1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_vm.h" 40 #include "amdgpu_trace.h" 41 #include "amdgpu_amdkfd.h" 42 #include "amdgpu_gmc.h" 43 #include "amdgpu_xgmi.h" 44 #include "amdgpu_dma_buf.h" 45 #include "amdgpu_res_cursor.h" 46 #include "kfd_svm.h" 47 48 /** 49 * DOC: GPUVM 50 * 51 * GPUVM is the MMU functionality provided on the GPU. 52 * GPUVM is similar to the legacy GART on older asics, however 53 * rather than there being a single global GART table 54 * for the entire GPU, there can be multiple GPUVM page tables active 55 * at any given time. The GPUVM page tables can contain a mix 56 * VRAM pages and system pages (both memory and MMIO) and system pages 57 * can be mapped as snooped (cached system pages) or unsnooped 58 * (uncached system pages). 59 * 60 * Each active GPUVM has an ID associated with it and there is a page table 61 * linked with each VMID. When executing a command buffer, 62 * the kernel tells the engine what VMID to use for that command 63 * buffer. VMIDs are allocated dynamically as commands are submitted. 64 * The userspace drivers maintain their own address space and the kernel 65 * sets up their pages tables accordingly when they submit their 66 * command buffers and a VMID is assigned. 67 * The hardware supports up to 16 active GPUVMs at any given time. 68 * 69 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 70 * on the ASIC family. GPUVM supports RWX attributes on each page as well 71 * as other features such as encryption and caching attributes. 72 * 73 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 74 * addition to an aperture managed by a page table, VMID 0 also has 75 * several other apertures. There is an aperture for direct access to VRAM 76 * and there is a legacy AGP aperture which just forwards accesses directly 77 * to the matching system physical addresses (or IOVAs when an IOMMU is 78 * present). These apertures provide direct access to these memories without 79 * incurring the overhead of a page table. VMID 0 is used by the kernel 80 * driver for tasks like memory management. 81 * 82 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 83 * For user applications, each application can have their own unique GPUVM 84 * address space. The application manages the address space and the kernel 85 * driver manages the GPUVM page tables for each process. If an GPU client 86 * accesses an invalid page, it will generate a GPU page fault, similar to 87 * accessing an invalid page on a CPU. 88 */ 89 90 #define START(node) ((node)->start) 91 #define LAST(node) ((node)->last) 92 93 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 94 START, LAST, static, amdgpu_vm_it) 95 96 #undef START 97 #undef LAST 98 99 /** 100 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 101 */ 102 struct amdgpu_prt_cb { 103 104 /** 105 * @adev: amdgpu device 106 */ 107 struct amdgpu_device *adev; 108 109 /** 110 * @cb: callback 111 */ 112 struct dma_fence_cb cb; 113 }; 114 115 /** 116 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 117 */ 118 struct amdgpu_vm_tlb_seq_struct { 119 /** 120 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 121 */ 122 struct amdgpu_vm *vm; 123 124 /** 125 * @cb: callback 126 */ 127 struct dma_fence_cb cb; 128 }; 129 130 /** 131 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 132 * 133 * @adev: amdgpu_device pointer 134 * @vm: amdgpu_vm pointer 135 * @pasid: the pasid the VM is using on this GPU 136 * 137 * Set the pasid this VM is using on this GPU, can also be used to remove the 138 * pasid by passing in zero. 139 * 140 */ 141 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 142 u32 pasid) 143 { 144 int r; 145 146 if (vm->pasid == pasid) 147 return 0; 148 149 if (vm->pasid) { 150 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 151 if (r < 0) 152 return r; 153 154 vm->pasid = 0; 155 } 156 157 if (pasid) { 158 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 159 GFP_KERNEL)); 160 if (r < 0) 161 return r; 162 163 vm->pasid = pasid; 164 } 165 166 167 return 0; 168 } 169 170 /** 171 * amdgpu_vm_bo_evicted - vm_bo is evicted 172 * 173 * @vm_bo: vm_bo which is evicted 174 * 175 * State for PDs/PTs and per VM BOs which are not at the location they should 176 * be. 177 */ 178 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 179 { 180 struct amdgpu_vm *vm = vm_bo->vm; 181 struct amdgpu_bo *bo = vm_bo->bo; 182 183 vm_bo->moved = true; 184 spin_lock(&vm_bo->vm->status_lock); 185 if (bo->tbo.type == ttm_bo_type_kernel) 186 list_move(&vm_bo->vm_status, &vm->evicted); 187 else 188 list_move_tail(&vm_bo->vm_status, &vm->evicted); 189 spin_unlock(&vm_bo->vm->status_lock); 190 } 191 /** 192 * amdgpu_vm_bo_moved - vm_bo is moved 193 * 194 * @vm_bo: vm_bo which is moved 195 * 196 * State for per VM BOs which are moved, but that change is not yet reflected 197 * in the page tables. 198 */ 199 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 200 { 201 spin_lock(&vm_bo->vm->status_lock); 202 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 203 spin_unlock(&vm_bo->vm->status_lock); 204 } 205 206 /** 207 * amdgpu_vm_bo_idle - vm_bo is idle 208 * 209 * @vm_bo: vm_bo which is now idle 210 * 211 * State for PDs/PTs and per VM BOs which have gone through the state machine 212 * and are now idle. 213 */ 214 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 215 { 216 spin_lock(&vm_bo->vm->status_lock); 217 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 218 spin_unlock(&vm_bo->vm->status_lock); 219 vm_bo->moved = false; 220 } 221 222 /** 223 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 224 * 225 * @vm_bo: vm_bo which is now invalidated 226 * 227 * State for normal BOs which are invalidated and that change not yet reflected 228 * in the PTs. 229 */ 230 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 231 { 232 spin_lock(&vm_bo->vm->status_lock); 233 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 234 spin_unlock(&vm_bo->vm->status_lock); 235 } 236 237 /** 238 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 239 * 240 * @vm_bo: vm_bo which is evicted 241 * 242 * State for BOs used by user mode queues which are not at the location they 243 * should be. 244 */ 245 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 246 { 247 vm_bo->moved = true; 248 spin_lock(&vm_bo->vm->status_lock); 249 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 250 spin_unlock(&vm_bo->vm->status_lock); 251 } 252 253 /** 254 * amdgpu_vm_bo_relocated - vm_bo is reloacted 255 * 256 * @vm_bo: vm_bo which is relocated 257 * 258 * State for PDs/PTs which needs to update their parent PD. 259 * For the root PD, just move to idle state. 260 */ 261 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 262 { 263 if (vm_bo->bo->parent) { 264 spin_lock(&vm_bo->vm->status_lock); 265 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 266 spin_unlock(&vm_bo->vm->status_lock); 267 } else { 268 amdgpu_vm_bo_idle(vm_bo); 269 } 270 } 271 272 /** 273 * amdgpu_vm_bo_done - vm_bo is done 274 * 275 * @vm_bo: vm_bo which is now done 276 * 277 * State for normal BOs which are invalidated and that change has been updated 278 * in the PTs. 279 */ 280 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 spin_lock(&vm_bo->vm->status_lock); 283 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 284 spin_unlock(&vm_bo->vm->status_lock); 285 } 286 287 /** 288 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 289 * @vm: the VM which state machine to reset 290 * 291 * Move all vm_bo object in the VM into a state where they will be updated 292 * again during validation. 293 */ 294 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 295 { 296 struct amdgpu_vm_bo_base *vm_bo, *tmp; 297 298 spin_lock(&vm->status_lock); 299 list_splice_init(&vm->done, &vm->invalidated); 300 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 301 vm_bo->moved = true; 302 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 303 struct amdgpu_bo *bo = vm_bo->bo; 304 305 vm_bo->moved = true; 306 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 307 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 308 else if (bo->parent) 309 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 310 } 311 spin_unlock(&vm->status_lock); 312 } 313 314 /** 315 * amdgpu_vm_update_shared - helper to update shared memory stat 316 * @base: base structure for tracking BO usage in a VM 317 * 318 * Takes the vm status_lock and updates the shared memory stat. If the basic 319 * stat changed (e.g. buffer was moved) amdgpu_vm_update_stats need to be called 320 * as well. 321 */ 322 static void amdgpu_vm_update_shared(struct amdgpu_vm_bo_base *base) 323 { 324 struct amdgpu_vm *vm = base->vm; 325 struct amdgpu_bo *bo = base->bo; 326 uint64_t size = amdgpu_bo_size(bo); 327 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 328 bool shared; 329 330 spin_lock(&vm->status_lock); 331 shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 332 if (base->shared != shared) { 333 base->shared = shared; 334 if (shared) { 335 vm->stats[bo_memtype].drm.shared += size; 336 vm->stats[bo_memtype].drm.private -= size; 337 } else { 338 vm->stats[bo_memtype].drm.shared -= size; 339 vm->stats[bo_memtype].drm.private += size; 340 } 341 } 342 spin_unlock(&vm->status_lock); 343 } 344 345 /** 346 * amdgpu_vm_bo_update_shared - callback when bo gets shared/unshared 347 * @bo: amdgpu buffer object 348 * 349 * Update the per VM stats for all the vm if needed from private to shared or 350 * vice versa. 351 */ 352 void amdgpu_vm_bo_update_shared(struct amdgpu_bo *bo) 353 { 354 struct amdgpu_vm_bo_base *base; 355 356 for (base = bo->vm_bo; base; base = base->next) 357 amdgpu_vm_update_shared(base); 358 } 359 360 /** 361 * amdgpu_vm_update_stats_locked - helper to update normal memory stat 362 * @base: base structure for tracking BO usage in a VM 363 * @res: the ttm_resource to use for the purpose of accounting, may or may not 364 * be bo->tbo.resource 365 * @sign: if we should add (+1) or subtract (-1) from the stat 366 * 367 * Caller need to have the vm status_lock held. Useful for when multiple update 368 * need to happen at the same time. 369 */ 370 static void amdgpu_vm_update_stats_locked(struct amdgpu_vm_bo_base *base, 371 struct ttm_resource *res, int sign) 372 { 373 struct amdgpu_vm *vm = base->vm; 374 struct amdgpu_bo *bo = base->bo; 375 int64_t size = sign * amdgpu_bo_size(bo); 376 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 377 378 /* For drm-total- and drm-shared-, BO are accounted by their preferred 379 * placement, see also amdgpu_bo_mem_stats_placement. 380 */ 381 if (base->shared) 382 vm->stats[bo_memtype].drm.shared += size; 383 else 384 vm->stats[bo_memtype].drm.private += size; 385 386 if (res && res->mem_type < __AMDGPU_PL_NUM) { 387 uint32_t res_memtype = res->mem_type; 388 389 vm->stats[res_memtype].drm.resident += size; 390 /* BO only count as purgeable if it is resident, 391 * since otherwise there's nothing to purge. 392 */ 393 if (bo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) 394 vm->stats[res_memtype].drm.purgeable += size; 395 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(res_memtype))) 396 vm->stats[bo_memtype].evicted += size; 397 } 398 } 399 400 /** 401 * amdgpu_vm_update_stats - helper to update normal memory stat 402 * @base: base structure for tracking BO usage in a VM 403 * @res: the ttm_resource to use for the purpose of accounting, may or may not 404 * be bo->tbo.resource 405 * @sign: if we should add (+1) or subtract (-1) from the stat 406 * 407 * Updates the basic memory stat when bo is added/deleted/moved. 408 */ 409 void amdgpu_vm_update_stats(struct amdgpu_vm_bo_base *base, 410 struct ttm_resource *res, int sign) 411 { 412 struct amdgpu_vm *vm = base->vm; 413 414 spin_lock(&vm->status_lock); 415 amdgpu_vm_update_stats_locked(base, res, sign); 416 spin_unlock(&vm->status_lock); 417 } 418 419 /** 420 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 421 * 422 * @base: base structure for tracking BO usage in a VM 423 * @vm: vm to which bo is to be added 424 * @bo: amdgpu buffer object 425 * 426 * Initialize a bo_va_base structure and add it to the appropriate lists 427 * 428 */ 429 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 430 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 431 { 432 base->vm = vm; 433 base->bo = bo; 434 base->next = NULL; 435 INIT_LIST_HEAD(&base->vm_status); 436 437 if (!bo) 438 return; 439 base->next = bo->vm_bo; 440 bo->vm_bo = base; 441 442 spin_lock(&vm->status_lock); 443 base->shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 444 amdgpu_vm_update_stats_locked(base, bo->tbo.resource, +1); 445 spin_unlock(&vm->status_lock); 446 447 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 448 return; 449 450 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 451 452 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 453 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 454 amdgpu_vm_bo_relocated(base); 455 else 456 amdgpu_vm_bo_idle(base); 457 458 if (bo->preferred_domains & 459 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 460 return; 461 462 /* 463 * we checked all the prerequisites, but it looks like this per vm bo 464 * is currently evicted. add the bo to the evicted list to make sure it 465 * is validated on next vm use to avoid fault. 466 * */ 467 amdgpu_vm_bo_evicted(base); 468 } 469 470 /** 471 * amdgpu_vm_lock_pd - lock PD in drm_exec 472 * 473 * @vm: vm providing the BOs 474 * @exec: drm execution context 475 * @num_fences: number of extra fences to reserve 476 * 477 * Lock the VM root PD in the DRM execution context. 478 */ 479 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 480 unsigned int num_fences) 481 { 482 /* We need at least two fences for the VM PD/PT updates */ 483 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 484 2 + num_fences); 485 } 486 487 /** 488 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 489 * 490 * @adev: amdgpu device pointer 491 * @vm: vm providing the BOs 492 * 493 * Move all BOs to the end of LRU and remember their positions to put them 494 * together. 495 */ 496 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 497 struct amdgpu_vm *vm) 498 { 499 spin_lock(&adev->mman.bdev.lru_lock); 500 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 501 spin_unlock(&adev->mman.bdev.lru_lock); 502 } 503 504 /* Create scheduler entities for page table updates */ 505 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 506 struct amdgpu_vm *vm) 507 { 508 int r; 509 510 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 511 adev->vm_manager.vm_pte_scheds, 512 adev->vm_manager.vm_pte_num_scheds, NULL); 513 if (r) 514 goto error; 515 516 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 517 adev->vm_manager.vm_pte_scheds, 518 adev->vm_manager.vm_pte_num_scheds, NULL); 519 520 error: 521 drm_sched_entity_destroy(&vm->immediate); 522 return r; 523 } 524 525 /* Destroy the entities for page table updates again */ 526 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 527 { 528 drm_sched_entity_destroy(&vm->immediate); 529 drm_sched_entity_destroy(&vm->delayed); 530 } 531 532 /** 533 * amdgpu_vm_generation - return the page table re-generation counter 534 * @adev: the amdgpu_device 535 * @vm: optional VM to check, might be NULL 536 * 537 * Returns a page table re-generation token to allow checking if submissions 538 * are still valid to use this VM. The VM parameter might be NULL in which case 539 * just the VRAM lost counter will be used. 540 */ 541 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 542 { 543 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 544 545 if (!vm) 546 return result; 547 548 result += lower_32_bits(vm->generation); 549 /* Add one if the page tables will be re-generated on next CS */ 550 if (drm_sched_entity_error(&vm->delayed)) 551 ++result; 552 553 return result; 554 } 555 556 /** 557 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 558 * 559 * @adev: amdgpu device pointer 560 * @vm: vm providing the BOs 561 * @ticket: optional reservation ticket used to reserve the VM 562 * @validate: callback to do the validation 563 * @param: parameter for the validation callback 564 * 565 * Validate the page table BOs and per-VM BOs on command submission if 566 * necessary. If a ticket is given, also try to validate evicted user queue 567 * BOs. They must already be reserved with the given ticket. 568 * 569 * Returns: 570 * Validation result. 571 */ 572 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 573 struct ww_acquire_ctx *ticket, 574 int (*validate)(void *p, struct amdgpu_bo *bo), 575 void *param) 576 { 577 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 578 struct amdgpu_vm_bo_base *bo_base; 579 struct amdgpu_bo *bo; 580 int r; 581 582 if (vm->generation != new_vm_generation) { 583 vm->generation = new_vm_generation; 584 amdgpu_vm_bo_reset_state_machine(vm); 585 amdgpu_vm_fini_entities(vm); 586 r = amdgpu_vm_init_entities(adev, vm); 587 if (r) 588 return r; 589 } 590 591 spin_lock(&vm->status_lock); 592 while (!list_empty(&vm->evicted)) { 593 bo_base = list_first_entry(&vm->evicted, 594 struct amdgpu_vm_bo_base, 595 vm_status); 596 spin_unlock(&vm->status_lock); 597 598 bo = bo_base->bo; 599 600 r = validate(param, bo); 601 if (r) 602 return r; 603 604 if (bo->tbo.type != ttm_bo_type_kernel) { 605 amdgpu_vm_bo_moved(bo_base); 606 } else { 607 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 608 amdgpu_vm_bo_relocated(bo_base); 609 } 610 spin_lock(&vm->status_lock); 611 } 612 while (ticket && !list_empty(&vm->evicted_user)) { 613 bo_base = list_first_entry(&vm->evicted_user, 614 struct amdgpu_vm_bo_base, 615 vm_status); 616 spin_unlock(&vm->status_lock); 617 618 bo = bo_base->bo; 619 620 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 621 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 622 623 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 624 if (ti) { 625 pr_warn_ratelimited("pid %d\n", ti->task.pid); 626 amdgpu_vm_put_task_info(ti); 627 } 628 629 return -EINVAL; 630 } 631 632 r = validate(param, bo); 633 if (r) 634 return r; 635 636 amdgpu_vm_bo_invalidated(bo_base); 637 638 spin_lock(&vm->status_lock); 639 } 640 spin_unlock(&vm->status_lock); 641 642 amdgpu_vm_eviction_lock(vm); 643 vm->evicting = false; 644 amdgpu_vm_eviction_unlock(vm); 645 646 return 0; 647 } 648 649 /** 650 * amdgpu_vm_ready - check VM is ready for updates 651 * 652 * @vm: VM to check 653 * 654 * Check if all VM PDs/PTs are ready for updates 655 * 656 * Returns: 657 * True if VM is not evicting and all VM entities are not stopped 658 */ 659 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 660 { 661 bool ret; 662 663 amdgpu_vm_eviction_lock(vm); 664 ret = !vm->evicting; 665 amdgpu_vm_eviction_unlock(vm); 666 667 spin_lock(&vm->status_lock); 668 ret &= list_empty(&vm->evicted); 669 spin_unlock(&vm->status_lock); 670 671 spin_lock(&vm->immediate.lock); 672 ret &= !vm->immediate.stopped; 673 spin_unlock(&vm->immediate.lock); 674 675 spin_lock(&vm->delayed.lock); 676 ret &= !vm->delayed.stopped; 677 spin_unlock(&vm->delayed.lock); 678 679 return ret; 680 } 681 682 /** 683 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 684 * 685 * @adev: amdgpu_device pointer 686 */ 687 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 688 { 689 const struct amdgpu_ip_block *ip_block; 690 bool has_compute_vm_bug; 691 struct amdgpu_ring *ring; 692 int i; 693 694 has_compute_vm_bug = false; 695 696 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 697 if (ip_block) { 698 /* Compute has a VM bug for GFX version < 7. 699 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 700 if (ip_block->version->major <= 7) 701 has_compute_vm_bug = true; 702 else if (ip_block->version->major == 8) 703 if (adev->gfx.mec_fw_version < 673) 704 has_compute_vm_bug = true; 705 } 706 707 for (i = 0; i < adev->num_rings; i++) { 708 ring = adev->rings[i]; 709 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 710 /* only compute rings */ 711 ring->has_compute_vm_bug = has_compute_vm_bug; 712 else 713 ring->has_compute_vm_bug = false; 714 } 715 } 716 717 /** 718 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 719 * 720 * @ring: ring on which the job will be submitted 721 * @job: job to submit 722 * 723 * Returns: 724 * True if sync is needed. 725 */ 726 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 727 struct amdgpu_job *job) 728 { 729 struct amdgpu_device *adev = ring->adev; 730 unsigned vmhub = ring->vm_hub; 731 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 732 733 if (job->vmid == 0) 734 return false; 735 736 if (job->vm_needs_flush || ring->has_compute_vm_bug) 737 return true; 738 739 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 740 return true; 741 742 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 743 return true; 744 745 return false; 746 } 747 748 /** 749 * amdgpu_vm_flush - hardware flush the vm 750 * 751 * @ring: ring to use for flush 752 * @job: related job 753 * @need_pipe_sync: is pipe sync needed 754 * 755 * Emit a VM flush when it is necessary. 756 * 757 * Returns: 758 * 0 on success, errno otherwise. 759 */ 760 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 761 bool need_pipe_sync) 762 { 763 struct amdgpu_device *adev = ring->adev; 764 struct amdgpu_isolation *isolation = &adev->isolation[ring->xcp_id]; 765 unsigned vmhub = ring->vm_hub; 766 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 767 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 768 bool spm_update_needed = job->spm_update_needed; 769 bool gds_switch_needed = ring->funcs->emit_gds_switch && 770 job->gds_switch_needed; 771 bool vm_flush_needed = job->vm_needs_flush; 772 bool cleaner_shader_needed = false; 773 bool pasid_mapping_needed = false; 774 struct dma_fence *fence = NULL; 775 struct amdgpu_fence *af; 776 unsigned int patch; 777 int r; 778 779 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 780 gds_switch_needed = true; 781 vm_flush_needed = true; 782 pasid_mapping_needed = true; 783 spm_update_needed = true; 784 } 785 786 mutex_lock(&id_mgr->lock); 787 if (id->pasid != job->pasid || !id->pasid_mapping || 788 !dma_fence_is_signaled(id->pasid_mapping)) 789 pasid_mapping_needed = true; 790 mutex_unlock(&id_mgr->lock); 791 792 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 793 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 794 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 795 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 796 ring->funcs->emit_wreg; 797 798 cleaner_shader_needed = job->run_cleaner_shader && 799 adev->gfx.enable_cleaner_shader && 800 ring->funcs->emit_cleaner_shader && job->base.s_fence && 801 &job->base.s_fence->scheduled == isolation->spearhead; 802 803 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync && 804 !cleaner_shader_needed) 805 return 0; 806 807 amdgpu_ring_ib_begin(ring); 808 if (ring->funcs->init_cond_exec) 809 patch = amdgpu_ring_init_cond_exec(ring, 810 ring->cond_exe_gpu_addr); 811 812 if (need_pipe_sync) 813 amdgpu_ring_emit_pipeline_sync(ring); 814 815 if (cleaner_shader_needed) 816 ring->funcs->emit_cleaner_shader(ring); 817 818 if (vm_flush_needed) { 819 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 820 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 821 } 822 823 if (pasid_mapping_needed) 824 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 825 826 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 827 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 828 829 if (ring->funcs->emit_gds_switch && 830 gds_switch_needed) { 831 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 832 job->gds_size, job->gws_base, 833 job->gws_size, job->oa_base, 834 job->oa_size); 835 } 836 837 if (vm_flush_needed || pasid_mapping_needed || cleaner_shader_needed) { 838 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 839 if (r) 840 return r; 841 /* this is part of the job's context */ 842 af = container_of(fence, struct amdgpu_fence, base); 843 af->context = job->base.s_fence ? job->base.s_fence->finished.context : 0; 844 } 845 846 if (vm_flush_needed) { 847 mutex_lock(&id_mgr->lock); 848 dma_fence_put(id->last_flush); 849 id->last_flush = dma_fence_get(fence); 850 id->current_gpu_reset_count = 851 atomic_read(&adev->gpu_reset_counter); 852 mutex_unlock(&id_mgr->lock); 853 } 854 855 if (pasid_mapping_needed) { 856 mutex_lock(&id_mgr->lock); 857 id->pasid = job->pasid; 858 dma_fence_put(id->pasid_mapping); 859 id->pasid_mapping = dma_fence_get(fence); 860 mutex_unlock(&id_mgr->lock); 861 } 862 863 /* 864 * Make sure that all other submissions wait for the cleaner shader to 865 * finish before we push them to the HW. 866 */ 867 if (cleaner_shader_needed) { 868 trace_amdgpu_cleaner_shader(ring, fence); 869 mutex_lock(&adev->enforce_isolation_mutex); 870 dma_fence_put(isolation->spearhead); 871 isolation->spearhead = dma_fence_get(fence); 872 mutex_unlock(&adev->enforce_isolation_mutex); 873 } 874 dma_fence_put(fence); 875 876 amdgpu_ring_patch_cond_exec(ring, patch); 877 878 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 879 if (ring->funcs->emit_switch_buffer) { 880 amdgpu_ring_emit_switch_buffer(ring); 881 amdgpu_ring_emit_switch_buffer(ring); 882 } 883 884 amdgpu_ring_ib_end(ring); 885 return 0; 886 } 887 888 /** 889 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 890 * 891 * @vm: requested vm 892 * @bo: requested buffer object 893 * 894 * Find @bo inside the requested vm. 895 * Search inside the @bos vm list for the requested vm 896 * Returns the found bo_va or NULL if none is found 897 * 898 * Object has to be reserved! 899 * 900 * Returns: 901 * Found bo_va or NULL. 902 */ 903 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 904 struct amdgpu_bo *bo) 905 { 906 struct amdgpu_vm_bo_base *base; 907 908 for (base = bo->vm_bo; base; base = base->next) { 909 if (base->vm != vm) 910 continue; 911 912 return container_of(base, struct amdgpu_bo_va, base); 913 } 914 return NULL; 915 } 916 917 /** 918 * amdgpu_vm_map_gart - Resolve gart mapping of addr 919 * 920 * @pages_addr: optional DMA address to use for lookup 921 * @addr: the unmapped addr 922 * 923 * Look up the physical address of the page that the pte resolves 924 * to. 925 * 926 * Returns: 927 * The pointer for the page table entry. 928 */ 929 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 930 { 931 uint64_t result; 932 933 /* page table offset */ 934 result = pages_addr[addr >> PAGE_SHIFT]; 935 936 /* in case cpu page size != gpu page size*/ 937 result |= addr & (~PAGE_MASK); 938 939 result &= 0xFFFFFFFFFFFFF000ULL; 940 941 return result; 942 } 943 944 /** 945 * amdgpu_vm_update_pdes - make sure that all directories are valid 946 * 947 * @adev: amdgpu_device pointer 948 * @vm: requested vm 949 * @immediate: submit immediately to the paging queue 950 * 951 * Makes sure all directories are up to date. 952 * 953 * Returns: 954 * 0 for success, error for failure. 955 */ 956 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 957 struct amdgpu_vm *vm, bool immediate) 958 { 959 struct amdgpu_vm_update_params params; 960 struct amdgpu_vm_bo_base *entry; 961 bool flush_tlb_needed = false; 962 LIST_HEAD(relocated); 963 int r, idx; 964 965 spin_lock(&vm->status_lock); 966 list_splice_init(&vm->relocated, &relocated); 967 spin_unlock(&vm->status_lock); 968 969 if (list_empty(&relocated)) 970 return 0; 971 972 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 973 return -ENODEV; 974 975 memset(¶ms, 0, sizeof(params)); 976 params.adev = adev; 977 params.vm = vm; 978 params.immediate = immediate; 979 980 r = vm->update_funcs->prepare(¶ms, NULL, 981 AMDGPU_KERNEL_JOB_ID_VM_UPDATE_PDES); 982 if (r) 983 goto error; 984 985 list_for_each_entry(entry, &relocated, vm_status) { 986 /* vm_flush_needed after updating moved PDEs */ 987 flush_tlb_needed |= entry->moved; 988 989 r = amdgpu_vm_pde_update(¶ms, entry); 990 if (r) 991 goto error; 992 } 993 994 r = vm->update_funcs->commit(¶ms, &vm->last_update); 995 if (r) 996 goto error; 997 998 if (flush_tlb_needed) 999 atomic64_inc(&vm->tlb_seq); 1000 1001 while (!list_empty(&relocated)) { 1002 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 1003 vm_status); 1004 amdgpu_vm_bo_idle(entry); 1005 } 1006 1007 error: 1008 drm_dev_exit(idx); 1009 return r; 1010 } 1011 1012 /** 1013 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 1014 * @fence: unused 1015 * @cb: the callback structure 1016 * 1017 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1018 */ 1019 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 1020 struct dma_fence_cb *cb) 1021 { 1022 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1023 1024 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 1025 atomic64_inc(&tlb_cb->vm->tlb_seq); 1026 kfree(tlb_cb); 1027 } 1028 1029 /** 1030 * amdgpu_vm_tlb_flush - prepare TLB flush 1031 * 1032 * @params: parameters for update 1033 * @fence: input fence to sync TLB flush with 1034 * @tlb_cb: the callback structure 1035 * 1036 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1037 */ 1038 static void 1039 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 1040 struct dma_fence **fence, 1041 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 1042 { 1043 struct amdgpu_vm *vm = params->vm; 1044 1045 tlb_cb->vm = vm; 1046 if (!fence || !*fence) { 1047 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1048 return; 1049 } 1050 1051 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 1052 amdgpu_vm_tlb_seq_cb)) { 1053 dma_fence_put(vm->last_tlb_flush); 1054 vm->last_tlb_flush = dma_fence_get(*fence); 1055 } else { 1056 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1057 } 1058 1059 /* Prepare a TLB flush fence to be attached to PTs */ 1060 if (!params->unlocked && vm->is_compute_context) { 1061 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 1062 1063 /* Makes sure no PD/PT is freed before the flush */ 1064 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 1065 DMA_RESV_USAGE_BOOKKEEP); 1066 } 1067 } 1068 1069 /** 1070 * amdgpu_vm_update_range - update a range in the vm page table 1071 * 1072 * @adev: amdgpu_device pointer to use for commands 1073 * @vm: the VM to update the range 1074 * @immediate: immediate submission in a page fault 1075 * @unlocked: unlocked invalidation during MM callback 1076 * @flush_tlb: trigger tlb invalidation after update completed 1077 * @allow_override: change MTYPE for local NUMA nodes 1078 * @sync: fences we need to sync to 1079 * @start: start of mapped range 1080 * @last: last mapped entry 1081 * @flags: flags for the entries 1082 * @offset: offset into nodes and pages_addr 1083 * @vram_base: base for vram mappings 1084 * @res: ttm_resource to map 1085 * @pages_addr: DMA addresses to use for mapping 1086 * @fence: optional resulting fence 1087 * 1088 * Fill in the page table entries between @start and @last. 1089 * 1090 * Returns: 1091 * 0 for success, negative erro code for failure. 1092 */ 1093 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1094 bool immediate, bool unlocked, bool flush_tlb, 1095 bool allow_override, struct amdgpu_sync *sync, 1096 uint64_t start, uint64_t last, uint64_t flags, 1097 uint64_t offset, uint64_t vram_base, 1098 struct ttm_resource *res, dma_addr_t *pages_addr, 1099 struct dma_fence **fence) 1100 { 1101 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1102 struct amdgpu_vm_update_params params; 1103 struct amdgpu_res_cursor cursor; 1104 int r, idx; 1105 1106 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1107 return -ENODEV; 1108 1109 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 1110 if (!tlb_cb) { 1111 drm_dev_exit(idx); 1112 return -ENOMEM; 1113 } 1114 1115 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 1116 * heavy-weight flush TLB unconditionally. 1117 */ 1118 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 1119 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 1120 1121 /* 1122 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 1123 */ 1124 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 1125 1126 memset(¶ms, 0, sizeof(params)); 1127 params.adev = adev; 1128 params.vm = vm; 1129 params.immediate = immediate; 1130 params.pages_addr = pages_addr; 1131 params.unlocked = unlocked; 1132 params.needs_flush = flush_tlb; 1133 params.allow_override = allow_override; 1134 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 1135 1136 amdgpu_vm_eviction_lock(vm); 1137 if (vm->evicting) { 1138 r = -EBUSY; 1139 goto error_free; 1140 } 1141 1142 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1143 struct dma_fence *tmp = dma_fence_get_stub(); 1144 1145 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1146 swap(vm->last_unlocked, tmp); 1147 dma_fence_put(tmp); 1148 } 1149 1150 r = vm->update_funcs->prepare(¶ms, sync, 1151 AMDGPU_KERNEL_JOB_ID_VM_UPDATE_RANGE); 1152 if (r) 1153 goto error_free; 1154 1155 amdgpu_res_first(pages_addr ? NULL : res, offset, 1156 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1157 while (cursor.remaining) { 1158 uint64_t tmp, num_entries, addr; 1159 1160 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1161 if (pages_addr) { 1162 bool contiguous = true; 1163 1164 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1165 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1166 uint64_t count; 1167 1168 contiguous = pages_addr[pfn + 1] == 1169 pages_addr[pfn] + PAGE_SIZE; 1170 1171 tmp = num_entries / 1172 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1173 for (count = 2; count < tmp; ++count) { 1174 uint64_t idx = pfn + count; 1175 1176 if (contiguous != (pages_addr[idx] == 1177 pages_addr[idx - 1] + PAGE_SIZE)) 1178 break; 1179 } 1180 if (!contiguous) 1181 count--; 1182 num_entries = count * 1183 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1184 } 1185 1186 if (!contiguous) { 1187 addr = cursor.start; 1188 params.pages_addr = pages_addr; 1189 } else { 1190 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1191 params.pages_addr = NULL; 1192 } 1193 1194 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1195 addr = vram_base + cursor.start; 1196 } else { 1197 addr = 0; 1198 } 1199 1200 tmp = start + num_entries; 1201 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1202 if (r) 1203 goto error_free; 1204 1205 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1206 start = tmp; 1207 } 1208 1209 r = vm->update_funcs->commit(¶ms, fence); 1210 if (r) 1211 goto error_free; 1212 1213 if (params.needs_flush) { 1214 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1215 tlb_cb = NULL; 1216 } 1217 1218 amdgpu_vm_pt_free_list(adev, ¶ms); 1219 1220 error_free: 1221 kfree(tlb_cb); 1222 amdgpu_vm_eviction_unlock(vm); 1223 drm_dev_exit(idx); 1224 return r; 1225 } 1226 1227 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1228 struct amdgpu_mem_stats stats[__AMDGPU_PL_NUM]) 1229 { 1230 spin_lock(&vm->status_lock); 1231 memcpy(stats, vm->stats, sizeof(*stats) * __AMDGPU_PL_NUM); 1232 spin_unlock(&vm->status_lock); 1233 } 1234 1235 /** 1236 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1237 * 1238 * @adev: amdgpu_device pointer 1239 * @bo_va: requested BO and VM object 1240 * @clear: if true clear the entries 1241 * 1242 * Fill in the page table entries for @bo_va. 1243 * 1244 * Returns: 1245 * 0 for success, -EINVAL for failure. 1246 */ 1247 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1248 bool clear) 1249 { 1250 struct amdgpu_bo *bo = bo_va->base.bo; 1251 struct amdgpu_vm *vm = bo_va->base.vm; 1252 struct amdgpu_bo_va_mapping *mapping; 1253 struct dma_fence **last_update; 1254 dma_addr_t *pages_addr = NULL; 1255 struct ttm_resource *mem; 1256 struct amdgpu_sync sync; 1257 bool flush_tlb = clear; 1258 uint64_t vram_base; 1259 uint64_t flags; 1260 bool uncached; 1261 int r; 1262 1263 amdgpu_sync_create(&sync); 1264 if (clear) { 1265 mem = NULL; 1266 1267 /* Implicitly sync to command submissions in the same VM before 1268 * unmapping. 1269 */ 1270 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1271 AMDGPU_SYNC_EQ_OWNER, vm); 1272 if (r) 1273 goto error_free; 1274 if (bo) { 1275 r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv); 1276 if (r) 1277 goto error_free; 1278 } 1279 } else if (!bo) { 1280 mem = NULL; 1281 1282 /* PRT map operations don't need to sync to anything. */ 1283 1284 } else { 1285 struct drm_gem_object *obj = &bo->tbo.base; 1286 1287 if (drm_gem_is_imported(obj) && bo_va->is_xgmi) { 1288 struct dma_buf *dma_buf = obj->dma_buf; 1289 struct drm_gem_object *gobj = dma_buf->priv; 1290 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1291 1292 if (abo->tbo.resource && 1293 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1294 bo = gem_to_amdgpu_bo(gobj); 1295 } 1296 mem = bo->tbo.resource; 1297 if (mem && (mem->mem_type == TTM_PL_TT || 1298 mem->mem_type == AMDGPU_PL_PREEMPT)) 1299 pages_addr = bo->tbo.ttm->dma_address; 1300 1301 /* Implicitly sync to moving fences before mapping anything */ 1302 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1303 AMDGPU_SYNC_EXPLICIT, vm); 1304 if (r) 1305 goto error_free; 1306 } 1307 1308 if (bo) { 1309 struct amdgpu_device *bo_adev; 1310 1311 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1312 1313 if (amdgpu_bo_encrypted(bo)) 1314 flags |= AMDGPU_PTE_TMZ; 1315 1316 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1317 vram_base = bo_adev->vm_manager.vram_base_offset; 1318 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1319 } else { 1320 flags = 0x0; 1321 vram_base = 0; 1322 uncached = false; 1323 } 1324 1325 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1326 last_update = &vm->last_update; 1327 else 1328 last_update = &bo_va->last_pt_update; 1329 1330 if (!clear && bo_va->base.moved) { 1331 flush_tlb = true; 1332 list_splice_init(&bo_va->valids, &bo_va->invalids); 1333 1334 } else if (bo_va->cleared != clear) { 1335 list_splice_init(&bo_va->valids, &bo_va->invalids); 1336 } 1337 1338 list_for_each_entry(mapping, &bo_va->invalids, list) { 1339 uint64_t update_flags = flags; 1340 1341 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1342 * but in case of something, we filter the flags in first place 1343 */ 1344 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1345 update_flags &= ~AMDGPU_PTE_READABLE; 1346 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1347 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1348 1349 /* Apply ASIC specific mapping flags */ 1350 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1351 1352 trace_amdgpu_vm_bo_update(mapping); 1353 1354 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1355 !uncached, &sync, mapping->start, 1356 mapping->last, update_flags, 1357 mapping->offset, vram_base, mem, 1358 pages_addr, last_update); 1359 if (r) 1360 goto error_free; 1361 } 1362 1363 /* If the BO is not in its preferred location add it back to 1364 * the evicted list so that it gets validated again on the 1365 * next command submission. 1366 */ 1367 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1368 if (bo->tbo.resource && 1369 !(bo->preferred_domains & 1370 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))) 1371 amdgpu_vm_bo_evicted(&bo_va->base); 1372 else 1373 amdgpu_vm_bo_idle(&bo_va->base); 1374 } else { 1375 amdgpu_vm_bo_done(&bo_va->base); 1376 } 1377 1378 list_splice_init(&bo_va->invalids, &bo_va->valids); 1379 bo_va->cleared = clear; 1380 bo_va->base.moved = false; 1381 1382 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1383 list_for_each_entry(mapping, &bo_va->valids, list) 1384 trace_amdgpu_vm_bo_mapping(mapping); 1385 } 1386 1387 error_free: 1388 amdgpu_sync_free(&sync); 1389 return r; 1390 } 1391 1392 /** 1393 * amdgpu_vm_update_prt_state - update the global PRT state 1394 * 1395 * @adev: amdgpu_device pointer 1396 */ 1397 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1398 { 1399 unsigned long flags; 1400 bool enable; 1401 1402 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1403 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1404 adev->gmc.gmc_funcs->set_prt(adev, enable); 1405 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1406 } 1407 1408 /** 1409 * amdgpu_vm_prt_get - add a PRT user 1410 * 1411 * @adev: amdgpu_device pointer 1412 */ 1413 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1414 { 1415 if (!adev->gmc.gmc_funcs->set_prt) 1416 return; 1417 1418 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1419 amdgpu_vm_update_prt_state(adev); 1420 } 1421 1422 /** 1423 * amdgpu_vm_prt_put - drop a PRT user 1424 * 1425 * @adev: amdgpu_device pointer 1426 */ 1427 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1428 { 1429 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1430 amdgpu_vm_update_prt_state(adev); 1431 } 1432 1433 /** 1434 * amdgpu_vm_prt_cb - callback for updating the PRT status 1435 * 1436 * @fence: fence for the callback 1437 * @_cb: the callback function 1438 */ 1439 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1440 { 1441 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1442 1443 amdgpu_vm_prt_put(cb->adev); 1444 kfree(cb); 1445 } 1446 1447 /** 1448 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1449 * 1450 * @adev: amdgpu_device pointer 1451 * @fence: fence for the callback 1452 */ 1453 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1454 struct dma_fence *fence) 1455 { 1456 struct amdgpu_prt_cb *cb; 1457 1458 if (!adev->gmc.gmc_funcs->set_prt) 1459 return; 1460 1461 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1462 if (!cb) { 1463 /* Last resort when we are OOM */ 1464 if (fence) 1465 dma_fence_wait(fence, false); 1466 1467 amdgpu_vm_prt_put(adev); 1468 } else { 1469 cb->adev = adev; 1470 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1471 amdgpu_vm_prt_cb)) 1472 amdgpu_vm_prt_cb(fence, &cb->cb); 1473 } 1474 } 1475 1476 /** 1477 * amdgpu_vm_free_mapping - free a mapping 1478 * 1479 * @adev: amdgpu_device pointer 1480 * @vm: requested vm 1481 * @mapping: mapping to be freed 1482 * @fence: fence of the unmap operation 1483 * 1484 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1485 */ 1486 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1487 struct amdgpu_vm *vm, 1488 struct amdgpu_bo_va_mapping *mapping, 1489 struct dma_fence *fence) 1490 { 1491 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1492 amdgpu_vm_add_prt_cb(adev, fence); 1493 kfree(mapping); 1494 } 1495 1496 /** 1497 * amdgpu_vm_prt_fini - finish all prt mappings 1498 * 1499 * @adev: amdgpu_device pointer 1500 * @vm: requested vm 1501 * 1502 * Register a cleanup callback to disable PRT support after VM dies. 1503 */ 1504 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1505 { 1506 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1507 struct dma_resv_iter cursor; 1508 struct dma_fence *fence; 1509 1510 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1511 /* Add a callback for each fence in the reservation object */ 1512 amdgpu_vm_prt_get(adev); 1513 amdgpu_vm_add_prt_cb(adev, fence); 1514 } 1515 } 1516 1517 /** 1518 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1519 * 1520 * @adev: amdgpu_device pointer 1521 * @vm: requested vm 1522 * @fence: optional resulting fence (unchanged if no work needed to be done 1523 * or if an error occurred) 1524 * 1525 * Make sure all freed BOs are cleared in the PT. 1526 * PTs have to be reserved and mutex must be locked! 1527 * 1528 * Returns: 1529 * 0 for success. 1530 * 1531 */ 1532 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1533 struct amdgpu_vm *vm, 1534 struct dma_fence **fence) 1535 { 1536 struct amdgpu_bo_va_mapping *mapping; 1537 struct dma_fence *f = NULL; 1538 struct amdgpu_sync sync; 1539 int r; 1540 1541 1542 /* 1543 * Implicitly sync to command submissions in the same VM before 1544 * unmapping. 1545 */ 1546 amdgpu_sync_create(&sync); 1547 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1548 AMDGPU_SYNC_EQ_OWNER, vm); 1549 if (r) 1550 goto error_free; 1551 1552 while (!list_empty(&vm->freed)) { 1553 mapping = list_first_entry(&vm->freed, 1554 struct amdgpu_bo_va_mapping, list); 1555 list_del(&mapping->list); 1556 1557 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1558 &sync, mapping->start, mapping->last, 1559 0, 0, 0, NULL, NULL, &f); 1560 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1561 if (r) { 1562 dma_fence_put(f); 1563 goto error_free; 1564 } 1565 } 1566 1567 if (fence && f) { 1568 dma_fence_put(*fence); 1569 *fence = f; 1570 } else { 1571 dma_fence_put(f); 1572 } 1573 1574 error_free: 1575 amdgpu_sync_free(&sync); 1576 return r; 1577 1578 } 1579 1580 /** 1581 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1582 * 1583 * @adev: amdgpu_device pointer 1584 * @vm: requested vm 1585 * @ticket: optional reservation ticket used to reserve the VM 1586 * 1587 * Make sure all BOs which are moved are updated in the PTs. 1588 * 1589 * Returns: 1590 * 0 for success. 1591 * 1592 * PTs have to be reserved! 1593 */ 1594 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1595 struct amdgpu_vm *vm, 1596 struct ww_acquire_ctx *ticket) 1597 { 1598 struct amdgpu_bo_va *bo_va; 1599 struct dma_resv *resv; 1600 bool clear, unlock; 1601 int r; 1602 1603 spin_lock(&vm->status_lock); 1604 while (!list_empty(&vm->moved)) { 1605 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1606 base.vm_status); 1607 spin_unlock(&vm->status_lock); 1608 1609 /* Per VM BOs never need to bo cleared in the page tables */ 1610 r = amdgpu_vm_bo_update(adev, bo_va, false); 1611 if (r) 1612 return r; 1613 spin_lock(&vm->status_lock); 1614 } 1615 1616 while (!list_empty(&vm->invalidated)) { 1617 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1618 base.vm_status); 1619 resv = bo_va->base.bo->tbo.base.resv; 1620 spin_unlock(&vm->status_lock); 1621 1622 /* Try to reserve the BO to avoid clearing its ptes */ 1623 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1624 clear = false; 1625 unlock = true; 1626 /* The caller is already holding the reservation lock */ 1627 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1628 clear = false; 1629 unlock = false; 1630 /* Somebody else is using the BO right now */ 1631 } else { 1632 clear = true; 1633 unlock = false; 1634 } 1635 1636 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1637 1638 if (unlock) 1639 dma_resv_unlock(resv); 1640 if (r) 1641 return r; 1642 1643 /* Remember evicted DMABuf imports in compute VMs for later 1644 * validation 1645 */ 1646 if (vm->is_compute_context && 1647 drm_gem_is_imported(&bo_va->base.bo->tbo.base) && 1648 (!bo_va->base.bo->tbo.resource || 1649 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1650 amdgpu_vm_bo_evicted_user(&bo_va->base); 1651 1652 spin_lock(&vm->status_lock); 1653 } 1654 spin_unlock(&vm->status_lock); 1655 1656 return 0; 1657 } 1658 1659 /** 1660 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1661 * 1662 * @adev: amdgpu_device pointer 1663 * @vm: requested vm 1664 * @flush_type: flush type 1665 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1666 * 1667 * Flush TLB if needed for a compute VM. 1668 * 1669 * Returns: 1670 * 0 for success. 1671 */ 1672 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1673 struct amdgpu_vm *vm, 1674 uint32_t flush_type, 1675 uint32_t xcc_mask) 1676 { 1677 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1678 bool all_hub = false; 1679 int xcc = 0, r = 0; 1680 1681 WARN_ON_ONCE(!vm->is_compute_context); 1682 1683 /* 1684 * It can be that we race and lose here, but that is extremely unlikely 1685 * and the worst thing which could happen is that we flush the changes 1686 * into the TLB once more which is harmless. 1687 */ 1688 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1689 return 0; 1690 1691 if (adev->family == AMDGPU_FAMILY_AI || 1692 adev->family == AMDGPU_FAMILY_RV) 1693 all_hub = true; 1694 1695 for_each_inst(xcc, xcc_mask) { 1696 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1697 all_hub, xcc); 1698 if (r) 1699 break; 1700 } 1701 return r; 1702 } 1703 1704 /** 1705 * amdgpu_vm_bo_add - add a bo to a specific vm 1706 * 1707 * @adev: amdgpu_device pointer 1708 * @vm: requested vm 1709 * @bo: amdgpu buffer object 1710 * 1711 * Add @bo into the requested vm. 1712 * Add @bo to the list of bos associated with the vm 1713 * 1714 * Returns: 1715 * Newly added bo_va or NULL for failure 1716 * 1717 * Object has to be reserved! 1718 */ 1719 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1720 struct amdgpu_vm *vm, 1721 struct amdgpu_bo *bo) 1722 { 1723 struct amdgpu_bo_va *bo_va; 1724 1725 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1726 if (bo_va == NULL) { 1727 return NULL; 1728 } 1729 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1730 1731 bo_va->ref_count = 1; 1732 bo_va->last_pt_update = dma_fence_get_stub(); 1733 INIT_LIST_HEAD(&bo_va->valids); 1734 INIT_LIST_HEAD(&bo_va->invalids); 1735 1736 if (!bo) 1737 return bo_va; 1738 1739 dma_resv_assert_held(bo->tbo.base.resv); 1740 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1741 bo_va->is_xgmi = true; 1742 /* Power up XGMI if it can be potentially used */ 1743 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1744 } 1745 1746 return bo_va; 1747 } 1748 1749 1750 /** 1751 * amdgpu_vm_bo_insert_map - insert a new mapping 1752 * 1753 * @adev: amdgpu_device pointer 1754 * @bo_va: bo_va to store the address 1755 * @mapping: the mapping to insert 1756 * 1757 * Insert a new mapping into all structures. 1758 */ 1759 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1760 struct amdgpu_bo_va *bo_va, 1761 struct amdgpu_bo_va_mapping *mapping) 1762 { 1763 struct amdgpu_vm *vm = bo_va->base.vm; 1764 struct amdgpu_bo *bo = bo_va->base.bo; 1765 1766 mapping->bo_va = bo_va; 1767 list_add(&mapping->list, &bo_va->invalids); 1768 amdgpu_vm_it_insert(mapping, &vm->va); 1769 1770 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1771 amdgpu_vm_prt_get(adev); 1772 1773 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1774 amdgpu_vm_bo_moved(&bo_va->base); 1775 1776 trace_amdgpu_vm_bo_map(bo_va, mapping); 1777 } 1778 1779 /* Validate operation parameters to prevent potential abuse */ 1780 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1781 struct amdgpu_bo *bo, 1782 uint64_t saddr, 1783 uint64_t offset, 1784 uint64_t size) 1785 { 1786 uint64_t tmp, lpfn; 1787 1788 if (saddr & AMDGPU_GPU_PAGE_MASK 1789 || offset & AMDGPU_GPU_PAGE_MASK 1790 || size & AMDGPU_GPU_PAGE_MASK) 1791 return -EINVAL; 1792 1793 if (check_add_overflow(saddr, size, &tmp) 1794 || check_add_overflow(offset, size, &tmp) 1795 || size == 0 /* which also leads to end < begin */) 1796 return -EINVAL; 1797 1798 /* make sure object fit at this offset */ 1799 if (bo && offset + size > amdgpu_bo_size(bo)) 1800 return -EINVAL; 1801 1802 /* Ensure last pfn not exceed max_pfn */ 1803 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1804 if (lpfn >= adev->vm_manager.max_pfn) 1805 return -EINVAL; 1806 1807 return 0; 1808 } 1809 1810 /** 1811 * amdgpu_vm_bo_map - map bo inside a vm 1812 * 1813 * @adev: amdgpu_device pointer 1814 * @bo_va: bo_va to store the address 1815 * @saddr: where to map the BO 1816 * @offset: requested offset in the BO 1817 * @size: BO size in bytes 1818 * @flags: attributes of pages (read/write/valid/etc.) 1819 * 1820 * Add a mapping of the BO at the specefied addr into the VM. 1821 * 1822 * Returns: 1823 * 0 for success, error for failure. 1824 * 1825 * Object has to be reserved and unreserved outside! 1826 */ 1827 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1828 struct amdgpu_bo_va *bo_va, 1829 uint64_t saddr, uint64_t offset, 1830 uint64_t size, uint64_t flags) 1831 { 1832 struct amdgpu_bo_va_mapping *mapping, *tmp; 1833 struct amdgpu_bo *bo = bo_va->base.bo; 1834 struct amdgpu_vm *vm = bo_va->base.vm; 1835 uint64_t eaddr; 1836 int r; 1837 1838 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1839 if (r) 1840 return r; 1841 1842 saddr /= AMDGPU_GPU_PAGE_SIZE; 1843 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1844 1845 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1846 if (tmp) { 1847 /* bo and tmp overlap, invalid addr */ 1848 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1849 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1850 tmp->start, tmp->last + 1); 1851 return -EINVAL; 1852 } 1853 1854 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1855 if (!mapping) 1856 return -ENOMEM; 1857 1858 mapping->start = saddr; 1859 mapping->last = eaddr; 1860 mapping->offset = offset; 1861 mapping->flags = flags; 1862 1863 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1864 1865 return 0; 1866 } 1867 1868 /** 1869 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1870 * 1871 * @adev: amdgpu_device pointer 1872 * @bo_va: bo_va to store the address 1873 * @saddr: where to map the BO 1874 * @offset: requested offset in the BO 1875 * @size: BO size in bytes 1876 * @flags: attributes of pages (read/write/valid/etc.) 1877 * 1878 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1879 * mappings as we do so. 1880 * 1881 * Returns: 1882 * 0 for success, error for failure. 1883 * 1884 * Object has to be reserved and unreserved outside! 1885 */ 1886 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1887 struct amdgpu_bo_va *bo_va, 1888 uint64_t saddr, uint64_t offset, 1889 uint64_t size, uint64_t flags) 1890 { 1891 struct amdgpu_bo_va_mapping *mapping; 1892 struct amdgpu_bo *bo = bo_va->base.bo; 1893 uint64_t eaddr; 1894 int r; 1895 1896 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1897 if (r) 1898 return r; 1899 1900 /* Allocate all the needed memory */ 1901 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1902 if (!mapping) 1903 return -ENOMEM; 1904 1905 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1906 if (r) { 1907 kfree(mapping); 1908 return r; 1909 } 1910 1911 saddr /= AMDGPU_GPU_PAGE_SIZE; 1912 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1913 1914 mapping->start = saddr; 1915 mapping->last = eaddr; 1916 mapping->offset = offset; 1917 mapping->flags = flags; 1918 1919 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1920 1921 return 0; 1922 } 1923 1924 /** 1925 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1926 * 1927 * @adev: amdgpu_device pointer 1928 * @bo_va: bo_va to remove the address from 1929 * @saddr: where to the BO is mapped 1930 * 1931 * Remove a mapping of the BO at the specefied addr from the VM. 1932 * 1933 * Returns: 1934 * 0 for success, error for failure. 1935 * 1936 * Object has to be reserved and unreserved outside! 1937 */ 1938 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1939 struct amdgpu_bo_va *bo_va, 1940 uint64_t saddr) 1941 { 1942 struct amdgpu_bo_va_mapping *mapping; 1943 struct amdgpu_vm *vm = bo_va->base.vm; 1944 bool valid = true; 1945 1946 saddr /= AMDGPU_GPU_PAGE_SIZE; 1947 1948 list_for_each_entry(mapping, &bo_va->valids, list) { 1949 if (mapping->start == saddr) 1950 break; 1951 } 1952 1953 if (&mapping->list == &bo_va->valids) { 1954 valid = false; 1955 1956 list_for_each_entry(mapping, &bo_va->invalids, list) { 1957 if (mapping->start == saddr) 1958 break; 1959 } 1960 1961 if (&mapping->list == &bo_va->invalids) 1962 return -ENOENT; 1963 } 1964 1965 list_del(&mapping->list); 1966 amdgpu_vm_it_remove(mapping, &vm->va); 1967 mapping->bo_va = NULL; 1968 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1969 1970 if (valid) 1971 list_add(&mapping->list, &vm->freed); 1972 else 1973 amdgpu_vm_free_mapping(adev, vm, mapping, 1974 bo_va->last_pt_update); 1975 1976 return 0; 1977 } 1978 1979 /** 1980 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1981 * 1982 * @adev: amdgpu_device pointer 1983 * @vm: VM structure to use 1984 * @saddr: start of the range 1985 * @size: size of the range 1986 * 1987 * Remove all mappings in a range, split them as appropriate. 1988 * 1989 * Returns: 1990 * 0 for success, error for failure. 1991 */ 1992 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1993 struct amdgpu_vm *vm, 1994 uint64_t saddr, uint64_t size) 1995 { 1996 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1997 LIST_HEAD(removed); 1998 uint64_t eaddr; 1999 int r; 2000 2001 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 2002 if (r) 2003 return r; 2004 2005 saddr /= AMDGPU_GPU_PAGE_SIZE; 2006 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 2007 2008 /* Allocate all the needed memory */ 2009 before = kzalloc(sizeof(*before), GFP_KERNEL); 2010 if (!before) 2011 return -ENOMEM; 2012 INIT_LIST_HEAD(&before->list); 2013 2014 after = kzalloc(sizeof(*after), GFP_KERNEL); 2015 if (!after) { 2016 kfree(before); 2017 return -ENOMEM; 2018 } 2019 INIT_LIST_HEAD(&after->list); 2020 2021 /* Now gather all removed mappings */ 2022 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2023 while (tmp) { 2024 /* Remember mapping split at the start */ 2025 if (tmp->start < saddr) { 2026 before->start = tmp->start; 2027 before->last = saddr - 1; 2028 before->offset = tmp->offset; 2029 before->flags = tmp->flags; 2030 before->bo_va = tmp->bo_va; 2031 list_add(&before->list, &tmp->bo_va->invalids); 2032 } 2033 2034 /* Remember mapping split at the end */ 2035 if (tmp->last > eaddr) { 2036 after->start = eaddr + 1; 2037 after->last = tmp->last; 2038 after->offset = tmp->offset; 2039 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2040 after->flags = tmp->flags; 2041 after->bo_va = tmp->bo_va; 2042 list_add(&after->list, &tmp->bo_va->invalids); 2043 } 2044 2045 list_del(&tmp->list); 2046 list_add(&tmp->list, &removed); 2047 2048 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2049 } 2050 2051 /* And free them up */ 2052 list_for_each_entry_safe(tmp, next, &removed, list) { 2053 amdgpu_vm_it_remove(tmp, &vm->va); 2054 list_del(&tmp->list); 2055 2056 if (tmp->start < saddr) 2057 tmp->start = saddr; 2058 if (tmp->last > eaddr) 2059 tmp->last = eaddr; 2060 2061 tmp->bo_va = NULL; 2062 list_add(&tmp->list, &vm->freed); 2063 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2064 } 2065 2066 /* Insert partial mapping before the range */ 2067 if (!list_empty(&before->list)) { 2068 struct amdgpu_bo *bo = before->bo_va->base.bo; 2069 2070 amdgpu_vm_it_insert(before, &vm->va); 2071 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2072 amdgpu_vm_prt_get(adev); 2073 2074 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2075 !before->bo_va->base.moved) 2076 amdgpu_vm_bo_moved(&before->bo_va->base); 2077 } else { 2078 kfree(before); 2079 } 2080 2081 /* Insert partial mapping after the range */ 2082 if (!list_empty(&after->list)) { 2083 struct amdgpu_bo *bo = after->bo_va->base.bo; 2084 2085 amdgpu_vm_it_insert(after, &vm->va); 2086 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2087 amdgpu_vm_prt_get(adev); 2088 2089 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2090 !after->bo_va->base.moved) 2091 amdgpu_vm_bo_moved(&after->bo_va->base); 2092 } else { 2093 kfree(after); 2094 } 2095 2096 return 0; 2097 } 2098 2099 /** 2100 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2101 * 2102 * @vm: the requested VM 2103 * @addr: the address 2104 * 2105 * Find a mapping by it's address. 2106 * 2107 * Returns: 2108 * The amdgpu_bo_va_mapping matching for addr or NULL 2109 * 2110 */ 2111 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2112 uint64_t addr) 2113 { 2114 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2115 } 2116 2117 /** 2118 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2119 * 2120 * @vm: the requested vm 2121 * @ticket: CS ticket 2122 * 2123 * Trace all mappings of BOs reserved during a command submission. 2124 */ 2125 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2126 { 2127 struct amdgpu_bo_va_mapping *mapping; 2128 2129 if (!trace_amdgpu_vm_bo_cs_enabled()) 2130 return; 2131 2132 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2133 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2134 if (mapping->bo_va && mapping->bo_va->base.bo) { 2135 struct amdgpu_bo *bo; 2136 2137 bo = mapping->bo_va->base.bo; 2138 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2139 ticket) 2140 continue; 2141 } 2142 2143 trace_amdgpu_vm_bo_cs(mapping); 2144 } 2145 } 2146 2147 /** 2148 * amdgpu_vm_bo_del - remove a bo from a specific vm 2149 * 2150 * @adev: amdgpu_device pointer 2151 * @bo_va: requested bo_va 2152 * 2153 * Remove @bo_va->bo from the requested vm. 2154 * 2155 * Object have to be reserved! 2156 */ 2157 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2158 struct amdgpu_bo_va *bo_va) 2159 { 2160 struct amdgpu_bo_va_mapping *mapping, *next; 2161 struct amdgpu_bo *bo = bo_va->base.bo; 2162 struct amdgpu_vm *vm = bo_va->base.vm; 2163 struct amdgpu_vm_bo_base **base; 2164 2165 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2166 2167 if (bo) { 2168 dma_resv_assert_held(bo->tbo.base.resv); 2169 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2170 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2171 2172 for (base = &bo_va->base.bo->vm_bo; *base; 2173 base = &(*base)->next) { 2174 if (*base != &bo_va->base) 2175 continue; 2176 2177 amdgpu_vm_update_stats(*base, bo->tbo.resource, -1); 2178 *base = bo_va->base.next; 2179 break; 2180 } 2181 } 2182 2183 spin_lock(&vm->status_lock); 2184 list_del(&bo_va->base.vm_status); 2185 spin_unlock(&vm->status_lock); 2186 2187 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2188 list_del(&mapping->list); 2189 amdgpu_vm_it_remove(mapping, &vm->va); 2190 mapping->bo_va = NULL; 2191 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2192 list_add(&mapping->list, &vm->freed); 2193 } 2194 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2195 list_del(&mapping->list); 2196 amdgpu_vm_it_remove(mapping, &vm->va); 2197 amdgpu_vm_free_mapping(adev, vm, mapping, 2198 bo_va->last_pt_update); 2199 } 2200 2201 dma_fence_put(bo_va->last_pt_update); 2202 2203 if (bo && bo_va->is_xgmi) 2204 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2205 2206 kfree(bo_va); 2207 } 2208 2209 /** 2210 * amdgpu_vm_evictable - check if we can evict a VM 2211 * 2212 * @bo: A page table of the VM. 2213 * 2214 * Check if it is possible to evict a VM. 2215 */ 2216 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2217 { 2218 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2219 2220 /* Page tables of a destroyed VM can go away immediately */ 2221 if (!bo_base || !bo_base->vm) 2222 return true; 2223 2224 /* Don't evict VM page tables while they are busy */ 2225 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2226 return false; 2227 2228 /* Try to block ongoing updates */ 2229 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2230 return false; 2231 2232 /* Don't evict VM page tables while they are updated */ 2233 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2234 amdgpu_vm_eviction_unlock(bo_base->vm); 2235 return false; 2236 } 2237 2238 bo_base->vm->evicting = true; 2239 amdgpu_vm_eviction_unlock(bo_base->vm); 2240 return true; 2241 } 2242 2243 /** 2244 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2245 * 2246 * @bo: amdgpu buffer object 2247 * @evicted: is the BO evicted 2248 * 2249 * Mark @bo as invalid. 2250 */ 2251 void amdgpu_vm_bo_invalidate(struct amdgpu_bo *bo, bool evicted) 2252 { 2253 struct amdgpu_vm_bo_base *bo_base; 2254 2255 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2256 struct amdgpu_vm *vm = bo_base->vm; 2257 2258 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2259 amdgpu_vm_bo_evicted(bo_base); 2260 continue; 2261 } 2262 2263 if (bo_base->moved) 2264 continue; 2265 bo_base->moved = true; 2266 2267 if (bo->tbo.type == ttm_bo_type_kernel) 2268 amdgpu_vm_bo_relocated(bo_base); 2269 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2270 amdgpu_vm_bo_moved(bo_base); 2271 else 2272 amdgpu_vm_bo_invalidated(bo_base); 2273 } 2274 } 2275 2276 /** 2277 * amdgpu_vm_bo_move - handle BO move 2278 * 2279 * @bo: amdgpu buffer object 2280 * @new_mem: the new placement of the BO move 2281 * @evicted: is the BO evicted 2282 * 2283 * Update the memory stats for the new placement and mark @bo as invalid. 2284 */ 2285 void amdgpu_vm_bo_move(struct amdgpu_bo *bo, struct ttm_resource *new_mem, 2286 bool evicted) 2287 { 2288 struct amdgpu_vm_bo_base *bo_base; 2289 2290 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2291 struct amdgpu_vm *vm = bo_base->vm; 2292 2293 spin_lock(&vm->status_lock); 2294 amdgpu_vm_update_stats_locked(bo_base, bo->tbo.resource, -1); 2295 amdgpu_vm_update_stats_locked(bo_base, new_mem, +1); 2296 spin_unlock(&vm->status_lock); 2297 } 2298 2299 amdgpu_vm_bo_invalidate(bo, evicted); 2300 } 2301 2302 /** 2303 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2304 * 2305 * @vm_size: VM size 2306 * 2307 * Returns: 2308 * VM page table as power of two 2309 */ 2310 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2311 { 2312 /* Total bits covered by PD + PTs */ 2313 unsigned bits = ilog2(vm_size) + 18; 2314 2315 /* Make sure the PD is 4K in size up to 8GB address space. 2316 Above that split equal between PD and PTs */ 2317 if (vm_size <= 8) 2318 return (bits - 9); 2319 else 2320 return ((bits + 3) / 2); 2321 } 2322 2323 /** 2324 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2325 * 2326 * @adev: amdgpu_device pointer 2327 * @min_vm_size: the minimum vm size in GB if it's set auto 2328 * @fragment_size_default: Default PTE fragment size 2329 * @max_level: max VMPT level 2330 * @max_bits: max address space size in bits 2331 * 2332 */ 2333 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2334 uint32_t fragment_size_default, unsigned max_level, 2335 unsigned max_bits) 2336 { 2337 unsigned int max_size = 1 << (max_bits - 30); 2338 unsigned int vm_size; 2339 uint64_t tmp; 2340 2341 /* adjust vm size first */ 2342 if (amdgpu_vm_size != -1) { 2343 vm_size = amdgpu_vm_size; 2344 if (vm_size > max_size) { 2345 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2346 amdgpu_vm_size, max_size); 2347 vm_size = max_size; 2348 } 2349 } else { 2350 struct sysinfo si; 2351 unsigned int phys_ram_gb; 2352 2353 /* Optimal VM size depends on the amount of physical 2354 * RAM available. Underlying requirements and 2355 * assumptions: 2356 * 2357 * - Need to map system memory and VRAM from all GPUs 2358 * - VRAM from other GPUs not known here 2359 * - Assume VRAM <= system memory 2360 * - On GFX8 and older, VM space can be segmented for 2361 * different MTYPEs 2362 * - Need to allow room for fragmentation, guard pages etc. 2363 * 2364 * This adds up to a rough guess of system memory x3. 2365 * Round up to power of two to maximize the available 2366 * VM size with the given page table size. 2367 */ 2368 si_meminfo(&si); 2369 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2370 (1 << 30) - 1) >> 30; 2371 vm_size = roundup_pow_of_two( 2372 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2373 } 2374 2375 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2376 2377 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2378 if (amdgpu_vm_block_size != -1) 2379 tmp >>= amdgpu_vm_block_size - 9; 2380 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2381 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2382 switch (adev->vm_manager.num_level) { 2383 case 3: 2384 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2385 break; 2386 case 2: 2387 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2388 break; 2389 case 1: 2390 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2391 break; 2392 default: 2393 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2394 } 2395 /* block size depends on vm size and hw setup*/ 2396 if (amdgpu_vm_block_size != -1) 2397 adev->vm_manager.block_size = 2398 min((unsigned)amdgpu_vm_block_size, max_bits 2399 - AMDGPU_GPU_PAGE_SHIFT 2400 - 9 * adev->vm_manager.num_level); 2401 else if (adev->vm_manager.num_level > 1) 2402 adev->vm_manager.block_size = 9; 2403 else 2404 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2405 2406 if (amdgpu_vm_fragment_size == -1) 2407 adev->vm_manager.fragment_size = fragment_size_default; 2408 else 2409 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2410 2411 dev_info( 2412 adev->dev, 2413 "vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2414 vm_size, adev->vm_manager.num_level + 1, 2415 adev->vm_manager.block_size, adev->vm_manager.fragment_size); 2416 } 2417 2418 /** 2419 * amdgpu_vm_wait_idle - wait for the VM to become idle 2420 * 2421 * @vm: VM object to wait for 2422 * @timeout: timeout to wait for VM to become idle 2423 */ 2424 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2425 { 2426 timeout = drm_sched_entity_flush(&vm->immediate, timeout); 2427 if (timeout <= 0) 2428 return timeout; 2429 2430 return drm_sched_entity_flush(&vm->delayed, timeout); 2431 } 2432 2433 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2434 { 2435 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2436 2437 kfree(ti); 2438 } 2439 2440 static inline struct amdgpu_vm * 2441 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2442 { 2443 struct amdgpu_vm *vm; 2444 unsigned long flags; 2445 2446 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2447 vm = xa_load(&adev->vm_manager.pasids, pasid); 2448 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2449 2450 return vm; 2451 } 2452 2453 /** 2454 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2455 * 2456 * @task_info: task_info struct under discussion. 2457 * 2458 * frees the vm task_info ptr at the last put 2459 */ 2460 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2461 { 2462 if (task_info) 2463 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2464 } 2465 2466 /** 2467 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2468 * 2469 * @vm: VM to get info from 2470 * 2471 * Returns the reference counted task_info structure, which must be 2472 * referenced down with amdgpu_vm_put_task_info. 2473 */ 2474 struct amdgpu_task_info * 2475 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2476 { 2477 struct amdgpu_task_info *ti = NULL; 2478 2479 if (vm) { 2480 ti = vm->task_info; 2481 kref_get(&vm->task_info->refcount); 2482 } 2483 2484 return ti; 2485 } 2486 2487 /** 2488 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2489 * 2490 * @adev: drm device pointer 2491 * @pasid: PASID identifier for VM 2492 * 2493 * Returns the reference counted task_info structure, which must be 2494 * referenced down with amdgpu_vm_put_task_info. 2495 */ 2496 struct amdgpu_task_info * 2497 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2498 { 2499 return amdgpu_vm_get_task_info_vm( 2500 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2501 } 2502 2503 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2504 { 2505 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2506 if (!vm->task_info) 2507 return -ENOMEM; 2508 2509 kref_init(&vm->task_info->refcount); 2510 return 0; 2511 } 2512 2513 /** 2514 * amdgpu_vm_set_task_info - Sets VMs task info. 2515 * 2516 * @vm: vm for which to set the info 2517 */ 2518 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2519 { 2520 if (!vm->task_info) 2521 return; 2522 2523 if (vm->task_info->task.pid == current->pid) 2524 return; 2525 2526 vm->task_info->task.pid = current->pid; 2527 get_task_comm(vm->task_info->task.comm, current); 2528 2529 if (current->group_leader->mm != current->mm) 2530 return; 2531 2532 vm->task_info->tgid = current->group_leader->pid; 2533 get_task_comm(vm->task_info->process_name, current->group_leader); 2534 } 2535 2536 /** 2537 * amdgpu_vm_init - initialize a vm instance 2538 * 2539 * @adev: amdgpu_device pointer 2540 * @vm: requested vm 2541 * @xcp_id: GPU partition selection id 2542 * 2543 * Init @vm fields. 2544 * 2545 * Returns: 2546 * 0 for success, error for failure. 2547 */ 2548 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2549 int32_t xcp_id) 2550 { 2551 struct amdgpu_bo *root_bo; 2552 struct amdgpu_bo_vm *root; 2553 int r, i; 2554 2555 vm->va = RB_ROOT_CACHED; 2556 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2557 vm->reserved_vmid[i] = NULL; 2558 INIT_LIST_HEAD(&vm->evicted); 2559 INIT_LIST_HEAD(&vm->evicted_user); 2560 INIT_LIST_HEAD(&vm->relocated); 2561 INIT_LIST_HEAD(&vm->moved); 2562 INIT_LIST_HEAD(&vm->idle); 2563 INIT_LIST_HEAD(&vm->invalidated); 2564 spin_lock_init(&vm->status_lock); 2565 INIT_LIST_HEAD(&vm->freed); 2566 INIT_LIST_HEAD(&vm->done); 2567 INIT_KFIFO(vm->faults); 2568 2569 r = amdgpu_vm_init_entities(adev, vm); 2570 if (r) 2571 return r; 2572 2573 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2574 2575 vm->is_compute_context = false; 2576 2577 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2578 AMDGPU_VM_USE_CPU_FOR_GFX); 2579 2580 dev_dbg(adev->dev, "VM update mode is %s\n", 2581 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2582 WARN_ONCE((vm->use_cpu_for_update && 2583 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2584 "CPU update of VM recommended only for large BAR system\n"); 2585 2586 if (vm->use_cpu_for_update) 2587 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2588 else 2589 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2590 2591 vm->last_update = dma_fence_get_stub(); 2592 vm->last_unlocked = dma_fence_get_stub(); 2593 vm->last_tlb_flush = dma_fence_get_stub(); 2594 vm->generation = amdgpu_vm_generation(adev, NULL); 2595 2596 mutex_init(&vm->eviction_lock); 2597 vm->evicting = false; 2598 vm->tlb_fence_context = dma_fence_context_alloc(1); 2599 2600 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2601 false, &root, xcp_id); 2602 if (r) 2603 goto error_free_delayed; 2604 2605 root_bo = amdgpu_bo_ref(&root->bo); 2606 r = amdgpu_bo_reserve(root_bo, true); 2607 if (r) { 2608 amdgpu_bo_unref(&root_bo); 2609 goto error_free_delayed; 2610 } 2611 2612 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2613 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2614 if (r) 2615 goto error_free_root; 2616 2617 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2618 if (r) 2619 goto error_free_root; 2620 2621 r = amdgpu_vm_create_task_info(vm); 2622 if (r) 2623 dev_dbg(adev->dev, "Failed to create task info for VM\n"); 2624 2625 amdgpu_bo_unreserve(vm->root.bo); 2626 amdgpu_bo_unref(&root_bo); 2627 2628 return 0; 2629 2630 error_free_root: 2631 amdgpu_vm_pt_free_root(adev, vm); 2632 amdgpu_bo_unreserve(vm->root.bo); 2633 amdgpu_bo_unref(&root_bo); 2634 2635 error_free_delayed: 2636 dma_fence_put(vm->last_tlb_flush); 2637 dma_fence_put(vm->last_unlocked); 2638 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2639 amdgpu_vm_fini_entities(vm); 2640 2641 return r; 2642 } 2643 2644 /** 2645 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2646 * 2647 * @adev: amdgpu_device pointer 2648 * @vm: requested vm 2649 * 2650 * This only works on GFX VMs that don't have any BOs added and no 2651 * page tables allocated yet. 2652 * 2653 * Changes the following VM parameters: 2654 * - use_cpu_for_update 2655 * - pte_supports_ats 2656 * 2657 * Reinitializes the page directory to reflect the changed ATS 2658 * setting. 2659 * 2660 * Returns: 2661 * 0 for success, -errno for errors. 2662 */ 2663 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2664 { 2665 int r; 2666 2667 r = amdgpu_bo_reserve(vm->root.bo, true); 2668 if (r) 2669 return r; 2670 2671 /* Update VM state */ 2672 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2673 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2674 dev_dbg(adev->dev, "VM update mode is %s\n", 2675 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2676 WARN_ONCE((vm->use_cpu_for_update && 2677 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2678 "CPU update of VM recommended only for large BAR system\n"); 2679 2680 if (vm->use_cpu_for_update) { 2681 /* Sync with last SDMA update/clear before switching to CPU */ 2682 r = amdgpu_bo_sync_wait(vm->root.bo, 2683 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2684 if (r) 2685 goto unreserve_bo; 2686 2687 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2688 r = amdgpu_vm_pt_map_tables(adev, vm); 2689 if (r) 2690 goto unreserve_bo; 2691 2692 } else { 2693 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2694 } 2695 2696 dma_fence_put(vm->last_update); 2697 vm->last_update = dma_fence_get_stub(); 2698 vm->is_compute_context = true; 2699 2700 unreserve_bo: 2701 amdgpu_bo_unreserve(vm->root.bo); 2702 return r; 2703 } 2704 2705 static int amdgpu_vm_stats_is_zero(struct amdgpu_vm *vm) 2706 { 2707 for (int i = 0; i < __AMDGPU_PL_NUM; ++i) { 2708 if (!(drm_memory_stats_is_zero(&vm->stats[i].drm) && 2709 vm->stats[i].evicted == 0)) 2710 return false; 2711 } 2712 return true; 2713 } 2714 2715 /** 2716 * amdgpu_vm_fini - tear down a vm instance 2717 * 2718 * @adev: amdgpu_device pointer 2719 * @vm: requested vm 2720 * 2721 * Tear down @vm. 2722 * Unbind the VM and remove all bos from the vm bo list 2723 */ 2724 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2725 { 2726 struct amdgpu_bo_va_mapping *mapping, *tmp; 2727 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2728 struct amdgpu_bo *root; 2729 unsigned long flags; 2730 int i; 2731 2732 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2733 2734 root = amdgpu_bo_ref(vm->root.bo); 2735 amdgpu_bo_reserve(root, true); 2736 amdgpu_vm_set_pasid(adev, vm, 0); 2737 dma_fence_wait(vm->last_unlocked, false); 2738 dma_fence_put(vm->last_unlocked); 2739 dma_fence_wait(vm->last_tlb_flush, false); 2740 /* Make sure that all fence callbacks have completed */ 2741 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2742 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2743 dma_fence_put(vm->last_tlb_flush); 2744 2745 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2746 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2747 amdgpu_vm_prt_fini(adev, vm); 2748 prt_fini_needed = false; 2749 } 2750 2751 list_del(&mapping->list); 2752 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2753 } 2754 2755 amdgpu_vm_pt_free_root(adev, vm); 2756 amdgpu_bo_unreserve(root); 2757 amdgpu_bo_unref(&root); 2758 WARN_ON(vm->root.bo); 2759 2760 amdgpu_vm_fini_entities(vm); 2761 2762 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2763 dev_err(adev->dev, "still active bo inside vm\n"); 2764 } 2765 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2766 &vm->va.rb_root, rb) { 2767 /* Don't remove the mapping here, we don't want to trigger a 2768 * rebalance and the tree is about to be destroyed anyway. 2769 */ 2770 list_del(&mapping->list); 2771 kfree(mapping); 2772 } 2773 2774 dma_fence_put(vm->last_update); 2775 2776 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2777 if (vm->reserved_vmid[i]) { 2778 amdgpu_vmid_free_reserved(adev, i); 2779 vm->reserved_vmid[i] = false; 2780 } 2781 } 2782 2783 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2784 2785 if (!amdgpu_vm_stats_is_zero(vm)) { 2786 struct amdgpu_task_info *ti = vm->task_info; 2787 2788 dev_warn(adev->dev, 2789 "VM memory stats for proc %s(%d) task %s(%d) is non-zero when fini\n", 2790 ti->process_name, ti->task.pid, ti->task.comm, ti->tgid); 2791 } 2792 2793 amdgpu_vm_put_task_info(vm->task_info); 2794 } 2795 2796 /** 2797 * amdgpu_vm_manager_init - init the VM manager 2798 * 2799 * @adev: amdgpu_device pointer 2800 * 2801 * Initialize the VM manager structures 2802 */ 2803 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2804 { 2805 unsigned i; 2806 2807 /* Concurrent flushes are only possible starting with Vega10 and 2808 * are broken on Navi10 and Navi14. 2809 */ 2810 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2811 adev->asic_type == CHIP_NAVI10 || 2812 adev->asic_type == CHIP_NAVI14); 2813 amdgpu_vmid_mgr_init(adev); 2814 2815 adev->vm_manager.fence_context = 2816 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2817 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2818 adev->vm_manager.seqno[i] = 0; 2819 2820 spin_lock_init(&adev->vm_manager.prt_lock); 2821 atomic_set(&adev->vm_manager.num_prt_users, 0); 2822 2823 /* If not overridden by the user, by default, only in large BAR systems 2824 * Compute VM tables will be updated by CPU 2825 */ 2826 #ifdef CONFIG_X86_64 2827 if (amdgpu_vm_update_mode == -1) { 2828 /* For asic with VF MMIO access protection 2829 * avoid using CPU for VM table updates 2830 */ 2831 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2832 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2833 adev->vm_manager.vm_update_mode = 2834 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2835 else 2836 adev->vm_manager.vm_update_mode = 0; 2837 } else 2838 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2839 #else 2840 adev->vm_manager.vm_update_mode = 0; 2841 #endif 2842 2843 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2844 } 2845 2846 /** 2847 * amdgpu_vm_manager_fini - cleanup VM manager 2848 * 2849 * @adev: amdgpu_device pointer 2850 * 2851 * Cleanup the VM manager and free resources. 2852 */ 2853 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2854 { 2855 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2856 xa_destroy(&adev->vm_manager.pasids); 2857 2858 amdgpu_vmid_mgr_fini(adev); 2859 } 2860 2861 /** 2862 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2863 * 2864 * @dev: drm device pointer 2865 * @data: drm_amdgpu_vm 2866 * @filp: drm file pointer 2867 * 2868 * Returns: 2869 * 0 for success, -errno for errors. 2870 */ 2871 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2872 { 2873 union drm_amdgpu_vm *args = data; 2874 struct amdgpu_device *adev = drm_to_adev(dev); 2875 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2876 2877 /* No valid flags defined yet */ 2878 if (args->in.flags) 2879 return -EINVAL; 2880 2881 switch (args->in.op) { 2882 case AMDGPU_VM_OP_RESERVE_VMID: 2883 /* We only have requirement to reserve vmid from gfxhub */ 2884 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2885 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2886 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2887 } 2888 2889 break; 2890 case AMDGPU_VM_OP_UNRESERVE_VMID: 2891 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2892 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2893 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2894 } 2895 break; 2896 default: 2897 return -EINVAL; 2898 } 2899 2900 return 0; 2901 } 2902 2903 /** 2904 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2905 * @adev: amdgpu device pointer 2906 * @pasid: PASID of the VM 2907 * @ts: Timestamp of the fault 2908 * @vmid: VMID, only used for GFX 9.4.3. 2909 * @node_id: Node_id received in IH cookie. Only applicable for 2910 * GFX 9.4.3. 2911 * @addr: Address of the fault 2912 * @write_fault: true is write fault, false is read fault 2913 * 2914 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2915 * shouldn't be reported any more. 2916 */ 2917 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2918 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2919 bool write_fault) 2920 { 2921 bool is_compute_context = false; 2922 struct amdgpu_bo *root; 2923 unsigned long irqflags; 2924 uint64_t value, flags; 2925 struct amdgpu_vm *vm; 2926 int r; 2927 2928 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2929 vm = xa_load(&adev->vm_manager.pasids, pasid); 2930 if (vm) { 2931 root = amdgpu_bo_ref(vm->root.bo); 2932 is_compute_context = vm->is_compute_context; 2933 } else { 2934 root = NULL; 2935 } 2936 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2937 2938 if (!root) 2939 return false; 2940 2941 addr /= AMDGPU_GPU_PAGE_SIZE; 2942 2943 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2944 node_id, addr, ts, write_fault)) { 2945 amdgpu_bo_unref(&root); 2946 return true; 2947 } 2948 2949 r = amdgpu_bo_reserve(root, true); 2950 if (r) 2951 goto error_unref; 2952 2953 /* Double check that the VM still exists */ 2954 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2955 vm = xa_load(&adev->vm_manager.pasids, pasid); 2956 if (vm && vm->root.bo != root) 2957 vm = NULL; 2958 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2959 if (!vm) 2960 goto error_unlock; 2961 2962 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2963 AMDGPU_PTE_SYSTEM; 2964 2965 if (is_compute_context) { 2966 /* Intentionally setting invalid PTE flag 2967 * combination to force a no-retry-fault 2968 */ 2969 flags = AMDGPU_VM_NORETRY_FLAGS; 2970 value = 0; 2971 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2972 /* Redirect the access to the dummy page */ 2973 value = adev->dummy_page_addr; 2974 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2975 AMDGPU_PTE_WRITEABLE; 2976 2977 } else { 2978 /* Let the hw retry silently on the PTE */ 2979 value = 0; 2980 } 2981 2982 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2983 if (r) { 2984 pr_debug("failed %d to reserve fence slot\n", r); 2985 goto error_unlock; 2986 } 2987 2988 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2989 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2990 if (r) 2991 goto error_unlock; 2992 2993 r = amdgpu_vm_update_pdes(adev, vm, true); 2994 2995 error_unlock: 2996 amdgpu_bo_unreserve(root); 2997 if (r < 0) 2998 dev_err(adev->dev, "Can't handle page fault (%d)\n", r); 2999 3000 error_unref: 3001 amdgpu_bo_unref(&root); 3002 3003 return false; 3004 } 3005 3006 #if defined(CONFIG_DEBUG_FS) 3007 /** 3008 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3009 * 3010 * @vm: Requested VM for printing BO info 3011 * @m: debugfs file 3012 * 3013 * Print BO information in debugfs file for the VM 3014 */ 3015 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3016 { 3017 struct amdgpu_bo_va *bo_va, *tmp; 3018 u64 total_idle = 0; 3019 u64 total_evicted = 0; 3020 u64 total_relocated = 0; 3021 u64 total_moved = 0; 3022 u64 total_invalidated = 0; 3023 u64 total_done = 0; 3024 unsigned int total_idle_objs = 0; 3025 unsigned int total_evicted_objs = 0; 3026 unsigned int total_relocated_objs = 0; 3027 unsigned int total_moved_objs = 0; 3028 unsigned int total_invalidated_objs = 0; 3029 unsigned int total_done_objs = 0; 3030 unsigned int id = 0; 3031 3032 spin_lock(&vm->status_lock); 3033 seq_puts(m, "\tIdle BOs:\n"); 3034 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3035 if (!bo_va->base.bo) 3036 continue; 3037 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3038 } 3039 total_idle_objs = id; 3040 id = 0; 3041 3042 seq_puts(m, "\tEvicted BOs:\n"); 3043 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3044 if (!bo_va->base.bo) 3045 continue; 3046 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3047 } 3048 total_evicted_objs = id; 3049 id = 0; 3050 3051 seq_puts(m, "\tRelocated BOs:\n"); 3052 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3053 if (!bo_va->base.bo) 3054 continue; 3055 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3056 } 3057 total_relocated_objs = id; 3058 id = 0; 3059 3060 seq_puts(m, "\tMoved BOs:\n"); 3061 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3062 if (!bo_va->base.bo) 3063 continue; 3064 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3065 } 3066 total_moved_objs = id; 3067 id = 0; 3068 3069 seq_puts(m, "\tInvalidated BOs:\n"); 3070 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3071 if (!bo_va->base.bo) 3072 continue; 3073 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3074 } 3075 total_invalidated_objs = id; 3076 id = 0; 3077 3078 seq_puts(m, "\tDone BOs:\n"); 3079 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3080 if (!bo_va->base.bo) 3081 continue; 3082 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3083 } 3084 spin_unlock(&vm->status_lock); 3085 total_done_objs = id; 3086 3087 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3088 total_idle_objs); 3089 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3090 total_evicted_objs); 3091 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3092 total_relocated_objs); 3093 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3094 total_moved_objs); 3095 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3096 total_invalidated_objs); 3097 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3098 total_done_objs); 3099 } 3100 #endif 3101 3102 /** 3103 * amdgpu_vm_update_fault_cache - update cached fault into. 3104 * @adev: amdgpu device pointer 3105 * @pasid: PASID of the VM 3106 * @addr: Address of the fault 3107 * @status: GPUVM fault status register 3108 * @vmhub: which vmhub got the fault 3109 * 3110 * Cache the fault info for later use by userspace in debugging. 3111 */ 3112 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 3113 unsigned int pasid, 3114 uint64_t addr, 3115 uint32_t status, 3116 unsigned int vmhub) 3117 { 3118 struct amdgpu_vm *vm; 3119 unsigned long flags; 3120 3121 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3122 3123 vm = xa_load(&adev->vm_manager.pasids, pasid); 3124 /* Don't update the fault cache if status is 0. In the multiple 3125 * fault case, subsequent faults will return a 0 status which is 3126 * useless for userspace and replaces the useful fault status, so 3127 * only update if status is non-0. 3128 */ 3129 if (vm && status) { 3130 vm->fault_info.addr = addr; 3131 vm->fault_info.status = status; 3132 /* 3133 * Update the fault information globally for later usage 3134 * when vm could be stale or freed. 3135 */ 3136 adev->vm_manager.fault_info.addr = addr; 3137 adev->vm_manager.fault_info.vmhub = vmhub; 3138 adev->vm_manager.fault_info.status = status; 3139 3140 if (AMDGPU_IS_GFXHUB(vmhub)) { 3141 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3142 vm->fault_info.vmhub |= 3143 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3144 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3145 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3146 vm->fault_info.vmhub |= 3147 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3148 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3149 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3150 vm->fault_info.vmhub |= 3151 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3152 } else { 3153 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3154 } 3155 } 3156 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3157 } 3158 3159 /** 3160 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3161 * 3162 * @vm: VM to test against. 3163 * @bo: BO to be tested. 3164 * 3165 * Returns true if the BO shares the dma_resv object with the root PD and is 3166 * always guaranteed to be valid inside the VM. 3167 */ 3168 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3169 { 3170 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3171 } 3172 3173 void amdgpu_vm_print_task_info(struct amdgpu_device *adev, 3174 struct amdgpu_task_info *task_info) 3175 { 3176 dev_err(adev->dev, 3177 " Process %s pid %d thread %s pid %d\n", 3178 task_info->process_name, task_info->tgid, 3179 task_info->task.comm, task_info->task.pid); 3180 } 3181