xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 40ef288f90f962998f272630454d10a409554fb8)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When execting a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /**
92  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
93  *
94  * @adev: amdgpu_device pointer
95  * @vm: amdgpu_vm pointer
96  * @pasid: the pasid the VM is using on this GPU
97  *
98  * Set the pasid this VM is using on this GPU, can also be used to remove the
99  * pasid by passing in zero.
100  *
101  */
102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
103 			u32 pasid)
104 {
105 	int r;
106 
107 	if (vm->pasid == pasid)
108 		return 0;
109 
110 	if (vm->pasid) {
111 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
112 		if (r < 0)
113 			return r;
114 
115 		vm->pasid = 0;
116 	}
117 
118 	if (pasid) {
119 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
120 					GFP_KERNEL));
121 		if (r < 0)
122 			return r;
123 
124 		vm->pasid = pasid;
125 	}
126 
127 
128 	return 0;
129 }
130 
131 /*
132  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
133  * happens while holding this lock anywhere to prevent deadlocks when
134  * an MMU notifier runs in reclaim-FS context.
135  */
136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
137 {
138 	mutex_lock(&vm->eviction_lock);
139 	vm->saved_flags = memalloc_noreclaim_save();
140 }
141 
142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
143 {
144 	if (mutex_trylock(&vm->eviction_lock)) {
145 		vm->saved_flags = memalloc_noreclaim_save();
146 		return 1;
147 	}
148 	return 0;
149 }
150 
151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
152 {
153 	memalloc_noreclaim_restore(vm->saved_flags);
154 	mutex_unlock(&vm->eviction_lock);
155 }
156 
157 /**
158  * amdgpu_vm_level_shift - return the addr shift for each level
159  *
160  * @adev: amdgpu_device pointer
161  * @level: VMPT level
162  *
163  * Returns:
164  * The number of bits the pfn needs to be right shifted for a level.
165  */
166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
167 				      unsigned level)
168 {
169 	switch (level) {
170 	case AMDGPU_VM_PDB2:
171 	case AMDGPU_VM_PDB1:
172 	case AMDGPU_VM_PDB0:
173 		return 9 * (AMDGPU_VM_PDB0 - level) +
174 			adev->vm_manager.block_size;
175 	case AMDGPU_VM_PTB:
176 		return 0;
177 	default:
178 		return ~0;
179 	}
180 }
181 
182 /**
183  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
184  *
185  * @adev: amdgpu_device pointer
186  * @level: VMPT level
187  *
188  * Returns:
189  * The number of entries in a page directory or page table.
190  */
191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
192 				      unsigned level)
193 {
194 	unsigned shift = amdgpu_vm_level_shift(adev,
195 					       adev->vm_manager.root_level);
196 
197 	if (level == adev->vm_manager.root_level)
198 		/* For the root directory */
199 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
200 			>> shift;
201 	else if (level != AMDGPU_VM_PTB)
202 		/* Everything in between */
203 		return 512;
204 	else
205 		/* For the page tables on the leaves */
206 		return AMDGPU_VM_PTE_COUNT(adev);
207 }
208 
209 /**
210  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
211  *
212  * @adev: amdgpu_device pointer
213  *
214  * Returns:
215  * The number of entries in the root page directory which needs the ATS setting.
216  */
217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
218 {
219 	unsigned shift;
220 
221 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
222 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
223 }
224 
225 /**
226  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
227  *
228  * @adev: amdgpu_device pointer
229  * @level: VMPT level
230  *
231  * Returns:
232  * The mask to extract the entry number of a PD/PT from an address.
233  */
234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
235 				       unsigned int level)
236 {
237 	if (level <= adev->vm_manager.root_level)
238 		return 0xffffffff;
239 	else if (level != AMDGPU_VM_PTB)
240 		return 0x1ff;
241 	else
242 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
243 }
244 
245 /**
246  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
247  *
248  * @adev: amdgpu_device pointer
249  * @level: VMPT level
250  *
251  * Returns:
252  * The size of the BO for a page directory or page table in bytes.
253  */
254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
255 {
256 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
257 }
258 
259 /**
260  * amdgpu_vm_bo_evicted - vm_bo is evicted
261  *
262  * @vm_bo: vm_bo which is evicted
263  *
264  * State for PDs/PTs and per VM BOs which are not at the location they should
265  * be.
266  */
267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 	struct amdgpu_vm *vm = vm_bo->vm;
270 	struct amdgpu_bo *bo = vm_bo->bo;
271 
272 	vm_bo->moved = true;
273 	if (bo->tbo.type == ttm_bo_type_kernel)
274 		list_move(&vm_bo->vm_status, &vm->evicted);
275 	else
276 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
277 }
278 /**
279  * amdgpu_vm_bo_moved - vm_bo is moved
280  *
281  * @vm_bo: vm_bo which is moved
282  *
283  * State for per VM BOs which are moved, but that change is not yet reflected
284  * in the page tables.
285  */
286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
289 }
290 
291 /**
292  * amdgpu_vm_bo_idle - vm_bo is idle
293  *
294  * @vm_bo: vm_bo which is now idle
295  *
296  * State for PDs/PTs and per VM BOs which have gone through the state machine
297  * and are now idle.
298  */
299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
300 {
301 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
302 	vm_bo->moved = false;
303 }
304 
305 /**
306  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
307  *
308  * @vm_bo: vm_bo which is now invalidated
309  *
310  * State for normal BOs which are invalidated and that change not yet reflected
311  * in the PTs.
312  */
313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
314 {
315 	spin_lock(&vm_bo->vm->invalidated_lock);
316 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
317 	spin_unlock(&vm_bo->vm->invalidated_lock);
318 }
319 
320 /**
321  * amdgpu_vm_bo_relocated - vm_bo is reloacted
322  *
323  * @vm_bo: vm_bo which is relocated
324  *
325  * State for PDs/PTs which needs to update their parent PD.
326  * For the root PD, just move to idle state.
327  */
328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
329 {
330 	if (vm_bo->bo->parent)
331 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
332 	else
333 		amdgpu_vm_bo_idle(vm_bo);
334 }
335 
336 /**
337  * amdgpu_vm_bo_done - vm_bo is done
338  *
339  * @vm_bo: vm_bo which is now done
340  *
341  * State for normal BOs which are invalidated and that change has been updated
342  * in the PTs.
343  */
344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
345 {
346 	spin_lock(&vm_bo->vm->invalidated_lock);
347 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
348 	spin_unlock(&vm_bo->vm->invalidated_lock);
349 }
350 
351 /**
352  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
353  *
354  * @base: base structure for tracking BO usage in a VM
355  * @vm: vm to which bo is to be added
356  * @bo: amdgpu buffer object
357  *
358  * Initialize a bo_va_base structure and add it to the appropriate lists
359  *
360  */
361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
362 				   struct amdgpu_vm *vm,
363 				   struct amdgpu_bo *bo)
364 {
365 	base->vm = vm;
366 	base->bo = bo;
367 	base->next = NULL;
368 	INIT_LIST_HEAD(&base->vm_status);
369 
370 	if (!bo)
371 		return;
372 	base->next = bo->vm_bo;
373 	bo->vm_bo = base;
374 
375 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
376 		return;
377 
378 	vm->bulk_moveable = false;
379 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
380 		amdgpu_vm_bo_relocated(base);
381 	else
382 		amdgpu_vm_bo_idle(base);
383 
384 	if (bo->preferred_domains &
385 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
386 		return;
387 
388 	/*
389 	 * we checked all the prerequisites, but it looks like this per vm bo
390 	 * is currently evicted. add the bo to the evicted list to make sure it
391 	 * is validated on next vm use to avoid fault.
392 	 * */
393 	amdgpu_vm_bo_evicted(base);
394 }
395 
396 /**
397  * amdgpu_vm_pt_parent - get the parent page directory
398  *
399  * @pt: child page table
400  *
401  * Helper to get the parent entry for the child page table. NULL if we are at
402  * the root page directory.
403  */
404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
405 {
406 	struct amdgpu_bo *parent = pt->bo->parent;
407 
408 	if (!parent)
409 		return NULL;
410 
411 	return parent->vm_bo;
412 }
413 
414 /*
415  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
416  */
417 struct amdgpu_vm_pt_cursor {
418 	uint64_t pfn;
419 	struct amdgpu_vm_bo_base *parent;
420 	struct amdgpu_vm_bo_base *entry;
421 	unsigned level;
422 };
423 
424 /**
425  * amdgpu_vm_pt_start - start PD/PT walk
426  *
427  * @adev: amdgpu_device pointer
428  * @vm: amdgpu_vm structure
429  * @start: start address of the walk
430  * @cursor: state to initialize
431  *
432  * Initialize a amdgpu_vm_pt_cursor to start a walk.
433  */
434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
435 			       struct amdgpu_vm *vm, uint64_t start,
436 			       struct amdgpu_vm_pt_cursor *cursor)
437 {
438 	cursor->pfn = start;
439 	cursor->parent = NULL;
440 	cursor->entry = &vm->root;
441 	cursor->level = adev->vm_manager.root_level;
442 }
443 
444 /**
445  * amdgpu_vm_pt_descendant - go to child node
446  *
447  * @adev: amdgpu_device pointer
448  * @cursor: current state
449  *
450  * Walk to the child node of the current node.
451  * Returns:
452  * True if the walk was possible, false otherwise.
453  */
454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
455 				    struct amdgpu_vm_pt_cursor *cursor)
456 {
457 	unsigned mask, shift, idx;
458 
459 	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
460 	    !cursor->entry->bo)
461 		return false;
462 
463 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
464 	shift = amdgpu_vm_level_shift(adev, cursor->level);
465 
466 	++cursor->level;
467 	idx = (cursor->pfn >> shift) & mask;
468 	cursor->parent = cursor->entry;
469 	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
470 	return true;
471 }
472 
473 /**
474  * amdgpu_vm_pt_sibling - go to sibling node
475  *
476  * @adev: amdgpu_device pointer
477  * @cursor: current state
478  *
479  * Walk to the sibling node of the current node.
480  * Returns:
481  * True if the walk was possible, false otherwise.
482  */
483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
484 				 struct amdgpu_vm_pt_cursor *cursor)
485 {
486 	unsigned shift, num_entries;
487 
488 	/* Root doesn't have a sibling */
489 	if (!cursor->parent)
490 		return false;
491 
492 	/* Go to our parents and see if we got a sibling */
493 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
494 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
495 
496 	if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
497 		return false;
498 
499 	cursor->pfn += 1ULL << shift;
500 	cursor->pfn &= ~((1ULL << shift) - 1);
501 	++cursor->entry;
502 	return true;
503 }
504 
505 /**
506  * amdgpu_vm_pt_ancestor - go to parent node
507  *
508  * @cursor: current state
509  *
510  * Walk to the parent node of the current node.
511  * Returns:
512  * True if the walk was possible, false otherwise.
513  */
514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
515 {
516 	if (!cursor->parent)
517 		return false;
518 
519 	--cursor->level;
520 	cursor->entry = cursor->parent;
521 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
522 	return true;
523 }
524 
525 /**
526  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
527  *
528  * @adev: amdgpu_device pointer
529  * @cursor: current state
530  *
531  * Walk the PD/PT tree to the next node.
532  */
533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
534 			      struct amdgpu_vm_pt_cursor *cursor)
535 {
536 	/* First try a newborn child */
537 	if (amdgpu_vm_pt_descendant(adev, cursor))
538 		return;
539 
540 	/* If that didn't worked try to find a sibling */
541 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
542 		/* No sibling, go to our parents and grandparents */
543 		if (!amdgpu_vm_pt_ancestor(cursor)) {
544 			cursor->pfn = ~0ll;
545 			return;
546 		}
547 	}
548 }
549 
550 /**
551  * amdgpu_vm_pt_first_dfs - start a deep first search
552  *
553  * @adev: amdgpu_device structure
554  * @vm: amdgpu_vm structure
555  * @start: optional cursor to start with
556  * @cursor: state to initialize
557  *
558  * Starts a deep first traversal of the PD/PT tree.
559  */
560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
561 				   struct amdgpu_vm *vm,
562 				   struct amdgpu_vm_pt_cursor *start,
563 				   struct amdgpu_vm_pt_cursor *cursor)
564 {
565 	if (start)
566 		*cursor = *start;
567 	else
568 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
569 	while (amdgpu_vm_pt_descendant(adev, cursor));
570 }
571 
572 /**
573  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
574  *
575  * @start: starting point for the search
576  * @entry: current entry
577  *
578  * Returns:
579  * True when the search should continue, false otherwise.
580  */
581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
582 				      struct amdgpu_vm_bo_base *entry)
583 {
584 	return entry && (!start || entry != start->entry);
585 }
586 
587 /**
588  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
589  *
590  * @adev: amdgpu_device structure
591  * @cursor: current state
592  *
593  * Move the cursor to the next node in a deep first search.
594  */
595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
596 				  struct amdgpu_vm_pt_cursor *cursor)
597 {
598 	if (!cursor->entry)
599 		return;
600 
601 	if (!cursor->parent)
602 		cursor->entry = NULL;
603 	else if (amdgpu_vm_pt_sibling(adev, cursor))
604 		while (amdgpu_vm_pt_descendant(adev, cursor));
605 	else
606 		amdgpu_vm_pt_ancestor(cursor);
607 }
608 
609 /*
610  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
611  */
612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
613 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
614 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
615 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
616 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
617 
618 /**
619  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
620  *
621  * @vm: vm providing the BOs
622  * @validated: head of validation list
623  * @entry: entry to add
624  *
625  * Add the page directory to the list of BOs to
626  * validate for command submission.
627  */
628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
629 			 struct list_head *validated,
630 			 struct amdgpu_bo_list_entry *entry)
631 {
632 	entry->priority = 0;
633 	entry->tv.bo = &vm->root.bo->tbo;
634 	/* Two for VM updates, one for TTM and one for the CS job */
635 	entry->tv.num_shared = 4;
636 	entry->user_pages = NULL;
637 	list_add(&entry->tv.head, validated);
638 }
639 
640 /**
641  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
642  *
643  * @bo: BO which was removed from the LRU
644  *
645  * Make sure the bulk_moveable flag is updated when a BO is removed from the
646  * LRU.
647  */
648 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
649 {
650 	struct amdgpu_bo *abo;
651 	struct amdgpu_vm_bo_base *bo_base;
652 
653 	if (!amdgpu_bo_is_amdgpu_bo(bo))
654 		return;
655 
656 	if (bo->pin_count)
657 		return;
658 
659 	abo = ttm_to_amdgpu_bo(bo);
660 	if (!abo->parent)
661 		return;
662 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
663 		struct amdgpu_vm *vm = bo_base->vm;
664 
665 		if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
666 			vm->bulk_moveable = false;
667 	}
668 
669 }
670 /**
671  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
672  *
673  * @adev: amdgpu device pointer
674  * @vm: vm providing the BOs
675  *
676  * Move all BOs to the end of LRU and remember their positions to put them
677  * together.
678  */
679 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
680 				struct amdgpu_vm *vm)
681 {
682 	struct amdgpu_vm_bo_base *bo_base;
683 
684 	if (vm->bulk_moveable) {
685 		spin_lock(&adev->mman.bdev.lru_lock);
686 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
687 		spin_unlock(&adev->mman.bdev.lru_lock);
688 		return;
689 	}
690 
691 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
692 
693 	spin_lock(&adev->mman.bdev.lru_lock);
694 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
695 		struct amdgpu_bo *bo = bo_base->bo;
696 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
697 
698 		if (!bo->parent)
699 			continue;
700 
701 		ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
702 					&vm->lru_bulk_move);
703 		if (shadow)
704 			ttm_bo_move_to_lru_tail(&shadow->tbo,
705 						shadow->tbo.resource,
706 						&vm->lru_bulk_move);
707 	}
708 	spin_unlock(&adev->mman.bdev.lru_lock);
709 
710 	vm->bulk_moveable = true;
711 }
712 
713 /**
714  * amdgpu_vm_validate_pt_bos - validate the page table BOs
715  *
716  * @adev: amdgpu device pointer
717  * @vm: vm providing the BOs
718  * @validate: callback to do the validation
719  * @param: parameter for the validation callback
720  *
721  * Validate the page table BOs on command submission if neccessary.
722  *
723  * Returns:
724  * Validation result.
725  */
726 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
727 			      int (*validate)(void *p, struct amdgpu_bo *bo),
728 			      void *param)
729 {
730 	struct amdgpu_vm_bo_base *bo_base, *tmp;
731 	int r;
732 
733 	vm->bulk_moveable &= list_empty(&vm->evicted);
734 
735 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
736 		struct amdgpu_bo *bo = bo_base->bo;
737 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
738 
739 		r = validate(param, bo);
740 		if (r)
741 			return r;
742 		if (shadow) {
743 			r = validate(param, shadow);
744 			if (r)
745 				return r;
746 		}
747 
748 		if (bo->tbo.type != ttm_bo_type_kernel) {
749 			amdgpu_vm_bo_moved(bo_base);
750 		} else {
751 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
752 			amdgpu_vm_bo_relocated(bo_base);
753 		}
754 	}
755 
756 	amdgpu_vm_eviction_lock(vm);
757 	vm->evicting = false;
758 	amdgpu_vm_eviction_unlock(vm);
759 
760 	return 0;
761 }
762 
763 /**
764  * amdgpu_vm_ready - check VM is ready for updates
765  *
766  * @vm: VM to check
767  *
768  * Check if all VM PDs/PTs are ready for updates
769  *
770  * Returns:
771  * True if eviction list is empty.
772  */
773 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
774 {
775 	return list_empty(&vm->evicted);
776 }
777 
778 /**
779  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
780  *
781  * @adev: amdgpu_device pointer
782  * @vm: VM to clear BO from
783  * @vmbo: BO to clear
784  * @immediate: use an immediate update
785  *
786  * Root PD needs to be reserved when calling this.
787  *
788  * Returns:
789  * 0 on success, errno otherwise.
790  */
791 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
792 			      struct amdgpu_vm *vm,
793 			      struct amdgpu_bo_vm *vmbo,
794 			      bool immediate)
795 {
796 	struct ttm_operation_ctx ctx = { true, false };
797 	unsigned level = adev->vm_manager.root_level;
798 	struct amdgpu_vm_update_params params;
799 	struct amdgpu_bo *ancestor = &vmbo->bo;
800 	struct amdgpu_bo *bo = &vmbo->bo;
801 	unsigned entries, ats_entries;
802 	uint64_t addr;
803 	int r;
804 
805 	/* Figure out our place in the hierarchy */
806 	if (ancestor->parent) {
807 		++level;
808 		while (ancestor->parent->parent) {
809 			++level;
810 			ancestor = ancestor->parent;
811 		}
812 	}
813 
814 	entries = amdgpu_bo_size(bo) / 8;
815 	if (!vm->pte_support_ats) {
816 		ats_entries = 0;
817 
818 	} else if (!bo->parent) {
819 		ats_entries = amdgpu_vm_num_ats_entries(adev);
820 		ats_entries = min(ats_entries, entries);
821 		entries -= ats_entries;
822 
823 	} else {
824 		struct amdgpu_vm_bo_base *pt;
825 
826 		pt = ancestor->vm_bo;
827 		ats_entries = amdgpu_vm_num_ats_entries(adev);
828 		if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
829 			ats_entries = 0;
830 		} else {
831 			ats_entries = entries;
832 			entries = 0;
833 		}
834 	}
835 
836 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
837 	if (r)
838 		return r;
839 
840 	if (vmbo->shadow) {
841 		struct amdgpu_bo *shadow = vmbo->shadow;
842 
843 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
844 		if (r)
845 			return r;
846 	}
847 
848 	r = vm->update_funcs->map_table(vmbo);
849 	if (r)
850 		return r;
851 
852 	memset(&params, 0, sizeof(params));
853 	params.adev = adev;
854 	params.vm = vm;
855 	params.immediate = immediate;
856 
857 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
858 	if (r)
859 		return r;
860 
861 	addr = 0;
862 	if (ats_entries) {
863 		uint64_t value = 0, flags;
864 
865 		flags = AMDGPU_PTE_DEFAULT_ATC;
866 		if (level != AMDGPU_VM_PTB) {
867 			/* Handle leaf PDEs as PTEs */
868 			flags |= AMDGPU_PDE_PTE;
869 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
870 		}
871 
872 		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
873 					     value, flags);
874 		if (r)
875 			return r;
876 
877 		addr += ats_entries * 8;
878 	}
879 
880 	if (entries) {
881 		uint64_t value = 0, flags = 0;
882 
883 		if (adev->asic_type >= CHIP_VEGA10) {
884 			if (level != AMDGPU_VM_PTB) {
885 				/* Handle leaf PDEs as PTEs */
886 				flags |= AMDGPU_PDE_PTE;
887 				amdgpu_gmc_get_vm_pde(adev, level,
888 						      &value, &flags);
889 			} else {
890 				/* Workaround for fault priority problem on GMC9 */
891 				flags = AMDGPU_PTE_EXECUTABLE;
892 			}
893 		}
894 
895 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
896 					     value, flags);
897 		if (r)
898 			return r;
899 	}
900 
901 	return vm->update_funcs->commit(&params, NULL);
902 }
903 
904 /**
905  * amdgpu_vm_pt_create - create bo for PD/PT
906  *
907  * @adev: amdgpu_device pointer
908  * @vm: requesting vm
909  * @level: the page table level
910  * @immediate: use a immediate update
911  * @vmbo: pointer to the buffer object pointer
912  */
913 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
914 			       struct amdgpu_vm *vm,
915 			       int level, bool immediate,
916 			       struct amdgpu_bo_vm **vmbo)
917 {
918 	struct amdgpu_bo_param bp;
919 	struct amdgpu_bo *bo;
920 	struct dma_resv *resv;
921 	unsigned int num_entries;
922 	int r;
923 
924 	memset(&bp, 0, sizeof(bp));
925 
926 	bp.size = amdgpu_vm_bo_size(adev, level);
927 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
928 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
929 	bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain);
930 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
931 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
932 
933 	if (level < AMDGPU_VM_PTB)
934 		num_entries = amdgpu_vm_num_entries(adev, level);
935 	else
936 		num_entries = 0;
937 
938 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
939 
940 	if (vm->use_cpu_for_update)
941 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
942 
943 	bp.type = ttm_bo_type_kernel;
944 	bp.no_wait_gpu = immediate;
945 	if (vm->root.bo)
946 		bp.resv = vm->root.bo->tbo.base.resv;
947 
948 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
949 	if (r)
950 		return r;
951 
952 	bo = &(*vmbo)->bo;
953 	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
954 		(*vmbo)->shadow = NULL;
955 		return 0;
956 	}
957 
958 	if (!bp.resv)
959 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
960 				      NULL));
961 	resv = bp.resv;
962 	memset(&bp, 0, sizeof(bp));
963 	bp.size = amdgpu_vm_bo_size(adev, level);
964 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
965 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
966 	bp.type = ttm_bo_type_kernel;
967 	bp.resv = bo->tbo.base.resv;
968 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
969 
970 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
971 
972 	if (!resv)
973 		dma_resv_unlock(bo->tbo.base.resv);
974 
975 	if (r) {
976 		amdgpu_bo_unref(&bo);
977 		return r;
978 	}
979 
980 	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
981 	amdgpu_bo_add_to_shadow_list(*vmbo);
982 
983 	return 0;
984 }
985 
986 /**
987  * amdgpu_vm_alloc_pts - Allocate a specific page table
988  *
989  * @adev: amdgpu_device pointer
990  * @vm: VM to allocate page tables for
991  * @cursor: Which page table to allocate
992  * @immediate: use an immediate update
993  *
994  * Make sure a specific page table or directory is allocated.
995  *
996  * Returns:
997  * 1 if page table needed to be allocated, 0 if page table was already
998  * allocated, negative errno if an error occurred.
999  */
1000 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
1001 			       struct amdgpu_vm *vm,
1002 			       struct amdgpu_vm_pt_cursor *cursor,
1003 			       bool immediate)
1004 {
1005 	struct amdgpu_vm_bo_base *entry = cursor->entry;
1006 	struct amdgpu_bo *pt_bo;
1007 	struct amdgpu_bo_vm *pt;
1008 	int r;
1009 
1010 	if (entry->bo)
1011 		return 0;
1012 
1013 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
1014 	if (r)
1015 		return r;
1016 
1017 	/* Keep a reference to the root directory to avoid
1018 	 * freeing them up in the wrong order.
1019 	 */
1020 	pt_bo = &pt->bo;
1021 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
1022 	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
1023 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
1024 	if (r)
1025 		goto error_free_pt;
1026 
1027 	return 0;
1028 
1029 error_free_pt:
1030 	amdgpu_bo_unref(&pt->shadow);
1031 	amdgpu_bo_unref(&pt_bo);
1032 	return r;
1033 }
1034 
1035 /**
1036  * amdgpu_vm_free_table - fre one PD/PT
1037  *
1038  * @entry: PDE to free
1039  */
1040 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1041 {
1042 	struct amdgpu_bo *shadow;
1043 
1044 	if (!entry->bo)
1045 		return;
1046 	shadow = amdgpu_bo_shadowed(entry->bo);
1047 	entry->bo->vm_bo = NULL;
1048 	list_del(&entry->vm_status);
1049 	amdgpu_bo_unref(&shadow);
1050 	amdgpu_bo_unref(&entry->bo);
1051 }
1052 
1053 /**
1054  * amdgpu_vm_free_pts - free PD/PT levels
1055  *
1056  * @adev: amdgpu device structure
1057  * @vm: amdgpu vm structure
1058  * @start: optional cursor where to start freeing PDs/PTs
1059  *
1060  * Free the page directory or page table level and all sub levels.
1061  */
1062 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1063 			       struct amdgpu_vm *vm,
1064 			       struct amdgpu_vm_pt_cursor *start)
1065 {
1066 	struct amdgpu_vm_pt_cursor cursor;
1067 	struct amdgpu_vm_bo_base *entry;
1068 
1069 	vm->bulk_moveable = false;
1070 
1071 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1072 		amdgpu_vm_free_table(entry);
1073 
1074 	if (start)
1075 		amdgpu_vm_free_table(start->entry);
1076 }
1077 
1078 /**
1079  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1080  *
1081  * @adev: amdgpu_device pointer
1082  */
1083 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1084 {
1085 	const struct amdgpu_ip_block *ip_block;
1086 	bool has_compute_vm_bug;
1087 	struct amdgpu_ring *ring;
1088 	int i;
1089 
1090 	has_compute_vm_bug = false;
1091 
1092 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1093 	if (ip_block) {
1094 		/* Compute has a VM bug for GFX version < 7.
1095 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1096 		if (ip_block->version->major <= 7)
1097 			has_compute_vm_bug = true;
1098 		else if (ip_block->version->major == 8)
1099 			if (adev->gfx.mec_fw_version < 673)
1100 				has_compute_vm_bug = true;
1101 	}
1102 
1103 	for (i = 0; i < adev->num_rings; i++) {
1104 		ring = adev->rings[i];
1105 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1106 			/* only compute rings */
1107 			ring->has_compute_vm_bug = has_compute_vm_bug;
1108 		else
1109 			ring->has_compute_vm_bug = false;
1110 	}
1111 }
1112 
1113 /**
1114  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1115  *
1116  * @ring: ring on which the job will be submitted
1117  * @job: job to submit
1118  *
1119  * Returns:
1120  * True if sync is needed.
1121  */
1122 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1123 				  struct amdgpu_job *job)
1124 {
1125 	struct amdgpu_device *adev = ring->adev;
1126 	unsigned vmhub = ring->funcs->vmhub;
1127 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1128 	struct amdgpu_vmid *id;
1129 	bool gds_switch_needed;
1130 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1131 
1132 	if (job->vmid == 0)
1133 		return false;
1134 	id = &id_mgr->ids[job->vmid];
1135 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1136 		id->gds_base != job->gds_base ||
1137 		id->gds_size != job->gds_size ||
1138 		id->gws_base != job->gws_base ||
1139 		id->gws_size != job->gws_size ||
1140 		id->oa_base != job->oa_base ||
1141 		id->oa_size != job->oa_size);
1142 
1143 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1144 		return true;
1145 
1146 	return vm_flush_needed || gds_switch_needed;
1147 }
1148 
1149 /**
1150  * amdgpu_vm_flush - hardware flush the vm
1151  *
1152  * @ring: ring to use for flush
1153  * @job:  related job
1154  * @need_pipe_sync: is pipe sync needed
1155  *
1156  * Emit a VM flush when it is necessary.
1157  *
1158  * Returns:
1159  * 0 on success, errno otherwise.
1160  */
1161 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1162 		    bool need_pipe_sync)
1163 {
1164 	struct amdgpu_device *adev = ring->adev;
1165 	unsigned vmhub = ring->funcs->vmhub;
1166 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1167 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1168 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1169 		id->gds_base != job->gds_base ||
1170 		id->gds_size != job->gds_size ||
1171 		id->gws_base != job->gws_base ||
1172 		id->gws_size != job->gws_size ||
1173 		id->oa_base != job->oa_base ||
1174 		id->oa_size != job->oa_size);
1175 	bool vm_flush_needed = job->vm_needs_flush;
1176 	struct dma_fence *fence = NULL;
1177 	bool pasid_mapping_needed = false;
1178 	unsigned patch_offset = 0;
1179 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1180 	int r;
1181 
1182 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1183 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1184 
1185 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1186 		gds_switch_needed = true;
1187 		vm_flush_needed = true;
1188 		pasid_mapping_needed = true;
1189 	}
1190 
1191 	mutex_lock(&id_mgr->lock);
1192 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1193 	    !dma_fence_is_signaled(id->pasid_mapping))
1194 		pasid_mapping_needed = true;
1195 	mutex_unlock(&id_mgr->lock);
1196 
1197 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1198 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1199 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1200 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1201 		ring->funcs->emit_wreg;
1202 
1203 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1204 		return 0;
1205 
1206 	if (ring->funcs->init_cond_exec)
1207 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1208 
1209 	if (need_pipe_sync)
1210 		amdgpu_ring_emit_pipeline_sync(ring);
1211 
1212 	if (vm_flush_needed) {
1213 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1214 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1215 	}
1216 
1217 	if (pasid_mapping_needed)
1218 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1219 
1220 	if (vm_flush_needed || pasid_mapping_needed) {
1221 		r = amdgpu_fence_emit(ring, &fence, 0);
1222 		if (r)
1223 			return r;
1224 	}
1225 
1226 	if (vm_flush_needed) {
1227 		mutex_lock(&id_mgr->lock);
1228 		dma_fence_put(id->last_flush);
1229 		id->last_flush = dma_fence_get(fence);
1230 		id->current_gpu_reset_count =
1231 			atomic_read(&adev->gpu_reset_counter);
1232 		mutex_unlock(&id_mgr->lock);
1233 	}
1234 
1235 	if (pasid_mapping_needed) {
1236 		mutex_lock(&id_mgr->lock);
1237 		id->pasid = job->pasid;
1238 		dma_fence_put(id->pasid_mapping);
1239 		id->pasid_mapping = dma_fence_get(fence);
1240 		mutex_unlock(&id_mgr->lock);
1241 	}
1242 	dma_fence_put(fence);
1243 
1244 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1245 		id->gds_base = job->gds_base;
1246 		id->gds_size = job->gds_size;
1247 		id->gws_base = job->gws_base;
1248 		id->gws_size = job->gws_size;
1249 		id->oa_base = job->oa_base;
1250 		id->oa_size = job->oa_size;
1251 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1252 					    job->gds_size, job->gws_base,
1253 					    job->gws_size, job->oa_base,
1254 					    job->oa_size);
1255 	}
1256 
1257 	if (ring->funcs->patch_cond_exec)
1258 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1259 
1260 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1261 	if (ring->funcs->emit_switch_buffer) {
1262 		amdgpu_ring_emit_switch_buffer(ring);
1263 		amdgpu_ring_emit_switch_buffer(ring);
1264 	}
1265 	return 0;
1266 }
1267 
1268 /**
1269  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1270  *
1271  * @vm: requested vm
1272  * @bo: requested buffer object
1273  *
1274  * Find @bo inside the requested vm.
1275  * Search inside the @bos vm list for the requested vm
1276  * Returns the found bo_va or NULL if none is found
1277  *
1278  * Object has to be reserved!
1279  *
1280  * Returns:
1281  * Found bo_va or NULL.
1282  */
1283 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1284 				       struct amdgpu_bo *bo)
1285 {
1286 	struct amdgpu_vm_bo_base *base;
1287 
1288 	for (base = bo->vm_bo; base; base = base->next) {
1289 		if (base->vm != vm)
1290 			continue;
1291 
1292 		return container_of(base, struct amdgpu_bo_va, base);
1293 	}
1294 	return NULL;
1295 }
1296 
1297 /**
1298  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1299  *
1300  * @pages_addr: optional DMA address to use for lookup
1301  * @addr: the unmapped addr
1302  *
1303  * Look up the physical address of the page that the pte resolves
1304  * to.
1305  *
1306  * Returns:
1307  * The pointer for the page table entry.
1308  */
1309 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1310 {
1311 	uint64_t result;
1312 
1313 	/* page table offset */
1314 	result = pages_addr[addr >> PAGE_SHIFT];
1315 
1316 	/* in case cpu page size != gpu page size*/
1317 	result |= addr & (~PAGE_MASK);
1318 
1319 	result &= 0xFFFFFFFFFFFFF000ULL;
1320 
1321 	return result;
1322 }
1323 
1324 /**
1325  * amdgpu_vm_update_pde - update a single level in the hierarchy
1326  *
1327  * @params: parameters for the update
1328  * @vm: requested vm
1329  * @entry: entry to update
1330  *
1331  * Makes sure the requested entry in parent is up to date.
1332  */
1333 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1334 				struct amdgpu_vm *vm,
1335 				struct amdgpu_vm_bo_base *entry)
1336 {
1337 	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1338 	struct amdgpu_bo *bo = parent->bo, *pbo;
1339 	uint64_t pde, pt, flags;
1340 	unsigned level;
1341 
1342 	for (level = 0, pbo = bo->parent; pbo; ++level)
1343 		pbo = pbo->parent;
1344 
1345 	level += params->adev->vm_manager.root_level;
1346 	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1347 	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1348 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1349 					1, 0, flags);
1350 }
1351 
1352 /**
1353  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1354  *
1355  * @adev: amdgpu_device pointer
1356  * @vm: related vm
1357  *
1358  * Mark all PD level as invalid after an error.
1359  */
1360 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1361 				     struct amdgpu_vm *vm)
1362 {
1363 	struct amdgpu_vm_pt_cursor cursor;
1364 	struct amdgpu_vm_bo_base *entry;
1365 
1366 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1367 		if (entry->bo && !entry->moved)
1368 			amdgpu_vm_bo_relocated(entry);
1369 }
1370 
1371 /**
1372  * amdgpu_vm_update_pdes - make sure that all directories are valid
1373  *
1374  * @adev: amdgpu_device pointer
1375  * @vm: requested vm
1376  * @immediate: submit immediately to the paging queue
1377  *
1378  * Makes sure all directories are up to date.
1379  *
1380  * Returns:
1381  * 0 for success, error for failure.
1382  */
1383 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1384 			  struct amdgpu_vm *vm, bool immediate)
1385 {
1386 	struct amdgpu_vm_update_params params;
1387 	int r;
1388 
1389 	if (list_empty(&vm->relocated))
1390 		return 0;
1391 
1392 	memset(&params, 0, sizeof(params));
1393 	params.adev = adev;
1394 	params.vm = vm;
1395 	params.immediate = immediate;
1396 
1397 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1398 	if (r)
1399 		return r;
1400 
1401 	while (!list_empty(&vm->relocated)) {
1402 		struct amdgpu_vm_bo_base *entry;
1403 
1404 		entry = list_first_entry(&vm->relocated,
1405 					 struct amdgpu_vm_bo_base,
1406 					 vm_status);
1407 		amdgpu_vm_bo_idle(entry);
1408 
1409 		r = amdgpu_vm_update_pde(&params, vm, entry);
1410 		if (r)
1411 			goto error;
1412 	}
1413 
1414 	r = vm->update_funcs->commit(&params, &vm->last_update);
1415 	if (r)
1416 		goto error;
1417 	return 0;
1418 
1419 error:
1420 	amdgpu_vm_invalidate_pds(adev, vm);
1421 	return r;
1422 }
1423 
1424 /*
1425  * amdgpu_vm_update_flags - figure out flags for PTE updates
1426  *
1427  * Make sure to set the right flags for the PTEs at the desired level.
1428  */
1429 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1430 				   struct amdgpu_bo_vm *pt, unsigned int level,
1431 				   uint64_t pe, uint64_t addr,
1432 				   unsigned int count, uint32_t incr,
1433 				   uint64_t flags)
1434 
1435 {
1436 	if (level != AMDGPU_VM_PTB) {
1437 		flags |= AMDGPU_PDE_PTE;
1438 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1439 
1440 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1441 		   !(flags & AMDGPU_PTE_VALID) &&
1442 		   !(flags & AMDGPU_PTE_PRT)) {
1443 
1444 		/* Workaround for fault priority problem on GMC9 */
1445 		flags |= AMDGPU_PTE_EXECUTABLE;
1446 	}
1447 
1448 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1449 					 flags);
1450 }
1451 
1452 /**
1453  * amdgpu_vm_fragment - get fragment for PTEs
1454  *
1455  * @params: see amdgpu_vm_update_params definition
1456  * @start: first PTE to handle
1457  * @end: last PTE to handle
1458  * @flags: hw mapping flags
1459  * @frag: resulting fragment size
1460  * @frag_end: end of this fragment
1461  *
1462  * Returns the first possible fragment for the start and end address.
1463  */
1464 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1465 			       uint64_t start, uint64_t end, uint64_t flags,
1466 			       unsigned int *frag, uint64_t *frag_end)
1467 {
1468 	/**
1469 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1470 	 * field in the PTE. When this field is set to a non-zero value, page
1471 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1472 	 * flags are considered valid for all PTEs within the fragment range
1473 	 * and corresponding mappings are assumed to be physically contiguous.
1474 	 *
1475 	 * The L1 TLB can store a single PTE for the whole fragment,
1476 	 * significantly increasing the space available for translation
1477 	 * caching. This leads to large improvements in throughput when the
1478 	 * TLB is under pressure.
1479 	 *
1480 	 * The L2 TLB distributes small and large fragments into two
1481 	 * asymmetric partitions. The large fragment cache is significantly
1482 	 * larger. Thus, we try to use large fragments wherever possible.
1483 	 * Userspace can support this by aligning virtual base address and
1484 	 * allocation size to the fragment size.
1485 	 *
1486 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1487 	 * is now directly feed with small/huge/giant pages from the walker.
1488 	 */
1489 	unsigned max_frag;
1490 
1491 	if (params->adev->asic_type < CHIP_VEGA10)
1492 		max_frag = params->adev->vm_manager.fragment_size;
1493 	else
1494 		max_frag = 31;
1495 
1496 	/* system pages are non continuously */
1497 	if (params->pages_addr) {
1498 		*frag = 0;
1499 		*frag_end = end;
1500 		return;
1501 	}
1502 
1503 	/* This intentionally wraps around if no bit is set */
1504 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1505 	if (*frag >= max_frag) {
1506 		*frag = max_frag;
1507 		*frag_end = end & ~((1ULL << max_frag) - 1);
1508 	} else {
1509 		*frag_end = start + (1 << *frag);
1510 	}
1511 }
1512 
1513 /**
1514  * amdgpu_vm_update_ptes - make sure that page tables are valid
1515  *
1516  * @params: see amdgpu_vm_update_params definition
1517  * @start: start of GPU address range
1518  * @end: end of GPU address range
1519  * @dst: destination address to map to, the next dst inside the function
1520  * @flags: mapping flags
1521  *
1522  * Update the page tables in the range @start - @end.
1523  *
1524  * Returns:
1525  * 0 for success, -EINVAL for failure.
1526  */
1527 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1528 				 uint64_t start, uint64_t end,
1529 				 uint64_t dst, uint64_t flags)
1530 {
1531 	struct amdgpu_device *adev = params->adev;
1532 	struct amdgpu_vm_pt_cursor cursor;
1533 	uint64_t frag_start = start, frag_end;
1534 	unsigned int frag;
1535 	int r;
1536 
1537 	/* figure out the initial fragment */
1538 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1539 
1540 	/* walk over the address space and update the PTs */
1541 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1542 	while (cursor.pfn < end) {
1543 		unsigned shift, parent_shift, mask;
1544 		uint64_t incr, entry_end, pe_start;
1545 		struct amdgpu_bo *pt;
1546 
1547 		if (!params->unlocked) {
1548 			/* make sure that the page tables covering the
1549 			 * address range are actually allocated
1550 			 */
1551 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1552 						&cursor, params->immediate);
1553 			if (r)
1554 				return r;
1555 		}
1556 
1557 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1558 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1559 		if (params->unlocked) {
1560 			/* Unlocked updates are only allowed on the leaves */
1561 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1562 				continue;
1563 		} else if (adev->asic_type < CHIP_VEGA10 &&
1564 			   (flags & AMDGPU_PTE_VALID)) {
1565 			/* No huge page support before GMC v9 */
1566 			if (cursor.level != AMDGPU_VM_PTB) {
1567 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1568 					return -ENOENT;
1569 				continue;
1570 			}
1571 		} else if (frag < shift) {
1572 			/* We can't use this level when the fragment size is
1573 			 * smaller than the address shift. Go to the next
1574 			 * child entry and try again.
1575 			 */
1576 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1577 				continue;
1578 		} else if (frag >= parent_shift) {
1579 			/* If the fragment size is even larger than the parent
1580 			 * shift we should go up one level and check it again.
1581 			 */
1582 			if (!amdgpu_vm_pt_ancestor(&cursor))
1583 				return -EINVAL;
1584 			continue;
1585 		}
1586 
1587 		pt = cursor.entry->bo;
1588 		if (!pt) {
1589 			/* We need all PDs and PTs for mapping something, */
1590 			if (flags & AMDGPU_PTE_VALID)
1591 				return -ENOENT;
1592 
1593 			/* but unmapping something can happen at a higher
1594 			 * level.
1595 			 */
1596 			if (!amdgpu_vm_pt_ancestor(&cursor))
1597 				return -EINVAL;
1598 
1599 			pt = cursor.entry->bo;
1600 			shift = parent_shift;
1601 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1602 				   1ULL << shift));
1603 		}
1604 
1605 		/* Looks good so far, calculate parameters for the update */
1606 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1607 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1608 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1609 		entry_end = ((uint64_t)mask + 1) << shift;
1610 		entry_end += cursor.pfn & ~(entry_end - 1);
1611 		entry_end = min(entry_end, end);
1612 
1613 		do {
1614 			struct amdgpu_vm *vm = params->vm;
1615 			uint64_t upd_end = min(entry_end, frag_end);
1616 			unsigned nptes = (upd_end - frag_start) >> shift;
1617 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1618 
1619 			/* This can happen when we set higher level PDs to
1620 			 * silent to stop fault floods.
1621 			 */
1622 			nptes = max(nptes, 1u);
1623 
1624 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1625 						    nptes, dst, incr, upd_flags,
1626 						    vm->task_info.pid,
1627 						    vm->immediate.fence_context);
1628 			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1629 					       cursor.level, pe_start, dst,
1630 					       nptes, incr, upd_flags);
1631 
1632 			pe_start += nptes * 8;
1633 			dst += nptes * incr;
1634 
1635 			frag_start = upd_end;
1636 			if (frag_start >= frag_end) {
1637 				/* figure out the next fragment */
1638 				amdgpu_vm_fragment(params, frag_start, end,
1639 						   flags, &frag, &frag_end);
1640 				if (frag < shift)
1641 					break;
1642 			}
1643 		} while (frag_start < entry_end);
1644 
1645 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1646 			/* Free all child entries.
1647 			 * Update the tables with the flags and addresses and free up subsequent
1648 			 * tables in the case of huge pages or freed up areas.
1649 			 * This is the maximum you can free, because all other page tables are not
1650 			 * completely covered by the range and so potentially still in use.
1651 			 */
1652 			while (cursor.pfn < frag_start) {
1653 				/* Make sure previous mapping is freed */
1654 				if (cursor.entry->bo) {
1655 					params->table_freed = true;
1656 					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1657 				}
1658 				amdgpu_vm_pt_next(adev, &cursor);
1659 			}
1660 
1661 		} else if (frag >= shift) {
1662 			/* or just move on to the next on the same level. */
1663 			amdgpu_vm_pt_next(adev, &cursor);
1664 		}
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 /**
1671  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1672  *
1673  * @adev: amdgpu_device pointer of the VM
1674  * @bo_adev: amdgpu_device pointer of the mapped BO
1675  * @vm: requested vm
1676  * @immediate: immediate submission in a page fault
1677  * @unlocked: unlocked invalidation during MM callback
1678  * @resv: fences we need to sync to
1679  * @start: start of mapped range
1680  * @last: last mapped entry
1681  * @flags: flags for the entries
1682  * @offset: offset into nodes and pages_addr
1683  * @res: ttm_resource to map
1684  * @pages_addr: DMA addresses to use for mapping
1685  * @fence: optional resulting fence
1686  * @table_freed: return true if page table is freed
1687  *
1688  * Fill in the page table entries between @start and @last.
1689  *
1690  * Returns:
1691  * 0 for success, -EINVAL for failure.
1692  */
1693 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1694 				struct amdgpu_device *bo_adev,
1695 				struct amdgpu_vm *vm, bool immediate,
1696 				bool unlocked, struct dma_resv *resv,
1697 				uint64_t start, uint64_t last,
1698 				uint64_t flags, uint64_t offset,
1699 				struct ttm_resource *res,
1700 				dma_addr_t *pages_addr,
1701 				struct dma_fence **fence,
1702 				bool *table_freed)
1703 {
1704 	struct amdgpu_vm_update_params params;
1705 	struct amdgpu_res_cursor cursor;
1706 	enum amdgpu_sync_mode sync_mode;
1707 	int r, idx;
1708 
1709 	if (!drm_dev_enter(&adev->ddev, &idx))
1710 		return -ENODEV;
1711 
1712 	memset(&params, 0, sizeof(params));
1713 	params.adev = adev;
1714 	params.vm = vm;
1715 	params.immediate = immediate;
1716 	params.pages_addr = pages_addr;
1717 	params.unlocked = unlocked;
1718 
1719 	/* Implicitly sync to command submissions in the same VM before
1720 	 * unmapping. Sync to moving fences before mapping.
1721 	 */
1722 	if (!(flags & AMDGPU_PTE_VALID))
1723 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1724 	else
1725 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1726 
1727 	amdgpu_vm_eviction_lock(vm);
1728 	if (vm->evicting) {
1729 		r = -EBUSY;
1730 		goto error_unlock;
1731 	}
1732 
1733 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1734 		struct dma_fence *tmp = dma_fence_get_stub();
1735 
1736 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1737 		swap(vm->last_unlocked, tmp);
1738 		dma_fence_put(tmp);
1739 	}
1740 
1741 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1742 	if (r)
1743 		goto error_unlock;
1744 
1745 	amdgpu_res_first(pages_addr ? NULL : res, offset,
1746 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1747 	while (cursor.remaining) {
1748 		uint64_t tmp, num_entries, addr;
1749 
1750 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1751 		if (pages_addr) {
1752 			bool contiguous = true;
1753 
1754 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1755 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1756 				uint64_t count;
1757 
1758 				contiguous = pages_addr[pfn + 1] ==
1759 					pages_addr[pfn] + PAGE_SIZE;
1760 
1761 				tmp = num_entries /
1762 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1763 				for (count = 2; count < tmp; ++count) {
1764 					uint64_t idx = pfn + count;
1765 
1766 					if (contiguous != (pages_addr[idx] ==
1767 					    pages_addr[idx - 1] + PAGE_SIZE))
1768 						break;
1769 				}
1770 				num_entries = count *
1771 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1772 			}
1773 
1774 			if (!contiguous) {
1775 				addr = cursor.start;
1776 				params.pages_addr = pages_addr;
1777 			} else {
1778 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1779 				params.pages_addr = NULL;
1780 			}
1781 
1782 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1783 			addr = bo_adev->vm_manager.vram_base_offset +
1784 				cursor.start;
1785 		} else {
1786 			addr = 0;
1787 		}
1788 
1789 		tmp = start + num_entries;
1790 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1791 		if (r)
1792 			goto error_unlock;
1793 
1794 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1795 		start = tmp;
1796 	}
1797 
1798 	r = vm->update_funcs->commit(&params, fence);
1799 
1800 	if (table_freed)
1801 		*table_freed = params.table_freed;
1802 
1803 error_unlock:
1804 	amdgpu_vm_eviction_unlock(vm);
1805 	drm_dev_exit(idx);
1806 	return r;
1807 }
1808 
1809 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1810 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1811 {
1812 	struct amdgpu_bo_va *bo_va, *tmp;
1813 
1814 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1815 		if (!bo_va->base.bo)
1816 			continue;
1817 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1818 				gtt_mem, cpu_mem);
1819 	}
1820 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1821 		if (!bo_va->base.bo)
1822 			continue;
1823 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1824 				gtt_mem, cpu_mem);
1825 	}
1826 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1827 		if (!bo_va->base.bo)
1828 			continue;
1829 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1830 				gtt_mem, cpu_mem);
1831 	}
1832 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1833 		if (!bo_va->base.bo)
1834 			continue;
1835 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1836 				gtt_mem, cpu_mem);
1837 	}
1838 	spin_lock(&vm->invalidated_lock);
1839 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1840 		if (!bo_va->base.bo)
1841 			continue;
1842 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1843 				gtt_mem, cpu_mem);
1844 	}
1845 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1846 		if (!bo_va->base.bo)
1847 			continue;
1848 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1849 				gtt_mem, cpu_mem);
1850 	}
1851 	spin_unlock(&vm->invalidated_lock);
1852 }
1853 /**
1854  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1855  *
1856  * @adev: amdgpu_device pointer
1857  * @bo_va: requested BO and VM object
1858  * @clear: if true clear the entries
1859  *
1860  * Fill in the page table entries for @bo_va.
1861  *
1862  * Returns:
1863  * 0 for success, -EINVAL for failure.
1864  */
1865 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1866 			bool clear)
1867 {
1868 	struct amdgpu_bo *bo = bo_va->base.bo;
1869 	struct amdgpu_vm *vm = bo_va->base.vm;
1870 	struct amdgpu_bo_va_mapping *mapping;
1871 	dma_addr_t *pages_addr = NULL;
1872 	struct ttm_resource *mem;
1873 	struct dma_fence **last_update;
1874 	struct dma_resv *resv;
1875 	uint64_t flags;
1876 	struct amdgpu_device *bo_adev = adev;
1877 	int r;
1878 
1879 	if (clear || !bo) {
1880 		mem = NULL;
1881 		resv = vm->root.bo->tbo.base.resv;
1882 	} else {
1883 		struct drm_gem_object *obj = &bo->tbo.base;
1884 
1885 		resv = bo->tbo.base.resv;
1886 		if (obj->import_attach && bo_va->is_xgmi) {
1887 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1888 			struct drm_gem_object *gobj = dma_buf->priv;
1889 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1890 
1891 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1892 				bo = gem_to_amdgpu_bo(gobj);
1893 		}
1894 		mem = bo->tbo.resource;
1895 		if (mem->mem_type == TTM_PL_TT ||
1896 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1897 			pages_addr = bo->tbo.ttm->dma_address;
1898 	}
1899 
1900 	if (bo) {
1901 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1902 
1903 		if (amdgpu_bo_encrypted(bo))
1904 			flags |= AMDGPU_PTE_TMZ;
1905 
1906 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1907 	} else {
1908 		flags = 0x0;
1909 	}
1910 
1911 	if (clear || (bo && bo->tbo.base.resv ==
1912 		      vm->root.bo->tbo.base.resv))
1913 		last_update = &vm->last_update;
1914 	else
1915 		last_update = &bo_va->last_pt_update;
1916 
1917 	if (!clear && bo_va->base.moved) {
1918 		bo_va->base.moved = false;
1919 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1920 
1921 	} else if (bo_va->cleared != clear) {
1922 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1923 	}
1924 
1925 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1926 		uint64_t update_flags = flags;
1927 
1928 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1929 		 * but in case of something, we filter the flags in first place
1930 		 */
1931 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1932 			update_flags &= ~AMDGPU_PTE_READABLE;
1933 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1934 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1935 
1936 		/* Apply ASIC specific mapping flags */
1937 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1938 
1939 		trace_amdgpu_vm_bo_update(mapping);
1940 
1941 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1942 						resv, mapping->start,
1943 						mapping->last, update_flags,
1944 						mapping->offset, mem,
1945 						pages_addr, last_update, NULL);
1946 		if (r)
1947 			return r;
1948 	}
1949 
1950 	/* If the BO is not in its preferred location add it back to
1951 	 * the evicted list so that it gets validated again on the
1952 	 * next command submission.
1953 	 */
1954 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1955 		uint32_t mem_type = bo->tbo.resource->mem_type;
1956 
1957 		if (!(bo->preferred_domains &
1958 		      amdgpu_mem_type_to_domain(mem_type)))
1959 			amdgpu_vm_bo_evicted(&bo_va->base);
1960 		else
1961 			amdgpu_vm_bo_idle(&bo_va->base);
1962 	} else {
1963 		amdgpu_vm_bo_done(&bo_va->base);
1964 	}
1965 
1966 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1967 	bo_va->cleared = clear;
1968 
1969 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1970 		list_for_each_entry(mapping, &bo_va->valids, list)
1971 			trace_amdgpu_vm_bo_mapping(mapping);
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 /**
1978  * amdgpu_vm_update_prt_state - update the global PRT state
1979  *
1980  * @adev: amdgpu_device pointer
1981  */
1982 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1983 {
1984 	unsigned long flags;
1985 	bool enable;
1986 
1987 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1988 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1989 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1990 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1991 }
1992 
1993 /**
1994  * amdgpu_vm_prt_get - add a PRT user
1995  *
1996  * @adev: amdgpu_device pointer
1997  */
1998 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1999 {
2000 	if (!adev->gmc.gmc_funcs->set_prt)
2001 		return;
2002 
2003 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2004 		amdgpu_vm_update_prt_state(adev);
2005 }
2006 
2007 /**
2008  * amdgpu_vm_prt_put - drop a PRT user
2009  *
2010  * @adev: amdgpu_device pointer
2011  */
2012 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2013 {
2014 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2015 		amdgpu_vm_update_prt_state(adev);
2016 }
2017 
2018 /**
2019  * amdgpu_vm_prt_cb - callback for updating the PRT status
2020  *
2021  * @fence: fence for the callback
2022  * @_cb: the callback function
2023  */
2024 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2025 {
2026 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2027 
2028 	amdgpu_vm_prt_put(cb->adev);
2029 	kfree(cb);
2030 }
2031 
2032 /**
2033  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2034  *
2035  * @adev: amdgpu_device pointer
2036  * @fence: fence for the callback
2037  */
2038 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2039 				 struct dma_fence *fence)
2040 {
2041 	struct amdgpu_prt_cb *cb;
2042 
2043 	if (!adev->gmc.gmc_funcs->set_prt)
2044 		return;
2045 
2046 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2047 	if (!cb) {
2048 		/* Last resort when we are OOM */
2049 		if (fence)
2050 			dma_fence_wait(fence, false);
2051 
2052 		amdgpu_vm_prt_put(adev);
2053 	} else {
2054 		cb->adev = adev;
2055 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2056 						     amdgpu_vm_prt_cb))
2057 			amdgpu_vm_prt_cb(fence, &cb->cb);
2058 	}
2059 }
2060 
2061 /**
2062  * amdgpu_vm_free_mapping - free a mapping
2063  *
2064  * @adev: amdgpu_device pointer
2065  * @vm: requested vm
2066  * @mapping: mapping to be freed
2067  * @fence: fence of the unmap operation
2068  *
2069  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2070  */
2071 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2072 				   struct amdgpu_vm *vm,
2073 				   struct amdgpu_bo_va_mapping *mapping,
2074 				   struct dma_fence *fence)
2075 {
2076 	if (mapping->flags & AMDGPU_PTE_PRT)
2077 		amdgpu_vm_add_prt_cb(adev, fence);
2078 	kfree(mapping);
2079 }
2080 
2081 /**
2082  * amdgpu_vm_prt_fini - finish all prt mappings
2083  *
2084  * @adev: amdgpu_device pointer
2085  * @vm: requested vm
2086  *
2087  * Register a cleanup callback to disable PRT support after VM dies.
2088  */
2089 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2090 {
2091 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2092 	struct dma_fence *excl, **shared;
2093 	unsigned i, shared_count;
2094 	int r;
2095 
2096 	r = dma_resv_get_fences(resv, &excl, &shared_count, &shared);
2097 	if (r) {
2098 		/* Not enough memory to grab the fence list, as last resort
2099 		 * block for all the fences to complete.
2100 		 */
2101 		dma_resv_wait_timeout(resv, true, false,
2102 						    MAX_SCHEDULE_TIMEOUT);
2103 		return;
2104 	}
2105 
2106 	/* Add a callback for each fence in the reservation object */
2107 	amdgpu_vm_prt_get(adev);
2108 	amdgpu_vm_add_prt_cb(adev, excl);
2109 
2110 	for (i = 0; i < shared_count; ++i) {
2111 		amdgpu_vm_prt_get(adev);
2112 		amdgpu_vm_add_prt_cb(adev, shared[i]);
2113 	}
2114 
2115 	kfree(shared);
2116 }
2117 
2118 /**
2119  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2120  *
2121  * @adev: amdgpu_device pointer
2122  * @vm: requested vm
2123  * @fence: optional resulting fence (unchanged if no work needed to be done
2124  * or if an error occurred)
2125  *
2126  * Make sure all freed BOs are cleared in the PT.
2127  * PTs have to be reserved and mutex must be locked!
2128  *
2129  * Returns:
2130  * 0 for success.
2131  *
2132  */
2133 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2134 			  struct amdgpu_vm *vm,
2135 			  struct dma_fence **fence)
2136 {
2137 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2138 	struct amdgpu_bo_va_mapping *mapping;
2139 	uint64_t init_pte_value = 0;
2140 	struct dma_fence *f = NULL;
2141 	int r;
2142 
2143 	while (!list_empty(&vm->freed)) {
2144 		mapping = list_first_entry(&vm->freed,
2145 			struct amdgpu_bo_va_mapping, list);
2146 		list_del(&mapping->list);
2147 
2148 		if (vm->pte_support_ats &&
2149 		    mapping->start < AMDGPU_GMC_HOLE_START)
2150 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2151 
2152 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2153 						resv, mapping->start,
2154 						mapping->last, init_pte_value,
2155 						0, NULL, NULL, &f, NULL);
2156 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2157 		if (r) {
2158 			dma_fence_put(f);
2159 			return r;
2160 		}
2161 	}
2162 
2163 	if (fence && f) {
2164 		dma_fence_put(*fence);
2165 		*fence = f;
2166 	} else {
2167 		dma_fence_put(f);
2168 	}
2169 
2170 	return 0;
2171 
2172 }
2173 
2174 /**
2175  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2176  *
2177  * @adev: amdgpu_device pointer
2178  * @vm: requested vm
2179  *
2180  * Make sure all BOs which are moved are updated in the PTs.
2181  *
2182  * Returns:
2183  * 0 for success.
2184  *
2185  * PTs have to be reserved!
2186  */
2187 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2188 			   struct amdgpu_vm *vm)
2189 {
2190 	struct amdgpu_bo_va *bo_va, *tmp;
2191 	struct dma_resv *resv;
2192 	bool clear;
2193 	int r;
2194 
2195 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2196 		/* Per VM BOs never need to bo cleared in the page tables */
2197 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2198 		if (r)
2199 			return r;
2200 	}
2201 
2202 	spin_lock(&vm->invalidated_lock);
2203 	while (!list_empty(&vm->invalidated)) {
2204 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2205 					 base.vm_status);
2206 		resv = bo_va->base.bo->tbo.base.resv;
2207 		spin_unlock(&vm->invalidated_lock);
2208 
2209 		/* Try to reserve the BO to avoid clearing its ptes */
2210 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2211 			clear = false;
2212 		/* Somebody else is using the BO right now */
2213 		else
2214 			clear = true;
2215 
2216 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2217 		if (r)
2218 			return r;
2219 
2220 		if (!clear)
2221 			dma_resv_unlock(resv);
2222 		spin_lock(&vm->invalidated_lock);
2223 	}
2224 	spin_unlock(&vm->invalidated_lock);
2225 
2226 	return 0;
2227 }
2228 
2229 /**
2230  * amdgpu_vm_bo_add - add a bo to a specific vm
2231  *
2232  * @adev: amdgpu_device pointer
2233  * @vm: requested vm
2234  * @bo: amdgpu buffer object
2235  *
2236  * Add @bo into the requested vm.
2237  * Add @bo to the list of bos associated with the vm
2238  *
2239  * Returns:
2240  * Newly added bo_va or NULL for failure
2241  *
2242  * Object has to be reserved!
2243  */
2244 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2245 				      struct amdgpu_vm *vm,
2246 				      struct amdgpu_bo *bo)
2247 {
2248 	struct amdgpu_bo_va *bo_va;
2249 
2250 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2251 	if (bo_va == NULL) {
2252 		return NULL;
2253 	}
2254 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2255 
2256 	bo_va->ref_count = 1;
2257 	INIT_LIST_HEAD(&bo_va->valids);
2258 	INIT_LIST_HEAD(&bo_va->invalids);
2259 
2260 	if (!bo)
2261 		return bo_va;
2262 
2263 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2264 		bo_va->is_xgmi = true;
2265 		/* Power up XGMI if it can be potentially used */
2266 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2267 	}
2268 
2269 	return bo_va;
2270 }
2271 
2272 
2273 /**
2274  * amdgpu_vm_bo_insert_map - insert a new mapping
2275  *
2276  * @adev: amdgpu_device pointer
2277  * @bo_va: bo_va to store the address
2278  * @mapping: the mapping to insert
2279  *
2280  * Insert a new mapping into all structures.
2281  */
2282 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2283 				    struct amdgpu_bo_va *bo_va,
2284 				    struct amdgpu_bo_va_mapping *mapping)
2285 {
2286 	struct amdgpu_vm *vm = bo_va->base.vm;
2287 	struct amdgpu_bo *bo = bo_va->base.bo;
2288 
2289 	mapping->bo_va = bo_va;
2290 	list_add(&mapping->list, &bo_va->invalids);
2291 	amdgpu_vm_it_insert(mapping, &vm->va);
2292 
2293 	if (mapping->flags & AMDGPU_PTE_PRT)
2294 		amdgpu_vm_prt_get(adev);
2295 
2296 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2297 	    !bo_va->base.moved) {
2298 		list_move(&bo_va->base.vm_status, &vm->moved);
2299 	}
2300 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2301 }
2302 
2303 /**
2304  * amdgpu_vm_bo_map - map bo inside a vm
2305  *
2306  * @adev: amdgpu_device pointer
2307  * @bo_va: bo_va to store the address
2308  * @saddr: where to map the BO
2309  * @offset: requested offset in the BO
2310  * @size: BO size in bytes
2311  * @flags: attributes of pages (read/write/valid/etc.)
2312  *
2313  * Add a mapping of the BO at the specefied addr into the VM.
2314  *
2315  * Returns:
2316  * 0 for success, error for failure.
2317  *
2318  * Object has to be reserved and unreserved outside!
2319  */
2320 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2321 		     struct amdgpu_bo_va *bo_va,
2322 		     uint64_t saddr, uint64_t offset,
2323 		     uint64_t size, uint64_t flags)
2324 {
2325 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2326 	struct amdgpu_bo *bo = bo_va->base.bo;
2327 	struct amdgpu_vm *vm = bo_va->base.vm;
2328 	uint64_t eaddr;
2329 
2330 	/* validate the parameters */
2331 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2332 	    size == 0 || size & ~PAGE_MASK)
2333 		return -EINVAL;
2334 
2335 	/* make sure object fit at this offset */
2336 	eaddr = saddr + size - 1;
2337 	if (saddr >= eaddr ||
2338 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2339 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2340 		return -EINVAL;
2341 
2342 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2343 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2344 
2345 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2346 	if (tmp) {
2347 		/* bo and tmp overlap, invalid addr */
2348 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2349 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2350 			tmp->start, tmp->last + 1);
2351 		return -EINVAL;
2352 	}
2353 
2354 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2355 	if (!mapping)
2356 		return -ENOMEM;
2357 
2358 	mapping->start = saddr;
2359 	mapping->last = eaddr;
2360 	mapping->offset = offset;
2361 	mapping->flags = flags;
2362 
2363 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2364 
2365 	return 0;
2366 }
2367 
2368 /**
2369  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2370  *
2371  * @adev: amdgpu_device pointer
2372  * @bo_va: bo_va to store the address
2373  * @saddr: where to map the BO
2374  * @offset: requested offset in the BO
2375  * @size: BO size in bytes
2376  * @flags: attributes of pages (read/write/valid/etc.)
2377  *
2378  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2379  * mappings as we do so.
2380  *
2381  * Returns:
2382  * 0 for success, error for failure.
2383  *
2384  * Object has to be reserved and unreserved outside!
2385  */
2386 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2387 			     struct amdgpu_bo_va *bo_va,
2388 			     uint64_t saddr, uint64_t offset,
2389 			     uint64_t size, uint64_t flags)
2390 {
2391 	struct amdgpu_bo_va_mapping *mapping;
2392 	struct amdgpu_bo *bo = bo_va->base.bo;
2393 	uint64_t eaddr;
2394 	int r;
2395 
2396 	/* validate the parameters */
2397 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2398 	    size == 0 || size & ~PAGE_MASK)
2399 		return -EINVAL;
2400 
2401 	/* make sure object fit at this offset */
2402 	eaddr = saddr + size - 1;
2403 	if (saddr >= eaddr ||
2404 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2405 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2406 		return -EINVAL;
2407 
2408 	/* Allocate all the needed memory */
2409 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2410 	if (!mapping)
2411 		return -ENOMEM;
2412 
2413 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2414 	if (r) {
2415 		kfree(mapping);
2416 		return r;
2417 	}
2418 
2419 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2420 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2421 
2422 	mapping->start = saddr;
2423 	mapping->last = eaddr;
2424 	mapping->offset = offset;
2425 	mapping->flags = flags;
2426 
2427 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2428 
2429 	return 0;
2430 }
2431 
2432 /**
2433  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2434  *
2435  * @adev: amdgpu_device pointer
2436  * @bo_va: bo_va to remove the address from
2437  * @saddr: where to the BO is mapped
2438  *
2439  * Remove a mapping of the BO at the specefied addr from the VM.
2440  *
2441  * Returns:
2442  * 0 for success, error for failure.
2443  *
2444  * Object has to be reserved and unreserved outside!
2445  */
2446 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2447 		       struct amdgpu_bo_va *bo_va,
2448 		       uint64_t saddr)
2449 {
2450 	struct amdgpu_bo_va_mapping *mapping;
2451 	struct amdgpu_vm *vm = bo_va->base.vm;
2452 	bool valid = true;
2453 
2454 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2455 
2456 	list_for_each_entry(mapping, &bo_va->valids, list) {
2457 		if (mapping->start == saddr)
2458 			break;
2459 	}
2460 
2461 	if (&mapping->list == &bo_va->valids) {
2462 		valid = false;
2463 
2464 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2465 			if (mapping->start == saddr)
2466 				break;
2467 		}
2468 
2469 		if (&mapping->list == &bo_va->invalids)
2470 			return -ENOENT;
2471 	}
2472 
2473 	list_del(&mapping->list);
2474 	amdgpu_vm_it_remove(mapping, &vm->va);
2475 	mapping->bo_va = NULL;
2476 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2477 
2478 	if (valid)
2479 		list_add(&mapping->list, &vm->freed);
2480 	else
2481 		amdgpu_vm_free_mapping(adev, vm, mapping,
2482 				       bo_va->last_pt_update);
2483 
2484 	return 0;
2485 }
2486 
2487 /**
2488  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2489  *
2490  * @adev: amdgpu_device pointer
2491  * @vm: VM structure to use
2492  * @saddr: start of the range
2493  * @size: size of the range
2494  *
2495  * Remove all mappings in a range, split them as appropriate.
2496  *
2497  * Returns:
2498  * 0 for success, error for failure.
2499  */
2500 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2501 				struct amdgpu_vm *vm,
2502 				uint64_t saddr, uint64_t size)
2503 {
2504 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2505 	LIST_HEAD(removed);
2506 	uint64_t eaddr;
2507 
2508 	eaddr = saddr + size - 1;
2509 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2510 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2511 
2512 	/* Allocate all the needed memory */
2513 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2514 	if (!before)
2515 		return -ENOMEM;
2516 	INIT_LIST_HEAD(&before->list);
2517 
2518 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2519 	if (!after) {
2520 		kfree(before);
2521 		return -ENOMEM;
2522 	}
2523 	INIT_LIST_HEAD(&after->list);
2524 
2525 	/* Now gather all removed mappings */
2526 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2527 	while (tmp) {
2528 		/* Remember mapping split at the start */
2529 		if (tmp->start < saddr) {
2530 			before->start = tmp->start;
2531 			before->last = saddr - 1;
2532 			before->offset = tmp->offset;
2533 			before->flags = tmp->flags;
2534 			before->bo_va = tmp->bo_va;
2535 			list_add(&before->list, &tmp->bo_va->invalids);
2536 		}
2537 
2538 		/* Remember mapping split at the end */
2539 		if (tmp->last > eaddr) {
2540 			after->start = eaddr + 1;
2541 			after->last = tmp->last;
2542 			after->offset = tmp->offset;
2543 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2544 			after->flags = tmp->flags;
2545 			after->bo_va = tmp->bo_va;
2546 			list_add(&after->list, &tmp->bo_va->invalids);
2547 		}
2548 
2549 		list_del(&tmp->list);
2550 		list_add(&tmp->list, &removed);
2551 
2552 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2553 	}
2554 
2555 	/* And free them up */
2556 	list_for_each_entry_safe(tmp, next, &removed, list) {
2557 		amdgpu_vm_it_remove(tmp, &vm->va);
2558 		list_del(&tmp->list);
2559 
2560 		if (tmp->start < saddr)
2561 		    tmp->start = saddr;
2562 		if (tmp->last > eaddr)
2563 		    tmp->last = eaddr;
2564 
2565 		tmp->bo_va = NULL;
2566 		list_add(&tmp->list, &vm->freed);
2567 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2568 	}
2569 
2570 	/* Insert partial mapping before the range */
2571 	if (!list_empty(&before->list)) {
2572 		amdgpu_vm_it_insert(before, &vm->va);
2573 		if (before->flags & AMDGPU_PTE_PRT)
2574 			amdgpu_vm_prt_get(adev);
2575 	} else {
2576 		kfree(before);
2577 	}
2578 
2579 	/* Insert partial mapping after the range */
2580 	if (!list_empty(&after->list)) {
2581 		amdgpu_vm_it_insert(after, &vm->va);
2582 		if (after->flags & AMDGPU_PTE_PRT)
2583 			amdgpu_vm_prt_get(adev);
2584 	} else {
2585 		kfree(after);
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 /**
2592  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2593  *
2594  * @vm: the requested VM
2595  * @addr: the address
2596  *
2597  * Find a mapping by it's address.
2598  *
2599  * Returns:
2600  * The amdgpu_bo_va_mapping matching for addr or NULL
2601  *
2602  */
2603 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2604 							 uint64_t addr)
2605 {
2606 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2607 }
2608 
2609 /**
2610  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2611  *
2612  * @vm: the requested vm
2613  * @ticket: CS ticket
2614  *
2615  * Trace all mappings of BOs reserved during a command submission.
2616  */
2617 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2618 {
2619 	struct amdgpu_bo_va_mapping *mapping;
2620 
2621 	if (!trace_amdgpu_vm_bo_cs_enabled())
2622 		return;
2623 
2624 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2625 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2626 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2627 			struct amdgpu_bo *bo;
2628 
2629 			bo = mapping->bo_va->base.bo;
2630 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2631 			    ticket)
2632 				continue;
2633 		}
2634 
2635 		trace_amdgpu_vm_bo_cs(mapping);
2636 	}
2637 }
2638 
2639 /**
2640  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2641  *
2642  * @adev: amdgpu_device pointer
2643  * @bo_va: requested bo_va
2644  *
2645  * Remove @bo_va->bo from the requested vm.
2646  *
2647  * Object have to be reserved!
2648  */
2649 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2650 		      struct amdgpu_bo_va *bo_va)
2651 {
2652 	struct amdgpu_bo_va_mapping *mapping, *next;
2653 	struct amdgpu_bo *bo = bo_va->base.bo;
2654 	struct amdgpu_vm *vm = bo_va->base.vm;
2655 	struct amdgpu_vm_bo_base **base;
2656 
2657 	if (bo) {
2658 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2659 			vm->bulk_moveable = false;
2660 
2661 		for (base = &bo_va->base.bo->vm_bo; *base;
2662 		     base = &(*base)->next) {
2663 			if (*base != &bo_va->base)
2664 				continue;
2665 
2666 			*base = bo_va->base.next;
2667 			break;
2668 		}
2669 	}
2670 
2671 	spin_lock(&vm->invalidated_lock);
2672 	list_del(&bo_va->base.vm_status);
2673 	spin_unlock(&vm->invalidated_lock);
2674 
2675 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2676 		list_del(&mapping->list);
2677 		amdgpu_vm_it_remove(mapping, &vm->va);
2678 		mapping->bo_va = NULL;
2679 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2680 		list_add(&mapping->list, &vm->freed);
2681 	}
2682 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2683 		list_del(&mapping->list);
2684 		amdgpu_vm_it_remove(mapping, &vm->va);
2685 		amdgpu_vm_free_mapping(adev, vm, mapping,
2686 				       bo_va->last_pt_update);
2687 	}
2688 
2689 	dma_fence_put(bo_va->last_pt_update);
2690 
2691 	if (bo && bo_va->is_xgmi)
2692 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2693 
2694 	kfree(bo_va);
2695 }
2696 
2697 /**
2698  * amdgpu_vm_evictable - check if we can evict a VM
2699  *
2700  * @bo: A page table of the VM.
2701  *
2702  * Check if it is possible to evict a VM.
2703  */
2704 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2705 {
2706 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2707 
2708 	/* Page tables of a destroyed VM can go away immediately */
2709 	if (!bo_base || !bo_base->vm)
2710 		return true;
2711 
2712 	/* Don't evict VM page tables while they are busy */
2713 	if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2714 		return false;
2715 
2716 	/* Try to block ongoing updates */
2717 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2718 		return false;
2719 
2720 	/* Don't evict VM page tables while they are updated */
2721 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2722 		amdgpu_vm_eviction_unlock(bo_base->vm);
2723 		return false;
2724 	}
2725 
2726 	bo_base->vm->evicting = true;
2727 	amdgpu_vm_eviction_unlock(bo_base->vm);
2728 	return true;
2729 }
2730 
2731 /**
2732  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2733  *
2734  * @adev: amdgpu_device pointer
2735  * @bo: amdgpu buffer object
2736  * @evicted: is the BO evicted
2737  *
2738  * Mark @bo as invalid.
2739  */
2740 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2741 			     struct amdgpu_bo *bo, bool evicted)
2742 {
2743 	struct amdgpu_vm_bo_base *bo_base;
2744 
2745 	/* shadow bo doesn't have bo base, its validation needs its parent */
2746 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2747 		bo = bo->parent;
2748 
2749 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2750 		struct amdgpu_vm *vm = bo_base->vm;
2751 
2752 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2753 			amdgpu_vm_bo_evicted(bo_base);
2754 			continue;
2755 		}
2756 
2757 		if (bo_base->moved)
2758 			continue;
2759 		bo_base->moved = true;
2760 
2761 		if (bo->tbo.type == ttm_bo_type_kernel)
2762 			amdgpu_vm_bo_relocated(bo_base);
2763 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2764 			amdgpu_vm_bo_moved(bo_base);
2765 		else
2766 			amdgpu_vm_bo_invalidated(bo_base);
2767 	}
2768 }
2769 
2770 /**
2771  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2772  *
2773  * @vm_size: VM size
2774  *
2775  * Returns:
2776  * VM page table as power of two
2777  */
2778 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2779 {
2780 	/* Total bits covered by PD + PTs */
2781 	unsigned bits = ilog2(vm_size) + 18;
2782 
2783 	/* Make sure the PD is 4K in size up to 8GB address space.
2784 	   Above that split equal between PD and PTs */
2785 	if (vm_size <= 8)
2786 		return (bits - 9);
2787 	else
2788 		return ((bits + 3) / 2);
2789 }
2790 
2791 /**
2792  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2793  *
2794  * @adev: amdgpu_device pointer
2795  * @min_vm_size: the minimum vm size in GB if it's set auto
2796  * @fragment_size_default: Default PTE fragment size
2797  * @max_level: max VMPT level
2798  * @max_bits: max address space size in bits
2799  *
2800  */
2801 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2802 			   uint32_t fragment_size_default, unsigned max_level,
2803 			   unsigned max_bits)
2804 {
2805 	unsigned int max_size = 1 << (max_bits - 30);
2806 	unsigned int vm_size;
2807 	uint64_t tmp;
2808 
2809 	/* adjust vm size first */
2810 	if (amdgpu_vm_size != -1) {
2811 		vm_size = amdgpu_vm_size;
2812 		if (vm_size > max_size) {
2813 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2814 				 amdgpu_vm_size, max_size);
2815 			vm_size = max_size;
2816 		}
2817 	} else {
2818 		struct sysinfo si;
2819 		unsigned int phys_ram_gb;
2820 
2821 		/* Optimal VM size depends on the amount of physical
2822 		 * RAM available. Underlying requirements and
2823 		 * assumptions:
2824 		 *
2825 		 *  - Need to map system memory and VRAM from all GPUs
2826 		 *     - VRAM from other GPUs not known here
2827 		 *     - Assume VRAM <= system memory
2828 		 *  - On GFX8 and older, VM space can be segmented for
2829 		 *    different MTYPEs
2830 		 *  - Need to allow room for fragmentation, guard pages etc.
2831 		 *
2832 		 * This adds up to a rough guess of system memory x3.
2833 		 * Round up to power of two to maximize the available
2834 		 * VM size with the given page table size.
2835 		 */
2836 		si_meminfo(&si);
2837 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2838 			       (1 << 30) - 1) >> 30;
2839 		vm_size = roundup_pow_of_two(
2840 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2841 	}
2842 
2843 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2844 
2845 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2846 	if (amdgpu_vm_block_size != -1)
2847 		tmp >>= amdgpu_vm_block_size - 9;
2848 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2849 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2850 	switch (adev->vm_manager.num_level) {
2851 	case 3:
2852 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2853 		break;
2854 	case 2:
2855 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2856 		break;
2857 	case 1:
2858 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2859 		break;
2860 	default:
2861 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2862 	}
2863 	/* block size depends on vm size and hw setup*/
2864 	if (amdgpu_vm_block_size != -1)
2865 		adev->vm_manager.block_size =
2866 			min((unsigned)amdgpu_vm_block_size, max_bits
2867 			    - AMDGPU_GPU_PAGE_SHIFT
2868 			    - 9 * adev->vm_manager.num_level);
2869 	else if (adev->vm_manager.num_level > 1)
2870 		adev->vm_manager.block_size = 9;
2871 	else
2872 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2873 
2874 	if (amdgpu_vm_fragment_size == -1)
2875 		adev->vm_manager.fragment_size = fragment_size_default;
2876 	else
2877 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2878 
2879 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2880 		 vm_size, adev->vm_manager.num_level + 1,
2881 		 adev->vm_manager.block_size,
2882 		 adev->vm_manager.fragment_size);
2883 }
2884 
2885 /**
2886  * amdgpu_vm_wait_idle - wait for the VM to become idle
2887  *
2888  * @vm: VM object to wait for
2889  * @timeout: timeout to wait for VM to become idle
2890  */
2891 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2892 {
2893 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2894 					true, timeout);
2895 	if (timeout <= 0)
2896 		return timeout;
2897 
2898 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2899 }
2900 
2901 /**
2902  * amdgpu_vm_init - initialize a vm instance
2903  *
2904  * @adev: amdgpu_device pointer
2905  * @vm: requested vm
2906  *
2907  * Init @vm fields.
2908  *
2909  * Returns:
2910  * 0 for success, error for failure.
2911  */
2912 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2913 {
2914 	struct amdgpu_bo *root_bo;
2915 	struct amdgpu_bo_vm *root;
2916 	int r, i;
2917 
2918 	vm->va = RB_ROOT_CACHED;
2919 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2920 		vm->reserved_vmid[i] = NULL;
2921 	INIT_LIST_HEAD(&vm->evicted);
2922 	INIT_LIST_HEAD(&vm->relocated);
2923 	INIT_LIST_HEAD(&vm->moved);
2924 	INIT_LIST_HEAD(&vm->idle);
2925 	INIT_LIST_HEAD(&vm->invalidated);
2926 	spin_lock_init(&vm->invalidated_lock);
2927 	INIT_LIST_HEAD(&vm->freed);
2928 	INIT_LIST_HEAD(&vm->done);
2929 
2930 	/* create scheduler entities for page table updates */
2931 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2932 				  adev->vm_manager.vm_pte_scheds,
2933 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2934 	if (r)
2935 		return r;
2936 
2937 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2938 				  adev->vm_manager.vm_pte_scheds,
2939 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2940 	if (r)
2941 		goto error_free_immediate;
2942 
2943 	vm->pte_support_ats = false;
2944 	vm->is_compute_context = false;
2945 
2946 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2947 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2948 
2949 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2950 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2951 	WARN_ONCE((vm->use_cpu_for_update &&
2952 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2953 		  "CPU update of VM recommended only for large BAR system\n");
2954 
2955 	if (vm->use_cpu_for_update)
2956 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2957 	else
2958 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2959 	vm->last_update = NULL;
2960 	vm->last_unlocked = dma_fence_get_stub();
2961 
2962 	mutex_init(&vm->eviction_lock);
2963 	vm->evicting = false;
2964 
2965 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2966 				false, &root);
2967 	if (r)
2968 		goto error_free_delayed;
2969 	root_bo = &root->bo;
2970 	r = amdgpu_bo_reserve(root_bo, true);
2971 	if (r)
2972 		goto error_free_root;
2973 
2974 	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2975 	if (r)
2976 		goto error_unreserve;
2977 
2978 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2979 
2980 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2981 	if (r)
2982 		goto error_unreserve;
2983 
2984 	amdgpu_bo_unreserve(vm->root.bo);
2985 
2986 	INIT_KFIFO(vm->faults);
2987 
2988 	return 0;
2989 
2990 error_unreserve:
2991 	amdgpu_bo_unreserve(vm->root.bo);
2992 
2993 error_free_root:
2994 	amdgpu_bo_unref(&root->shadow);
2995 	amdgpu_bo_unref(&root_bo);
2996 	vm->root.bo = NULL;
2997 
2998 error_free_delayed:
2999 	dma_fence_put(vm->last_unlocked);
3000 	drm_sched_entity_destroy(&vm->delayed);
3001 
3002 error_free_immediate:
3003 	drm_sched_entity_destroy(&vm->immediate);
3004 
3005 	return r;
3006 }
3007 
3008 /**
3009  * amdgpu_vm_check_clean_reserved - check if a VM is clean
3010  *
3011  * @adev: amdgpu_device pointer
3012  * @vm: the VM to check
3013  *
3014  * check all entries of the root PD, if any subsequent PDs are allocated,
3015  * it means there are page table creating and filling, and is no a clean
3016  * VM
3017  *
3018  * Returns:
3019  *	0 if this VM is clean
3020  */
3021 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3022 					  struct amdgpu_vm *vm)
3023 {
3024 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
3025 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
3026 	unsigned int i = 0;
3027 
3028 	for (i = 0; i < entries; i++) {
3029 		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3030 			return -EINVAL;
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 /**
3037  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3038  *
3039  * @adev: amdgpu_device pointer
3040  * @vm: requested vm
3041  *
3042  * This only works on GFX VMs that don't have any BOs added and no
3043  * page tables allocated yet.
3044  *
3045  * Changes the following VM parameters:
3046  * - use_cpu_for_update
3047  * - pte_supports_ats
3048  *
3049  * Reinitializes the page directory to reflect the changed ATS
3050  * setting.
3051  *
3052  * Returns:
3053  * 0 for success, -errno for errors.
3054  */
3055 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3056 {
3057 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3058 	int r;
3059 
3060 	r = amdgpu_bo_reserve(vm->root.bo, true);
3061 	if (r)
3062 		return r;
3063 
3064 	/* Sanity checks */
3065 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3066 	if (r)
3067 		goto unreserve_bo;
3068 
3069 	/* Check if PD needs to be reinitialized and do it before
3070 	 * changing any other state, in case it fails.
3071 	 */
3072 	if (pte_support_ats != vm->pte_support_ats) {
3073 		vm->pte_support_ats = pte_support_ats;
3074 		r = amdgpu_vm_clear_bo(adev, vm,
3075 				       to_amdgpu_bo_vm(vm->root.bo),
3076 				       false);
3077 		if (r)
3078 			goto unreserve_bo;
3079 	}
3080 
3081 	/* Update VM state */
3082 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3083 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3084 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3085 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3086 	WARN_ONCE((vm->use_cpu_for_update &&
3087 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3088 		  "CPU update of VM recommended only for large BAR system\n");
3089 
3090 	if (vm->use_cpu_for_update) {
3091 		/* Sync with last SDMA update/clear before switching to CPU */
3092 		r = amdgpu_bo_sync_wait(vm->root.bo,
3093 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3094 		if (r)
3095 			goto unreserve_bo;
3096 
3097 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3098 	} else {
3099 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3100 	}
3101 	dma_fence_put(vm->last_update);
3102 	vm->last_update = NULL;
3103 	vm->is_compute_context = true;
3104 
3105 	/* Free the shadow bo for compute VM */
3106 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3107 
3108 	goto unreserve_bo;
3109 
3110 unreserve_bo:
3111 	amdgpu_bo_unreserve(vm->root.bo);
3112 	return r;
3113 }
3114 
3115 /**
3116  * amdgpu_vm_release_compute - release a compute vm
3117  * @adev: amdgpu_device pointer
3118  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3119  *
3120  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3121  * pasid from vm. Compute should stop use of vm after this call.
3122  */
3123 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3124 {
3125 	amdgpu_vm_set_pasid(adev, vm, 0);
3126 	vm->is_compute_context = false;
3127 }
3128 
3129 /**
3130  * amdgpu_vm_fini - tear down a vm instance
3131  *
3132  * @adev: amdgpu_device pointer
3133  * @vm: requested vm
3134  *
3135  * Tear down @vm.
3136  * Unbind the VM and remove all bos from the vm bo list
3137  */
3138 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3139 {
3140 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3141 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3142 	struct amdgpu_bo *root;
3143 	int i;
3144 
3145 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3146 
3147 	root = amdgpu_bo_ref(vm->root.bo);
3148 	amdgpu_bo_reserve(root, true);
3149 	amdgpu_vm_set_pasid(adev, vm, 0);
3150 	dma_fence_wait(vm->last_unlocked, false);
3151 	dma_fence_put(vm->last_unlocked);
3152 
3153 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3154 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3155 			amdgpu_vm_prt_fini(adev, vm);
3156 			prt_fini_needed = false;
3157 		}
3158 
3159 		list_del(&mapping->list);
3160 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3161 	}
3162 
3163 	amdgpu_vm_free_pts(adev, vm, NULL);
3164 	amdgpu_bo_unreserve(root);
3165 	amdgpu_bo_unref(&root);
3166 	WARN_ON(vm->root.bo);
3167 
3168 	drm_sched_entity_destroy(&vm->immediate);
3169 	drm_sched_entity_destroy(&vm->delayed);
3170 
3171 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3172 		dev_err(adev->dev, "still active bo inside vm\n");
3173 	}
3174 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3175 					     &vm->va.rb_root, rb) {
3176 		/* Don't remove the mapping here, we don't want to trigger a
3177 		 * rebalance and the tree is about to be destroyed anyway.
3178 		 */
3179 		list_del(&mapping->list);
3180 		kfree(mapping);
3181 	}
3182 
3183 	dma_fence_put(vm->last_update);
3184 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3185 		amdgpu_vmid_free_reserved(adev, vm, i);
3186 }
3187 
3188 /**
3189  * amdgpu_vm_manager_init - init the VM manager
3190  *
3191  * @adev: amdgpu_device pointer
3192  *
3193  * Initialize the VM manager structures
3194  */
3195 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3196 {
3197 	unsigned i;
3198 
3199 	/* Concurrent flushes are only possible starting with Vega10 and
3200 	 * are broken on Navi10 and Navi14.
3201 	 */
3202 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3203 					      adev->asic_type == CHIP_NAVI10 ||
3204 					      adev->asic_type == CHIP_NAVI14);
3205 	amdgpu_vmid_mgr_init(adev);
3206 
3207 	adev->vm_manager.fence_context =
3208 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3209 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3210 		adev->vm_manager.seqno[i] = 0;
3211 
3212 	spin_lock_init(&adev->vm_manager.prt_lock);
3213 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3214 
3215 	/* If not overridden by the user, by default, only in large BAR systems
3216 	 * Compute VM tables will be updated by CPU
3217 	 */
3218 #ifdef CONFIG_X86_64
3219 	if (amdgpu_vm_update_mode == -1) {
3220 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3221 			adev->vm_manager.vm_update_mode =
3222 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3223 		else
3224 			adev->vm_manager.vm_update_mode = 0;
3225 	} else
3226 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3227 #else
3228 	adev->vm_manager.vm_update_mode = 0;
3229 #endif
3230 
3231 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
3232 }
3233 
3234 /**
3235  * amdgpu_vm_manager_fini - cleanup VM manager
3236  *
3237  * @adev: amdgpu_device pointer
3238  *
3239  * Cleanup the VM manager and free resources.
3240  */
3241 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3242 {
3243 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
3244 	xa_destroy(&adev->vm_manager.pasids);
3245 
3246 	amdgpu_vmid_mgr_fini(adev);
3247 }
3248 
3249 /**
3250  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3251  *
3252  * @dev: drm device pointer
3253  * @data: drm_amdgpu_vm
3254  * @filp: drm file pointer
3255  *
3256  * Returns:
3257  * 0 for success, -errno for errors.
3258  */
3259 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3260 {
3261 	union drm_amdgpu_vm *args = data;
3262 	struct amdgpu_device *adev = drm_to_adev(dev);
3263 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3264 	long timeout = msecs_to_jiffies(2000);
3265 	int r;
3266 
3267 	switch (args->in.op) {
3268 	case AMDGPU_VM_OP_RESERVE_VMID:
3269 		/* We only have requirement to reserve vmid from gfxhub */
3270 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3271 					       AMDGPU_GFXHUB_0);
3272 		if (r)
3273 			return r;
3274 		break;
3275 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3276 		if (amdgpu_sriov_runtime(adev))
3277 			timeout = 8 * timeout;
3278 
3279 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3280 		 * not referenced anymore.
3281 		 */
3282 		r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3283 		if (r)
3284 			return r;
3285 
3286 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3287 		if (r < 0)
3288 			return r;
3289 
3290 		amdgpu_bo_unreserve(fpriv->vm.root.bo);
3291 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3292 		break;
3293 	default:
3294 		return -EINVAL;
3295 	}
3296 
3297 	return 0;
3298 }
3299 
3300 /**
3301  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3302  *
3303  * @adev: drm device pointer
3304  * @pasid: PASID identifier for VM
3305  * @task_info: task_info to fill.
3306  */
3307 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3308 			 struct amdgpu_task_info *task_info)
3309 {
3310 	struct amdgpu_vm *vm;
3311 	unsigned long flags;
3312 
3313 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
3314 
3315 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3316 	if (vm)
3317 		*task_info = vm->task_info;
3318 
3319 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3320 }
3321 
3322 /**
3323  * amdgpu_vm_set_task_info - Sets VMs task info.
3324  *
3325  * @vm: vm for which to set the info
3326  */
3327 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3328 {
3329 	if (vm->task_info.pid)
3330 		return;
3331 
3332 	vm->task_info.pid = current->pid;
3333 	get_task_comm(vm->task_info.task_name, current);
3334 
3335 	if (current->group_leader->mm != current->mm)
3336 		return;
3337 
3338 	vm->task_info.tgid = current->group_leader->pid;
3339 	get_task_comm(vm->task_info.process_name, current->group_leader);
3340 }
3341 
3342 /**
3343  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3344  * @adev: amdgpu device pointer
3345  * @pasid: PASID of the VM
3346  * @addr: Address of the fault
3347  *
3348  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3349  * shouldn't be reported any more.
3350  */
3351 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3352 			    uint64_t addr)
3353 {
3354 	bool is_compute_context = false;
3355 	struct amdgpu_bo *root;
3356 	unsigned long irqflags;
3357 	uint64_t value, flags;
3358 	struct amdgpu_vm *vm;
3359 	int r;
3360 
3361 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3362 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3363 	if (vm) {
3364 		root = amdgpu_bo_ref(vm->root.bo);
3365 		is_compute_context = vm->is_compute_context;
3366 	} else {
3367 		root = NULL;
3368 	}
3369 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3370 
3371 	if (!root)
3372 		return false;
3373 
3374 	addr /= AMDGPU_GPU_PAGE_SIZE;
3375 
3376 	if (is_compute_context &&
3377 	    !svm_range_restore_pages(adev, pasid, addr)) {
3378 		amdgpu_bo_unref(&root);
3379 		return true;
3380 	}
3381 
3382 	r = amdgpu_bo_reserve(root, true);
3383 	if (r)
3384 		goto error_unref;
3385 
3386 	/* Double check that the VM still exists */
3387 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3388 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3389 	if (vm && vm->root.bo != root)
3390 		vm = NULL;
3391 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3392 	if (!vm)
3393 		goto error_unlock;
3394 
3395 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3396 		AMDGPU_PTE_SYSTEM;
3397 
3398 	if (is_compute_context) {
3399 		/* Intentionally setting invalid PTE flag
3400 		 * combination to force a no-retry-fault
3401 		 */
3402 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3403 			AMDGPU_PTE_TF;
3404 		value = 0;
3405 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3406 		/* Redirect the access to the dummy page */
3407 		value = adev->dummy_page_addr;
3408 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3409 			AMDGPU_PTE_WRITEABLE;
3410 
3411 	} else {
3412 		/* Let the hw retry silently on the PTE */
3413 		value = 0;
3414 	}
3415 
3416 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3417 	if (r) {
3418 		pr_debug("failed %d to reserve fence slot\n", r);
3419 		goto error_unlock;
3420 	}
3421 
3422 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3423 					addr, flags, value, NULL, NULL, NULL,
3424 					NULL);
3425 	if (r)
3426 		goto error_unlock;
3427 
3428 	r = amdgpu_vm_update_pdes(adev, vm, true);
3429 
3430 error_unlock:
3431 	amdgpu_bo_unreserve(root);
3432 	if (r < 0)
3433 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3434 
3435 error_unref:
3436 	amdgpu_bo_unref(&root);
3437 
3438 	return false;
3439 }
3440 
3441 #if defined(CONFIG_DEBUG_FS)
3442 /**
3443  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3444  *
3445  * @vm: Requested VM for printing BO info
3446  * @m: debugfs file
3447  *
3448  * Print BO information in debugfs file for the VM
3449  */
3450 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3451 {
3452 	struct amdgpu_bo_va *bo_va, *tmp;
3453 	u64 total_idle = 0;
3454 	u64 total_evicted = 0;
3455 	u64 total_relocated = 0;
3456 	u64 total_moved = 0;
3457 	u64 total_invalidated = 0;
3458 	u64 total_done = 0;
3459 	unsigned int total_idle_objs = 0;
3460 	unsigned int total_evicted_objs = 0;
3461 	unsigned int total_relocated_objs = 0;
3462 	unsigned int total_moved_objs = 0;
3463 	unsigned int total_invalidated_objs = 0;
3464 	unsigned int total_done_objs = 0;
3465 	unsigned int id = 0;
3466 
3467 	seq_puts(m, "\tIdle BOs:\n");
3468 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3469 		if (!bo_va->base.bo)
3470 			continue;
3471 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3472 	}
3473 	total_idle_objs = id;
3474 	id = 0;
3475 
3476 	seq_puts(m, "\tEvicted BOs:\n");
3477 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3478 		if (!bo_va->base.bo)
3479 			continue;
3480 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3481 	}
3482 	total_evicted_objs = id;
3483 	id = 0;
3484 
3485 	seq_puts(m, "\tRelocated BOs:\n");
3486 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3487 		if (!bo_va->base.bo)
3488 			continue;
3489 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3490 	}
3491 	total_relocated_objs = id;
3492 	id = 0;
3493 
3494 	seq_puts(m, "\tMoved BOs:\n");
3495 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3496 		if (!bo_va->base.bo)
3497 			continue;
3498 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3499 	}
3500 	total_moved_objs = id;
3501 	id = 0;
3502 
3503 	seq_puts(m, "\tInvalidated BOs:\n");
3504 	spin_lock(&vm->invalidated_lock);
3505 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3506 		if (!bo_va->base.bo)
3507 			continue;
3508 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3509 	}
3510 	total_invalidated_objs = id;
3511 	id = 0;
3512 
3513 	seq_puts(m, "\tDone BOs:\n");
3514 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3515 		if (!bo_va->base.bo)
3516 			continue;
3517 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3518 	}
3519 	spin_unlock(&vm->invalidated_lock);
3520 	total_done_objs = id;
3521 
3522 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3523 		   total_idle_objs);
3524 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3525 		   total_evicted_objs);
3526 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3527 		   total_relocated_objs);
3528 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3529 		   total_moved_objs);
3530 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3531 		   total_invalidated_objs);
3532 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3533 		   total_done_objs);
3534 }
3535 #endif
3536