supported.\n", level); 111 } 112 113 return shift; 114 } 115 116 /** 117 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 118 * 119 * @adev: amdgpu_device pointer 120 * @level: VMPT level 121 * 122 * Returns: 123 * The number of entries in a page directory or page table. 124 */ 125 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 126 unsigned level) 127 { 128 unsigned shift = amdgpu_vm_level_shift(adev, 129 adev->vm_manager.root_level); 130 131 if (level == adev->vm_manager.root_level) 132 /* For the root directory */ 133 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 134 >> shift; 135 else if (level != AMDGPU_VM_PTB) 136 /* Everything in between */ 137 return 512; 138 else 139 /* For the page tables on the leaves */ 140 return AMDGPU_VM_PTE_COUNT(adev); 141 } 142 143 /** 144 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 145 * 146 * @adev: amdgpu_device pointer 147 * 148 * Returns: 149 * The number of entries in the root page directory which needs the ATS setting. 150 */ 151 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 152 { 153 unsigned shift; 154 155 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 156 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 157 } 158 159 /** 160 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 161 * 162 * @adev: amdgpu_device pointer 163 * @level: VMPT level 164 * 165 * Returns: 166 * The mask to extract the entry number of a PD/PT from an address. 167 */ 168 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 169 unsigned int level) 170 { 171 if (level <= adev->vm_manager.root_level) 172 return 0xffffffff; 173 else if (level != AMDGPU_VM_PTB) 174 return 0x1ff; 175 else 176 return AMDGPU_VM_PTE_COUNT(adev) - 1; 177 } 178 179 /** 180 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 181 * 182 * @adev: amdgpu_device pointer 183 * @level: VMPT level 184 * 185 * Returns: 186 * The size of the BO for a page directory or page table in bytes. 187 */ 188 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 189 { 190 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 191 } 192 193 /** 194 * amdgpu_vm_bo_evicted - vm_bo is evicted 195 * 196 * @vm_bo: vm_bo which is evicted 197 * 198 * State for PDs/PTs and per VM BOs which are not at the location they should 199 * be. 200 */ 201 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 202 { 203 struct amdgpu_vm *vm = vm_bo->vm; 204 struct amdgpu_bo *bo = vm_bo->bo; 205 206 vm_bo->moved = true; 207 if (bo->tbo.type == ttm_bo_type_kernel) 208 list_move(&vm_bo->vm_status, &vm->evicted); 209 else 210 list_move_tail(&vm_bo->vm_status, &vm->evicted); 211 } 212 213 /** 214 * amdgpu_vm_bo_relocated - vm_bo is reloacted 215 * 216 * @vm_bo: vm_bo which is relocated 217 * 218 * State for PDs/PTs which needs to update their parent PD. 219 */ 220 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 221 { 222 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 223 } 224 225 /** 226 * amdgpu_vm_bo_moved - vm_bo is moved 227 * 228 * @vm_bo: vm_bo which is moved 229 * 230 * State for per VM BOs which are moved, but that change is not yet reflected 231 * in the page tables. 232 */ 233 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 234 { 235 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 236 } 237 238 /** 239 * amdgpu_vm_bo_idle - vm_bo is idle 240 * 241 * @vm_bo: vm_bo which is now idle 242 * 243 * State for PDs/PTs and per VM BOs which have gone through the state machine 244 * and are now idle. 245 */ 246 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 247 { 248 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 249 vm_bo->moved = false; 250 } 251 252 /** 253 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 254 * 255 * @vm_bo: vm_bo which is now invalidated 256 * 257 * State for normal BOs which are invalidated and that change not yet reflected 258 * in the PTs. 259 */ 260 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 261 { 262 spin_lock(&vm_bo->vm->invalidated_lock); 263 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 264 spin_unlock(&vm_bo->vm->invalidated_lock); 265 } 266 267 /** 268 * amdgpu_vm_bo_done - vm_bo is done 269 * 270 * @vm_bo: vm_bo which is now done 271 * 272 * State for normal BOs which are invalidated and that change has been updated 273 * in the PTs. 274 */ 275 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 276 { 277 spin_lock(&vm_bo->vm->invalidated_lock); 278 list_del_init(&vm_bo->vm_status); 279 spin_unlock(&vm_bo->vm->invalidated_lock); 280 } 281 282 /** 283 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 284 * 285 * @base: base structure for tracking BO usage in a VM 286 * @vm: vm to which bo is to be added 287 * @bo: amdgpu buffer object 288 * 289 * Initialize a bo_va_base structure and add it to the appropriate lists 290 * 291 */ 292 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 293 struct amdgpu_vm *vm, 294 struct amdgpu_bo *bo) 295 { 296 base->vm = vm; 297 base->bo = bo; 298 base->next = NULL; 299 INIT_LIST_HEAD(&base->vm_status); 300 301 if (!bo) 302 return; 303 base->next = bo->vm_bo; 304 bo->vm_bo = base; 305 306 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 307 return; 308 309 vm->bulk_moveable = false; 310 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 311 amdgpu_vm_bo_relocated(base); 312 else 313 amdgpu_vm_bo_idle(base); 314 315 if (bo->preferred_domains & 316 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 317 return; 318 319 /* 320 * we checked all the prerequisites, but it looks like this per vm bo 321 * is currently evicted. add the bo to the evicted list to make sure it 322 * is validated on next vm use to avoid fault. 323 * */ 324 amdgpu_vm_bo_evicted(base); 325 } 326 327 /** 328 * amdgpu_vm_pt_parent - get the parent page directory 329 * 330 * @pt: child page table 331 * 332 * Helper to get the parent entry for the child page table. NULL if we are at 333 * the root page directory. 334 */ 335 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 336 { 337 struct amdgpu_bo *parent = pt->base.bo->parent; 338 339 if (!parent) 340 return NULL; 341 342 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 343 } 344 345 /** 346 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 347 */ 348 struct amdgpu_vm_pt_cursor { 349 uint64_t pfn; 350 struct amdgpu_vm_pt *parent; 351 struct amdgpu_vm_pt *entry; 352 unsigned level; 353 }; 354 355 /** 356 * amdgpu_vm_pt_start - start PD/PT walk 357 * 358 * @adev: amdgpu_device pointer 359 * @vm: amdgpu_vm structure 360 * @start: start address of the walk 361 * @cursor: state to initialize 362 * 363 * Initialize a amdgpu_vm_pt_cursor to start a walk. 364 */ 365 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 366 struct amdgpu_vm *vm, uint64_t start, 367 struct amdgpu_vm_pt_cursor *cursor) 368 { 369 cursor->pfn = start; 370 cursor->parent = NULL; 371 cursor->entry = &vm->root; 372 cursor->level = adev->vm_manager.root_level; 373 } 374 375 /** 376 * amdgpu_vm_pt_descendant - go to child node 377 * 378 * @adev: amdgpu_device pointer 379 * @cursor: current state 380 * 381 * Walk to the child node of the current node. 382 * Returns: 383 * True if the walk was possible, false otherwise. 384 */ 385 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 386 struct amdgpu_vm_pt_cursor *cursor) 387 { 388 unsigned mask, shift, idx; 389 390 if (!cursor->entry->entries) 391 return false; 392 393 BUG_ON(!cursor->entry->base.bo); 394 mask = amdgpu_vm_entries_mask(adev, cursor->level); 395 shift = amdgpu_vm_level_shift(adev, cursor->level); 396 397 ++cursor->level; 398 idx = (cursor->pfn >> shift) & mask; 399 cursor->parent = cursor->entry; 400 cursor->entry = &cursor->entry->entries[idx]; 401 return true; 402 } 403 404 /** 405 * amdgpu_vm_pt_sibling - go to sibling node 406 * 407 * @adev: amdgpu_device pointer 408 * @cursor: current state 409 * 410 * Walk to the sibling node of the current node. 411 * Returns: 412 * True if the walk was possible, false otherwise. 413 */ 414 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 415 struct amdgpu_vm_pt_cursor *cursor) 416 { 417 unsigned shift, num_entries; 418 419 /* Root doesn't have a sibling */ 420 if (!cursor->parent) 421 return false; 422 423 /* Go to our parents and see if we got a sibling */ 424 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 425 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 426 427 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 428 return false; 429 430 cursor->pfn += 1ULL << shift; 431 cursor->pfn &= ~((1ULL << shift) - 1); 432 ++cursor->entry; 433 return true; 434 } 435 436 /** 437 * amdgpu_vm_pt_ancestor - go to parent node 438 * 439 * @cursor: current state 440 * 441 * Walk to the parent node of the current node. 442 * Returns: 443 * True if the walk was possible, false otherwise. 444 */ 445 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 446 { 447 if (!cursor->parent) 448 return false; 449 450 --cursor->level; 451 cursor->entry = cursor->parent; 452 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 453 return true; 454 } 455 456 /** 457 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 458 * 459 * @adev: amdgpu_device pointer 460 * @cursor: current state 461 * 462 * Walk the PD/PT tree to the next node. 463 */ 464 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 465 struct amdgpu_vm_pt_cursor *cursor) 466 { 467 /* First try a newborn child */ 468 if (amdgpu_vm_pt_descendant(adev, cursor)) 469 return; 470 471 /* If that didn't worked try to find a sibling */ 472 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 473 /* No sibling, go to our parents and grandparents */ 474 if (!amdgpu_vm_pt_ancestor(cursor)) { 475 cursor->pfn = ~0ll; 476 return; 477 } 478 } 479 } 480 481 /** 482 * amdgpu_vm_pt_first_dfs - start a deep first search 483 * 484 * @adev: amdgpu_device structure 485 * @vm: amdgpu_vm structure 486 * @cursor: state to initialize 487 * 488 * Starts a deep first traversal of the PD/PT tree. 489 */ 490 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 491 struct amdgpu_vm *vm, 492 struct amdgpu_vm_pt_cursor *start, 493 struct amdgpu_vm_pt_cursor *cursor) 494 { 495 if (start) 496 *cursor = *start; 497 else 498 amdgpu_vm_pt_start(adev, vm, 0, cursor); 499 while (amdgpu_vm_pt_descendant(adev, cursor)); 500 } 501 502 /** 503 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 504 * 505 * @start: starting point for the search 506 * @entry: current entry 507 * 508 * Returns: 509 * True when the search should continue, false otherwise. 510 */ 511 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 512 struct amdgpu_vm_pt *entry) 513 { 514 return entry && (!start || entry != start->entry); 515 } 516 517 /** 518 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 519 * 520 * @adev: amdgpu_device structure 521 * @cursor: current state 522 * 523 * Move the cursor to the next node in a deep first search. 524 */ 525 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 526 struct amdgpu_vm_pt_cursor *cursor) 527 { 528 if (!cursor->entry) 529 return; 530 531 if (!cursor->parent) 532 cursor->entry = NULL; 533 else if (amdgpu_vm_pt_sibling(adev, cursor)) 534 while (amdgpu_vm_pt_descendant(adev, cursor)); 535 else 536 amdgpu_vm_pt_ancestor(cursor); 537 } 538 539 /** 540 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 541 */ 542 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 543 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 544 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 545 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 546 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 547 548 /** 549 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 550 * 551 * @vm: vm providing the BOs 552 * @validated: head of validation list 553 * @entry: entry to add 554 * 555 * Add the page directory to the list of BOs to 556 * validate for command submission. 557 */ 558 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 559 struct list_head *validated, 560 struct amdgpu_bo_list_entry *entry) 561 { 562 entry->priority = 0; 563 entry->tv.bo = &vm->root.base.bo->tbo; 564 /* One for the VM updates, one for TTM and one for the CS job */ 565 entry->tv.num_shared = 3; 566 entry->user_pages = NULL; 567 list_add(&entry->tv.head, validated); 568 } 569 570 /** 571 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 572 * 573 * @bo: BO which was removed from the LRU 574 * 575 * Make sure the bulk_moveable flag is updated when a BO is removed from the 576 * LRU. 577 */ 578 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 579 { 580 struct amdgpu_bo *abo; 581 struct amdgpu_vm_bo_base *bo_base; 582 583 if (!amdgpu_bo_is_amdgpu_bo(bo)) 584 return; 585 586 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 587 return; 588 589 abo = ttm_to_amdgpu_bo(bo); 590 if (!abo->parent) 591 return; 592 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 593 struct amdgpu_vm *vm = bo_base->vm; 594 595 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 596 vm->bulk_moveable = false; 597 } 598 599 } 600 /** 601 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 602 * 603 * @adev: amdgpu device pointer 604 * @vm: vm providing the BOs 605 * 606 * Move all BOs to the end of LRU and remember their positions to put them 607 * together. 608 */ 609 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 610 struct amdgpu_vm *vm) 611 { 612 struct ttm_bo_global *glob = adev->mman.bdev.glob; 613 struct amdgpu_vm_bo_base *bo_base; 614 615 if (vm->bulk_moveable) { 616 spin_lock(&glob->lru_lock); 617 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 618 spin_unlock(&glob->lru_lock); 619 return; 620 } 621 622 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 623 624 spin_lock(&glob->lru_lock); 625 list_for_each_entry(bo_base, &vm->idle, vm_status) { 626 struct amdgpu_bo *bo = bo_base->bo; 627 628 if (!bo->parent) 629 continue; 630 631 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 632 if (bo->shadow) 633 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 634 &vm->lru_bulk_move); 635 } 636 spin_unlock(&glob->lru_lock); 637 638 vm->bulk_moveable = true; 639 } 640 641 /** 642 * amdgpu_vm_validate_pt_bos - validate the page table BOs 643 * 644 * @adev: amdgpu device pointer 645 * @vm: vm providing the BOs 646 * @validate: callback to do the validation 647 * @param: parameter for the validation callback 648 * 649 * Validate the page table BOs on command submission if neccessary. 650 * 651 * Returns: 652 * Validation result. 653 */ 654 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 655 int (*validate)(void *p, struct amdgpu_bo *bo), 656 void *param) 657 { 658 struct amdgpu_vm_bo_base *bo_base, *tmp; 659 int r = 0; 660 661 vm->bulk_moveable &= list_empty(&vm->evicted); 662 663 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 664 struct amdgpu_bo *bo = bo_base->bo; 665 666 r = validate(param, bo); 667 if (r) 668 break; 669 670 if (bo->tbo.type != ttm_bo_type_kernel) { 671 amdgpu_vm_bo_moved(bo_base); 672 } else { 673 vm->update_funcs->map_table(bo); 674 if (bo->parent) 675 amdgpu_vm_bo_relocated(bo_base); 676 else 677 amdgpu_vm_bo_idle(bo_base); 678 } 679 } 680 681 return r; 682 } 683 684 /** 685 * amdgpu_vm_ready - check VM is ready for updates 686 * 687 * @vm: VM to check 688 * 689 * Check if all VM PDs/PTs are ready for updates 690 * 691 * Returns: 692 * True if eviction list is empty. 693 */ 694 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 695 { 696 return list_empty(&vm->evicted); 697 } 698 699 /** 700 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 701 * 702 * @adev: amdgpu_device pointer 703 * @vm: VM to clear BO from 704 * @bo: BO to clear 705 * @direct: use a direct update 706 * 707 * Root PD needs to be reserved when calling this. 708 * 709 * Returns: 710 * 0 on success, errno otherwise. 711 */ 712 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 713 struct amdgpu_vm *vm, 714 struct amdgpu_bo *bo, 715 bool direct) 716 { 717 struct ttm_operation_ctx ctx = { true, false }; 718 unsigned level = adev->vm_manager.root_level; 719 struct amdgpu_vm_update_params params; 720 struct amdgpu_bo *ancestor = bo; 721 unsigned entries, ats_entries; 722 uint64_t addr; 723 int r; 724 725 /* Figure out our place in the hierarchy */ 726 if (ancestor->parent) { 727 ++level; 728 while (ancestor->parent->parent) { 729 ++level; 730 ancestor = ancestor->parent; 731 } 732 } 733 734 entries = amdgpu_bo_size(bo) / 8; 735 if (!vm->pte_support_ats) { 736 ats_entries = 0; 737 738 } else if (!bo->parent) { 739 ats_entries = amdgpu_vm_num_ats_entries(adev); 740 ats_entries = min(ats_entries, entries); 741 entries -= ats_entries; 742 743 } else { 744 struct amdgpu_vm_pt *pt; 745 746 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 747 ats_entries = amdgpu_vm_num_ats_entries(adev); 748 if ((pt - vm->root.entries) >= ats_entries) { 749 ats_entries = 0; 750 } else { 751 ats_entries = entries; 752 entries = 0; 753 } 754 } 755 756 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 757 if (r) 758 return r; 759 760 if (bo->shadow) { 761 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 762 &ctx); 763 if (r) 764 return r; 765 } 766 767 r = vm->update_funcs->map_table(bo); 768 if (r) 769 return r; 770 771 memset(¶ms, 0, sizeof(params)); 772 params.adev = adev; 773 params.vm = vm; 774 params.direct = direct; 775 776 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_KFD, NULL); 777 if (r) 778 return r; 779 780 addr = 0; 781 if (ats_entries) { 782 uint64_t value = 0, flags; 783 784 flags = AMDGPU_PTE_DEFAULT_ATC; 785 if (level != AMDGPU_VM_PTB) { 786 /* Handle leaf PDEs as PTEs */ 787 flags |= AMDGPU_PDE_PTE; 788 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 789 } 790 791 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 792 value, flags); 793 if (r) 794 return r; 795 796 addr += ats_entries * 8; 797 } 798 799 if (entries) { 800 uint64_t value = 0, flags = 0; 801 802 if (adev->asic_type >= CHIP_VEGA10) { 803 if (level != AMDGPU_VM_PTB) { 804 /* Handle leaf PDEs as PTEs */ 805 flags |= AMDGPU_PDE_PTE; 806 amdgpu_gmc_get_vm_pde(adev, level, 807 &value, &flags); 808 } else { 809 /* Workaround for fault priority problem on GMC9 */ 810 flags = AMDGPU_PTE_EXECUTABLE; 811 } 812 } 813 814 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 815 value, flags); 816 if (r) 817 return r; 818 } 819 820 return vm->update_funcs->commit(¶ms, NULL); 821 } 822 823 /** 824 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 825 * 826 * @adev: amdgpu_device pointer 827 * @vm: requesting vm 828 * @bp: resulting BO allocation parameters 829 */ 830 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 831 int level, bool direct, 832 struct amdgpu_bo_param *bp) 833 { 834 memset(bp, 0, sizeof(*bp)); 835 836 bp->size = amdgpu_vm_bo_size(adev, level); 837 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 838 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 839 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 840 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 841 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 842 if (vm->use_cpu_for_update) 843 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 844 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 845 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 846 bp->type = ttm_bo_type_kernel; 847 bp->no_wait_gpu = direct; 848 if (vm->root.base.bo) 849 bp->resv = vm->root.base.bo->tbo.base.resv; 850 } 851 852 /** 853 * amdgpu_vm_alloc_pts - Allocate a specific page table 854 * 855 * @adev: amdgpu_device pointer 856 * @vm: VM to allocate page tables for 857 * @cursor: Which page table to allocate 858 * 859 * Make sure a specific page table or directory is allocated. 860 * 861 * Returns: 862 * 1 if page table needed to be allocated, 0 if page table was already 863 * allocated, negative errno if an error occurred. 864 */ 865 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 866 struct amdgpu_vm *vm, 867 struct amdgpu_vm_pt_cursor *cursor, 868 bool direct) 869 { 870 struct amdgpu_vm_pt *entry = cursor->entry; 871 struct amdgpu_bo_param bp; 872 struct amdgpu_bo *pt; 873 int r; 874 875 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 876 unsigned num_entries; 877 878 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 879 entry->entries = kvmalloc_array(num_entries, 880 sizeof(*entry->entries), 881 GFP_KERNEL | __GFP_ZERO); 882 if (!entry->entries) 883 return -ENOMEM; 884 } 885 886 if (entry->base.bo) 887 return 0; 888 889 amdgpu_vm_bo_param(adev, vm, cursor->level, direct, &bp); 890 891 r = amdgpu_bo_create(adev, &bp, &pt); 892 if (r) 893 return r; 894 895 /* Keep a reference to the root directory to avoid 896 * freeing them up in the wrong order. 897 */ 898 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 899 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 900 901 r = amdgpu_vm_clear_bo(adev, vm, pt, direct); 902 if (r) 903 goto error_free_pt; 904 905 return 0; 906 907 error_free_pt: 908 amdgpu_bo_unref(&pt->shadow); 909 amdgpu_bo_unref(&pt); 910 return r; 911 } 912 913 /** 914 * amdgpu_vm_free_table - fre one PD/PT 915 * 916 * @entry: PDE to free 917 */ 918 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 919 { 920 if (entry->base.bo) { 921 entry->base.bo->vm_bo = NULL; 922 list_del(&entry->base.vm_status); 923 amdgpu_bo_unref(&entry->base.bo->shadow); 924 amdgpu_bo_unref(&entry->base.bo); 925 } 926 kvfree(entry->entries); 927 entry->entries = NULL; 928 } 929 930 /** 931 * amdgpu_vm_free_pts - free PD/PT levels 932 * 933 * @adev: amdgpu device structure 934 * @vm: amdgpu vm structure 935 * @start: optional cursor where to start freeing PDs/PTs 936 * 937 * Free the page directory or page table level and all sub levels. 938 */ 939 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 940 struct amdgpu_vm *vm, 941 struct amdgpu_vm_pt_cursor *start) 942 { 943 struct amdgpu_vm_pt_cursor cursor; 944 struct amdgpu_vm_pt *entry; 945 946 vm->bulk_moveable = false; 947 948 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 949 amdgpu_vm_free_table(entry); 950 951 if (start) 952 amdgpu_vm_free_table(start->entry); 953 } 954 955 /** 956 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 957 * 958 * @adev: amdgpu_device pointer 959 */ 960 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 961 { 962 const struct amdgpu_ip_block *ip_block; 963 bool has_compute_vm_bug; 964 struct amdgpu_ring *ring; 965 int i; 966 967 has_compute_vm_bug = false; 968 969 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 970 if (ip_block) { 971 /* Compute has a VM bug for GFX version < 7. 972 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 973 if (ip_block->version->major <= 7) 974 has_compute_vm_bug = true; 975 else if (ip_block->version->major == 8) 976 if (adev->gfx.mec_fw_version < 673) 977 has_compute_vm_bug = true; 978 } 979 980 for (i = 0; i < adev->num_rings; i++) { 981 ring = adev->rings[i]; 982 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 983 /* only compute rings */ 984 ring->has_compute_vm_bug = has_compute_vm_bug; 985 else 986 ring->has_compute_vm_bug = false; 987 } 988 } 989 990 /** 991 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 992 * 993 * @ring: ring on which the job will be submitted 994 * @job: job to submit 995 * 996 * Returns: 997 * True if sync is needed. 998 */ 999 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1000 struct amdgpu_job *job) 1001 { 1002 struct amdgpu_device *adev = ring->adev; 1003 unsigned vmhub = ring->funcs->vmhub; 1004 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1005 struct amdgpu_vmid *id; 1006 bool gds_switch_needed; 1007 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1008 1009 if (job->vmid == 0) 1010 return false; 1011 id = &id_mgr->ids[job->vmid]; 1012 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1013 id->gds_base != job->gds_base || 1014 id->gds_size != job->gds_size || 1015 id->gws_base != job->gws_base || 1016 id->gws_size != job->gws_size || 1017 id->oa_base != job->oa_base || 1018 id->oa_size != job->oa_size); 1019 1020 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1021 return true; 1022 1023 return vm_flush_needed || gds_switch_needed; 1024 } 1025 1026 /** 1027 * amdgpu_vm_flush - hardware flush the vm 1028 * 1029 * @ring: ring to use for flush 1030 * @job: related job 1031 * @need_pipe_sync: is pipe sync needed 1032 * 1033 * Emit a VM flush when it is necessary. 1034 * 1035 * Returns: 1036 * 0 on success, errno otherwise. 1037 */ 1038 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1039 bool need_pipe_sync) 1040 { 1041 struct amdgpu_device *adev = ring->adev; 1042 unsigned vmhub = ring->funcs->vmhub; 1043 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1044 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1045 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1046 id->gds_base != job->gds_base || 1047 id->gds_size != job->gds_size || 1048 id->gws_base != job->gws_base || 1049 id->gws_size != job->gws_size || 1050 id->oa_base != job->oa_base || 1051 id->oa_size != job->oa_size); 1052 bool vm_flush_needed = job->vm_needs_flush; 1053 struct dma_fence *fence = NULL; 1054 bool pasid_mapping_needed; 1055 unsigned patch_offset = 0; 1056 int r; 1057 1058 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1059 gds_switch_needed = true; 1060 vm_flush_needed = true; 1061 pasid_mapping_needed = true; 1062 } 1063 1064 mutex_lock(&id_mgr->lock); 1065 if (id->pasid != job->pasid || !id->pasid_mapping || 1066 !dma_fence_is_signaled(id->pasid_mapping)) 1067 pasid_mapping_needed = true; 1068 mutex_unlock(&id_mgr->lock); 1069 1070 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1071 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1072 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1073 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1074 ring->funcs->emit_wreg; 1075 1076 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1077 return 0; 1078 1079 if (ring->funcs->init_cond_exec) 1080 patch_offset = amdgpu_ring_init_cond_exec(ring); 1081 1082 if (need_pipe_sync) 1083 amdgpu_ring_emit_pipeline_sync(ring); 1084 1085 if (vm_flush_needed) { 1086 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1087 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1088 } 1089 1090 if (pasid_mapping_needed) 1091 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1092 1093 if (vm_flush_needed || pasid_mapping_needed) { 1094 r = amdgpu_fence_emit(ring, &fence, 0); 1095 if (r) 1096 return r; 1097 } 1098 1099 if (vm_flush_needed) { 1100 mutex_lock(&id_mgr->lock); 1101 dma_fence_put(id->last_flush); 1102 id->last_flush = dma_fence_get(fence); 1103 id->current_gpu_reset_count = 1104 atomic_read(&adev->gpu_reset_counter); 1105 mutex_unlock(&id_mgr->lock); 1106 } 1107 1108 if (pasid_mapping_needed) { 1109 mutex_lock(&id_mgr->lock); 1110 id->pasid = job->pasid; 1111 dma_fence_put(id->pasid_mapping); 1112 id->pasid_mapping = dma_fence_get(fence); 1113 mutex_unlock(&id_mgr->lock); 1114 } 1115 dma_fence_put(fence); 1116 1117 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1118 id->gds_base = job->gds_base; 1119 id->gds_size = job->gds_size; 1120 id->gws_base = job->gws_base; 1121 id->gws_size = job->gws_size; 1122 id->oa_base = job->oa_base; 1123 id->oa_size = job->oa_size; 1124 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1125 job->gds_size, job->gws_base, 1126 job->gws_size, job->oa_base, 1127 job->oa_size); 1128 } 1129 1130 if (ring->funcs->patch_cond_exec) 1131 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1132 1133 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1134 if (ring->funcs->emit_switch_buffer) { 1135 amdgpu_ring_emit_switch_buffer(ring); 1136 amdgpu_ring_emit_switch_buffer(ring); 1137 } 1138 return 0; 1139 } 1140 1141 /** 1142 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1143 * 1144 * @vm: requested vm 1145 * @bo: requested buffer object 1146 * 1147 * Find @bo inside the requested vm. 1148 * Search inside the @bos vm list for the requested vm 1149 * Returns the found bo_va or NULL if none is found 1150 * 1151 * Object has to be reserved! 1152 * 1153 * Returns: 1154 * Found bo_va or NULL. 1155 */ 1156 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1157 struct amdgpu_bo *bo) 1158 { 1159 struct amdgpu_vm_bo_base *base; 1160 1161 for (base = bo->vm_bo; base; base = base->next) { 1162 if (base->vm != vm) 1163 continue; 1164 1165 return container_of(base, struct amdgpu_bo_va, base); 1166 } 1167 return NULL; 1168 } 1169 1170 /** 1171 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1172 * 1173 * @pages_addr: optional DMA address to use for lookup 1174 * @addr: the unmapped addr 1175 * 1176 * Look up the physical address of the page that the pte resolves 1177 * to. 1178 * 1179 * Returns: 1180 * The pointer for the page table entry. 1181 */ 1182 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1183 { 1184 uint64_t result; 1185 1186 /* page table offset */ 1187 result = pages_addr[addr >> PAGE_SHIFT]; 1188 1189 /* in case cpu page size != gpu page size*/ 1190 result |= addr & (~PAGE_MASK); 1191 1192 result &= 0xFFFFFFFFFFFFF000ULL; 1193 1194 return result; 1195 } 1196 1197 /* 1198 * amdgpu_vm_update_pde - update a single level in the hierarchy 1199 * 1200 * @param: parameters for the update 1201 * @vm: requested vm 1202 * @entry: entry to update 1203 * 1204 * Makes sure the requested entry in parent is up to date. 1205 */ 1206 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1207 struct amdgpu_vm *vm, 1208 struct amdgpu_vm_pt *entry) 1209 { 1210 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1211 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1212 uint64_t pde, pt, flags; 1213 unsigned level; 1214 1215 for (level = 0, pbo = bo->parent; pbo; ++level) 1216 pbo = pbo->parent; 1217 1218 level += params->adev->vm_manager.root_level; 1219 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1220 pde = (entry - parent->entries) * 8; 1221 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1222 } 1223 1224 /* 1225 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1226 * 1227 * @adev: amdgpu_device pointer 1228 * @vm: related vm 1229 * 1230 * Mark all PD level as invalid after an error. 1231 */ 1232 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1233 struct amdgpu_vm *vm) 1234 { 1235 struct amdgpu_vm_pt_cursor cursor; 1236 struct amdgpu_vm_pt *entry; 1237 1238 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1239 if (entry->base.bo && !entry->base.moved) 1240 amdgpu_vm_bo_relocated(&entry->base); 1241 } 1242 1243 /* 1244 * amdgpu_vm_update_pdes - make sure that all directories are valid 1245 * 1246 * @adev: amdgpu_device pointer 1247 * @vm: requested vm 1248 * @direct: submit directly to the paging queue 1249 * 1250 * Makes sure all directories are up to date. 1251 * 1252 * Returns: 1253 * 0 for success, error for failure. 1254 */ 1255 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1256 struct amdgpu_vm *vm, bool direct) 1257 { 1258 struct amdgpu_vm_update_params params; 1259 int r; 1260 1261 if (list_empty(&vm->relocated)) 1262 return 0; 1263 1264 memset(¶ms, 0, sizeof(params)); 1265 params.adev = adev; 1266 params.vm = vm; 1267 params.direct = direct; 1268 1269 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_VM, NULL); 1270 if (r) 1271 return r; 1272 1273 while (!list_empty(&vm->relocated)) { 1274 struct amdgpu_vm_pt *entry; 1275 1276 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1277 base.vm_status); 1278 amdgpu_vm_bo_idle(&entry->base); 1279 1280 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1281 if (r) 1282 goto error; 1283 } 1284 1285 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1286 if (r) 1287 goto error; 1288 return 0; 1289 1290 error: 1291 amdgpu_vm_invalidate_pds(adev, vm); 1292 return r; 1293 } 1294 1295 /** 1296 * amdgpu_vm_update_flags - figure out flags for PTE updates 1297 * 1298 * Make sure to set the right flags for the PTEs at the desired level. 1299 */ 1300 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1301 struct amdgpu_bo *bo, unsigned level, 1302 uint64_t pe, uint64_t addr, 1303 unsigned count, uint32_t incr, 1304 uint64_t flags) 1305 1306 { 1307 if (level != AMDGPU_VM_PTB) { 1308 flags |= AMDGPU_PDE_PTE; 1309 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1310 1311 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1312 !(flags & AMDGPU_PTE_VALID) && 1313 !(flags & AMDGPU_PTE_PRT)) { 1314 1315 /* Workaround for fault priority problem on GMC9 */ 1316 flags |= AMDGPU_PTE_EXECUTABLE; 1317 } 1318 1319 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1320 flags); 1321 } 1322 1323 /** 1324 * amdgpu_vm_fragment - get fragment for PTEs 1325 * 1326 * @params: see amdgpu_vm_update_params definition 1327 * @start: first PTE to handle 1328 * @end: last PTE to handle 1329 * @flags: hw mapping flags 1330 * @frag: resulting fragment size 1331 * @frag_end: end of this fragment 1332 * 1333 * Returns the first possible fragment for the start and end address. 1334 */ 1335 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1336 uint64_t start, uint64_t end, uint64_t flags, 1337 unsigned int *frag, uint64_t *frag_end) 1338 { 1339 /** 1340 * The MC L1 TLB supports variable sized pages, based on a fragment 1341 * field in the PTE. When this field is set to a non-zero value, page 1342 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1343 * flags are considered valid for all PTEs within the fragment range 1344 * and corresponding mappings are assumed to be physically contiguous. 1345 * 1346 * The L1 TLB can store a single PTE for the whole fragment, 1347 * significantly increasing the space available for translation 1348 * caching. This leads to large improvements in throughput when the 1349 * TLB is under pressure. 1350 * 1351 * The L2 TLB distributes small and large fragments into two 1352 * asymmetric partitions. The large fragment cache is significantly 1353 * larger. Thus, we try to use large fragments wherever possible. 1354 * Userspace can support this by aligning virtual base address and 1355 * allocation size to the fragment size. 1356 * 1357 * Starting with Vega10 the fragment size only controls the L1. The L2 1358 * is now directly feed with small/huge/giant pages from the walker. 1359 */ 1360 unsigned max_frag; 1361 1362 if (params->adev->asic_type < CHIP_VEGA10) 1363 max_frag = params->adev->vm_manager.fragment_size; 1364 else 1365 max_frag = 31; 1366 1367 /* system pages are non continuously */ 1368 if (params->pages_addr) { 1369 *frag = 0; 1370 *frag_end = end; 1371 return; 1372 } 1373 1374 /* This intentionally wraps around if no bit is set */ 1375 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1376 if (*frag >= max_frag) { 1377 *frag = max_frag; 1378 *frag_end = end & ~((1ULL << max_frag) - 1); 1379 } else { 1380 *frag_end = start + (1 << *frag); 1381 } 1382 } 1383 1384 /** 1385 * amdgpu_vm_update_ptes - make sure that page tables are valid 1386 * 1387 * @params: see amdgpu_vm_update_params definition 1388 * @start: start of GPU address range 1389 * @end: end of GPU address range 1390 * @dst: destination address to map to, the next dst inside the function 1391 * @flags: mapping flags 1392 * 1393 * Update the page tables in the range @start - @end. 1394 * 1395 * Returns: 1396 * 0 for success, -EINVAL for failure. 1397 */ 1398 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1399 uint64_t start, uint64_t end, 1400 uint64_t dst, uint64_t flags) 1401 { 1402 struct amdgpu_device *adev = params->adev; 1403 struct amdgpu_vm_pt_cursor cursor; 1404 uint64_t frag_start = start, frag_end; 1405 unsigned int frag; 1406 int r; 1407 1408 /* figure out the initial fragment */ 1409 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1410 1411 /* walk over the address space and update the PTs */ 1412 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1413 while (cursor.pfn < end) { 1414 unsigned shift, parent_shift, mask; 1415 uint64_t incr, entry_end, pe_start; 1416 struct amdgpu_bo *pt; 1417 1418 r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor, 1419 params->direct); 1420 if (r) 1421 return r; 1422 1423 pt = cursor.entry->base.bo; 1424 1425 /* The root level can't be a huge page */ 1426 if (cursor.level == adev->vm_manager.root_level) { 1427 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1428 return -ENOENT; 1429 continue; 1430 } 1431 1432 shift = amdgpu_vm_level_shift(adev, cursor.level); 1433 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1434 if (adev->asic_type < CHIP_VEGA10 && 1435 (flags & AMDGPU_PTE_VALID)) { 1436 /* No huge page support before GMC v9 */ 1437 if (cursor.level != AMDGPU_VM_PTB) { 1438 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1439 return -ENOENT; 1440 continue; 1441 } 1442 } else if (frag < shift) { 1443 /* We can't use this level when the fragment size is 1444 * smaller than the address shift. Go to the next 1445 * child entry and try again. 1446 */ 1447 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1448 return -ENOENT; 1449 continue; 1450 } else if (frag >= parent_shift && 1451 cursor.level - 1 != adev->vm_manager.root_level) { 1452 /* If the fragment size is even larger than the parent 1453 * shift we should go up one level and check it again 1454 * unless one level up is the root level. 1455 */ 1456 if (!amdgpu_vm_pt_ancestor(&cursor)) 1457 return -ENOENT; 1458 continue; 1459 } 1460 1461 /* Looks good so far, calculate parameters for the update */ 1462 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1463 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1464 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1465 entry_end = (uint64_t)(mask + 1) << shift; 1466 entry_end += cursor.pfn & ~(entry_end - 1); 1467 entry_end = min(entry_end, end); 1468 1469 do { 1470 uint64_t upd_end = min(entry_end, frag_end); 1471 unsigned nptes = (upd_end - frag_start) >> shift; 1472 1473 amdgpu_vm_update_flags(params, pt, cursor.level, 1474 pe_start, dst, nptes, incr, 1475 flags | AMDGPU_PTE_FRAG(frag)); 1476 1477 pe_start += nptes * 8; 1478 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1479 1480 frag_start = upd_end; 1481 if (frag_start >= frag_end) { 1482 /* figure out the next fragment */ 1483 amdgpu_vm_fragment(params, frag_start, end, 1484 flags, &frag, &frag_end); 1485 if (frag < shift) 1486 break; 1487 } 1488 } while (frag_start < entry_end); 1489 1490 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1491 /* Free all child entries */ 1492 while (cursor.pfn < frag_start) { 1493 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1494 amdgpu_vm_pt_next(adev, &cursor); 1495 } 1496 1497 } else if (frag >= shift) { 1498 /* or just move on to the next on the same level. */ 1499 amdgpu_vm_pt_next(adev, &cursor); 1500 } 1501 } 1502 1503 return 0; 1504 } 1505 1506 /** 1507 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1508 * 1509 * @adev: amdgpu_device pointer 1510 * @vm: requested vm 1511 * @direct: direct submission in a page fault 1512 * @exclusive: fence we need to sync to 1513 * @start: start of mapped range 1514 * @last: last mapped entry 1515 * @flags: flags for the entries 1516 * @addr: addr to set the area to 1517 * @pages_addr: DMA addresses to use for mapping 1518 * @fence: optional resulting fence 1519 * 1520 * Fill in the page table entries between @start and @last. 1521 * 1522 * Returns: 1523 * 0 for success, -EINVAL for failure. 1524 */ 1525 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1526 struct amdgpu_vm *vm, bool direct, 1527 struct dma_fence *exclusive, 1528 uint64_t start, uint64_t last, 1529 uint64_t flags, uint64_t addr, 1530 dma_addr_t *pages_addr, 1531 struct dma_fence **fence) 1532 { 1533 struct amdgpu_vm_update_params params; 1534 void *owner = AMDGPU_FENCE_OWNER_VM; 1535 int r; 1536 1537 memset(¶ms, 0, sizeof(params)); 1538 params.adev = adev; 1539 params.vm = vm; 1540 params.direct = direct; 1541 params.pages_addr = pages_addr; 1542 1543 /* sync to everything except eviction fences on unmapping */ 1544 if (!(flags & AMDGPU_PTE_VALID)) 1545 owner = AMDGPU_FENCE_OWNER_KFD; 1546 1547 r = vm->update_funcs->prepare(¶ms, owner, exclusive); 1548 if (r) 1549 return r; 1550 1551 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1552 if (r) 1553 return r; 1554 1555 return vm->update_funcs->commit(¶ms, fence); 1556 } 1557 1558 /** 1559 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1560 * 1561 * @adev: amdgpu_device pointer 1562 * @exclusive: fence we need to sync to 1563 * @pages_addr: DMA addresses to use for mapping 1564 * @vm: requested vm 1565 * @mapping: mapped range and flags to use for the update 1566 * @flags: HW flags for the mapping 1567 * @bo_adev: amdgpu_device pointer that bo actually been allocated 1568 * @nodes: array of drm_mm_nodes with the MC addresses 1569 * @fence: optional resulting fence 1570 * 1571 * Split the mapping into smaller chunks so that each update fits 1572 * into a SDMA IB. 1573 * 1574 * Returns: 1575 * 0 for success, -EINVAL for failure. 1576 */ 1577 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1578 struct dma_fence *exclusive, 1579 dma_addr_t *pages_addr, 1580 struct amdgpu_vm *vm, 1581 struct amdgpu_bo_va_mapping *mapping, 1582 uint64_t flags, 1583 struct amdgpu_device *bo_adev, 1584 struct drm_mm_node *nodes, 1585 struct dma_fence **fence) 1586 { 1587 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1588 uint64_t pfn, start = mapping->start; 1589 int r; 1590 1591 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1592 * but in case of something, we filter the flags in first place 1593 */ 1594 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1595 flags &= ~AMDGPU_PTE_READABLE; 1596 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1597 flags &= ~AMDGPU_PTE_WRITEABLE; 1598 1599 /* Apply ASIC specific mapping flags */ 1600 amdgpu_gmc_get_vm_pte(adev, mapping, &flags); 1601 1602 trace_amdgpu_vm_bo_update(mapping); 1603 1604 pfn = mapping->offset >> PAGE_SHIFT; 1605 if (nodes) { 1606 while (pfn >= nodes->size) { 1607 pfn -= nodes->size; 1608 ++nodes; 1609 } 1610 } 1611 1612 do { 1613 dma_addr_t *dma_addr = NULL; 1614 uint64_t max_entries; 1615 uint64_t addr, last; 1616 1617 if (nodes) { 1618 addr = nodes->start << PAGE_SHIFT; 1619 max_entries = (nodes->size - pfn) * 1620 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1621 } else { 1622 addr = 0; 1623 max_entries = S64_MAX; 1624 } 1625 1626 if (pages_addr) { 1627 uint64_t count; 1628 1629 for (count = 1; 1630 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1631 ++count) { 1632 uint64_t idx = pfn + count; 1633 1634 if (pages_addr[idx] != 1635 (pages_addr[idx - 1] + PAGE_SIZE)) 1636 break; 1637 } 1638 1639 if (count < min_linear_pages) { 1640 addr = pfn << PAGE_SHIFT; 1641 dma_addr = pages_addr; 1642 } else { 1643 addr = pages_addr[pfn]; 1644 max_entries = count * 1645 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1646 } 1647 1648 } else if (flags & AMDGPU_PTE_VALID) { 1649 addr += bo_adev->vm_manager.vram_base_offset; 1650 addr += pfn << PAGE_SHIFT; 1651 } 1652 1653 last = min((uint64_t)mapping->last, start + max_entries - 1); 1654 r = amdgpu_vm_bo_update_mapping(adev, vm, false, exclusive, 1655 start, last, flags, addr, 1656 dma_addr, fence); 1657 if (r) 1658 return r; 1659 1660 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1661 if (nodes && nodes->size == pfn) { 1662 pfn = 0; 1663 ++nodes; 1664 } 1665 start = last + 1; 1666 1667 } while (unlikely(start != mapping->last + 1)); 1668 1669 return 0; 1670 } 1671 1672 /** 1673 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1674 * 1675 * @adev: amdgpu_device pointer 1676 * @bo_va: requested BO and VM object 1677 * @clear: if true clear the entries 1678 * 1679 * Fill in the page table entries for @bo_va. 1680 * 1681 * Returns: 1682 * 0 for success, -EINVAL for failure. 1683 */ 1684 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1685 bool clear) 1686 { 1687 struct amdgpu_bo *bo = bo_va->base.bo; 1688 struct amdgpu_vm *vm = bo_va->base.vm; 1689 struct amdgpu_bo_va_mapping *mapping; 1690 dma_addr_t *pages_addr = NULL; 1691 struct ttm_mem_reg *mem; 1692 struct drm_mm_node *nodes; 1693 struct dma_fence *exclusive, **last_update; 1694 uint64_t flags; 1695 struct amdgpu_device *bo_adev = adev; 1696 int r; 1697 1698 if (clear || !bo) { 1699 mem = NULL; 1700 nodes = NULL; 1701 exclusive = NULL; 1702 } else { 1703 struct ttm_dma_tt *ttm; 1704 1705 mem = &bo->tbo.mem; 1706 nodes = mem->mm_node; 1707 if (mem->mem_type == TTM_PL_TT) { 1708 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1709 pages_addr = ttm->dma_address; 1710 } 1711 exclusive = bo->tbo.moving; 1712 } 1713 1714 if (bo) { 1715 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1716 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1717 } else { 1718 flags = 0x0; 1719 } 1720 1721 if (clear || (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)) 1722 last_update = &vm->last_update; 1723 else 1724 last_update = &bo_va->last_pt_update; 1725 1726 if (!clear && bo_va->base.moved) { 1727 bo_va->base.moved = false; 1728 list_splice_init(&bo_va->valids, &bo_va->invalids); 1729 1730 } else if (bo_va->cleared != clear) { 1731 list_splice_init(&bo_va->valids, &bo_va->invalids); 1732 } 1733 1734 list_for_each_entry(mapping, &bo_va->invalids, list) { 1735 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1736 mapping, flags, bo_adev, nodes, 1737 last_update); 1738 if (r) 1739 return r; 1740 } 1741 1742 /* If the BO is not in its preferred location add it back to 1743 * the evicted list so that it gets validated again on the 1744 * next command submission. 1745 */ 1746 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1747 uint32_t mem_type = bo->tbo.mem.mem_type; 1748 1749 if (!(bo->preferred_domains & 1750 amdgpu_mem_type_to_domain(mem_type))) 1751 amdgpu_vm_bo_evicted(&bo_va->base); 1752 else 1753 amdgpu_vm_bo_idle(&bo_va->base); 1754 } else { 1755 amdgpu_vm_bo_done(&bo_va->base); 1756 } 1757 1758 list_splice_init(&bo_va->invalids, &bo_va->valids); 1759 bo_va->cleared = clear; 1760 1761 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1762 list_for_each_entry(mapping, &bo_va->valids, list) 1763 trace_amdgpu_vm_bo_mapping(mapping); 1764 } 1765 1766 return 0; 1767 } 1768 1769 /** 1770 * amdgpu_vm_update_prt_state - update the global PRT state 1771 * 1772 * @adev: amdgpu_device pointer 1773 */ 1774 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1775 { 1776 unsigned long flags; 1777 bool enable; 1778 1779 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1780 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1781 adev->gmc.gmc_funcs->set_prt(adev, enable); 1782 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1783 } 1784 1785 /** 1786 * amdgpu_vm_prt_get - add a PRT user 1787 * 1788 * @adev: amdgpu_device pointer 1789 */ 1790 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1791 { 1792 if (!adev->gmc.gmc_funcs->set_prt) 1793 return; 1794 1795 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1796 amdgpu_vm_update_prt_state(adev); 1797 } 1798 1799 /** 1800 * amdgpu_vm_prt_put - drop a PRT user 1801 * 1802 * @adev: amdgpu_device pointer 1803 */ 1804 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1805 { 1806 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1807 amdgpu_vm_update_prt_state(adev); 1808 } 1809 1810 /** 1811 * amdgpu_vm_prt_cb - callback for updating the PRT status 1812 * 1813 * @fence: fence for the callback 1814 * @_cb: the callback function 1815 */ 1816 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1817 { 1818 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1819 1820 amdgpu_vm_prt_put(cb->adev); 1821 kfree(cb); 1822 } 1823 1824 /** 1825 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1826 * 1827 * @adev: amdgpu_device pointer 1828 * @fence: fence for the callback 1829 */ 1830 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1831 struct dma_fence *fence) 1832 { 1833 struct amdgpu_prt_cb *cb; 1834 1835 if (!adev->gmc.gmc_funcs->set_prt) 1836 return; 1837 1838 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1839 if (!cb) { 1840 /* Last resort when we are OOM */ 1841 if (fence) 1842 dma_fence_wait(fence, false); 1843 1844 amdgpu_vm_prt_put(adev); 1845 } else { 1846 cb->adev = adev; 1847 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1848 amdgpu_vm_prt_cb)) 1849 amdgpu_vm_prt_cb(fence, &cb->cb); 1850 } 1851 } 1852 1853 /** 1854 * amdgpu_vm_free_mapping - free a mapping 1855 * 1856 * @adev: amdgpu_device pointer 1857 * @vm: requested vm 1858 * @mapping: mapping to be freed 1859 * @fence: fence of the unmap operation 1860 * 1861 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1862 */ 1863 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1864 struct amdgpu_vm *vm, 1865 struct amdgpu_bo_va_mapping *mapping, 1866 struct dma_fence *fence) 1867 { 1868 if (mapping->flags & AMDGPU_PTE_PRT) 1869 amdgpu_vm_add_prt_cb(adev, fence); 1870 kfree(mapping); 1871 } 1872 1873 /** 1874 * amdgpu_vm_prt_fini - finish all prt mappings 1875 * 1876 * @adev: amdgpu_device pointer 1877 * @vm: requested vm 1878 * 1879 * Register a cleanup callback to disable PRT support after VM dies. 1880 */ 1881 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1882 { 1883 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 1884 struct dma_fence *excl, **shared; 1885 unsigned i, shared_count; 1886 int r; 1887 1888 r = dma_resv_get_fences_rcu(resv, &excl, 1889 &shared_count, &shared); 1890 if (r) { 1891 /* Not enough memory to grab the fence list, as last resort 1892 * block for all the fences to complete. 1893 */ 1894 dma_resv_wait_timeout_rcu(resv, true, false, 1895 MAX_SCHEDULE_TIMEOUT); 1896 return; 1897 } 1898 1899 /* Add a callback for each fence in the reservation object */ 1900 amdgpu_vm_prt_get(adev); 1901 amdgpu_vm_add_prt_cb(adev, excl); 1902 1903 for (i = 0; i < shared_count; ++i) { 1904 amdgpu_vm_prt_get(adev); 1905 amdgpu_vm_add_prt_cb(adev, shared[i]); 1906 } 1907 1908 kfree(shared); 1909 } 1910 1911 /** 1912 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1913 * 1914 * @adev: amdgpu_device pointer 1915 * @vm: requested vm 1916 * @fence: optional resulting fence (unchanged if no work needed to be done 1917 * or if an error occurred) 1918 * 1919 * Make sure all freed BOs are cleared in the PT. 1920 * PTs have to be reserved and mutex must be locked! 1921 * 1922 * Returns: 1923 * 0 for success. 1924 * 1925 */ 1926 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1927 struct amdgpu_vm *vm, 1928 struct dma_fence **fence) 1929 { 1930 struct amdgpu_bo_va_mapping *mapping; 1931 uint64_t init_pte_value = 0; 1932 struct dma_fence *f = NULL; 1933 int r; 1934 1935 while (!list_empty(&vm->freed)) { 1936 mapping = list_first_entry(&vm->freed, 1937 struct amdgpu_bo_va_mapping, list); 1938 list_del(&mapping->list); 1939 1940 if (vm->pte_support_ats && 1941 mapping->start < AMDGPU_GMC_HOLE_START) 1942 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1943 1944 r = amdgpu_vm_bo_update_mapping(adev, vm, false, NULL, 1945 mapping->start, mapping->last, 1946 init_pte_value, 0, NULL, &f); 1947 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1948 if (r) { 1949 dma_fence_put(f); 1950 return r; 1951 } 1952 } 1953 1954 if (fence && f) { 1955 dma_fence_put(*fence); 1956 *fence = f; 1957 } else { 1958 dma_fence_put(f); 1959 } 1960 1961 return 0; 1962 1963 } 1964 1965 /** 1966 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1967 * 1968 * @adev: amdgpu_device pointer 1969 * @vm: requested vm 1970 * 1971 * Make sure all BOs which are moved are updated in the PTs. 1972 * 1973 * Returns: 1974 * 0 for success. 1975 * 1976 * PTs have to be reserved! 1977 */ 1978 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1979 struct amdgpu_vm *vm) 1980 { 1981 struct amdgpu_bo_va *bo_va, *tmp; 1982 struct dma_resv *resv; 1983 bool clear; 1984 int r; 1985 1986 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1987 /* Per VM BOs never need to bo cleared in the page tables */ 1988 r = amdgpu_vm_bo_update(adev, bo_va, false); 1989 if (r) 1990 return r; 1991 } 1992 1993 spin_lock(&vm->invalidated_lock); 1994 while (!list_empty(&vm->invalidated)) { 1995 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1996 base.vm_status); 1997 resv = bo_va->base.bo->tbo.base.resv; 1998 spin_unlock(&vm->invalidated_lock); 1999 2000 /* Try to reserve the BO to avoid clearing its ptes */ 2001 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2002 clear = false; 2003 /* Somebody else is using the BO right now */ 2004 else 2005 clear = true; 2006 2007 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2008 if (r) 2009 return r; 2010 2011 if (!clear) 2012 dma_resv_unlock(resv); 2013 spin_lock(&vm->invalidated_lock); 2014 } 2015 spin_unlock(&vm->invalidated_lock); 2016 2017 return 0; 2018 } 2019 2020 /** 2021 * amdgpu_vm_bo_add - add a bo to a specific vm 2022 * 2023 * @adev: amdgpu_device pointer 2024 * @vm: requested vm 2025 * @bo: amdgpu buffer object 2026 * 2027 * Add @bo into the requested vm. 2028 * Add @bo to the list of bos associated with the vm 2029 * 2030 * Returns: 2031 * Newly added bo_va or NULL for failure 2032 * 2033 * Object has to be reserved! 2034 */ 2035 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2036 struct amdgpu_vm *vm, 2037 struct amdgpu_bo *bo) 2038 { 2039 struct amdgpu_bo_va *bo_va; 2040 2041 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2042 if (bo_va == NULL) { 2043 return NULL; 2044 } 2045 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2046 2047 bo_va->ref_count = 1; 2048 INIT_LIST_HEAD(&bo_va->valids); 2049 INIT_LIST_HEAD(&bo_va->invalids); 2050 2051 if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) && 2052 (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) { 2053 bo_va->is_xgmi = true; 2054 mutex_lock(&adev->vm_manager.lock_pstate); 2055 /* Power up XGMI if it can be potentially used */ 2056 if (++adev->vm_manager.xgmi_map_counter == 1) 2057 amdgpu_xgmi_set_pstate(adev, 1); 2058 mutex_unlock(&adev->vm_manager.lock_pstate); 2059 } 2060 2061 return bo_va; 2062 } 2063 2064 2065 /** 2066 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2067 * 2068 * @adev: amdgpu_device pointer 2069 * @bo_va: bo_va to store the address 2070 * @mapping: the mapping to insert 2071 * 2072 * Insert a new mapping into all structures. 2073 */ 2074 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2075 struct amdgpu_bo_va *bo_va, 2076 struct amdgpu_bo_va_mapping *mapping) 2077 { 2078 struct amdgpu_vm *vm = bo_va->base.vm; 2079 struct amdgpu_bo *bo = bo_va->base.bo; 2080 2081 mapping->bo_va = bo_va; 2082 list_add(&mapping->list, &bo_va->invalids); 2083 amdgpu_vm_it_insert(mapping, &vm->va); 2084 2085 if (mapping->flags & AMDGPU_PTE_PRT) 2086 amdgpu_vm_prt_get(adev); 2087 2088 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2089 !bo_va->base.moved) { 2090 list_move(&bo_va->base.vm_status, &vm->moved); 2091 } 2092 trace_amdgpu_vm_bo_map(bo_va, mapping); 2093 } 2094 2095 /** 2096 * amdgpu_vm_bo_map - map bo inside a vm 2097 * 2098 * @adev: amdgpu_device pointer 2099 * @bo_va: bo_va to store the address 2100 * @saddr: where to map the BO 2101 * @offset: requested offset in the BO 2102 * @size: BO size in bytes 2103 * @flags: attributes of pages (read/write/valid/etc.) 2104 * 2105 * Add a mapping of the BO at the specefied addr into the VM. 2106 * 2107 * Returns: 2108 * 0 for success, error for failure. 2109 * 2110 * Object has to be reserved and unreserved outside! 2111 */ 2112 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2113 struct amdgpu_bo_va *bo_va, 2114 uint64_t saddr, uint64_t offset, 2115 uint64_t size, uint64_t flags) 2116 { 2117 struct amdgpu_bo_va_mapping *mapping, *tmp; 2118 struct amdgpu_bo *bo = bo_va->base.bo; 2119 struct amdgpu_vm *vm = bo_va->base.vm; 2120 uint64_t eaddr; 2121 2122 /* validate the parameters */ 2123 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2124 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2125 return -EINVAL; 2126 2127 /* make sure object fit at this offset */ 2128 eaddr = saddr + size - 1; 2129 if (saddr >= eaddr || 2130 (bo && offset + size > amdgpu_bo_size(bo))) 2131 return -EINVAL; 2132 2133 saddr /= AMDGPU_GPU_PAGE_SIZE; 2134 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2135 2136 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2137 if (tmp) { 2138 /* bo and tmp overlap, invalid addr */ 2139 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2140 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2141 tmp->start, tmp->last + 1); 2142 return -EINVAL; 2143 } 2144 2145 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2146 if (!mapping) 2147 return -ENOMEM; 2148 2149 mapping->start = saddr; 2150 mapping->last = eaddr; 2151 mapping->offset = offset; 2152 mapping->flags = flags; 2153 2154 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2155 2156 return 0; 2157 } 2158 2159 /** 2160 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2161 * 2162 * @adev: amdgpu_device pointer 2163 * @bo_va: bo_va to store the address 2164 * @saddr: where to map the BO 2165 * @offset: requested offset in the BO 2166 * @size: BO size in bytes 2167 * @flags: attributes of pages (read/write/valid/etc.) 2168 * 2169 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2170 * mappings as we do so. 2171 * 2172 * Returns: 2173 * 0 for success, error for failure. 2174 * 2175 * Object has to be reserved and unreserved outside! 2176 */ 2177 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2178 struct amdgpu_bo_va *bo_va, 2179 uint64_t saddr, uint64_t offset, 2180 uint64_t size, uint64_t flags) 2181 { 2182 struct amdgpu_bo_va_mapping *mapping; 2183 struct amdgpu_bo *bo = bo_va->base.bo; 2184 uint64_t eaddr; 2185 int r; 2186 2187 /* validate the parameters */ 2188 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2189 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2190 return -EINVAL; 2191 2192 /* make sure object fit at this offset */ 2193 eaddr = saddr + size - 1; 2194 if (saddr >= eaddr || 2195 (bo && offset + size > amdgpu_bo_size(bo))) 2196 return -EINVAL; 2197 2198 /* Allocate all the needed memory */ 2199 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2200 if (!mapping) 2201 return -ENOMEM; 2202 2203 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2204 if (r) { 2205 kfree(mapping); 2206 return r; 2207 } 2208 2209 saddr /= AMDGPU_GPU_PAGE_SIZE; 2210 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2211 2212 mapping->start = saddr; 2213 mapping->last = eaddr; 2214 mapping->offset = offset; 2215 mapping->flags = flags; 2216 2217 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2218 2219 return 0; 2220 } 2221 2222 /** 2223 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2224 * 2225 * @adev: amdgpu_device pointer 2226 * @bo_va: bo_va to remove the address from 2227 * @saddr: where to the BO is mapped 2228 * 2229 * Remove a mapping of the BO at the specefied addr from the VM. 2230 * 2231 * Returns: 2232 * 0 for success, error for failure. 2233 * 2234 * Object has to be reserved and unreserved outside! 2235 */ 2236 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2237 struct amdgpu_bo_va *bo_va, 2238 uint64_t saddr) 2239 { 2240 struct amdgpu_bo_va_mapping *mapping; 2241 struct amdgpu_vm *vm = bo_va->base.vm; 2242 bool valid = true; 2243 2244 saddr /= AMDGPU_GPU_PAGE_SIZE; 2245 2246 list_for_each_entry(mapping, &bo_va->valids, list) { 2247 if (mapping->start == saddr) 2248 break; 2249 } 2250 2251 if (&mapping->list == &bo_va->valids) { 2252 valid = false; 2253 2254 list_for_each_entry(mapping, &bo_va->invalids, list) { 2255 if (mapping->start == saddr) 2256 break; 2257 } 2258 2259 if (&mapping->list == &bo_va->invalids) 2260 return -ENOENT; 2261 } 2262 2263 list_del(&mapping->list); 2264 amdgpu_vm_it_remove(mapping, &vm->va); 2265 mapping->bo_va = NULL; 2266 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2267 2268 if (valid) 2269 list_add(&mapping->list, &vm->freed); 2270 else 2271 amdgpu_vm_free_mapping(adev, vm, mapping, 2272 bo_va->last_pt_update); 2273 2274 return 0; 2275 } 2276 2277 /** 2278 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2279 * 2280 * @adev: amdgpu_device pointer 2281 * @vm: VM structure to use 2282 * @saddr: start of the range 2283 * @size: size of the range 2284 * 2285 * Remove all mappings in a range, split them as appropriate. 2286 * 2287 * Returns: 2288 * 0 for success, error for failure. 2289 */ 2290 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2291 struct amdgpu_vm *vm, 2292 uint64_t saddr, uint64_t size) 2293 { 2294 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2295 LIST_HEAD(removed); 2296 uint64_t eaddr; 2297 2298 eaddr = saddr + size - 1; 2299 saddr /= AMDGPU_GPU_PAGE_SIZE; 2300 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2301 2302 /* Allocate all the needed memory */ 2303 before = kzalloc(sizeof(*before), GFP_KERNEL); 2304 if (!before) 2305 return -ENOMEM; 2306 INIT_LIST_HEAD(&before->list); 2307 2308 after = kzalloc(sizeof(*after), GFP_KERNEL); 2309 if (!after) { 2310 kfree(before); 2311 return -ENOMEM; 2312 } 2313 INIT_LIST_HEAD(&after->list); 2314 2315 /* Now gather all removed mappings */ 2316 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2317 while (tmp) { 2318 /* Remember mapping split at the start */ 2319 if (tmp->start < saddr) { 2320 before->start = tmp->start; 2321 before->last = saddr - 1; 2322 before->offset = tmp->offset; 2323 before->flags = tmp->flags; 2324 before->bo_va = tmp->bo_va; 2325 list_add(&before->list, &tmp->bo_va->invalids); 2326 } 2327 2328 /* Remember mapping split at the end */ 2329 if (tmp->last > eaddr) { 2330 after->start = eaddr + 1; 2331 after->last = tmp->last; 2332 after->offset = tmp->offset; 2333 after->offset += after->start - tmp->start; 2334 after->flags = tmp->flags; 2335 after->bo_va = tmp->bo_va; 2336 list_add(&after->list, &tmp->bo_va->invalids); 2337 } 2338 2339 list_del(&tmp->list); 2340 list_add(&tmp->list, &removed); 2341 2342 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2343 } 2344 2345 /* And free them up */ 2346 list_for_each_entry_safe(tmp, next, &removed, list) { 2347 amdgpu_vm_it_remove(tmp, &vm->va); 2348 list_del(&tmp->list); 2349 2350 if (tmp->start < saddr) 2351 tmp->start = saddr; 2352 if (tmp->last > eaddr) 2353 tmp->last = eaddr; 2354 2355 tmp->bo_va = NULL; 2356 list_add(&tmp->list, &vm->freed); 2357 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2358 } 2359 2360 /* Insert partial mapping before the range */ 2361 if (!list_empty(&before->list)) { 2362 amdgpu_vm_it_insert(before, &vm->va); 2363 if (before->flags & AMDGPU_PTE_PRT) 2364 amdgpu_vm_prt_get(adev); 2365 } else { 2366 kfree(before); 2367 } 2368 2369 /* Insert partial mapping after the range */ 2370 if (!list_empty(&after->list)) { 2371 amdgpu_vm_it_insert(after, &vm->va); 2372 if (after->flags & AMDGPU_PTE_PRT) 2373 amdgpu_vm_prt_get(adev); 2374 } else { 2375 kfree(after); 2376 } 2377 2378 return 0; 2379 } 2380 2381 /** 2382 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2383 * 2384 * @vm: the requested VM 2385 * @addr: the address 2386 * 2387 * Find a mapping by it's address. 2388 * 2389 * Returns: 2390 * The amdgpu_bo_va_mapping matching for addr or NULL 2391 * 2392 */ 2393 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2394 uint64_t addr) 2395 { 2396 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2397 } 2398 2399 /** 2400 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2401 * 2402 * @vm: the requested vm 2403 * @ticket: CS ticket 2404 * 2405 * Trace all mappings of BOs reserved during a command submission. 2406 */ 2407 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2408 { 2409 struct amdgpu_bo_va_mapping *mapping; 2410 2411 if (!trace_amdgpu_vm_bo_cs_enabled()) 2412 return; 2413 2414 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2415 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2416 if (mapping->bo_va && mapping->bo_va->base.bo) { 2417 struct amdgpu_bo *bo; 2418 2419 bo = mapping->bo_va->base.bo; 2420 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2421 ticket) 2422 continue; 2423 } 2424 2425 trace_amdgpu_vm_bo_cs(mapping); 2426 } 2427 } 2428 2429 /** 2430 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2431 * 2432 * @adev: amdgpu_device pointer 2433 * @bo_va: requested bo_va 2434 * 2435 * Remove @bo_va->bo from the requested vm. 2436 * 2437 * Object have to be reserved! 2438 */ 2439 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2440 struct amdgpu_bo_va *bo_va) 2441 { 2442 struct amdgpu_bo_va_mapping *mapping, *next; 2443 struct amdgpu_bo *bo = bo_va->base.bo; 2444 struct amdgpu_vm *vm = bo_va->base.vm; 2445 struct amdgpu_vm_bo_base **base; 2446 2447 if (bo) { 2448 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2449 vm->bulk_moveable = false; 2450 2451 for (base = &bo_va->base.bo->vm_bo; *base; 2452 base = &(*base)->next) { 2453 if (*base != &bo_va->base) 2454 continue; 2455 2456 *base = bo_va->base.next; 2457 break; 2458 } 2459 } 2460 2461 spin_lock(&vm->invalidated_lock); 2462 list_del(&bo_va->base.vm_status); 2463 spin_unlock(&vm->invalidated_lock); 2464 2465 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2466 list_del(&mapping->list); 2467 amdgpu_vm_it_remove(mapping, &vm->va); 2468 mapping->bo_va = NULL; 2469 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2470 list_add(&mapping->list, &vm->freed); 2471 } 2472 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2473 list_del(&mapping->list); 2474 amdgpu_vm_it_remove(mapping, &vm->va); 2475 amdgpu_vm_free_mapping(adev, vm, mapping, 2476 bo_va->last_pt_update); 2477 } 2478 2479 dma_fence_put(bo_va->last_pt_update); 2480 2481 if (bo && bo_va->is_xgmi) { 2482 mutex_lock(&adev->vm_manager.lock_pstate); 2483 if (--adev->vm_manager.xgmi_map_counter == 0) 2484 amdgpu_xgmi_set_pstate(adev, 0); 2485 mutex_unlock(&adev->vm_manager.lock_pstate); 2486 } 2487 2488 kfree(bo_va); 2489 } 2490 2491 /** 2492 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2493 * 2494 * @adev: amdgpu_device pointer 2495 * @bo: amdgpu buffer object 2496 * @evicted: is the BO evicted 2497 * 2498 * Mark @bo as invalid. 2499 */ 2500 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2501 struct amdgpu_bo *bo, bool evicted) 2502 { 2503 struct amdgpu_vm_bo_base *bo_base; 2504 2505 /* shadow bo doesn't have bo base, its validation needs its parent */ 2506 if (bo->parent && bo->parent->shadow == bo) 2507 bo = bo->parent; 2508 2509 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2510 struct amdgpu_vm *vm = bo_base->vm; 2511 2512 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2513 amdgpu_vm_bo_evicted(bo_base); 2514 continue; 2515 } 2516 2517 if (bo_base->moved) 2518 continue; 2519 bo_base->moved = true; 2520 2521 if (bo->tbo.type == ttm_bo_type_kernel) 2522 amdgpu_vm_bo_relocated(bo_base); 2523 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2524 amdgpu_vm_bo_moved(bo_base); 2525 else 2526 amdgpu_vm_bo_invalidated(bo_base); 2527 } 2528 } 2529 2530 /** 2531 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2532 * 2533 * @vm_size: VM size 2534 * 2535 * Returns: 2536 * VM page table as power of two 2537 */ 2538 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2539 { 2540 /* Total bits covered by PD + PTs */ 2541 unsigned bits = ilog2(vm_size) + 18; 2542 2543 /* Make sure the PD is 4K in size up to 8GB address space. 2544 Above that split equal between PD and PTs */ 2545 if (vm_size <= 8) 2546 return (bits - 9); 2547 else 2548 return ((bits + 3) / 2); 2549 } 2550 2551 /** 2552 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2553 * 2554 * @adev: amdgpu_device pointer 2555 * @min_vm_size: the minimum vm size in GB if it's set auto 2556 * @fragment_size_default: Default PTE fragment size 2557 * @max_level: max VMPT level 2558 * @max_bits: max address space size in bits 2559 * 2560 */ 2561 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2562 uint32_t fragment_size_default, unsigned max_level, 2563 unsigned max_bits) 2564 { 2565 unsigned int max_size = 1 << (max_bits - 30); 2566 unsigned int vm_size; 2567 uint64_t tmp; 2568 2569 /* adjust vm size first */ 2570 if (amdgpu_vm_size != -1) { 2571 vm_size = amdgpu_vm_size; 2572 if (vm_size > max_size) { 2573 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2574 amdgpu_vm_size, max_size); 2575 vm_size = max_size; 2576 } 2577 } else { 2578 struct sysinfo si; 2579 unsigned int phys_ram_gb; 2580 2581 /* Optimal VM size depends on the amount of physical 2582 * RAM available. Underlying requirements and 2583 * assumptions: 2584 * 2585 * - Need to map system memory and VRAM from all GPUs 2586 * - VRAM from other GPUs not known here 2587 * - Assume VRAM <= system memory 2588 * - On GFX8 and older, VM space can be segmented for 2589 * different MTYPEs 2590 * - Need to allow room for fragmentation, guard pages etc. 2591 * 2592 * This adds up to a rough guess of system memory x3. 2593 * Round up to power of two to maximize the available 2594 * VM size with the given page table size. 2595 */ 2596 si_meminfo(&si); 2597 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2598 (1 << 30) - 1) >> 30; 2599 vm_size = roundup_pow_of_two( 2600 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2601 } 2602 2603 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2604 2605 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2606 if (amdgpu_vm_block_size != -1) 2607 tmp >>= amdgpu_vm_block_size - 9; 2608 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2609 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2610 switch (adev->vm_manager.num_level) { 2611 case 3: 2612 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2613 break; 2614 case 2: 2615 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2616 break; 2617 case 1: 2618 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2619 break; 2620 default: 2621 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2622 } 2623 /* block size depends on vm size and hw setup*/ 2624 if (amdgpu_vm_block_size != -1) 2625 adev->vm_manager.block_size = 2626 min((unsigned)amdgpu_vm_block_size, max_bits 2627 - AMDGPU_GPU_PAGE_SHIFT 2628 - 9 * adev->vm_manager.num_level); 2629 else if (adev->vm_manager.num_level > 1) 2630 adev->vm_manager.block_size = 9; 2631 else 2632 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2633 2634 if (amdgpu_vm_fragment_size == -1) 2635 adev->vm_manager.fragment_size = fragment_size_default; 2636 else 2637 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2638 2639 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2640 vm_size, adev->vm_manager.num_level + 1, 2641 adev->vm_manager.block_size, 2642 adev->vm_manager.fragment_size); 2643 } 2644 2645 /** 2646 * amdgpu_vm_wait_idle - wait for the VM to become idle 2647 * 2648 * @vm: VM object to wait for 2649 * @timeout: timeout to wait for VM to become idle 2650 */ 2651 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2652 { 2653 return dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2654 true, true, timeout); 2655 } 2656 2657 /** 2658 * amdgpu_vm_init - initialize a vm instance 2659 * 2660 * @adev: amdgpu_device pointer 2661 * @vm: requested vm 2662 * @vm_context: Indicates if it GFX or Compute context 2663 * @pasid: Process address space identifier 2664 * 2665 * Init @vm fields. 2666 * 2667 * Returns: 2668 * 0 for success, error for failure. 2669 */ 2670 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2671 int vm_context, unsigned int pasid) 2672 { 2673 struct amdgpu_bo_param bp; 2674 struct amdgpu_bo *root; 2675 int r, i; 2676 2677 vm->va = RB_ROOT_CACHED; 2678 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2679 vm->reserved_vmid[i] = NULL; 2680 INIT_LIST_HEAD(&vm->evicted); 2681 INIT_LIST_HEAD(&vm->relocated); 2682 INIT_LIST_HEAD(&vm->moved); 2683 INIT_LIST_HEAD(&vm->idle); 2684 INIT_LIST_HEAD(&vm->invalidated); 2685 spin_lock_init(&vm->invalidated_lock); 2686 INIT_LIST_HEAD(&vm->freed); 2687 2688 /* create scheduler entities for page table updates */ 2689 r = drm_sched_entity_init(&vm->direct, adev->vm_manager.vm_pte_rqs, 2690 adev->vm_manager.vm_pte_num_rqs, NULL); 2691 if (r) 2692 return r; 2693 2694 r = drm_sched_entity_init(&vm->delayed, adev->vm_manager.vm_pte_rqs, 2695 adev->vm_manager.vm_pte_num_rqs, NULL); 2696 if (r) 2697 goto error_free_direct; 2698 2699 vm->pte_support_ats = false; 2700 2701 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2702 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2703 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2704 2705 if (adev->asic_type == CHIP_RAVEN) 2706 vm->pte_support_ats = true; 2707 } else { 2708 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2709 AMDGPU_VM_USE_CPU_FOR_GFX); 2710 } 2711 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2712 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2713 WARN_ONCE((vm->use_cpu_for_update && 2714 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2715 "CPU update of VM recommended only for large BAR system\n"); 2716 2717 if (vm->use_cpu_for_update) 2718 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2719 else 2720 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2721 vm->last_update = NULL; 2722 2723 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp); 2724 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2725 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2726 r = amdgpu_bo_create(adev, &bp, &root); 2727 if (r) 2728 goto error_free_delayed; 2729 2730 r = amdgpu_bo_reserve(root, true); 2731 if (r) 2732 goto error_free_root; 2733 2734 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2735 if (r) 2736 goto error_unreserve; 2737 2738 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2739 2740 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2741 if (r) 2742 goto error_unreserve; 2743 2744 amdgpu_bo_unreserve(vm->root.base.bo); 2745 2746 if (pasid) { 2747 unsigned long flags; 2748 2749 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2750 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2751 GFP_ATOMIC); 2752 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2753 if (r < 0) 2754 goto error_free_root; 2755 2756 vm->pasid = pasid; 2757 } 2758 2759 INIT_KFIFO(vm->faults); 2760 2761 return 0; 2762 2763 error_unreserve: 2764 amdgpu_bo_unreserve(vm->root.base.bo); 2765 2766 error_free_root: 2767 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2768 amdgpu_bo_unref(&vm->root.base.bo); 2769 vm->root.base.bo = NULL; 2770 2771 error_free_delayed: 2772 drm_sched_entity_destroy(&vm->delayed); 2773 2774 error_free_direct: 2775 drm_sched_entity_destroy(&vm->direct); 2776 2777 return r; 2778 } 2779 2780 /** 2781 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2782 * 2783 * @adev: amdgpu_device pointer 2784 * @vm: the VM to check 2785 * 2786 * check all entries of the root PD, if any subsequent PDs are allocated, 2787 * it means there are page table creating and filling, and is no a clean 2788 * VM 2789 * 2790 * Returns: 2791 * 0 if this VM is clean 2792 */ 2793 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2794 struct amdgpu_vm *vm) 2795 { 2796 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2797 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2798 unsigned int i = 0; 2799 2800 if (!(vm->root.entries)) 2801 return 0; 2802 2803 for (i = 0; i < entries; i++) { 2804 if (vm->root.entries[i].base.bo) 2805 return -EINVAL; 2806 } 2807 2808 return 0; 2809 } 2810 2811 /** 2812 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2813 * 2814 * @adev: amdgpu_device pointer 2815 * @vm: requested vm 2816 * 2817 * This only works on GFX VMs that don't have any BOs added and no 2818 * page tables allocated yet. 2819 * 2820 * Changes the following VM parameters: 2821 * - use_cpu_for_update 2822 * - pte_supports_ats 2823 * - pasid (old PASID is released, because compute manages its own PASIDs) 2824 * 2825 * Reinitializes the page directory to reflect the changed ATS 2826 * setting. 2827 * 2828 * Returns: 2829 * 0 for success, -errno for errors. 2830 */ 2831 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2832 unsigned int pasid) 2833 { 2834 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2835 int r; 2836 2837 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2838 if (r) 2839 return r; 2840 2841 /* Sanity checks */ 2842 r = amdgpu_vm_check_clean_reserved(adev, vm); 2843 if (r) 2844 goto unreserve_bo; 2845 2846 if (pasid) { 2847 unsigned long flags; 2848 2849 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2850 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2851 GFP_ATOMIC); 2852 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2853 2854 if (r == -ENOSPC) 2855 goto unreserve_bo; 2856 r = 0; 2857 } 2858 2859 /* Check if PD needs to be reinitialized and do it before 2860 * changing any other state, in case it fails. 2861 */ 2862 if (pte_support_ats != vm->pte_support_ats) { 2863 vm->pte_support_ats = pte_support_ats; 2864 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 2865 if (r) 2866 goto free_idr; 2867 } 2868 2869 /* Update VM state */ 2870 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2871 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2872 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2873 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2874 WARN_ONCE((vm->use_cpu_for_update && 2875 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2876 "CPU update of VM recommended only for large BAR system\n"); 2877 2878 if (vm->use_cpu_for_update) 2879 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2880 else 2881 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2882 dma_fence_put(vm->last_update); 2883 vm->last_update = NULL; 2884 2885 if (vm->pasid) { 2886 unsigned long flags; 2887 2888 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2889 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2890 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2891 2892 /* Free the original amdgpu allocated pasid 2893 * Will be replaced with kfd allocated pasid 2894 */ 2895 amdgpu_pasid_free(vm->pasid); 2896 vm->pasid = 0; 2897 } 2898 2899 /* Free the shadow bo for compute VM */ 2900 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2901 2902 if (pasid) 2903 vm->pasid = pasid; 2904 2905 goto unreserve_bo; 2906 2907 free_idr: 2908 if (pasid) { 2909 unsigned long flags; 2910 2911 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2912 idr_remove(&adev->vm_manager.pasid_idr, pasid); 2913 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2914 } 2915 unreserve_bo: 2916 amdgpu_bo_unreserve(vm->root.base.bo); 2917 return r; 2918 } 2919 2920 /** 2921 * amdgpu_vm_release_compute - release a compute vm 2922 * @adev: amdgpu_device pointer 2923 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2924 * 2925 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2926 * pasid from vm. Compute should stop use of vm after this call. 2927 */ 2928 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2929 { 2930 if (vm->pasid) { 2931 unsigned long flags; 2932 2933 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2934 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2935 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2936 } 2937 vm->pasid = 0; 2938 } 2939 2940 /** 2941 * amdgpu_vm_fini - tear down a vm instance 2942 * 2943 * @adev: amdgpu_device pointer 2944 * @vm: requested vm 2945 * 2946 * Tear down @vm. 2947 * Unbind the VM and remove all bos from the vm bo list 2948 */ 2949 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2950 { 2951 struct amdgpu_bo_va_mapping *mapping, *tmp; 2952 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2953 struct amdgpu_bo *root; 2954 int i; 2955 2956 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2957 2958 root = amdgpu_bo_ref(vm->root.base.bo); 2959 amdgpu_bo_reserve(root, true); 2960 if (vm->pasid) { 2961 unsigned long flags; 2962 2963 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2964 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2965 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2966 vm->pasid = 0; 2967 } 2968 2969 amdgpu_vm_free_pts(adev, vm, NULL); 2970 amdgpu_bo_unreserve(root); 2971 amdgpu_bo_unref(&root); 2972 WARN_ON(vm->root.base.bo); 2973 2974 drm_sched_entity_destroy(&vm->direct); 2975 drm_sched_entity_destroy(&vm->delayed); 2976 2977 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2978 dev_err(adev->dev, "still active bo inside vm\n"); 2979 } 2980 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2981 &vm->va.rb_root, rb) { 2982 /* Don't remove the mapping here, we don't want to trigger a 2983 * rebalance and the tree is about to be destroyed anyway. 2984 */ 2985 list_del(&mapping->list); 2986 kfree(mapping); 2987 } 2988 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2989 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2990 amdgpu_vm_prt_fini(adev, vm); 2991 prt_fini_needed = false; 2992 } 2993 2994 list_del(&mapping->list); 2995 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2996 } 2997 2998 dma_fence_put(vm->last_update); 2999 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3000 amdgpu_vmid_free_reserved(adev, vm, i); 3001 } 3002 3003 /** 3004 * amdgpu_vm_manager_init - init the VM manager 3005 * 3006 * @adev: amdgpu_device pointer 3007 * 3008 * Initialize the VM manager structures 3009 */ 3010 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3011 { 3012 unsigned i; 3013 3014 amdgpu_vmid_mgr_init(adev); 3015 3016 adev->vm_manager.fence_context = 3017 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3018 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3019 adev->vm_manager.seqno[i] = 0; 3020 3021 spin_lock_init(&adev->vm_manager.prt_lock); 3022 atomic_set(&adev->vm_manager.num_prt_users, 0); 3023 3024 /* If not overridden by the user, by default, only in large BAR systems 3025 * Compute VM tables will be updated by CPU 3026 */ 3027 #ifdef CONFIG_X86_64 3028 if (amdgpu_vm_update_mode == -1) { 3029 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3030 adev->vm_manager.vm_update_mode = 3031 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3032 else 3033 adev->vm_manager.vm_update_mode = 0; 3034 } else 3035 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3036 #else 3037 adev->vm_manager.vm_update_mode = 0; 3038 #endif 3039 3040 idr_init(&adev->vm_manager.pasid_idr); 3041 spin_lock_init(&adev->vm_manager.pasid_lock); 3042 3043 adev->vm_manager.xgmi_map_counter = 0; 3044 mutex_init(&adev->vm_manager.lock_pstate); 3045 } 3046 3047 /** 3048 * amdgpu_vm_manager_fini - cleanup VM manager 3049 * 3050 * @adev: amdgpu_device pointer 3051 * 3052 * Cleanup the VM manager and free resources. 3053 */ 3054 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3055 { 3056 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3057 idr_destroy(&adev->vm_manager.pasid_idr); 3058 3059 amdgpu_vmid_mgr_fini(adev); 3060 } 3061 3062 /** 3063 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3064 * 3065 * @dev: drm device pointer 3066 * @data: drm_amdgpu_vm 3067 * @filp: drm file pointer 3068 * 3069 * Returns: 3070 * 0 for success, -errno for errors. 3071 */ 3072 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3073 { 3074 union drm_amdgpu_vm *args = data; 3075 struct amdgpu_device *adev = dev->dev_private; 3076 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3077 int r; 3078 3079 switch (args->in.op) { 3080 case AMDGPU_VM_OP_RESERVE_VMID: 3081 /* We only have requirement to reserve vmid from gfxhub */ 3082 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3083 AMDGPU_GFXHUB_0); 3084 if (r) 3085 return r; 3086 break; 3087 case AMDGPU_VM_OP_UNRESERVE_VMID: 3088 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3089 break; 3090 default: 3091 return -EINVAL; 3092 } 3093 3094 return 0; 3095 } 3096 3097 /** 3098 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3099 * 3100 * @adev: drm device pointer 3101 * @pasid: PASID identifier for VM 3102 * @task_info: task_info to fill. 3103 */ 3104 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3105 struct amdgpu_task_info *task_info) 3106 { 3107 struct amdgpu_vm *vm; 3108 unsigned long flags; 3109 3110 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3111 3112 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3113 if (vm) 3114 *task_info = vm->task_info; 3115 3116 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3117 } 3118 3119 /** 3120 * amdgpu_vm_set_task_info - Sets VMs task info. 3121 * 3122 * @vm: vm for which to set the info 3123 */ 3124 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3125 { 3126 if (vm->task_info.pid) 3127 return; 3128 3129 vm->task_info.pid = current->pid; 3130 get_task_comm(vm->task_info.task_name, current); 3131 3132 if (current->group_leader->mm != current->mm) 3133 return; 3134 3135 vm->task_info.tgid = current->group_leader->pid; 3136 get_task_comm(vm->task_info.process_name, current->group_leader); 3137 } 3138 3139 /** 3140 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3141 * @adev: amdgpu device pointer 3142 * @pasid: PASID of the VM 3143 * @addr: Address of the fault 3144 * 3145 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3146 * shouldn't be reported any more. 3147 */ 3148 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid, 3149 uint64_t addr) 3150 { 3151 struct amdgpu_bo *root; 3152 uint64_t value, flags; 3153 struct amdgpu_vm *vm; 3154 long r; 3155 3156 spin_lock(&adev->vm_manager.pasid_lock); 3157 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3158 if (vm) 3159 root = amdgpu_bo_ref(vm->root.base.bo); 3160 else 3161 root = NULL; 3162 spin_unlock(&adev->vm_manager.pasid_lock); 3163 3164 if (!root) 3165 return false; 3166 3167 r = amdgpu_bo_reserve(root, true); 3168 if (r) 3169 goto error_unref; 3170 3171 /* Double check that the VM still exists */ 3172 spin_lock(&adev->vm_manager.pasid_lock); 3173 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3174 if (vm && vm->root.base.bo != root) 3175 vm = NULL; 3176 spin_unlock(&adev->vm_manager.pasid_lock); 3177 if (!vm) 3178 goto error_unlock; 3179 3180 addr /= AMDGPU_GPU_PAGE_SIZE; 3181 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3182 AMDGPU_PTE_SYSTEM; 3183 3184 if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3185 /* Redirect the access to the dummy page */ 3186 value = adev->dummy_page_addr; 3187 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3188 AMDGPU_PTE_WRITEABLE; 3189 } else { 3190 /* Let the hw retry silently on the PTE */ 3191 value = 0; 3192 } 3193 3194 r = amdgpu_vm_bo_update_mapping(adev, vm, true, NULL, addr, addr + 1, 3195 flags, value, NULL, NULL); 3196 if (r) 3197 goto error_unlock; 3198 3199 r = amdgpu_vm_update_pdes(adev, vm, true); 3200 3201 error_unlock: 3202 amdgpu_bo_unreserve(root); 3203 if (r < 0) 3204 DRM_ERROR("Can't handle page fault (%ld)\n", r); 3205 3206 error_unref: 3207 amdgpu_bo_unref(&root); 3208 3209 return false; 3210 } 3211