1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_vm.h" 40 #include "amdgpu_trace.h" 41 #include "amdgpu_amdkfd.h" 42 #include "amdgpu_gmc.h" 43 #include "amdgpu_xgmi.h" 44 #include "amdgpu_dma_buf.h" 45 #include "amdgpu_res_cursor.h" 46 #include "kfd_svm.h" 47 48 /** 49 * DOC: GPUVM 50 * 51 * GPUVM is the MMU functionality provided on the GPU. 52 * GPUVM is similar to the legacy GART on older asics, however 53 * rather than there being a single global GART table 54 * for the entire GPU, there can be multiple GPUVM page tables active 55 * at any given time. The GPUVM page tables can contain a mix 56 * VRAM pages and system pages (both memory and MMIO) and system pages 57 * can be mapped as snooped (cached system pages) or unsnooped 58 * (uncached system pages). 59 * 60 * Each active GPUVM has an ID associated with it and there is a page table 61 * linked with each VMID. When executing a command buffer, 62 * the kernel tells the engine what VMID to use for that command 63 * buffer. VMIDs are allocated dynamically as commands are submitted. 64 * The userspace drivers maintain their own address space and the kernel 65 * sets up their pages tables accordingly when they submit their 66 * command buffers and a VMID is assigned. 67 * The hardware supports up to 16 active GPUVMs at any given time. 68 * 69 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 70 * on the ASIC family. GPUVM supports RWX attributes on each page as well 71 * as other features such as encryption and caching attributes. 72 * 73 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 74 * addition to an aperture managed by a page table, VMID 0 also has 75 * several other apertures. There is an aperture for direct access to VRAM 76 * and there is a legacy AGP aperture which just forwards accesses directly 77 * to the matching system physical addresses (or IOVAs when an IOMMU is 78 * present). These apertures provide direct access to these memories without 79 * incurring the overhead of a page table. VMID 0 is used by the kernel 80 * driver for tasks like memory management. 81 * 82 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 83 * For user applications, each application can have their own unique GPUVM 84 * address space. The application manages the address space and the kernel 85 * driver manages the GPUVM page tables for each process. If an GPU client 86 * accesses an invalid page, it will generate a GPU page fault, similar to 87 * accessing an invalid page on a CPU. 88 */ 89 90 #define START(node) ((node)->start) 91 #define LAST(node) ((node)->last) 92 93 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 94 START, LAST, static, amdgpu_vm_it) 95 96 #undef START 97 #undef LAST 98 99 /** 100 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 101 */ 102 struct amdgpu_prt_cb { 103 104 /** 105 * @adev: amdgpu device 106 */ 107 struct amdgpu_device *adev; 108 109 /** 110 * @cb: callback 111 */ 112 struct dma_fence_cb cb; 113 }; 114 115 /** 116 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 117 */ 118 struct amdgpu_vm_tlb_seq_struct { 119 /** 120 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 121 */ 122 struct amdgpu_vm *vm; 123 124 /** 125 * @cb: callback 126 */ 127 struct dma_fence_cb cb; 128 }; 129 130 /** 131 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 132 * 133 * @adev: amdgpu_device pointer 134 * @vm: amdgpu_vm pointer 135 * @pasid: the pasid the VM is using on this GPU 136 * 137 * Set the pasid this VM is using on this GPU, can also be used to remove the 138 * pasid by passing in zero. 139 * 140 */ 141 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 142 u32 pasid) 143 { 144 int r; 145 146 if (vm->pasid == pasid) 147 return 0; 148 149 if (vm->pasid) { 150 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 151 if (r < 0) 152 return r; 153 154 vm->pasid = 0; 155 } 156 157 if (pasid) { 158 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 159 GFP_KERNEL)); 160 if (r < 0) 161 return r; 162 163 vm->pasid = pasid; 164 } 165 166 167 return 0; 168 } 169 170 /** 171 * amdgpu_vm_bo_evicted - vm_bo is evicted 172 * 173 * @vm_bo: vm_bo which is evicted 174 * 175 * State for PDs/PTs and per VM BOs which are not at the location they should 176 * be. 177 */ 178 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 179 { 180 struct amdgpu_vm *vm = vm_bo->vm; 181 struct amdgpu_bo *bo = vm_bo->bo; 182 183 vm_bo->moved = true; 184 spin_lock(&vm_bo->vm->status_lock); 185 if (bo->tbo.type == ttm_bo_type_kernel) 186 list_move(&vm_bo->vm_status, &vm->evicted); 187 else 188 list_move_tail(&vm_bo->vm_status, &vm->evicted); 189 spin_unlock(&vm_bo->vm->status_lock); 190 } 191 /** 192 * amdgpu_vm_bo_moved - vm_bo is moved 193 * 194 * @vm_bo: vm_bo which is moved 195 * 196 * State for per VM BOs which are moved, but that change is not yet reflected 197 * in the page tables. 198 */ 199 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 200 { 201 spin_lock(&vm_bo->vm->status_lock); 202 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 203 spin_unlock(&vm_bo->vm->status_lock); 204 } 205 206 /** 207 * amdgpu_vm_bo_idle - vm_bo is idle 208 * 209 * @vm_bo: vm_bo which is now idle 210 * 211 * State for PDs/PTs and per VM BOs which have gone through the state machine 212 * and are now idle. 213 */ 214 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 215 { 216 spin_lock(&vm_bo->vm->status_lock); 217 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 218 spin_unlock(&vm_bo->vm->status_lock); 219 vm_bo->moved = false; 220 } 221 222 /** 223 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 224 * 225 * @vm_bo: vm_bo which is now invalidated 226 * 227 * State for normal BOs which are invalidated and that change not yet reflected 228 * in the PTs. 229 */ 230 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 231 { 232 spin_lock(&vm_bo->vm->status_lock); 233 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 234 spin_unlock(&vm_bo->vm->status_lock); 235 } 236 237 /** 238 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 239 * 240 * @vm_bo: vm_bo which is evicted 241 * 242 * State for BOs used by user mode queues which are not at the location they 243 * should be. 244 */ 245 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 246 { 247 vm_bo->moved = true; 248 spin_lock(&vm_bo->vm->status_lock); 249 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 250 spin_unlock(&vm_bo->vm->status_lock); 251 } 252 253 /** 254 * amdgpu_vm_bo_relocated - vm_bo is reloacted 255 * 256 * @vm_bo: vm_bo which is relocated 257 * 258 * State for PDs/PTs which needs to update their parent PD. 259 * For the root PD, just move to idle state. 260 */ 261 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 262 { 263 if (vm_bo->bo->parent) { 264 spin_lock(&vm_bo->vm->status_lock); 265 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 266 spin_unlock(&vm_bo->vm->status_lock); 267 } else { 268 amdgpu_vm_bo_idle(vm_bo); 269 } 270 } 271 272 /** 273 * amdgpu_vm_bo_done - vm_bo is done 274 * 275 * @vm_bo: vm_bo which is now done 276 * 277 * State for normal BOs which are invalidated and that change has been updated 278 * in the PTs. 279 */ 280 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 spin_lock(&vm_bo->vm->status_lock); 283 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 284 spin_unlock(&vm_bo->vm->status_lock); 285 } 286 287 /** 288 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 289 * @vm: the VM which state machine to reset 290 * 291 * Move all vm_bo object in the VM into a state where they will be updated 292 * again during validation. 293 */ 294 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 295 { 296 struct amdgpu_vm_bo_base *vm_bo, *tmp; 297 298 spin_lock(&vm->status_lock); 299 list_splice_init(&vm->done, &vm->invalidated); 300 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 301 vm_bo->moved = true; 302 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 303 struct amdgpu_bo *bo = vm_bo->bo; 304 305 vm_bo->moved = true; 306 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 307 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 308 else if (bo->parent) 309 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 310 } 311 spin_unlock(&vm->status_lock); 312 } 313 314 /** 315 * amdgpu_vm_update_shared - helper to update shared memory stat 316 * @base: base structure for tracking BO usage in a VM 317 * 318 * Takes the vm status_lock and updates the shared memory stat. If the basic 319 * stat changed (e.g. buffer was moved) amdgpu_vm_update_stats need to be called 320 * as well. 321 */ 322 static void amdgpu_vm_update_shared(struct amdgpu_vm_bo_base *base) 323 { 324 struct amdgpu_vm *vm = base->vm; 325 struct amdgpu_bo *bo = base->bo; 326 uint64_t size = amdgpu_bo_size(bo); 327 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 328 bool shared; 329 330 spin_lock(&vm->status_lock); 331 shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 332 if (base->shared != shared) { 333 base->shared = shared; 334 if (shared) { 335 vm->stats[bo_memtype].drm.shared += size; 336 vm->stats[bo_memtype].drm.private -= size; 337 } else { 338 vm->stats[bo_memtype].drm.shared -= size; 339 vm->stats[bo_memtype].drm.private += size; 340 } 341 } 342 spin_unlock(&vm->status_lock); 343 } 344 345 /** 346 * amdgpu_vm_bo_update_shared - callback when bo gets shared/unshared 347 * @bo: amdgpu buffer object 348 * 349 * Update the per VM stats for all the vm if needed from private to shared or 350 * vice versa. 351 */ 352 void amdgpu_vm_bo_update_shared(struct amdgpu_bo *bo) 353 { 354 struct amdgpu_vm_bo_base *base; 355 356 for (base = bo->vm_bo; base; base = base->next) 357 amdgpu_vm_update_shared(base); 358 } 359 360 /** 361 * amdgpu_vm_update_stats_locked - helper to update normal memory stat 362 * @base: base structure for tracking BO usage in a VM 363 * @res: the ttm_resource to use for the purpose of accounting, may or may not 364 * be bo->tbo.resource 365 * @sign: if we should add (+1) or subtract (-1) from the stat 366 * 367 * Caller need to have the vm status_lock held. Useful for when multiple update 368 * need to happen at the same time. 369 */ 370 static void amdgpu_vm_update_stats_locked(struct amdgpu_vm_bo_base *base, 371 struct ttm_resource *res, int sign) 372 { 373 struct amdgpu_vm *vm = base->vm; 374 struct amdgpu_bo *bo = base->bo; 375 int64_t size = sign * amdgpu_bo_size(bo); 376 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 377 378 /* For drm-total- and drm-shared-, BO are accounted by their preferred 379 * placement, see also amdgpu_bo_mem_stats_placement. 380 */ 381 if (base->shared) 382 vm->stats[bo_memtype].drm.shared += size; 383 else 384 vm->stats[bo_memtype].drm.private += size; 385 386 if (res && res->mem_type < __AMDGPU_PL_NUM) { 387 uint32_t res_memtype = res->mem_type; 388 389 vm->stats[res_memtype].drm.resident += size; 390 /* BO only count as purgeable if it is resident, 391 * since otherwise there's nothing to purge. 392 */ 393 if (bo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) 394 vm->stats[res_memtype].drm.purgeable += size; 395 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(res_memtype))) 396 vm->stats[bo_memtype].evicted += size; 397 } 398 } 399 400 /** 401 * amdgpu_vm_update_stats - helper to update normal memory stat 402 * @base: base structure for tracking BO usage in a VM 403 * @res: the ttm_resource to use for the purpose of accounting, may or may not 404 * be bo->tbo.resource 405 * @sign: if we should add (+1) or subtract (-1) from the stat 406 * 407 * Updates the basic memory stat when bo is added/deleted/moved. 408 */ 409 void amdgpu_vm_update_stats(struct amdgpu_vm_bo_base *base, 410 struct ttm_resource *res, int sign) 411 { 412 struct amdgpu_vm *vm = base->vm; 413 414 spin_lock(&vm->status_lock); 415 amdgpu_vm_update_stats_locked(base, res, sign); 416 spin_unlock(&vm->status_lock); 417 } 418 419 /** 420 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 421 * 422 * @base: base structure for tracking BO usage in a VM 423 * @vm: vm to which bo is to be added 424 * @bo: amdgpu buffer object 425 * 426 * Initialize a bo_va_base structure and add it to the appropriate lists 427 * 428 */ 429 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 430 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 431 { 432 base->vm = vm; 433 base->bo = bo; 434 base->next = NULL; 435 INIT_LIST_HEAD(&base->vm_status); 436 437 if (!bo) 438 return; 439 base->next = bo->vm_bo; 440 bo->vm_bo = base; 441 442 spin_lock(&vm->status_lock); 443 base->shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 444 amdgpu_vm_update_stats_locked(base, bo->tbo.resource, +1); 445 spin_unlock(&vm->status_lock); 446 447 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 448 return; 449 450 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 451 452 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 453 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 454 amdgpu_vm_bo_relocated(base); 455 else 456 amdgpu_vm_bo_idle(base); 457 458 if (bo->preferred_domains & 459 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 460 return; 461 462 /* 463 * we checked all the prerequisites, but it looks like this per vm bo 464 * is currently evicted. add the bo to the evicted list to make sure it 465 * is validated on next vm use to avoid fault. 466 * */ 467 amdgpu_vm_bo_evicted(base); 468 } 469 470 /** 471 * amdgpu_vm_lock_pd - lock PD in drm_exec 472 * 473 * @vm: vm providing the BOs 474 * @exec: drm execution context 475 * @num_fences: number of extra fences to reserve 476 * 477 * Lock the VM root PD in the DRM execution context. 478 */ 479 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 480 unsigned int num_fences) 481 { 482 /* We need at least two fences for the VM PD/PT updates */ 483 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 484 2 + num_fences); 485 } 486 487 /** 488 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 489 * 490 * @adev: amdgpu device pointer 491 * @vm: vm providing the BOs 492 * 493 * Move all BOs to the end of LRU and remember their positions to put them 494 * together. 495 */ 496 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 497 struct amdgpu_vm *vm) 498 { 499 spin_lock(&adev->mman.bdev.lru_lock); 500 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 501 spin_unlock(&adev->mman.bdev.lru_lock); 502 } 503 504 /* Create scheduler entities for page table updates */ 505 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 506 struct amdgpu_vm *vm) 507 { 508 int r; 509 510 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 511 adev->vm_manager.vm_pte_scheds, 512 adev->vm_manager.vm_pte_num_scheds, NULL); 513 if (r) 514 goto error; 515 516 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 517 adev->vm_manager.vm_pte_scheds, 518 adev->vm_manager.vm_pte_num_scheds, NULL); 519 520 error: 521 drm_sched_entity_destroy(&vm->immediate); 522 return r; 523 } 524 525 /* Destroy the entities for page table updates again */ 526 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 527 { 528 drm_sched_entity_destroy(&vm->immediate); 529 drm_sched_entity_destroy(&vm->delayed); 530 } 531 532 /** 533 * amdgpu_vm_generation - return the page table re-generation counter 534 * @adev: the amdgpu_device 535 * @vm: optional VM to check, might be NULL 536 * 537 * Returns a page table re-generation token to allow checking if submissions 538 * are still valid to use this VM. The VM parameter might be NULL in which case 539 * just the VRAM lost counter will be used. 540 */ 541 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 542 { 543 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 544 545 if (!vm) 546 return result; 547 548 result += lower_32_bits(vm->generation); 549 /* Add one if the page tables will be re-generated on next CS */ 550 if (drm_sched_entity_error(&vm->delayed)) 551 ++result; 552 553 return result; 554 } 555 556 /** 557 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 558 * 559 * @adev: amdgpu device pointer 560 * @vm: vm providing the BOs 561 * @ticket: optional reservation ticket used to reserve the VM 562 * @validate: callback to do the validation 563 * @param: parameter for the validation callback 564 * 565 * Validate the page table BOs and per-VM BOs on command submission if 566 * necessary. If a ticket is given, also try to validate evicted user queue 567 * BOs. They must already be reserved with the given ticket. 568 * 569 * Returns: 570 * Validation result. 571 */ 572 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 573 struct ww_acquire_ctx *ticket, 574 int (*validate)(void *p, struct amdgpu_bo *bo), 575 void *param) 576 { 577 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 578 struct amdgpu_vm_bo_base *bo_base; 579 struct amdgpu_bo *bo; 580 int r; 581 582 if (vm->generation != new_vm_generation) { 583 vm->generation = new_vm_generation; 584 amdgpu_vm_bo_reset_state_machine(vm); 585 amdgpu_vm_fini_entities(vm); 586 r = amdgpu_vm_init_entities(adev, vm); 587 if (r) 588 return r; 589 } 590 591 spin_lock(&vm->status_lock); 592 while (!list_empty(&vm->evicted)) { 593 bo_base = list_first_entry(&vm->evicted, 594 struct amdgpu_vm_bo_base, 595 vm_status); 596 spin_unlock(&vm->status_lock); 597 598 bo = bo_base->bo; 599 600 r = validate(param, bo); 601 if (r) 602 return r; 603 604 if (bo->tbo.type != ttm_bo_type_kernel) { 605 amdgpu_vm_bo_moved(bo_base); 606 } else { 607 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 608 amdgpu_vm_bo_relocated(bo_base); 609 } 610 spin_lock(&vm->status_lock); 611 } 612 while (ticket && !list_empty(&vm->evicted_user)) { 613 bo_base = list_first_entry(&vm->evicted_user, 614 struct amdgpu_vm_bo_base, 615 vm_status); 616 spin_unlock(&vm->status_lock); 617 618 bo = bo_base->bo; 619 620 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 621 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 622 623 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 624 if (ti) { 625 pr_warn_ratelimited("pid %d\n", ti->task.pid); 626 amdgpu_vm_put_task_info(ti); 627 } 628 629 return -EINVAL; 630 } 631 632 r = validate(param, bo); 633 if (r) 634 return r; 635 636 amdgpu_vm_bo_invalidated(bo_base); 637 638 spin_lock(&vm->status_lock); 639 } 640 spin_unlock(&vm->status_lock); 641 642 amdgpu_vm_eviction_lock(vm); 643 vm->evicting = false; 644 amdgpu_vm_eviction_unlock(vm); 645 646 return 0; 647 } 648 649 /** 650 * amdgpu_vm_ready - check VM is ready for updates 651 * 652 * @vm: VM to check 653 * 654 * Check if all VM PDs/PTs are ready for updates 655 * 656 * Returns: 657 * True if VM is not evicting and all VM entities are not stopped 658 */ 659 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 660 { 661 bool ret; 662 663 amdgpu_vm_eviction_lock(vm); 664 ret = !vm->evicting; 665 amdgpu_vm_eviction_unlock(vm); 666 667 spin_lock(&vm->status_lock); 668 ret &= list_empty(&vm->evicted); 669 spin_unlock(&vm->status_lock); 670 671 spin_lock(&vm->immediate.lock); 672 ret &= !vm->immediate.stopped; 673 spin_unlock(&vm->immediate.lock); 674 675 spin_lock(&vm->delayed.lock); 676 ret &= !vm->delayed.stopped; 677 spin_unlock(&vm->delayed.lock); 678 679 return ret; 680 } 681 682 /** 683 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 684 * 685 * @adev: amdgpu_device pointer 686 */ 687 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 688 { 689 const struct amdgpu_ip_block *ip_block; 690 bool has_compute_vm_bug; 691 struct amdgpu_ring *ring; 692 int i; 693 694 has_compute_vm_bug = false; 695 696 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 697 if (ip_block) { 698 /* Compute has a VM bug for GFX version < 7. 699 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 700 if (ip_block->version->major <= 7) 701 has_compute_vm_bug = true; 702 else if (ip_block->version->major == 8) 703 if (adev->gfx.mec_fw_version < 673) 704 has_compute_vm_bug = true; 705 } 706 707 for (i = 0; i < adev->num_rings; i++) { 708 ring = adev->rings[i]; 709 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 710 /* only compute rings */ 711 ring->has_compute_vm_bug = has_compute_vm_bug; 712 else 713 ring->has_compute_vm_bug = false; 714 } 715 } 716 717 /** 718 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 719 * 720 * @ring: ring on which the job will be submitted 721 * @job: job to submit 722 * 723 * Returns: 724 * True if sync is needed. 725 */ 726 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 727 struct amdgpu_job *job) 728 { 729 struct amdgpu_device *adev = ring->adev; 730 unsigned vmhub = ring->vm_hub; 731 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 732 733 if (job->vmid == 0) 734 return false; 735 736 if (job->vm_needs_flush || ring->has_compute_vm_bug) 737 return true; 738 739 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 740 return true; 741 742 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 743 return true; 744 745 return false; 746 } 747 748 /** 749 * amdgpu_vm_flush - hardware flush the vm 750 * 751 * @ring: ring to use for flush 752 * @job: related job 753 * @need_pipe_sync: is pipe sync needed 754 * 755 * Emit a VM flush when it is necessary. 756 * 757 * Returns: 758 * 0 on success, errno otherwise. 759 */ 760 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 761 bool need_pipe_sync) 762 { 763 struct amdgpu_device *adev = ring->adev; 764 struct amdgpu_isolation *isolation = &adev->isolation[ring->xcp_id]; 765 unsigned vmhub = ring->vm_hub; 766 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 767 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 768 bool spm_update_needed = job->spm_update_needed; 769 bool gds_switch_needed = ring->funcs->emit_gds_switch && 770 job->gds_switch_needed; 771 bool vm_flush_needed = job->vm_needs_flush; 772 bool cleaner_shader_needed = false; 773 bool pasid_mapping_needed = false; 774 struct dma_fence *fence = NULL; 775 struct amdgpu_fence *af; 776 unsigned int patch; 777 int r; 778 779 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 780 gds_switch_needed = true; 781 vm_flush_needed = true; 782 pasid_mapping_needed = true; 783 spm_update_needed = true; 784 } 785 786 mutex_lock(&id_mgr->lock); 787 if (id->pasid != job->pasid || !id->pasid_mapping || 788 !dma_fence_is_signaled(id->pasid_mapping)) 789 pasid_mapping_needed = true; 790 mutex_unlock(&id_mgr->lock); 791 792 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 793 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 794 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 795 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 796 ring->funcs->emit_wreg; 797 798 cleaner_shader_needed = job->run_cleaner_shader && 799 adev->gfx.enable_cleaner_shader && 800 ring->funcs->emit_cleaner_shader && job->base.s_fence && 801 &job->base.s_fence->scheduled == isolation->spearhead; 802 803 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync && 804 !cleaner_shader_needed) 805 return 0; 806 807 amdgpu_ring_ib_begin(ring); 808 if (ring->funcs->init_cond_exec) 809 patch = amdgpu_ring_init_cond_exec(ring, 810 ring->cond_exe_gpu_addr); 811 812 if (need_pipe_sync) 813 amdgpu_ring_emit_pipeline_sync(ring); 814 815 if (cleaner_shader_needed) 816 ring->funcs->emit_cleaner_shader(ring); 817 818 if (vm_flush_needed) { 819 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 820 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 821 } 822 823 if (pasid_mapping_needed) 824 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 825 826 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 827 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 828 829 if (ring->funcs->emit_gds_switch && 830 gds_switch_needed) { 831 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 832 job->gds_size, job->gws_base, 833 job->gws_size, job->oa_base, 834 job->oa_size); 835 } 836 837 if (vm_flush_needed || pasid_mapping_needed || cleaner_shader_needed) { 838 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 839 if (r) 840 return r; 841 /* this is part of the job's context */ 842 af = container_of(fence, struct amdgpu_fence, base); 843 af->context = job->base.s_fence ? job->base.s_fence->finished.context : 0; 844 } 845 846 if (vm_flush_needed) { 847 mutex_lock(&id_mgr->lock); 848 dma_fence_put(id->last_flush); 849 id->last_flush = dma_fence_get(fence); 850 id->current_gpu_reset_count = 851 atomic_read(&adev->gpu_reset_counter); 852 mutex_unlock(&id_mgr->lock); 853 } 854 855 if (pasid_mapping_needed) { 856 mutex_lock(&id_mgr->lock); 857 id->pasid = job->pasid; 858 dma_fence_put(id->pasid_mapping); 859 id->pasid_mapping = dma_fence_get(fence); 860 mutex_unlock(&id_mgr->lock); 861 } 862 863 /* 864 * Make sure that all other submissions wait for the cleaner shader to 865 * finish before we push them to the HW. 866 */ 867 if (cleaner_shader_needed) { 868 trace_amdgpu_cleaner_shader(ring, fence); 869 mutex_lock(&adev->enforce_isolation_mutex); 870 dma_fence_put(isolation->spearhead); 871 isolation->spearhead = dma_fence_get(fence); 872 mutex_unlock(&adev->enforce_isolation_mutex); 873 } 874 dma_fence_put(fence); 875 876 amdgpu_ring_patch_cond_exec(ring, patch); 877 878 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 879 if (ring->funcs->emit_switch_buffer) { 880 amdgpu_ring_emit_switch_buffer(ring); 881 amdgpu_ring_emit_switch_buffer(ring); 882 } 883 884 amdgpu_ring_ib_end(ring); 885 return 0; 886 } 887 888 /** 889 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 890 * 891 * @vm: requested vm 892 * @bo: requested buffer object 893 * 894 * Find @bo inside the requested vm. 895 * Search inside the @bos vm list for the requested vm 896 * Returns the found bo_va or NULL if none is found 897 * 898 * Object has to be reserved! 899 * 900 * Returns: 901 * Found bo_va or NULL. 902 */ 903 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 904 struct amdgpu_bo *bo) 905 { 906 struct amdgpu_vm_bo_base *base; 907 908 for (base = bo->vm_bo; base; base = base->next) { 909 if (base->vm != vm) 910 continue; 911 912 return container_of(base, struct amdgpu_bo_va, base); 913 } 914 return NULL; 915 } 916 917 /** 918 * amdgpu_vm_map_gart - Resolve gart mapping of addr 919 * 920 * @pages_addr: optional DMA address to use for lookup 921 * @addr: the unmapped addr 922 * 923 * Look up the physical address of the page that the pte resolves 924 * to. 925 * 926 * Returns: 927 * The pointer for the page table entry. 928 */ 929 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 930 { 931 uint64_t result; 932 933 /* page table offset */ 934 result = pages_addr[addr >> PAGE_SHIFT]; 935 936 /* in case cpu page size != gpu page size*/ 937 result |= addr & (~PAGE_MASK); 938 939 result &= 0xFFFFFFFFFFFFF000ULL; 940 941 return result; 942 } 943 944 /** 945 * amdgpu_vm_update_pdes - make sure that all directories are valid 946 * 947 * @adev: amdgpu_device pointer 948 * @vm: requested vm 949 * @immediate: submit immediately to the paging queue 950 * 951 * Makes sure all directories are up to date. 952 * 953 * Returns: 954 * 0 for success, error for failure. 955 */ 956 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 957 struct amdgpu_vm *vm, bool immediate) 958 { 959 struct amdgpu_vm_update_params params; 960 struct amdgpu_vm_bo_base *entry; 961 bool flush_tlb_needed = false; 962 LIST_HEAD(relocated); 963 int r, idx; 964 965 spin_lock(&vm->status_lock); 966 list_splice_init(&vm->relocated, &relocated); 967 spin_unlock(&vm->status_lock); 968 969 if (list_empty(&relocated)) 970 return 0; 971 972 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 973 return -ENODEV; 974 975 memset(¶ms, 0, sizeof(params)); 976 params.adev = adev; 977 params.vm = vm; 978 params.immediate = immediate; 979 980 r = vm->update_funcs->prepare(¶ms, NULL); 981 if (r) 982 goto error; 983 984 list_for_each_entry(entry, &relocated, vm_status) { 985 /* vm_flush_needed after updating moved PDEs */ 986 flush_tlb_needed |= entry->moved; 987 988 r = amdgpu_vm_pde_update(¶ms, entry); 989 if (r) 990 goto error; 991 } 992 993 r = vm->update_funcs->commit(¶ms, &vm->last_update); 994 if (r) 995 goto error; 996 997 if (flush_tlb_needed) 998 atomic64_inc(&vm->tlb_seq); 999 1000 while (!list_empty(&relocated)) { 1001 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 1002 vm_status); 1003 amdgpu_vm_bo_idle(entry); 1004 } 1005 1006 error: 1007 drm_dev_exit(idx); 1008 return r; 1009 } 1010 1011 /** 1012 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 1013 * @fence: unused 1014 * @cb: the callback structure 1015 * 1016 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1017 */ 1018 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 1019 struct dma_fence_cb *cb) 1020 { 1021 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1022 1023 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 1024 atomic64_inc(&tlb_cb->vm->tlb_seq); 1025 kfree(tlb_cb); 1026 } 1027 1028 /** 1029 * amdgpu_vm_tlb_flush - prepare TLB flush 1030 * 1031 * @params: parameters for update 1032 * @fence: input fence to sync TLB flush with 1033 * @tlb_cb: the callback structure 1034 * 1035 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1036 */ 1037 static void 1038 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 1039 struct dma_fence **fence, 1040 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 1041 { 1042 struct amdgpu_vm *vm = params->vm; 1043 1044 tlb_cb->vm = vm; 1045 if (!fence || !*fence) { 1046 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1047 return; 1048 } 1049 1050 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 1051 amdgpu_vm_tlb_seq_cb)) { 1052 dma_fence_put(vm->last_tlb_flush); 1053 vm->last_tlb_flush = dma_fence_get(*fence); 1054 } else { 1055 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1056 } 1057 1058 /* Prepare a TLB flush fence to be attached to PTs */ 1059 if (!params->unlocked && vm->is_compute_context) { 1060 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 1061 1062 /* Makes sure no PD/PT is freed before the flush */ 1063 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 1064 DMA_RESV_USAGE_BOOKKEEP); 1065 } 1066 } 1067 1068 /** 1069 * amdgpu_vm_update_range - update a range in the vm page table 1070 * 1071 * @adev: amdgpu_device pointer to use for commands 1072 * @vm: the VM to update the range 1073 * @immediate: immediate submission in a page fault 1074 * @unlocked: unlocked invalidation during MM callback 1075 * @flush_tlb: trigger tlb invalidation after update completed 1076 * @allow_override: change MTYPE for local NUMA nodes 1077 * @sync: fences we need to sync to 1078 * @start: start of mapped range 1079 * @last: last mapped entry 1080 * @flags: flags for the entries 1081 * @offset: offset into nodes and pages_addr 1082 * @vram_base: base for vram mappings 1083 * @res: ttm_resource to map 1084 * @pages_addr: DMA addresses to use for mapping 1085 * @fence: optional resulting fence 1086 * 1087 * Fill in the page table entries between @start and @last. 1088 * 1089 * Returns: 1090 * 0 for success, negative erro code for failure. 1091 */ 1092 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1093 bool immediate, bool unlocked, bool flush_tlb, 1094 bool allow_override, struct amdgpu_sync *sync, 1095 uint64_t start, uint64_t last, uint64_t flags, 1096 uint64_t offset, uint64_t vram_base, 1097 struct ttm_resource *res, dma_addr_t *pages_addr, 1098 struct dma_fence **fence) 1099 { 1100 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1101 struct amdgpu_vm_update_params params; 1102 struct amdgpu_res_cursor cursor; 1103 int r, idx; 1104 1105 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1106 return -ENODEV; 1107 1108 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 1109 if (!tlb_cb) { 1110 drm_dev_exit(idx); 1111 return -ENOMEM; 1112 } 1113 1114 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 1115 * heavy-weight flush TLB unconditionally. 1116 */ 1117 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 1118 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 1119 1120 /* 1121 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 1122 */ 1123 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 1124 1125 memset(¶ms, 0, sizeof(params)); 1126 params.adev = adev; 1127 params.vm = vm; 1128 params.immediate = immediate; 1129 params.pages_addr = pages_addr; 1130 params.unlocked = unlocked; 1131 params.needs_flush = flush_tlb; 1132 params.allow_override = allow_override; 1133 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 1134 1135 amdgpu_vm_eviction_lock(vm); 1136 if (vm->evicting) { 1137 r = -EBUSY; 1138 goto error_free; 1139 } 1140 1141 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1142 struct dma_fence *tmp = dma_fence_get_stub(); 1143 1144 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1145 swap(vm->last_unlocked, tmp); 1146 dma_fence_put(tmp); 1147 } 1148 1149 r = vm->update_funcs->prepare(¶ms, sync); 1150 if (r) 1151 goto error_free; 1152 1153 amdgpu_res_first(pages_addr ? NULL : res, offset, 1154 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1155 while (cursor.remaining) { 1156 uint64_t tmp, num_entries, addr; 1157 1158 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1159 if (pages_addr) { 1160 bool contiguous = true; 1161 1162 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1163 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1164 uint64_t count; 1165 1166 contiguous = pages_addr[pfn + 1] == 1167 pages_addr[pfn] + PAGE_SIZE; 1168 1169 tmp = num_entries / 1170 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1171 for (count = 2; count < tmp; ++count) { 1172 uint64_t idx = pfn + count; 1173 1174 if (contiguous != (pages_addr[idx] == 1175 pages_addr[idx - 1] + PAGE_SIZE)) 1176 break; 1177 } 1178 if (!contiguous) 1179 count--; 1180 num_entries = count * 1181 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1182 } 1183 1184 if (!contiguous) { 1185 addr = cursor.start; 1186 params.pages_addr = pages_addr; 1187 } else { 1188 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1189 params.pages_addr = NULL; 1190 } 1191 1192 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1193 addr = vram_base + cursor.start; 1194 } else { 1195 addr = 0; 1196 } 1197 1198 tmp = start + num_entries; 1199 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1200 if (r) 1201 goto error_free; 1202 1203 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1204 start = tmp; 1205 } 1206 1207 r = vm->update_funcs->commit(¶ms, fence); 1208 if (r) 1209 goto error_free; 1210 1211 if (params.needs_flush) { 1212 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1213 tlb_cb = NULL; 1214 } 1215 1216 amdgpu_vm_pt_free_list(adev, ¶ms); 1217 1218 error_free: 1219 kfree(tlb_cb); 1220 amdgpu_vm_eviction_unlock(vm); 1221 drm_dev_exit(idx); 1222 return r; 1223 } 1224 1225 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1226 struct amdgpu_mem_stats stats[__AMDGPU_PL_NUM]) 1227 { 1228 spin_lock(&vm->status_lock); 1229 memcpy(stats, vm->stats, sizeof(*stats) * __AMDGPU_PL_NUM); 1230 spin_unlock(&vm->status_lock); 1231 } 1232 1233 /** 1234 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1235 * 1236 * @adev: amdgpu_device pointer 1237 * @bo_va: requested BO and VM object 1238 * @clear: if true clear the entries 1239 * 1240 * Fill in the page table entries for @bo_va. 1241 * 1242 * Returns: 1243 * 0 for success, -EINVAL for failure. 1244 */ 1245 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1246 bool clear) 1247 { 1248 struct amdgpu_bo *bo = bo_va->base.bo; 1249 struct amdgpu_vm *vm = bo_va->base.vm; 1250 struct amdgpu_bo_va_mapping *mapping; 1251 struct dma_fence **last_update; 1252 dma_addr_t *pages_addr = NULL; 1253 struct ttm_resource *mem; 1254 struct amdgpu_sync sync; 1255 bool flush_tlb = clear; 1256 uint64_t vram_base; 1257 uint64_t flags; 1258 bool uncached; 1259 int r; 1260 1261 amdgpu_sync_create(&sync); 1262 if (clear) { 1263 mem = NULL; 1264 1265 /* Implicitly sync to command submissions in the same VM before 1266 * unmapping. 1267 */ 1268 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1269 AMDGPU_SYNC_EQ_OWNER, vm); 1270 if (r) 1271 goto error_free; 1272 if (bo) { 1273 r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv); 1274 if (r) 1275 goto error_free; 1276 } 1277 } else if (!bo) { 1278 mem = NULL; 1279 1280 /* PRT map operations don't need to sync to anything. */ 1281 1282 } else { 1283 struct drm_gem_object *obj = &bo->tbo.base; 1284 1285 if (drm_gem_is_imported(obj) && bo_va->is_xgmi) { 1286 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1287 struct drm_gem_object *gobj = dma_buf->priv; 1288 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1289 1290 if (abo->tbo.resource && 1291 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1292 bo = gem_to_amdgpu_bo(gobj); 1293 } 1294 mem = bo->tbo.resource; 1295 if (mem && (mem->mem_type == TTM_PL_TT || 1296 mem->mem_type == AMDGPU_PL_PREEMPT)) 1297 pages_addr = bo->tbo.ttm->dma_address; 1298 1299 /* Implicitly sync to moving fences before mapping anything */ 1300 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1301 AMDGPU_SYNC_EXPLICIT, vm); 1302 if (r) 1303 goto error_free; 1304 } 1305 1306 if (bo) { 1307 struct amdgpu_device *bo_adev; 1308 1309 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1310 1311 if (amdgpu_bo_encrypted(bo)) 1312 flags |= AMDGPU_PTE_TMZ; 1313 1314 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1315 vram_base = bo_adev->vm_manager.vram_base_offset; 1316 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1317 } else { 1318 flags = 0x0; 1319 vram_base = 0; 1320 uncached = false; 1321 } 1322 1323 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1324 last_update = &vm->last_update; 1325 else 1326 last_update = &bo_va->last_pt_update; 1327 1328 if (!clear && bo_va->base.moved) { 1329 flush_tlb = true; 1330 list_splice_init(&bo_va->valids, &bo_va->invalids); 1331 1332 } else if (bo_va->cleared != clear) { 1333 list_splice_init(&bo_va->valids, &bo_va->invalids); 1334 } 1335 1336 list_for_each_entry(mapping, &bo_va->invalids, list) { 1337 uint64_t update_flags = flags; 1338 1339 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1340 * but in case of something, we filter the flags in first place 1341 */ 1342 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1343 update_flags &= ~AMDGPU_PTE_READABLE; 1344 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1345 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1346 1347 /* Apply ASIC specific mapping flags */ 1348 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1349 1350 trace_amdgpu_vm_bo_update(mapping); 1351 1352 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1353 !uncached, &sync, mapping->start, 1354 mapping->last, update_flags, 1355 mapping->offset, vram_base, mem, 1356 pages_addr, last_update); 1357 if (r) 1358 goto error_free; 1359 } 1360 1361 /* If the BO is not in its preferred location add it back to 1362 * the evicted list so that it gets validated again on the 1363 * next command submission. 1364 */ 1365 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1366 if (bo->tbo.resource && 1367 !(bo->preferred_domains & 1368 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))) 1369 amdgpu_vm_bo_evicted(&bo_va->base); 1370 else 1371 amdgpu_vm_bo_idle(&bo_va->base); 1372 } else { 1373 amdgpu_vm_bo_done(&bo_va->base); 1374 } 1375 1376 list_splice_init(&bo_va->invalids, &bo_va->valids); 1377 bo_va->cleared = clear; 1378 bo_va->base.moved = false; 1379 1380 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1381 list_for_each_entry(mapping, &bo_va->valids, list) 1382 trace_amdgpu_vm_bo_mapping(mapping); 1383 } 1384 1385 error_free: 1386 amdgpu_sync_free(&sync); 1387 return r; 1388 } 1389 1390 /** 1391 * amdgpu_vm_update_prt_state - update the global PRT state 1392 * 1393 * @adev: amdgpu_device pointer 1394 */ 1395 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1396 { 1397 unsigned long flags; 1398 bool enable; 1399 1400 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1401 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1402 adev->gmc.gmc_funcs->set_prt(adev, enable); 1403 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1404 } 1405 1406 /** 1407 * amdgpu_vm_prt_get - add a PRT user 1408 * 1409 * @adev: amdgpu_device pointer 1410 */ 1411 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1412 { 1413 if (!adev->gmc.gmc_funcs->set_prt) 1414 return; 1415 1416 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1417 amdgpu_vm_update_prt_state(adev); 1418 } 1419 1420 /** 1421 * amdgpu_vm_prt_put - drop a PRT user 1422 * 1423 * @adev: amdgpu_device pointer 1424 */ 1425 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1426 { 1427 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1428 amdgpu_vm_update_prt_state(adev); 1429 } 1430 1431 /** 1432 * amdgpu_vm_prt_cb - callback for updating the PRT status 1433 * 1434 * @fence: fence for the callback 1435 * @_cb: the callback function 1436 */ 1437 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1438 { 1439 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1440 1441 amdgpu_vm_prt_put(cb->adev); 1442 kfree(cb); 1443 } 1444 1445 /** 1446 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1447 * 1448 * @adev: amdgpu_device pointer 1449 * @fence: fence for the callback 1450 */ 1451 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1452 struct dma_fence *fence) 1453 { 1454 struct amdgpu_prt_cb *cb; 1455 1456 if (!adev->gmc.gmc_funcs->set_prt) 1457 return; 1458 1459 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1460 if (!cb) { 1461 /* Last resort when we are OOM */ 1462 if (fence) 1463 dma_fence_wait(fence, false); 1464 1465 amdgpu_vm_prt_put(adev); 1466 } else { 1467 cb->adev = adev; 1468 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1469 amdgpu_vm_prt_cb)) 1470 amdgpu_vm_prt_cb(fence, &cb->cb); 1471 } 1472 } 1473 1474 /** 1475 * amdgpu_vm_free_mapping - free a mapping 1476 * 1477 * @adev: amdgpu_device pointer 1478 * @vm: requested vm 1479 * @mapping: mapping to be freed 1480 * @fence: fence of the unmap operation 1481 * 1482 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1483 */ 1484 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1485 struct amdgpu_vm *vm, 1486 struct amdgpu_bo_va_mapping *mapping, 1487 struct dma_fence *fence) 1488 { 1489 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1490 amdgpu_vm_add_prt_cb(adev, fence); 1491 kfree(mapping); 1492 } 1493 1494 /** 1495 * amdgpu_vm_prt_fini - finish all prt mappings 1496 * 1497 * @adev: amdgpu_device pointer 1498 * @vm: requested vm 1499 * 1500 * Register a cleanup callback to disable PRT support after VM dies. 1501 */ 1502 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1503 { 1504 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1505 struct dma_resv_iter cursor; 1506 struct dma_fence *fence; 1507 1508 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1509 /* Add a callback for each fence in the reservation object */ 1510 amdgpu_vm_prt_get(adev); 1511 amdgpu_vm_add_prt_cb(adev, fence); 1512 } 1513 } 1514 1515 /** 1516 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1517 * 1518 * @adev: amdgpu_device pointer 1519 * @vm: requested vm 1520 * @fence: optional resulting fence (unchanged if no work needed to be done 1521 * or if an error occurred) 1522 * 1523 * Make sure all freed BOs are cleared in the PT. 1524 * PTs have to be reserved and mutex must be locked! 1525 * 1526 * Returns: 1527 * 0 for success. 1528 * 1529 */ 1530 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1531 struct amdgpu_vm *vm, 1532 struct dma_fence **fence) 1533 { 1534 struct amdgpu_bo_va_mapping *mapping; 1535 struct dma_fence *f = NULL; 1536 struct amdgpu_sync sync; 1537 int r; 1538 1539 1540 /* 1541 * Implicitly sync to command submissions in the same VM before 1542 * unmapping. 1543 */ 1544 amdgpu_sync_create(&sync); 1545 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1546 AMDGPU_SYNC_EQ_OWNER, vm); 1547 if (r) 1548 goto error_free; 1549 1550 while (!list_empty(&vm->freed)) { 1551 mapping = list_first_entry(&vm->freed, 1552 struct amdgpu_bo_va_mapping, list); 1553 list_del(&mapping->list); 1554 1555 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1556 &sync, mapping->start, mapping->last, 1557 0, 0, 0, NULL, NULL, &f); 1558 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1559 if (r) { 1560 dma_fence_put(f); 1561 goto error_free; 1562 } 1563 } 1564 1565 if (fence && f) { 1566 dma_fence_put(*fence); 1567 *fence = f; 1568 } else { 1569 dma_fence_put(f); 1570 } 1571 1572 error_free: 1573 amdgpu_sync_free(&sync); 1574 return r; 1575 1576 } 1577 1578 /** 1579 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1580 * 1581 * @adev: amdgpu_device pointer 1582 * @vm: requested vm 1583 * @ticket: optional reservation ticket used to reserve the VM 1584 * 1585 * Make sure all BOs which are moved are updated in the PTs. 1586 * 1587 * Returns: 1588 * 0 for success. 1589 * 1590 * PTs have to be reserved! 1591 */ 1592 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1593 struct amdgpu_vm *vm, 1594 struct ww_acquire_ctx *ticket) 1595 { 1596 struct amdgpu_bo_va *bo_va; 1597 struct dma_resv *resv; 1598 bool clear, unlock; 1599 int r; 1600 1601 spin_lock(&vm->status_lock); 1602 while (!list_empty(&vm->moved)) { 1603 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1604 base.vm_status); 1605 spin_unlock(&vm->status_lock); 1606 1607 /* Per VM BOs never need to bo cleared in the page tables */ 1608 r = amdgpu_vm_bo_update(adev, bo_va, false); 1609 if (r) 1610 return r; 1611 spin_lock(&vm->status_lock); 1612 } 1613 1614 while (!list_empty(&vm->invalidated)) { 1615 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1616 base.vm_status); 1617 resv = bo_va->base.bo->tbo.base.resv; 1618 spin_unlock(&vm->status_lock); 1619 1620 /* Try to reserve the BO to avoid clearing its ptes */ 1621 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1622 clear = false; 1623 unlock = true; 1624 /* The caller is already holding the reservation lock */ 1625 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1626 clear = false; 1627 unlock = false; 1628 /* Somebody else is using the BO right now */ 1629 } else { 1630 clear = true; 1631 unlock = false; 1632 } 1633 1634 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1635 1636 if (unlock) 1637 dma_resv_unlock(resv); 1638 if (r) 1639 return r; 1640 1641 /* Remember evicted DMABuf imports in compute VMs for later 1642 * validation 1643 */ 1644 if (vm->is_compute_context && 1645 drm_gem_is_imported(&bo_va->base.bo->tbo.base) && 1646 (!bo_va->base.bo->tbo.resource || 1647 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1648 amdgpu_vm_bo_evicted_user(&bo_va->base); 1649 1650 spin_lock(&vm->status_lock); 1651 } 1652 spin_unlock(&vm->status_lock); 1653 1654 return 0; 1655 } 1656 1657 /** 1658 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1659 * 1660 * @adev: amdgpu_device pointer 1661 * @vm: requested vm 1662 * @flush_type: flush type 1663 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1664 * 1665 * Flush TLB if needed for a compute VM. 1666 * 1667 * Returns: 1668 * 0 for success. 1669 */ 1670 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1671 struct amdgpu_vm *vm, 1672 uint32_t flush_type, 1673 uint32_t xcc_mask) 1674 { 1675 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1676 bool all_hub = false; 1677 int xcc = 0, r = 0; 1678 1679 WARN_ON_ONCE(!vm->is_compute_context); 1680 1681 /* 1682 * It can be that we race and lose here, but that is extremely unlikely 1683 * and the worst thing which could happen is that we flush the changes 1684 * into the TLB once more which is harmless. 1685 */ 1686 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1687 return 0; 1688 1689 if (adev->family == AMDGPU_FAMILY_AI || 1690 adev->family == AMDGPU_FAMILY_RV) 1691 all_hub = true; 1692 1693 for_each_inst(xcc, xcc_mask) { 1694 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1695 all_hub, xcc); 1696 if (r) 1697 break; 1698 } 1699 return r; 1700 } 1701 1702 /** 1703 * amdgpu_vm_bo_add - add a bo to a specific vm 1704 * 1705 * @adev: amdgpu_device pointer 1706 * @vm: requested vm 1707 * @bo: amdgpu buffer object 1708 * 1709 * Add @bo into the requested vm. 1710 * Add @bo to the list of bos associated with the vm 1711 * 1712 * Returns: 1713 * Newly added bo_va or NULL for failure 1714 * 1715 * Object has to be reserved! 1716 */ 1717 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1718 struct amdgpu_vm *vm, 1719 struct amdgpu_bo *bo) 1720 { 1721 struct amdgpu_bo_va *bo_va; 1722 1723 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1724 if (bo_va == NULL) { 1725 return NULL; 1726 } 1727 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1728 1729 bo_va->ref_count = 1; 1730 bo_va->last_pt_update = dma_fence_get_stub(); 1731 INIT_LIST_HEAD(&bo_va->valids); 1732 INIT_LIST_HEAD(&bo_va->invalids); 1733 1734 if (!bo) 1735 return bo_va; 1736 1737 dma_resv_assert_held(bo->tbo.base.resv); 1738 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1739 bo_va->is_xgmi = true; 1740 /* Power up XGMI if it can be potentially used */ 1741 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1742 } 1743 1744 return bo_va; 1745 } 1746 1747 1748 /** 1749 * amdgpu_vm_bo_insert_map - insert a new mapping 1750 * 1751 * @adev: amdgpu_device pointer 1752 * @bo_va: bo_va to store the address 1753 * @mapping: the mapping to insert 1754 * 1755 * Insert a new mapping into all structures. 1756 */ 1757 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1758 struct amdgpu_bo_va *bo_va, 1759 struct amdgpu_bo_va_mapping *mapping) 1760 { 1761 struct amdgpu_vm *vm = bo_va->base.vm; 1762 struct amdgpu_bo *bo = bo_va->base.bo; 1763 1764 mapping->bo_va = bo_va; 1765 list_add(&mapping->list, &bo_va->invalids); 1766 amdgpu_vm_it_insert(mapping, &vm->va); 1767 1768 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1769 amdgpu_vm_prt_get(adev); 1770 1771 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1772 amdgpu_vm_bo_moved(&bo_va->base); 1773 1774 trace_amdgpu_vm_bo_map(bo_va, mapping); 1775 } 1776 1777 /* Validate operation parameters to prevent potential abuse */ 1778 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1779 struct amdgpu_bo *bo, 1780 uint64_t saddr, 1781 uint64_t offset, 1782 uint64_t size) 1783 { 1784 uint64_t tmp, lpfn; 1785 1786 if (saddr & AMDGPU_GPU_PAGE_MASK 1787 || offset & AMDGPU_GPU_PAGE_MASK 1788 || size & AMDGPU_GPU_PAGE_MASK) 1789 return -EINVAL; 1790 1791 if (check_add_overflow(saddr, size, &tmp) 1792 || check_add_overflow(offset, size, &tmp) 1793 || size == 0 /* which also leads to end < begin */) 1794 return -EINVAL; 1795 1796 /* make sure object fit at this offset */ 1797 if (bo && offset + size > amdgpu_bo_size(bo)) 1798 return -EINVAL; 1799 1800 /* Ensure last pfn not exceed max_pfn */ 1801 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1802 if (lpfn >= adev->vm_manager.max_pfn) 1803 return -EINVAL; 1804 1805 return 0; 1806 } 1807 1808 /** 1809 * amdgpu_vm_bo_map - map bo inside a vm 1810 * 1811 * @adev: amdgpu_device pointer 1812 * @bo_va: bo_va to store the address 1813 * @saddr: where to map the BO 1814 * @offset: requested offset in the BO 1815 * @size: BO size in bytes 1816 * @flags: attributes of pages (read/write/valid/etc.) 1817 * 1818 * Add a mapping of the BO at the specefied addr into the VM. 1819 * 1820 * Returns: 1821 * 0 for success, error for failure. 1822 * 1823 * Object has to be reserved and unreserved outside! 1824 */ 1825 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1826 struct amdgpu_bo_va *bo_va, 1827 uint64_t saddr, uint64_t offset, 1828 uint64_t size, uint64_t flags) 1829 { 1830 struct amdgpu_bo_va_mapping *mapping, *tmp; 1831 struct amdgpu_bo *bo = bo_va->base.bo; 1832 struct amdgpu_vm *vm = bo_va->base.vm; 1833 uint64_t eaddr; 1834 int r; 1835 1836 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1837 if (r) 1838 return r; 1839 1840 saddr /= AMDGPU_GPU_PAGE_SIZE; 1841 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1842 1843 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1844 if (tmp) { 1845 /* bo and tmp overlap, invalid addr */ 1846 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1847 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1848 tmp->start, tmp->last + 1); 1849 return -EINVAL; 1850 } 1851 1852 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1853 if (!mapping) 1854 return -ENOMEM; 1855 1856 mapping->start = saddr; 1857 mapping->last = eaddr; 1858 mapping->offset = offset; 1859 mapping->flags = flags; 1860 1861 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1862 1863 return 0; 1864 } 1865 1866 /** 1867 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1868 * 1869 * @adev: amdgpu_device pointer 1870 * @bo_va: bo_va to store the address 1871 * @saddr: where to map the BO 1872 * @offset: requested offset in the BO 1873 * @size: BO size in bytes 1874 * @flags: attributes of pages (read/write/valid/etc.) 1875 * 1876 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1877 * mappings as we do so. 1878 * 1879 * Returns: 1880 * 0 for success, error for failure. 1881 * 1882 * Object has to be reserved and unreserved outside! 1883 */ 1884 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1885 struct amdgpu_bo_va *bo_va, 1886 uint64_t saddr, uint64_t offset, 1887 uint64_t size, uint64_t flags) 1888 { 1889 struct amdgpu_bo_va_mapping *mapping; 1890 struct amdgpu_bo *bo = bo_va->base.bo; 1891 uint64_t eaddr; 1892 int r; 1893 1894 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1895 if (r) 1896 return r; 1897 1898 /* Allocate all the needed memory */ 1899 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1900 if (!mapping) 1901 return -ENOMEM; 1902 1903 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1904 if (r) { 1905 kfree(mapping); 1906 return r; 1907 } 1908 1909 saddr /= AMDGPU_GPU_PAGE_SIZE; 1910 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1911 1912 mapping->start = saddr; 1913 mapping->last = eaddr; 1914 mapping->offset = offset; 1915 mapping->flags = flags; 1916 1917 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1918 1919 return 0; 1920 } 1921 1922 /** 1923 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1924 * 1925 * @adev: amdgpu_device pointer 1926 * @bo_va: bo_va to remove the address from 1927 * @saddr: where to the BO is mapped 1928 * 1929 * Remove a mapping of the BO at the specefied addr from the VM. 1930 * 1931 * Returns: 1932 * 0 for success, error for failure. 1933 * 1934 * Object has to be reserved and unreserved outside! 1935 */ 1936 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1937 struct amdgpu_bo_va *bo_va, 1938 uint64_t saddr) 1939 { 1940 struct amdgpu_bo_va_mapping *mapping; 1941 struct amdgpu_vm *vm = bo_va->base.vm; 1942 bool valid = true; 1943 1944 saddr /= AMDGPU_GPU_PAGE_SIZE; 1945 1946 list_for_each_entry(mapping, &bo_va->valids, list) { 1947 if (mapping->start == saddr) 1948 break; 1949 } 1950 1951 if (&mapping->list == &bo_va->valids) { 1952 valid = false; 1953 1954 list_for_each_entry(mapping, &bo_va->invalids, list) { 1955 if (mapping->start == saddr) 1956 break; 1957 } 1958 1959 if (&mapping->list == &bo_va->invalids) 1960 return -ENOENT; 1961 } 1962 1963 list_del(&mapping->list); 1964 amdgpu_vm_it_remove(mapping, &vm->va); 1965 mapping->bo_va = NULL; 1966 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1967 1968 if (valid) 1969 list_add(&mapping->list, &vm->freed); 1970 else 1971 amdgpu_vm_free_mapping(adev, vm, mapping, 1972 bo_va->last_pt_update); 1973 1974 return 0; 1975 } 1976 1977 /** 1978 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1979 * 1980 * @adev: amdgpu_device pointer 1981 * @vm: VM structure to use 1982 * @saddr: start of the range 1983 * @size: size of the range 1984 * 1985 * Remove all mappings in a range, split them as appropriate. 1986 * 1987 * Returns: 1988 * 0 for success, error for failure. 1989 */ 1990 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1991 struct amdgpu_vm *vm, 1992 uint64_t saddr, uint64_t size) 1993 { 1994 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1995 LIST_HEAD(removed); 1996 uint64_t eaddr; 1997 int r; 1998 1999 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 2000 if (r) 2001 return r; 2002 2003 saddr /= AMDGPU_GPU_PAGE_SIZE; 2004 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 2005 2006 /* Allocate all the needed memory */ 2007 before = kzalloc(sizeof(*before), GFP_KERNEL); 2008 if (!before) 2009 return -ENOMEM; 2010 INIT_LIST_HEAD(&before->list); 2011 2012 after = kzalloc(sizeof(*after), GFP_KERNEL); 2013 if (!after) { 2014 kfree(before); 2015 return -ENOMEM; 2016 } 2017 INIT_LIST_HEAD(&after->list); 2018 2019 /* Now gather all removed mappings */ 2020 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2021 while (tmp) { 2022 /* Remember mapping split at the start */ 2023 if (tmp->start < saddr) { 2024 before->start = tmp->start; 2025 before->last = saddr - 1; 2026 before->offset = tmp->offset; 2027 before->flags = tmp->flags; 2028 before->bo_va = tmp->bo_va; 2029 list_add(&before->list, &tmp->bo_va->invalids); 2030 } 2031 2032 /* Remember mapping split at the end */ 2033 if (tmp->last > eaddr) { 2034 after->start = eaddr + 1; 2035 after->last = tmp->last; 2036 after->offset = tmp->offset; 2037 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2038 after->flags = tmp->flags; 2039 after->bo_va = tmp->bo_va; 2040 list_add(&after->list, &tmp->bo_va->invalids); 2041 } 2042 2043 list_del(&tmp->list); 2044 list_add(&tmp->list, &removed); 2045 2046 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2047 } 2048 2049 /* And free them up */ 2050 list_for_each_entry_safe(tmp, next, &removed, list) { 2051 amdgpu_vm_it_remove(tmp, &vm->va); 2052 list_del(&tmp->list); 2053 2054 if (tmp->start < saddr) 2055 tmp->start = saddr; 2056 if (tmp->last > eaddr) 2057 tmp->last = eaddr; 2058 2059 tmp->bo_va = NULL; 2060 list_add(&tmp->list, &vm->freed); 2061 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2062 } 2063 2064 /* Insert partial mapping before the range */ 2065 if (!list_empty(&before->list)) { 2066 struct amdgpu_bo *bo = before->bo_va->base.bo; 2067 2068 amdgpu_vm_it_insert(before, &vm->va); 2069 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2070 amdgpu_vm_prt_get(adev); 2071 2072 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2073 !before->bo_va->base.moved) 2074 amdgpu_vm_bo_moved(&before->bo_va->base); 2075 } else { 2076 kfree(before); 2077 } 2078 2079 /* Insert partial mapping after the range */ 2080 if (!list_empty(&after->list)) { 2081 struct amdgpu_bo *bo = after->bo_va->base.bo; 2082 2083 amdgpu_vm_it_insert(after, &vm->va); 2084 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2085 amdgpu_vm_prt_get(adev); 2086 2087 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2088 !after->bo_va->base.moved) 2089 amdgpu_vm_bo_moved(&after->bo_va->base); 2090 } else { 2091 kfree(after); 2092 } 2093 2094 return 0; 2095 } 2096 2097 /** 2098 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2099 * 2100 * @vm: the requested VM 2101 * @addr: the address 2102 * 2103 * Find a mapping by it's address. 2104 * 2105 * Returns: 2106 * The amdgpu_bo_va_mapping matching for addr or NULL 2107 * 2108 */ 2109 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2110 uint64_t addr) 2111 { 2112 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2113 } 2114 2115 /** 2116 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2117 * 2118 * @vm: the requested vm 2119 * @ticket: CS ticket 2120 * 2121 * Trace all mappings of BOs reserved during a command submission. 2122 */ 2123 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2124 { 2125 struct amdgpu_bo_va_mapping *mapping; 2126 2127 if (!trace_amdgpu_vm_bo_cs_enabled()) 2128 return; 2129 2130 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2131 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2132 if (mapping->bo_va && mapping->bo_va->base.bo) { 2133 struct amdgpu_bo *bo; 2134 2135 bo = mapping->bo_va->base.bo; 2136 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2137 ticket) 2138 continue; 2139 } 2140 2141 trace_amdgpu_vm_bo_cs(mapping); 2142 } 2143 } 2144 2145 /** 2146 * amdgpu_vm_bo_del - remove a bo from a specific vm 2147 * 2148 * @adev: amdgpu_device pointer 2149 * @bo_va: requested bo_va 2150 * 2151 * Remove @bo_va->bo from the requested vm. 2152 * 2153 * Object have to be reserved! 2154 */ 2155 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2156 struct amdgpu_bo_va *bo_va) 2157 { 2158 struct amdgpu_bo_va_mapping *mapping, *next; 2159 struct amdgpu_bo *bo = bo_va->base.bo; 2160 struct amdgpu_vm *vm = bo_va->base.vm; 2161 struct amdgpu_vm_bo_base **base; 2162 2163 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2164 2165 if (bo) { 2166 dma_resv_assert_held(bo->tbo.base.resv); 2167 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2168 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2169 2170 for (base = &bo_va->base.bo->vm_bo; *base; 2171 base = &(*base)->next) { 2172 if (*base != &bo_va->base) 2173 continue; 2174 2175 amdgpu_vm_update_stats(*base, bo->tbo.resource, -1); 2176 *base = bo_va->base.next; 2177 break; 2178 } 2179 } 2180 2181 spin_lock(&vm->status_lock); 2182 list_del(&bo_va->base.vm_status); 2183 spin_unlock(&vm->status_lock); 2184 2185 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2186 list_del(&mapping->list); 2187 amdgpu_vm_it_remove(mapping, &vm->va); 2188 mapping->bo_va = NULL; 2189 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2190 list_add(&mapping->list, &vm->freed); 2191 } 2192 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2193 list_del(&mapping->list); 2194 amdgpu_vm_it_remove(mapping, &vm->va); 2195 amdgpu_vm_free_mapping(adev, vm, mapping, 2196 bo_va->last_pt_update); 2197 } 2198 2199 dma_fence_put(bo_va->last_pt_update); 2200 2201 if (bo && bo_va->is_xgmi) 2202 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2203 2204 kfree(bo_va); 2205 } 2206 2207 /** 2208 * amdgpu_vm_evictable - check if we can evict a VM 2209 * 2210 * @bo: A page table of the VM. 2211 * 2212 * Check if it is possible to evict a VM. 2213 */ 2214 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2215 { 2216 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2217 2218 /* Page tables of a destroyed VM can go away immediately */ 2219 if (!bo_base || !bo_base->vm) 2220 return true; 2221 2222 /* Don't evict VM page tables while they are busy */ 2223 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2224 return false; 2225 2226 /* Try to block ongoing updates */ 2227 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2228 return false; 2229 2230 /* Don't evict VM page tables while they are updated */ 2231 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2232 amdgpu_vm_eviction_unlock(bo_base->vm); 2233 return false; 2234 } 2235 2236 bo_base->vm->evicting = true; 2237 amdgpu_vm_eviction_unlock(bo_base->vm); 2238 return true; 2239 } 2240 2241 /** 2242 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2243 * 2244 * @bo: amdgpu buffer object 2245 * @evicted: is the BO evicted 2246 * 2247 * Mark @bo as invalid. 2248 */ 2249 void amdgpu_vm_bo_invalidate(struct amdgpu_bo *bo, bool evicted) 2250 { 2251 struct amdgpu_vm_bo_base *bo_base; 2252 2253 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2254 struct amdgpu_vm *vm = bo_base->vm; 2255 2256 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2257 amdgpu_vm_bo_evicted(bo_base); 2258 continue; 2259 } 2260 2261 if (bo_base->moved) 2262 continue; 2263 bo_base->moved = true; 2264 2265 if (bo->tbo.type == ttm_bo_type_kernel) 2266 amdgpu_vm_bo_relocated(bo_base); 2267 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2268 amdgpu_vm_bo_moved(bo_base); 2269 else 2270 amdgpu_vm_bo_invalidated(bo_base); 2271 } 2272 } 2273 2274 /** 2275 * amdgpu_vm_bo_move - handle BO move 2276 * 2277 * @bo: amdgpu buffer object 2278 * @new_mem: the new placement of the BO move 2279 * @evicted: is the BO evicted 2280 * 2281 * Update the memory stats for the new placement and mark @bo as invalid. 2282 */ 2283 void amdgpu_vm_bo_move(struct amdgpu_bo *bo, struct ttm_resource *new_mem, 2284 bool evicted) 2285 { 2286 struct amdgpu_vm_bo_base *bo_base; 2287 2288 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2289 struct amdgpu_vm *vm = bo_base->vm; 2290 2291 spin_lock(&vm->status_lock); 2292 amdgpu_vm_update_stats_locked(bo_base, bo->tbo.resource, -1); 2293 amdgpu_vm_update_stats_locked(bo_base, new_mem, +1); 2294 spin_unlock(&vm->status_lock); 2295 } 2296 2297 amdgpu_vm_bo_invalidate(bo, evicted); 2298 } 2299 2300 /** 2301 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2302 * 2303 * @vm_size: VM size 2304 * 2305 * Returns: 2306 * VM page table as power of two 2307 */ 2308 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2309 { 2310 /* Total bits covered by PD + PTs */ 2311 unsigned bits = ilog2(vm_size) + 18; 2312 2313 /* Make sure the PD is 4K in size up to 8GB address space. 2314 Above that split equal between PD and PTs */ 2315 if (vm_size <= 8) 2316 return (bits - 9); 2317 else 2318 return ((bits + 3) / 2); 2319 } 2320 2321 /** 2322 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2323 * 2324 * @adev: amdgpu_device pointer 2325 * @min_vm_size: the minimum vm size in GB if it's set auto 2326 * @fragment_size_default: Default PTE fragment size 2327 * @max_level: max VMPT level 2328 * @max_bits: max address space size in bits 2329 * 2330 */ 2331 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2332 uint32_t fragment_size_default, unsigned max_level, 2333 unsigned max_bits) 2334 { 2335 unsigned int max_size = 1 << (max_bits - 30); 2336 unsigned int vm_size; 2337 uint64_t tmp; 2338 2339 /* adjust vm size first */ 2340 if (amdgpu_vm_size != -1) { 2341 vm_size = amdgpu_vm_size; 2342 if (vm_size > max_size) { 2343 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2344 amdgpu_vm_size, max_size); 2345 vm_size = max_size; 2346 } 2347 } else { 2348 struct sysinfo si; 2349 unsigned int phys_ram_gb; 2350 2351 /* Optimal VM size depends on the amount of physical 2352 * RAM available. Underlying requirements and 2353 * assumptions: 2354 * 2355 * - Need to map system memory and VRAM from all GPUs 2356 * - VRAM from other GPUs not known here 2357 * - Assume VRAM <= system memory 2358 * - On GFX8 and older, VM space can be segmented for 2359 * different MTYPEs 2360 * - Need to allow room for fragmentation, guard pages etc. 2361 * 2362 * This adds up to a rough guess of system memory x3. 2363 * Round up to power of two to maximize the available 2364 * VM size with the given page table size. 2365 */ 2366 si_meminfo(&si); 2367 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2368 (1 << 30) - 1) >> 30; 2369 vm_size = roundup_pow_of_two( 2370 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2371 } 2372 2373 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2374 2375 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2376 if (amdgpu_vm_block_size != -1) 2377 tmp >>= amdgpu_vm_block_size - 9; 2378 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2379 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2380 switch (adev->vm_manager.num_level) { 2381 case 3: 2382 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2383 break; 2384 case 2: 2385 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2386 break; 2387 case 1: 2388 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2389 break; 2390 default: 2391 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2392 } 2393 /* block size depends on vm size and hw setup*/ 2394 if (amdgpu_vm_block_size != -1) 2395 adev->vm_manager.block_size = 2396 min((unsigned)amdgpu_vm_block_size, max_bits 2397 - AMDGPU_GPU_PAGE_SHIFT 2398 - 9 * adev->vm_manager.num_level); 2399 else if (adev->vm_manager.num_level > 1) 2400 adev->vm_manager.block_size = 9; 2401 else 2402 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2403 2404 if (amdgpu_vm_fragment_size == -1) 2405 adev->vm_manager.fragment_size = fragment_size_default; 2406 else 2407 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2408 2409 dev_info( 2410 adev->dev, 2411 "vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2412 vm_size, adev->vm_manager.num_level + 1, 2413 adev->vm_manager.block_size, adev->vm_manager.fragment_size); 2414 } 2415 2416 /** 2417 * amdgpu_vm_wait_idle - wait for the VM to become idle 2418 * 2419 * @vm: VM object to wait for 2420 * @timeout: timeout to wait for VM to become idle 2421 */ 2422 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2423 { 2424 timeout = drm_sched_entity_flush(&vm->immediate, timeout); 2425 if (timeout <= 0) 2426 return timeout; 2427 2428 return drm_sched_entity_flush(&vm->delayed, timeout); 2429 } 2430 2431 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2432 { 2433 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2434 2435 kfree(ti); 2436 } 2437 2438 static inline struct amdgpu_vm * 2439 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2440 { 2441 struct amdgpu_vm *vm; 2442 unsigned long flags; 2443 2444 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2445 vm = xa_load(&adev->vm_manager.pasids, pasid); 2446 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2447 2448 return vm; 2449 } 2450 2451 /** 2452 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2453 * 2454 * @task_info: task_info struct under discussion. 2455 * 2456 * frees the vm task_info ptr at the last put 2457 */ 2458 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2459 { 2460 if (task_info) 2461 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2462 } 2463 2464 /** 2465 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2466 * 2467 * @vm: VM to get info from 2468 * 2469 * Returns the reference counted task_info structure, which must be 2470 * referenced down with amdgpu_vm_put_task_info. 2471 */ 2472 struct amdgpu_task_info * 2473 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2474 { 2475 struct amdgpu_task_info *ti = NULL; 2476 2477 if (vm) { 2478 ti = vm->task_info; 2479 kref_get(&vm->task_info->refcount); 2480 } 2481 2482 return ti; 2483 } 2484 2485 /** 2486 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2487 * 2488 * @adev: drm device pointer 2489 * @pasid: PASID identifier for VM 2490 * 2491 * Returns the reference counted task_info structure, which must be 2492 * referenced down with amdgpu_vm_put_task_info. 2493 */ 2494 struct amdgpu_task_info * 2495 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2496 { 2497 return amdgpu_vm_get_task_info_vm( 2498 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2499 } 2500 2501 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2502 { 2503 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2504 if (!vm->task_info) 2505 return -ENOMEM; 2506 2507 kref_init(&vm->task_info->refcount); 2508 return 0; 2509 } 2510 2511 /** 2512 * amdgpu_vm_set_task_info - Sets VMs task info. 2513 * 2514 * @vm: vm for which to set the info 2515 */ 2516 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2517 { 2518 if (!vm->task_info) 2519 return; 2520 2521 if (vm->task_info->task.pid == current->pid) 2522 return; 2523 2524 vm->task_info->task.pid = current->pid; 2525 get_task_comm(vm->task_info->task.comm, current); 2526 2527 if (current->group_leader->mm != current->mm) 2528 return; 2529 2530 vm->task_info->tgid = current->group_leader->pid; 2531 get_task_comm(vm->task_info->process_name, current->group_leader); 2532 } 2533 2534 /** 2535 * amdgpu_vm_init - initialize a vm instance 2536 * 2537 * @adev: amdgpu_device pointer 2538 * @vm: requested vm 2539 * @xcp_id: GPU partition selection id 2540 * 2541 * Init @vm fields. 2542 * 2543 * Returns: 2544 * 0 for success, error for failure. 2545 */ 2546 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2547 int32_t xcp_id) 2548 { 2549 struct amdgpu_bo *root_bo; 2550 struct amdgpu_bo_vm *root; 2551 int r, i; 2552 2553 vm->va = RB_ROOT_CACHED; 2554 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2555 vm->reserved_vmid[i] = NULL; 2556 INIT_LIST_HEAD(&vm->evicted); 2557 INIT_LIST_HEAD(&vm->evicted_user); 2558 INIT_LIST_HEAD(&vm->relocated); 2559 INIT_LIST_HEAD(&vm->moved); 2560 INIT_LIST_HEAD(&vm->idle); 2561 INIT_LIST_HEAD(&vm->invalidated); 2562 spin_lock_init(&vm->status_lock); 2563 INIT_LIST_HEAD(&vm->freed); 2564 INIT_LIST_HEAD(&vm->done); 2565 INIT_KFIFO(vm->faults); 2566 2567 r = amdgpu_vm_init_entities(adev, vm); 2568 if (r) 2569 return r; 2570 2571 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2572 2573 vm->is_compute_context = false; 2574 2575 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2576 AMDGPU_VM_USE_CPU_FOR_GFX); 2577 2578 dev_dbg(adev->dev, "VM update mode is %s\n", 2579 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2580 WARN_ONCE((vm->use_cpu_for_update && 2581 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2582 "CPU update of VM recommended only for large BAR system\n"); 2583 2584 if (vm->use_cpu_for_update) 2585 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2586 else 2587 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2588 2589 vm->last_update = dma_fence_get_stub(); 2590 vm->last_unlocked = dma_fence_get_stub(); 2591 vm->last_tlb_flush = dma_fence_get_stub(); 2592 vm->generation = amdgpu_vm_generation(adev, NULL); 2593 2594 mutex_init(&vm->eviction_lock); 2595 vm->evicting = false; 2596 vm->tlb_fence_context = dma_fence_context_alloc(1); 2597 2598 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2599 false, &root, xcp_id); 2600 if (r) 2601 goto error_free_delayed; 2602 2603 root_bo = amdgpu_bo_ref(&root->bo); 2604 r = amdgpu_bo_reserve(root_bo, true); 2605 if (r) { 2606 amdgpu_bo_unref(&root_bo); 2607 goto error_free_delayed; 2608 } 2609 2610 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2611 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2612 if (r) 2613 goto error_free_root; 2614 2615 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2616 if (r) 2617 goto error_free_root; 2618 2619 r = amdgpu_vm_create_task_info(vm); 2620 if (r) 2621 dev_dbg(adev->dev, "Failed to create task info for VM\n"); 2622 2623 amdgpu_bo_unreserve(vm->root.bo); 2624 amdgpu_bo_unref(&root_bo); 2625 2626 return 0; 2627 2628 error_free_root: 2629 amdgpu_vm_pt_free_root(adev, vm); 2630 amdgpu_bo_unreserve(vm->root.bo); 2631 amdgpu_bo_unref(&root_bo); 2632 2633 error_free_delayed: 2634 dma_fence_put(vm->last_tlb_flush); 2635 dma_fence_put(vm->last_unlocked); 2636 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2637 amdgpu_vm_fini_entities(vm); 2638 2639 return r; 2640 } 2641 2642 /** 2643 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2644 * 2645 * @adev: amdgpu_device pointer 2646 * @vm: requested vm 2647 * 2648 * This only works on GFX VMs that don't have any BOs added and no 2649 * page tables allocated yet. 2650 * 2651 * Changes the following VM parameters: 2652 * - use_cpu_for_update 2653 * - pte_supports_ats 2654 * 2655 * Reinitializes the page directory to reflect the changed ATS 2656 * setting. 2657 * 2658 * Returns: 2659 * 0 for success, -errno for errors. 2660 */ 2661 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2662 { 2663 int r; 2664 2665 r = amdgpu_bo_reserve(vm->root.bo, true); 2666 if (r) 2667 return r; 2668 2669 /* Update VM state */ 2670 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2671 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2672 dev_dbg(adev->dev, "VM update mode is %s\n", 2673 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2674 WARN_ONCE((vm->use_cpu_for_update && 2675 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2676 "CPU update of VM recommended only for large BAR system\n"); 2677 2678 if (vm->use_cpu_for_update) { 2679 /* Sync with last SDMA update/clear before switching to CPU */ 2680 r = amdgpu_bo_sync_wait(vm->root.bo, 2681 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2682 if (r) 2683 goto unreserve_bo; 2684 2685 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2686 r = amdgpu_vm_pt_map_tables(adev, vm); 2687 if (r) 2688 goto unreserve_bo; 2689 2690 } else { 2691 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2692 } 2693 2694 dma_fence_put(vm->last_update); 2695 vm->last_update = dma_fence_get_stub(); 2696 vm->is_compute_context = true; 2697 2698 unreserve_bo: 2699 amdgpu_bo_unreserve(vm->root.bo); 2700 return r; 2701 } 2702 2703 static int amdgpu_vm_stats_is_zero(struct amdgpu_vm *vm) 2704 { 2705 for (int i = 0; i < __AMDGPU_PL_NUM; ++i) { 2706 if (!(drm_memory_stats_is_zero(&vm->stats[i].drm) && 2707 vm->stats[i].evicted == 0)) 2708 return false; 2709 } 2710 return true; 2711 } 2712 2713 /** 2714 * amdgpu_vm_fini - tear down a vm instance 2715 * 2716 * @adev: amdgpu_device pointer 2717 * @vm: requested vm 2718 * 2719 * Tear down @vm. 2720 * Unbind the VM and remove all bos from the vm bo list 2721 */ 2722 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2723 { 2724 struct amdgpu_bo_va_mapping *mapping, *tmp; 2725 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2726 struct amdgpu_bo *root; 2727 unsigned long flags; 2728 int i; 2729 2730 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2731 2732 root = amdgpu_bo_ref(vm->root.bo); 2733 amdgpu_bo_reserve(root, true); 2734 amdgpu_vm_set_pasid(adev, vm, 0); 2735 dma_fence_wait(vm->last_unlocked, false); 2736 dma_fence_put(vm->last_unlocked); 2737 dma_fence_wait(vm->last_tlb_flush, false); 2738 /* Make sure that all fence callbacks have completed */ 2739 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2740 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2741 dma_fence_put(vm->last_tlb_flush); 2742 2743 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2744 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2745 amdgpu_vm_prt_fini(adev, vm); 2746 prt_fini_needed = false; 2747 } 2748 2749 list_del(&mapping->list); 2750 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2751 } 2752 2753 amdgpu_vm_pt_free_root(adev, vm); 2754 amdgpu_bo_unreserve(root); 2755 amdgpu_bo_unref(&root); 2756 WARN_ON(vm->root.bo); 2757 2758 amdgpu_vm_fini_entities(vm); 2759 2760 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2761 dev_err(adev->dev, "still active bo inside vm\n"); 2762 } 2763 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2764 &vm->va.rb_root, rb) { 2765 /* Don't remove the mapping here, we don't want to trigger a 2766 * rebalance and the tree is about to be destroyed anyway. 2767 */ 2768 list_del(&mapping->list); 2769 kfree(mapping); 2770 } 2771 2772 dma_fence_put(vm->last_update); 2773 2774 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2775 if (vm->reserved_vmid[i]) { 2776 amdgpu_vmid_free_reserved(adev, i); 2777 vm->reserved_vmid[i] = false; 2778 } 2779 } 2780 2781 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2782 2783 if (!amdgpu_vm_stats_is_zero(vm)) { 2784 struct amdgpu_task_info *ti = vm->task_info; 2785 2786 dev_warn(adev->dev, 2787 "VM memory stats for proc %s(%d) task %s(%d) is non-zero when fini\n", 2788 ti->process_name, ti->task.pid, ti->task.comm, ti->tgid); 2789 } 2790 2791 amdgpu_vm_put_task_info(vm->task_info); 2792 } 2793 2794 /** 2795 * amdgpu_vm_manager_init - init the VM manager 2796 * 2797 * @adev: amdgpu_device pointer 2798 * 2799 * Initialize the VM manager structures 2800 */ 2801 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2802 { 2803 unsigned i; 2804 2805 /* Concurrent flushes are only possible starting with Vega10 and 2806 * are broken on Navi10 and Navi14. 2807 */ 2808 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2809 adev->asic_type == CHIP_NAVI10 || 2810 adev->asic_type == CHIP_NAVI14); 2811 amdgpu_vmid_mgr_init(adev); 2812 2813 adev->vm_manager.fence_context = 2814 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2815 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2816 adev->vm_manager.seqno[i] = 0; 2817 2818 spin_lock_init(&adev->vm_manager.prt_lock); 2819 atomic_set(&adev->vm_manager.num_prt_users, 0); 2820 2821 /* If not overridden by the user, by default, only in large BAR systems 2822 * Compute VM tables will be updated by CPU 2823 */ 2824 #ifdef CONFIG_X86_64 2825 if (amdgpu_vm_update_mode == -1) { 2826 /* For asic with VF MMIO access protection 2827 * avoid using CPU for VM table updates 2828 */ 2829 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2830 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2831 adev->vm_manager.vm_update_mode = 2832 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2833 else 2834 adev->vm_manager.vm_update_mode = 0; 2835 } else 2836 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2837 #else 2838 adev->vm_manager.vm_update_mode = 0; 2839 #endif 2840 2841 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2842 } 2843 2844 /** 2845 * amdgpu_vm_manager_fini - cleanup VM manager 2846 * 2847 * @adev: amdgpu_device pointer 2848 * 2849 * Cleanup the VM manager and free resources. 2850 */ 2851 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2852 { 2853 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2854 xa_destroy(&adev->vm_manager.pasids); 2855 2856 amdgpu_vmid_mgr_fini(adev); 2857 } 2858 2859 /** 2860 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2861 * 2862 * @dev: drm device pointer 2863 * @data: drm_amdgpu_vm 2864 * @filp: drm file pointer 2865 * 2866 * Returns: 2867 * 0 for success, -errno for errors. 2868 */ 2869 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2870 { 2871 union drm_amdgpu_vm *args = data; 2872 struct amdgpu_device *adev = drm_to_adev(dev); 2873 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2874 2875 /* No valid flags defined yet */ 2876 if (args->in.flags) 2877 return -EINVAL; 2878 2879 switch (args->in.op) { 2880 case AMDGPU_VM_OP_RESERVE_VMID: 2881 /* We only have requirement to reserve vmid from gfxhub */ 2882 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2883 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2884 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2885 } 2886 2887 break; 2888 case AMDGPU_VM_OP_UNRESERVE_VMID: 2889 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2890 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2891 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2892 } 2893 break; 2894 default: 2895 return -EINVAL; 2896 } 2897 2898 return 0; 2899 } 2900 2901 /** 2902 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2903 * @adev: amdgpu device pointer 2904 * @pasid: PASID of the VM 2905 * @ts: Timestamp of the fault 2906 * @vmid: VMID, only used for GFX 9.4.3. 2907 * @node_id: Node_id received in IH cookie. Only applicable for 2908 * GFX 9.4.3. 2909 * @addr: Address of the fault 2910 * @write_fault: true is write fault, false is read fault 2911 * 2912 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2913 * shouldn't be reported any more. 2914 */ 2915 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2916 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2917 bool write_fault) 2918 { 2919 bool is_compute_context = false; 2920 struct amdgpu_bo *root; 2921 unsigned long irqflags; 2922 uint64_t value, flags; 2923 struct amdgpu_vm *vm; 2924 int r; 2925 2926 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2927 vm = xa_load(&adev->vm_manager.pasids, pasid); 2928 if (vm) { 2929 root = amdgpu_bo_ref(vm->root.bo); 2930 is_compute_context = vm->is_compute_context; 2931 } else { 2932 root = NULL; 2933 } 2934 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2935 2936 if (!root) 2937 return false; 2938 2939 addr /= AMDGPU_GPU_PAGE_SIZE; 2940 2941 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2942 node_id, addr, ts, write_fault)) { 2943 amdgpu_bo_unref(&root); 2944 return true; 2945 } 2946 2947 r = amdgpu_bo_reserve(root, true); 2948 if (r) 2949 goto error_unref; 2950 2951 /* Double check that the VM still exists */ 2952 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2953 vm = xa_load(&adev->vm_manager.pasids, pasid); 2954 if (vm && vm->root.bo != root) 2955 vm = NULL; 2956 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2957 if (!vm) 2958 goto error_unlock; 2959 2960 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2961 AMDGPU_PTE_SYSTEM; 2962 2963 if (is_compute_context) { 2964 /* Intentionally setting invalid PTE flag 2965 * combination to force a no-retry-fault 2966 */ 2967 flags = AMDGPU_VM_NORETRY_FLAGS; 2968 value = 0; 2969 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2970 /* Redirect the access to the dummy page */ 2971 value = adev->dummy_page_addr; 2972 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2973 AMDGPU_PTE_WRITEABLE; 2974 2975 } else { 2976 /* Let the hw retry silently on the PTE */ 2977 value = 0; 2978 } 2979 2980 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2981 if (r) { 2982 pr_debug("failed %d to reserve fence slot\n", r); 2983 goto error_unlock; 2984 } 2985 2986 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2987 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2988 if (r) 2989 goto error_unlock; 2990 2991 r = amdgpu_vm_update_pdes(adev, vm, true); 2992 2993 error_unlock: 2994 amdgpu_bo_unreserve(root); 2995 if (r < 0) 2996 dev_err(adev->dev, "Can't handle page fault (%d)\n", r); 2997 2998 error_unref: 2999 amdgpu_bo_unref(&root); 3000 3001 return false; 3002 } 3003 3004 #if defined(CONFIG_DEBUG_FS) 3005 /** 3006 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3007 * 3008 * @vm: Requested VM for printing BO info 3009 * @m: debugfs file 3010 * 3011 * Print BO information in debugfs file for the VM 3012 */ 3013 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3014 { 3015 struct amdgpu_bo_va *bo_va, *tmp; 3016 u64 total_idle = 0; 3017 u64 total_evicted = 0; 3018 u64 total_relocated = 0; 3019 u64 total_moved = 0; 3020 u64 total_invalidated = 0; 3021 u64 total_done = 0; 3022 unsigned int total_idle_objs = 0; 3023 unsigned int total_evicted_objs = 0; 3024 unsigned int total_relocated_objs = 0; 3025 unsigned int total_moved_objs = 0; 3026 unsigned int total_invalidated_objs = 0; 3027 unsigned int total_done_objs = 0; 3028 unsigned int id = 0; 3029 3030 spin_lock(&vm->status_lock); 3031 seq_puts(m, "\tIdle BOs:\n"); 3032 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3033 if (!bo_va->base.bo) 3034 continue; 3035 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3036 } 3037 total_idle_objs = id; 3038 id = 0; 3039 3040 seq_puts(m, "\tEvicted BOs:\n"); 3041 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3042 if (!bo_va->base.bo) 3043 continue; 3044 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3045 } 3046 total_evicted_objs = id; 3047 id = 0; 3048 3049 seq_puts(m, "\tRelocated BOs:\n"); 3050 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3051 if (!bo_va->base.bo) 3052 continue; 3053 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3054 } 3055 total_relocated_objs = id; 3056 id = 0; 3057 3058 seq_puts(m, "\tMoved BOs:\n"); 3059 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3060 if (!bo_va->base.bo) 3061 continue; 3062 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3063 } 3064 total_moved_objs = id; 3065 id = 0; 3066 3067 seq_puts(m, "\tInvalidated BOs:\n"); 3068 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3069 if (!bo_va->base.bo) 3070 continue; 3071 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3072 } 3073 total_invalidated_objs = id; 3074 id = 0; 3075 3076 seq_puts(m, "\tDone BOs:\n"); 3077 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3078 if (!bo_va->base.bo) 3079 continue; 3080 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3081 } 3082 spin_unlock(&vm->status_lock); 3083 total_done_objs = id; 3084 3085 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3086 total_idle_objs); 3087 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3088 total_evicted_objs); 3089 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3090 total_relocated_objs); 3091 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3092 total_moved_objs); 3093 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3094 total_invalidated_objs); 3095 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3096 total_done_objs); 3097 } 3098 #endif 3099 3100 /** 3101 * amdgpu_vm_update_fault_cache - update cached fault into. 3102 * @adev: amdgpu device pointer 3103 * @pasid: PASID of the VM 3104 * @addr: Address of the fault 3105 * @status: GPUVM fault status register 3106 * @vmhub: which vmhub got the fault 3107 * 3108 * Cache the fault info for later use by userspace in debugging. 3109 */ 3110 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 3111 unsigned int pasid, 3112 uint64_t addr, 3113 uint32_t status, 3114 unsigned int vmhub) 3115 { 3116 struct amdgpu_vm *vm; 3117 unsigned long flags; 3118 3119 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3120 3121 vm = xa_load(&adev->vm_manager.pasids, pasid); 3122 /* Don't update the fault cache if status is 0. In the multiple 3123 * fault case, subsequent faults will return a 0 status which is 3124 * useless for userspace and replaces the useful fault status, so 3125 * only update if status is non-0. 3126 */ 3127 if (vm && status) { 3128 vm->fault_info.addr = addr; 3129 vm->fault_info.status = status; 3130 /* 3131 * Update the fault information globally for later usage 3132 * when vm could be stale or freed. 3133 */ 3134 adev->vm_manager.fault_info.addr = addr; 3135 adev->vm_manager.fault_info.vmhub = vmhub; 3136 adev->vm_manager.fault_info.status = status; 3137 3138 if (AMDGPU_IS_GFXHUB(vmhub)) { 3139 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3140 vm->fault_info.vmhub |= 3141 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3142 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3143 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3144 vm->fault_info.vmhub |= 3145 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3146 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3147 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3148 vm->fault_info.vmhub |= 3149 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3150 } else { 3151 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3152 } 3153 } 3154 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3155 } 3156 3157 /** 3158 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3159 * 3160 * @vm: VM to test against. 3161 * @bo: BO to be tested. 3162 * 3163 * Returns true if the BO shares the dma_resv object with the root PD and is 3164 * always guaranteed to be valid inside the VM. 3165 */ 3166 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3167 { 3168 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3169 } 3170 3171 void amdgpu_vm_print_task_info(struct amdgpu_device *adev, 3172 struct amdgpu_task_info *task_info) 3173 { 3174 dev_err(adev->dev, 3175 " Process %s pid %d thread %s pid %d\n", 3176 task_info->process_name, task_info->tgid, 3177 task_info->task.comm, task_info->task.pid); 3178 } 3179