xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 2845f512232de9e436b9e3b5529e906e62414013)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include <drm/ttm/ttm_tt.h>
37 #include <drm/drm_exec.h>
38 #include "amdgpu.h"
39 #include "amdgpu_trace.h"
40 #include "amdgpu_amdkfd.h"
41 #include "amdgpu_gmc.h"
42 #include "amdgpu_xgmi.h"
43 #include "amdgpu_dma_buf.h"
44 #include "amdgpu_res_cursor.h"
45 #include "kfd_svm.h"
46 
47 /**
48  * DOC: GPUVM
49  *
50  * GPUVM is the MMU functionality provided on the GPU.
51  * GPUVM is similar to the legacy GART on older asics, however
52  * rather than there being a single global GART table
53  * for the entire GPU, there can be multiple GPUVM page tables active
54  * at any given time.  The GPUVM page tables can contain a mix
55  * VRAM pages and system pages (both memory and MMIO) and system pages
56  * can be mapped as snooped (cached system pages) or unsnooped
57  * (uncached system pages).
58  *
59  * Each active GPUVM has an ID associated with it and there is a page table
60  * linked with each VMID.  When executing a command buffer,
61  * the kernel tells the engine what VMID to use for that command
62  * buffer.  VMIDs are allocated dynamically as commands are submitted.
63  * The userspace drivers maintain their own address space and the kernel
64  * sets up their pages tables accordingly when they submit their
65  * command buffers and a VMID is assigned.
66  * The hardware supports up to 16 active GPUVMs at any given time.
67  *
68  * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending
69  * on the ASIC family.  GPUVM supports RWX attributes on each page as well
70  * as other features such as encryption and caching attributes.
71  *
72  * VMID 0 is special.  It is the GPUVM used for the kernel driver.  In
73  * addition to an aperture managed by a page table, VMID 0 also has
74  * several other apertures.  There is an aperture for direct access to VRAM
75  * and there is a legacy AGP aperture which just forwards accesses directly
76  * to the matching system physical addresses (or IOVAs when an IOMMU is
77  * present).  These apertures provide direct access to these memories without
78  * incurring the overhead of a page table.  VMID 0 is used by the kernel
79  * driver for tasks like memory management.
80  *
81  * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory.
82  * For user applications, each application can have their own unique GPUVM
83  * address space.  The application manages the address space and the kernel
84  * driver manages the GPUVM page tables for each process.  If an GPU client
85  * accesses an invalid page, it will generate a GPU page fault, similar to
86  * accessing an invalid page on a CPU.
87  */
88 
89 #define START(node) ((node)->start)
90 #define LAST(node) ((node)->last)
91 
92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
93 		     START, LAST, static, amdgpu_vm_it)
94 
95 #undef START
96 #undef LAST
97 
98 /**
99  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
100  */
101 struct amdgpu_prt_cb {
102 
103 	/**
104 	 * @adev: amdgpu device
105 	 */
106 	struct amdgpu_device *adev;
107 
108 	/**
109 	 * @cb: callback
110 	 */
111 	struct dma_fence_cb cb;
112 };
113 
114 /**
115  * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence
116  */
117 struct amdgpu_vm_tlb_seq_struct {
118 	/**
119 	 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on
120 	 */
121 	struct amdgpu_vm *vm;
122 
123 	/**
124 	 * @cb: callback
125 	 */
126 	struct dma_fence_cb cb;
127 };
128 
129 /**
130  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
131  *
132  * @adev: amdgpu_device pointer
133  * @vm: amdgpu_vm pointer
134  * @pasid: the pasid the VM is using on this GPU
135  *
136  * Set the pasid this VM is using on this GPU, can also be used to remove the
137  * pasid by passing in zero.
138  *
139  */
140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
141 			u32 pasid)
142 {
143 	int r;
144 
145 	if (vm->pasid == pasid)
146 		return 0;
147 
148 	if (vm->pasid) {
149 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
150 		if (r < 0)
151 			return r;
152 
153 		vm->pasid = 0;
154 	}
155 
156 	if (pasid) {
157 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
158 					GFP_KERNEL));
159 		if (r < 0)
160 			return r;
161 
162 		vm->pasid = pasid;
163 	}
164 
165 
166 	return 0;
167 }
168 
169 /**
170  * amdgpu_vm_bo_evicted - vm_bo is evicted
171  *
172  * @vm_bo: vm_bo which is evicted
173  *
174  * State for PDs/PTs and per VM BOs which are not at the location they should
175  * be.
176  */
177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
178 {
179 	struct amdgpu_vm *vm = vm_bo->vm;
180 	struct amdgpu_bo *bo = vm_bo->bo;
181 
182 	vm_bo->moved = true;
183 	spin_lock(&vm_bo->vm->status_lock);
184 	if (bo->tbo.type == ttm_bo_type_kernel)
185 		list_move(&vm_bo->vm_status, &vm->evicted);
186 	else
187 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
188 	spin_unlock(&vm_bo->vm->status_lock);
189 }
190 /**
191  * amdgpu_vm_bo_moved - vm_bo is moved
192  *
193  * @vm_bo: vm_bo which is moved
194  *
195  * State for per VM BOs which are moved, but that change is not yet reflected
196  * in the page tables.
197  */
198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
199 {
200 	spin_lock(&vm_bo->vm->status_lock);
201 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
202 	spin_unlock(&vm_bo->vm->status_lock);
203 }
204 
205 /**
206  * amdgpu_vm_bo_idle - vm_bo is idle
207  *
208  * @vm_bo: vm_bo which is now idle
209  *
210  * State for PDs/PTs and per VM BOs which have gone through the state machine
211  * and are now idle.
212  */
213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
214 {
215 	spin_lock(&vm_bo->vm->status_lock);
216 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
217 	spin_unlock(&vm_bo->vm->status_lock);
218 	vm_bo->moved = false;
219 }
220 
221 /**
222  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
223  *
224  * @vm_bo: vm_bo which is now invalidated
225  *
226  * State for normal BOs which are invalidated and that change not yet reflected
227  * in the PTs.
228  */
229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
230 {
231 	spin_lock(&vm_bo->vm->status_lock);
232 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
233 	spin_unlock(&vm_bo->vm->status_lock);
234 }
235 
236 /**
237  * amdgpu_vm_bo_evicted_user - vm_bo is evicted
238  *
239  * @vm_bo: vm_bo which is evicted
240  *
241  * State for BOs used by user mode queues which are not at the location they
242  * should be.
243  */
244 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo)
245 {
246 	vm_bo->moved = true;
247 	spin_lock(&vm_bo->vm->status_lock);
248 	list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user);
249 	spin_unlock(&vm_bo->vm->status_lock);
250 }
251 
252 /**
253  * amdgpu_vm_bo_relocated - vm_bo is reloacted
254  *
255  * @vm_bo: vm_bo which is relocated
256  *
257  * State for PDs/PTs which needs to update their parent PD.
258  * For the root PD, just move to idle state.
259  */
260 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
261 {
262 	if (vm_bo->bo->parent) {
263 		spin_lock(&vm_bo->vm->status_lock);
264 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
265 		spin_unlock(&vm_bo->vm->status_lock);
266 	} else {
267 		amdgpu_vm_bo_idle(vm_bo);
268 	}
269 }
270 
271 /**
272  * amdgpu_vm_bo_done - vm_bo is done
273  *
274  * @vm_bo: vm_bo which is now done
275  *
276  * State for normal BOs which are invalidated and that change has been updated
277  * in the PTs.
278  */
279 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
280 {
281 	spin_lock(&vm_bo->vm->status_lock);
282 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
283 	spin_unlock(&vm_bo->vm->status_lock);
284 }
285 
286 /**
287  * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine
288  * @vm: the VM which state machine to reset
289  *
290  * Move all vm_bo object in the VM into a state where they will be updated
291  * again during validation.
292  */
293 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm)
294 {
295 	struct amdgpu_vm_bo_base *vm_bo, *tmp;
296 
297 	spin_lock(&vm->status_lock);
298 	list_splice_init(&vm->done, &vm->invalidated);
299 	list_for_each_entry(vm_bo, &vm->invalidated, vm_status)
300 		vm_bo->moved = true;
301 	list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) {
302 		struct amdgpu_bo *bo = vm_bo->bo;
303 
304 		vm_bo->moved = true;
305 		if (!bo || bo->tbo.type != ttm_bo_type_kernel)
306 			list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
307 		else if (bo->parent)
308 			list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
309 	}
310 	spin_unlock(&vm->status_lock);
311 }
312 
313 /**
314  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
315  *
316  * @base: base structure for tracking BO usage in a VM
317  * @vm: vm to which bo is to be added
318  * @bo: amdgpu buffer object
319  *
320  * Initialize a bo_va_base structure and add it to the appropriate lists
321  *
322  */
323 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
324 			    struct amdgpu_vm *vm, struct amdgpu_bo *bo)
325 {
326 	base->vm = vm;
327 	base->bo = bo;
328 	base->next = NULL;
329 	INIT_LIST_HEAD(&base->vm_status);
330 
331 	if (!bo)
332 		return;
333 	base->next = bo->vm_bo;
334 	bo->vm_bo = base;
335 
336 	if (!amdgpu_vm_is_bo_always_valid(vm, bo))
337 		return;
338 
339 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
340 
341 	ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
342 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
343 		amdgpu_vm_bo_relocated(base);
344 	else
345 		amdgpu_vm_bo_idle(base);
346 
347 	if (bo->preferred_domains &
348 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
349 		return;
350 
351 	/*
352 	 * we checked all the prerequisites, but it looks like this per vm bo
353 	 * is currently evicted. add the bo to the evicted list to make sure it
354 	 * is validated on next vm use to avoid fault.
355 	 * */
356 	amdgpu_vm_bo_evicted(base);
357 }
358 
359 /**
360  * amdgpu_vm_lock_pd - lock PD in drm_exec
361  *
362  * @vm: vm providing the BOs
363  * @exec: drm execution context
364  * @num_fences: number of extra fences to reserve
365  *
366  * Lock the VM root PD in the DRM execution context.
367  */
368 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec,
369 		      unsigned int num_fences)
370 {
371 	/* We need at least two fences for the VM PD/PT updates */
372 	return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base,
373 				    2 + num_fences);
374 }
375 
376 /**
377  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
378  *
379  * @adev: amdgpu device pointer
380  * @vm: vm providing the BOs
381  *
382  * Move all BOs to the end of LRU and remember their positions to put them
383  * together.
384  */
385 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
386 				struct amdgpu_vm *vm)
387 {
388 	spin_lock(&adev->mman.bdev.lru_lock);
389 	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
390 	spin_unlock(&adev->mman.bdev.lru_lock);
391 }
392 
393 /* Create scheduler entities for page table updates */
394 static int amdgpu_vm_init_entities(struct amdgpu_device *adev,
395 				   struct amdgpu_vm *vm)
396 {
397 	int r;
398 
399 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
400 				  adev->vm_manager.vm_pte_scheds,
401 				  adev->vm_manager.vm_pte_num_scheds, NULL);
402 	if (r)
403 		goto error;
404 
405 	return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
406 				     adev->vm_manager.vm_pte_scheds,
407 				     adev->vm_manager.vm_pte_num_scheds, NULL);
408 
409 error:
410 	drm_sched_entity_destroy(&vm->immediate);
411 	return r;
412 }
413 
414 /* Destroy the entities for page table updates again */
415 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm)
416 {
417 	drm_sched_entity_destroy(&vm->immediate);
418 	drm_sched_entity_destroy(&vm->delayed);
419 }
420 
421 /**
422  * amdgpu_vm_generation - return the page table re-generation counter
423  * @adev: the amdgpu_device
424  * @vm: optional VM to check, might be NULL
425  *
426  * Returns a page table re-generation token to allow checking if submissions
427  * are still valid to use this VM. The VM parameter might be NULL in which case
428  * just the VRAM lost counter will be used.
429  */
430 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm)
431 {
432 	uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32;
433 
434 	if (!vm)
435 		return result;
436 
437 	result += lower_32_bits(vm->generation);
438 	/* Add one if the page tables will be re-generated on next CS */
439 	if (drm_sched_entity_error(&vm->delayed))
440 		++result;
441 
442 	return result;
443 }
444 
445 /**
446  * amdgpu_vm_validate - validate evicted BOs tracked in the VM
447  *
448  * @adev: amdgpu device pointer
449  * @vm: vm providing the BOs
450  * @ticket: optional reservation ticket used to reserve the VM
451  * @validate: callback to do the validation
452  * @param: parameter for the validation callback
453  *
454  * Validate the page table BOs and per-VM BOs on command submission if
455  * necessary. If a ticket is given, also try to validate evicted user queue
456  * BOs. They must already be reserved with the given ticket.
457  *
458  * Returns:
459  * Validation result.
460  */
461 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm,
462 		       struct ww_acquire_ctx *ticket,
463 		       int (*validate)(void *p, struct amdgpu_bo *bo),
464 		       void *param)
465 {
466 	uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm);
467 	struct amdgpu_vm_bo_base *bo_base;
468 	struct amdgpu_bo *shadow;
469 	struct amdgpu_bo *bo;
470 	int r;
471 
472 	if (vm->generation != new_vm_generation) {
473 		vm->generation = new_vm_generation;
474 		amdgpu_vm_bo_reset_state_machine(vm);
475 		amdgpu_vm_fini_entities(vm);
476 		r = amdgpu_vm_init_entities(adev, vm);
477 		if (r)
478 			return r;
479 	}
480 
481 	spin_lock(&vm->status_lock);
482 	while (!list_empty(&vm->evicted)) {
483 		bo_base = list_first_entry(&vm->evicted,
484 					   struct amdgpu_vm_bo_base,
485 					   vm_status);
486 		spin_unlock(&vm->status_lock);
487 
488 		bo = bo_base->bo;
489 		shadow = amdgpu_bo_shadowed(bo);
490 
491 		r = validate(param, bo);
492 		if (r)
493 			return r;
494 		if (shadow) {
495 			r = validate(param, shadow);
496 			if (r)
497 				return r;
498 		}
499 
500 		if (bo->tbo.type != ttm_bo_type_kernel) {
501 			amdgpu_vm_bo_moved(bo_base);
502 		} else {
503 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
504 			amdgpu_vm_bo_relocated(bo_base);
505 		}
506 		spin_lock(&vm->status_lock);
507 	}
508 	while (ticket && !list_empty(&vm->evicted_user)) {
509 		bo_base = list_first_entry(&vm->evicted_user,
510 					   struct amdgpu_vm_bo_base,
511 					   vm_status);
512 		spin_unlock(&vm->status_lock);
513 
514 		bo = bo_base->bo;
515 
516 		if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) {
517 			struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm);
518 
519 			pr_warn_ratelimited("Evicted user BO is not reserved\n");
520 			if (ti) {
521 				pr_warn_ratelimited("pid %d\n", ti->pid);
522 				amdgpu_vm_put_task_info(ti);
523 			}
524 
525 			return -EINVAL;
526 		}
527 
528 		r = validate(param, bo);
529 		if (r)
530 			return r;
531 
532 		amdgpu_vm_bo_invalidated(bo_base);
533 
534 		spin_lock(&vm->status_lock);
535 	}
536 	spin_unlock(&vm->status_lock);
537 
538 	amdgpu_vm_eviction_lock(vm);
539 	vm->evicting = false;
540 	amdgpu_vm_eviction_unlock(vm);
541 
542 	return 0;
543 }
544 
545 /**
546  * amdgpu_vm_ready - check VM is ready for updates
547  *
548  * @vm: VM to check
549  *
550  * Check if all VM PDs/PTs are ready for updates
551  *
552  * Returns:
553  * True if VM is not evicting.
554  */
555 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
556 {
557 	bool empty;
558 	bool ret;
559 
560 	amdgpu_vm_eviction_lock(vm);
561 	ret = !vm->evicting;
562 	amdgpu_vm_eviction_unlock(vm);
563 
564 	spin_lock(&vm->status_lock);
565 	empty = list_empty(&vm->evicted);
566 	spin_unlock(&vm->status_lock);
567 
568 	return ret && empty;
569 }
570 
571 /**
572  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
573  *
574  * @adev: amdgpu_device pointer
575  */
576 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
577 {
578 	const struct amdgpu_ip_block *ip_block;
579 	bool has_compute_vm_bug;
580 	struct amdgpu_ring *ring;
581 	int i;
582 
583 	has_compute_vm_bug = false;
584 
585 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
586 	if (ip_block) {
587 		/* Compute has a VM bug for GFX version < 7.
588 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
589 		if (ip_block->version->major <= 7)
590 			has_compute_vm_bug = true;
591 		else if (ip_block->version->major == 8)
592 			if (adev->gfx.mec_fw_version < 673)
593 				has_compute_vm_bug = true;
594 	}
595 
596 	for (i = 0; i < adev->num_rings; i++) {
597 		ring = adev->rings[i];
598 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
599 			/* only compute rings */
600 			ring->has_compute_vm_bug = has_compute_vm_bug;
601 		else
602 			ring->has_compute_vm_bug = false;
603 	}
604 }
605 
606 /**
607  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
608  *
609  * @ring: ring on which the job will be submitted
610  * @job: job to submit
611  *
612  * Returns:
613  * True if sync is needed.
614  */
615 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
616 				  struct amdgpu_job *job)
617 {
618 	struct amdgpu_device *adev = ring->adev;
619 	unsigned vmhub = ring->vm_hub;
620 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
621 
622 	if (job->vmid == 0)
623 		return false;
624 
625 	if (job->vm_needs_flush || ring->has_compute_vm_bug)
626 		return true;
627 
628 	if (ring->funcs->emit_gds_switch && job->gds_switch_needed)
629 		return true;
630 
631 	if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid]))
632 		return true;
633 
634 	return false;
635 }
636 
637 /**
638  * amdgpu_vm_flush - hardware flush the vm
639  *
640  * @ring: ring to use for flush
641  * @job:  related job
642  * @need_pipe_sync: is pipe sync needed
643  *
644  * Emit a VM flush when it is necessary.
645  *
646  * Returns:
647  * 0 on success, errno otherwise.
648  */
649 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
650 		    bool need_pipe_sync)
651 {
652 	struct amdgpu_device *adev = ring->adev;
653 	unsigned vmhub = ring->vm_hub;
654 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
655 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
656 	bool spm_update_needed = job->spm_update_needed;
657 	bool gds_switch_needed = ring->funcs->emit_gds_switch &&
658 		job->gds_switch_needed;
659 	bool vm_flush_needed = job->vm_needs_flush;
660 	struct dma_fence *fence = NULL;
661 	bool pasid_mapping_needed = false;
662 	unsigned int patch;
663 	int r;
664 
665 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
666 		gds_switch_needed = true;
667 		vm_flush_needed = true;
668 		pasid_mapping_needed = true;
669 		spm_update_needed = true;
670 	}
671 
672 	mutex_lock(&id_mgr->lock);
673 	if (id->pasid != job->pasid || !id->pasid_mapping ||
674 	    !dma_fence_is_signaled(id->pasid_mapping))
675 		pasid_mapping_needed = true;
676 	mutex_unlock(&id_mgr->lock);
677 
678 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
679 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
680 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
681 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
682 		ring->funcs->emit_wreg;
683 
684 	if (adev->gfx.enable_cleaner_shader &&
685 	    ring->funcs->emit_cleaner_shader &&
686 	    job->enforce_isolation)
687 		ring->funcs->emit_cleaner_shader(ring);
688 
689 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
690 		return 0;
691 
692 	amdgpu_ring_ib_begin(ring);
693 	if (ring->funcs->init_cond_exec)
694 		patch = amdgpu_ring_init_cond_exec(ring,
695 						   ring->cond_exe_gpu_addr);
696 
697 	if (need_pipe_sync)
698 		amdgpu_ring_emit_pipeline_sync(ring);
699 
700 	if (vm_flush_needed) {
701 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
702 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
703 	}
704 
705 	if (pasid_mapping_needed)
706 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
707 
708 	if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid)
709 		adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid);
710 
711 	if (!ring->is_mes_queue && ring->funcs->emit_gds_switch &&
712 	    gds_switch_needed) {
713 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
714 					    job->gds_size, job->gws_base,
715 					    job->gws_size, job->oa_base,
716 					    job->oa_size);
717 	}
718 
719 	if (vm_flush_needed || pasid_mapping_needed) {
720 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
721 		if (r)
722 			return r;
723 	}
724 
725 	if (vm_flush_needed) {
726 		mutex_lock(&id_mgr->lock);
727 		dma_fence_put(id->last_flush);
728 		id->last_flush = dma_fence_get(fence);
729 		id->current_gpu_reset_count =
730 			atomic_read(&adev->gpu_reset_counter);
731 		mutex_unlock(&id_mgr->lock);
732 	}
733 
734 	if (pasid_mapping_needed) {
735 		mutex_lock(&id_mgr->lock);
736 		id->pasid = job->pasid;
737 		dma_fence_put(id->pasid_mapping);
738 		id->pasid_mapping = dma_fence_get(fence);
739 		mutex_unlock(&id_mgr->lock);
740 	}
741 	dma_fence_put(fence);
742 
743 	amdgpu_ring_patch_cond_exec(ring, patch);
744 
745 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
746 	if (ring->funcs->emit_switch_buffer) {
747 		amdgpu_ring_emit_switch_buffer(ring);
748 		amdgpu_ring_emit_switch_buffer(ring);
749 	}
750 
751 	amdgpu_ring_ib_end(ring);
752 	return 0;
753 }
754 
755 /**
756  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
757  *
758  * @vm: requested vm
759  * @bo: requested buffer object
760  *
761  * Find @bo inside the requested vm.
762  * Search inside the @bos vm list for the requested vm
763  * Returns the found bo_va or NULL if none is found
764  *
765  * Object has to be reserved!
766  *
767  * Returns:
768  * Found bo_va or NULL.
769  */
770 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
771 				       struct amdgpu_bo *bo)
772 {
773 	struct amdgpu_vm_bo_base *base;
774 
775 	for (base = bo->vm_bo; base; base = base->next) {
776 		if (base->vm != vm)
777 			continue;
778 
779 		return container_of(base, struct amdgpu_bo_va, base);
780 	}
781 	return NULL;
782 }
783 
784 /**
785  * amdgpu_vm_map_gart - Resolve gart mapping of addr
786  *
787  * @pages_addr: optional DMA address to use for lookup
788  * @addr: the unmapped addr
789  *
790  * Look up the physical address of the page that the pte resolves
791  * to.
792  *
793  * Returns:
794  * The pointer for the page table entry.
795  */
796 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
797 {
798 	uint64_t result;
799 
800 	/* page table offset */
801 	result = pages_addr[addr >> PAGE_SHIFT];
802 
803 	/* in case cpu page size != gpu page size*/
804 	result |= addr & (~PAGE_MASK);
805 
806 	result &= 0xFFFFFFFFFFFFF000ULL;
807 
808 	return result;
809 }
810 
811 /**
812  * amdgpu_vm_update_pdes - make sure that all directories are valid
813  *
814  * @adev: amdgpu_device pointer
815  * @vm: requested vm
816  * @immediate: submit immediately to the paging queue
817  *
818  * Makes sure all directories are up to date.
819  *
820  * Returns:
821  * 0 for success, error for failure.
822  */
823 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
824 			  struct amdgpu_vm *vm, bool immediate)
825 {
826 	struct amdgpu_vm_update_params params;
827 	struct amdgpu_vm_bo_base *entry;
828 	bool flush_tlb_needed = false;
829 	LIST_HEAD(relocated);
830 	int r, idx;
831 
832 	spin_lock(&vm->status_lock);
833 	list_splice_init(&vm->relocated, &relocated);
834 	spin_unlock(&vm->status_lock);
835 
836 	if (list_empty(&relocated))
837 		return 0;
838 
839 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
840 		return -ENODEV;
841 
842 	memset(&params, 0, sizeof(params));
843 	params.adev = adev;
844 	params.vm = vm;
845 	params.immediate = immediate;
846 
847 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
848 	if (r)
849 		goto error;
850 
851 	list_for_each_entry(entry, &relocated, vm_status) {
852 		/* vm_flush_needed after updating moved PDEs */
853 		flush_tlb_needed |= entry->moved;
854 
855 		r = amdgpu_vm_pde_update(&params, entry);
856 		if (r)
857 			goto error;
858 	}
859 
860 	r = vm->update_funcs->commit(&params, &vm->last_update);
861 	if (r)
862 		goto error;
863 
864 	if (flush_tlb_needed)
865 		atomic64_inc(&vm->tlb_seq);
866 
867 	while (!list_empty(&relocated)) {
868 		entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base,
869 					 vm_status);
870 		amdgpu_vm_bo_idle(entry);
871 	}
872 
873 error:
874 	drm_dev_exit(idx);
875 	return r;
876 }
877 
878 /**
879  * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence
880  * @fence: unused
881  * @cb: the callback structure
882  *
883  * Increments the tlb sequence to make sure that future CS execute a VM flush.
884  */
885 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence,
886 				 struct dma_fence_cb *cb)
887 {
888 	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
889 
890 	tlb_cb = container_of(cb, typeof(*tlb_cb), cb);
891 	atomic64_inc(&tlb_cb->vm->tlb_seq);
892 	kfree(tlb_cb);
893 }
894 
895 /**
896  * amdgpu_vm_tlb_flush - prepare TLB flush
897  *
898  * @params: parameters for update
899  * @fence: input fence to sync TLB flush with
900  * @tlb_cb: the callback structure
901  *
902  * Increments the tlb sequence to make sure that future CS execute a VM flush.
903  */
904 static void
905 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params,
906 		    struct dma_fence **fence,
907 		    struct amdgpu_vm_tlb_seq_struct *tlb_cb)
908 {
909 	struct amdgpu_vm *vm = params->vm;
910 
911 	if (!fence || !*fence)
912 		return;
913 
914 	tlb_cb->vm = vm;
915 	if (!dma_fence_add_callback(*fence, &tlb_cb->cb,
916 				    amdgpu_vm_tlb_seq_cb)) {
917 		dma_fence_put(vm->last_tlb_flush);
918 		vm->last_tlb_flush = dma_fence_get(*fence);
919 	} else {
920 		amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
921 	}
922 
923 	/* Prepare a TLB flush fence to be attached to PTs */
924 	if (!params->unlocked && vm->is_compute_context) {
925 		amdgpu_vm_tlb_fence_create(params->adev, vm, fence);
926 
927 		/* Makes sure no PD/PT is freed before the flush */
928 		dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence,
929 				   DMA_RESV_USAGE_BOOKKEEP);
930 	}
931 }
932 
933 /**
934  * amdgpu_vm_update_range - update a range in the vm page table
935  *
936  * @adev: amdgpu_device pointer to use for commands
937  * @vm: the VM to update the range
938  * @immediate: immediate submission in a page fault
939  * @unlocked: unlocked invalidation during MM callback
940  * @flush_tlb: trigger tlb invalidation after update completed
941  * @allow_override: change MTYPE for local NUMA nodes
942  * @resv: fences we need to sync to
943  * @start: start of mapped range
944  * @last: last mapped entry
945  * @flags: flags for the entries
946  * @offset: offset into nodes and pages_addr
947  * @vram_base: base for vram mappings
948  * @res: ttm_resource to map
949  * @pages_addr: DMA addresses to use for mapping
950  * @fence: optional resulting fence
951  *
952  * Fill in the page table entries between @start and @last.
953  *
954  * Returns:
955  * 0 for success, negative erro code for failure.
956  */
957 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm,
958 			   bool immediate, bool unlocked, bool flush_tlb, bool allow_override,
959 			   struct dma_resv *resv, uint64_t start, uint64_t last,
960 			   uint64_t flags, uint64_t offset, uint64_t vram_base,
961 			   struct ttm_resource *res, dma_addr_t *pages_addr,
962 			   struct dma_fence **fence)
963 {
964 	struct amdgpu_vm_tlb_seq_struct *tlb_cb;
965 	struct amdgpu_vm_update_params params;
966 	struct amdgpu_res_cursor cursor;
967 	enum amdgpu_sync_mode sync_mode;
968 	int r, idx;
969 
970 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
971 		return -ENODEV;
972 
973 	tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL);
974 	if (!tlb_cb) {
975 		drm_dev_exit(idx);
976 		return -ENOMEM;
977 	}
978 
979 	/* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache,
980 	 * heavy-weight flush TLB unconditionally.
981 	 */
982 	flush_tlb |= adev->gmc.xgmi.num_physical_nodes &&
983 		     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0);
984 
985 	/*
986 	 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB
987 	 */
988 	flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0);
989 
990 	memset(&params, 0, sizeof(params));
991 	params.adev = adev;
992 	params.vm = vm;
993 	params.immediate = immediate;
994 	params.pages_addr = pages_addr;
995 	params.unlocked = unlocked;
996 	params.needs_flush = flush_tlb;
997 	params.allow_override = allow_override;
998 	INIT_LIST_HEAD(&params.tlb_flush_waitlist);
999 
1000 	/* Implicitly sync to command submissions in the same VM before
1001 	 * unmapping. Sync to moving fences before mapping.
1002 	 */
1003 	if (!(flags & AMDGPU_PTE_VALID))
1004 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1005 	else
1006 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1007 
1008 	amdgpu_vm_eviction_lock(vm);
1009 	if (vm->evicting) {
1010 		r = -EBUSY;
1011 		goto error_free;
1012 	}
1013 
1014 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1015 		struct dma_fence *tmp = dma_fence_get_stub();
1016 
1017 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1018 		swap(vm->last_unlocked, tmp);
1019 		dma_fence_put(tmp);
1020 	}
1021 
1022 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1023 	if (r)
1024 		goto error_free;
1025 
1026 	amdgpu_res_first(pages_addr ? NULL : res, offset,
1027 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1028 	while (cursor.remaining) {
1029 		uint64_t tmp, num_entries, addr;
1030 
1031 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1032 		if (pages_addr) {
1033 			bool contiguous = true;
1034 
1035 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1036 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1037 				uint64_t count;
1038 
1039 				contiguous = pages_addr[pfn + 1] ==
1040 					pages_addr[pfn] + PAGE_SIZE;
1041 
1042 				tmp = num_entries /
1043 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1044 				for (count = 2; count < tmp; ++count) {
1045 					uint64_t idx = pfn + count;
1046 
1047 					if (contiguous != (pages_addr[idx] ==
1048 					    pages_addr[idx - 1] + PAGE_SIZE))
1049 						break;
1050 				}
1051 				if (!contiguous)
1052 					count--;
1053 				num_entries = count *
1054 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1055 			}
1056 
1057 			if (!contiguous) {
1058 				addr = cursor.start;
1059 				params.pages_addr = pages_addr;
1060 			} else {
1061 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1062 				params.pages_addr = NULL;
1063 			}
1064 
1065 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) {
1066 			addr = vram_base + cursor.start;
1067 		} else {
1068 			addr = 0;
1069 		}
1070 
1071 		tmp = start + num_entries;
1072 		r = amdgpu_vm_ptes_update(&params, start, tmp, addr, flags);
1073 		if (r)
1074 			goto error_free;
1075 
1076 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1077 		start = tmp;
1078 	}
1079 
1080 	r = vm->update_funcs->commit(&params, fence);
1081 	if (r)
1082 		goto error_free;
1083 
1084 	if (params.needs_flush) {
1085 		amdgpu_vm_tlb_flush(&params, fence, tlb_cb);
1086 		tlb_cb = NULL;
1087 	}
1088 
1089 	amdgpu_vm_pt_free_list(adev, &params);
1090 
1091 error_free:
1092 	kfree(tlb_cb);
1093 	amdgpu_vm_eviction_unlock(vm);
1094 	drm_dev_exit(idx);
1095 	return r;
1096 }
1097 
1098 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va,
1099 				    struct amdgpu_mem_stats *stats)
1100 {
1101 	struct amdgpu_vm *vm = bo_va->base.vm;
1102 	struct amdgpu_bo *bo = bo_va->base.bo;
1103 
1104 	if (!bo)
1105 		return;
1106 
1107 	/*
1108 	 * For now ignore BOs which are currently locked and potentially
1109 	 * changing their location.
1110 	 */
1111 	if (!amdgpu_vm_is_bo_always_valid(vm, bo) &&
1112 	    !dma_resv_trylock(bo->tbo.base.resv))
1113 		return;
1114 
1115 	amdgpu_bo_get_memory(bo, stats);
1116 	if (!amdgpu_vm_is_bo_always_valid(vm, bo))
1117 		dma_resv_unlock(bo->tbo.base.resv);
1118 }
1119 
1120 void amdgpu_vm_get_memory(struct amdgpu_vm *vm,
1121 			  struct amdgpu_mem_stats *stats)
1122 {
1123 	struct amdgpu_bo_va *bo_va, *tmp;
1124 
1125 	spin_lock(&vm->status_lock);
1126 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status)
1127 		amdgpu_vm_bo_get_memory(bo_va, stats);
1128 
1129 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status)
1130 		amdgpu_vm_bo_get_memory(bo_va, stats);
1131 
1132 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status)
1133 		amdgpu_vm_bo_get_memory(bo_va, stats);
1134 
1135 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status)
1136 		amdgpu_vm_bo_get_memory(bo_va, stats);
1137 
1138 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status)
1139 		amdgpu_vm_bo_get_memory(bo_va, stats);
1140 
1141 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status)
1142 		amdgpu_vm_bo_get_memory(bo_va, stats);
1143 	spin_unlock(&vm->status_lock);
1144 }
1145 
1146 /**
1147  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1148  *
1149  * @adev: amdgpu_device pointer
1150  * @bo_va: requested BO and VM object
1151  * @clear: if true clear the entries
1152  *
1153  * Fill in the page table entries for @bo_va.
1154  *
1155  * Returns:
1156  * 0 for success, -EINVAL for failure.
1157  */
1158 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1159 			bool clear)
1160 {
1161 	struct amdgpu_bo *bo = bo_va->base.bo;
1162 	struct amdgpu_vm *vm = bo_va->base.vm;
1163 	struct amdgpu_bo_va_mapping *mapping;
1164 	dma_addr_t *pages_addr = NULL;
1165 	struct ttm_resource *mem;
1166 	struct dma_fence **last_update;
1167 	bool flush_tlb = clear;
1168 	bool uncached;
1169 	struct dma_resv *resv;
1170 	uint64_t vram_base;
1171 	uint64_t flags;
1172 	int r;
1173 
1174 	if (clear || !bo) {
1175 		mem = NULL;
1176 		resv = vm->root.bo->tbo.base.resv;
1177 	} else {
1178 		struct drm_gem_object *obj = &bo->tbo.base;
1179 
1180 		resv = bo->tbo.base.resv;
1181 		if (obj->import_attach && bo_va->is_xgmi) {
1182 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1183 			struct drm_gem_object *gobj = dma_buf->priv;
1184 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1185 
1186 			if (abo->tbo.resource &&
1187 			    abo->tbo.resource->mem_type == TTM_PL_VRAM)
1188 				bo = gem_to_amdgpu_bo(gobj);
1189 		}
1190 		mem = bo->tbo.resource;
1191 		if (mem && (mem->mem_type == TTM_PL_TT ||
1192 			    mem->mem_type == AMDGPU_PL_PREEMPT))
1193 			pages_addr = bo->tbo.ttm->dma_address;
1194 	}
1195 
1196 	if (bo) {
1197 		struct amdgpu_device *bo_adev;
1198 
1199 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1200 
1201 		if (amdgpu_bo_encrypted(bo))
1202 			flags |= AMDGPU_PTE_TMZ;
1203 
1204 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1205 		vram_base = bo_adev->vm_manager.vram_base_offset;
1206 		uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0;
1207 	} else {
1208 		flags = 0x0;
1209 		vram_base = 0;
1210 		uncached = false;
1211 	}
1212 
1213 	if (clear || amdgpu_vm_is_bo_always_valid(vm, bo))
1214 		last_update = &vm->last_update;
1215 	else
1216 		last_update = &bo_va->last_pt_update;
1217 
1218 	if (!clear && bo_va->base.moved) {
1219 		flush_tlb = true;
1220 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1221 
1222 	} else if (bo_va->cleared != clear) {
1223 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1224 	}
1225 
1226 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1227 		uint64_t update_flags = flags;
1228 
1229 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1230 		 * but in case of something, we filter the flags in first place
1231 		 */
1232 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1233 			update_flags &= ~AMDGPU_PTE_READABLE;
1234 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1235 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1236 
1237 		/* Apply ASIC specific mapping flags */
1238 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1239 
1240 		trace_amdgpu_vm_bo_update(mapping);
1241 
1242 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb,
1243 					   !uncached, resv, mapping->start, mapping->last,
1244 					   update_flags, mapping->offset,
1245 					   vram_base, mem, pages_addr,
1246 					   last_update);
1247 		if (r)
1248 			return r;
1249 	}
1250 
1251 	/* If the BO is not in its preferred location add it back to
1252 	 * the evicted list so that it gets validated again on the
1253 	 * next command submission.
1254 	 */
1255 	if (amdgpu_vm_is_bo_always_valid(vm, bo)) {
1256 		uint32_t mem_type = bo->tbo.resource->mem_type;
1257 
1258 		if (!(bo->preferred_domains &
1259 		      amdgpu_mem_type_to_domain(mem_type)))
1260 			amdgpu_vm_bo_evicted(&bo_va->base);
1261 		else
1262 			amdgpu_vm_bo_idle(&bo_va->base);
1263 	} else {
1264 		amdgpu_vm_bo_done(&bo_va->base);
1265 	}
1266 
1267 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1268 	bo_va->cleared = clear;
1269 	bo_va->base.moved = false;
1270 
1271 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1272 		list_for_each_entry(mapping, &bo_va->valids, list)
1273 			trace_amdgpu_vm_bo_mapping(mapping);
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 /**
1280  * amdgpu_vm_update_prt_state - update the global PRT state
1281  *
1282  * @adev: amdgpu_device pointer
1283  */
1284 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1285 {
1286 	unsigned long flags;
1287 	bool enable;
1288 
1289 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1290 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1291 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1292 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1293 }
1294 
1295 /**
1296  * amdgpu_vm_prt_get - add a PRT user
1297  *
1298  * @adev: amdgpu_device pointer
1299  */
1300 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1301 {
1302 	if (!adev->gmc.gmc_funcs->set_prt)
1303 		return;
1304 
1305 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1306 		amdgpu_vm_update_prt_state(adev);
1307 }
1308 
1309 /**
1310  * amdgpu_vm_prt_put - drop a PRT user
1311  *
1312  * @adev: amdgpu_device pointer
1313  */
1314 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1315 {
1316 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1317 		amdgpu_vm_update_prt_state(adev);
1318 }
1319 
1320 /**
1321  * amdgpu_vm_prt_cb - callback for updating the PRT status
1322  *
1323  * @fence: fence for the callback
1324  * @_cb: the callback function
1325  */
1326 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1327 {
1328 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1329 
1330 	amdgpu_vm_prt_put(cb->adev);
1331 	kfree(cb);
1332 }
1333 
1334 /**
1335  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1336  *
1337  * @adev: amdgpu_device pointer
1338  * @fence: fence for the callback
1339  */
1340 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1341 				 struct dma_fence *fence)
1342 {
1343 	struct amdgpu_prt_cb *cb;
1344 
1345 	if (!adev->gmc.gmc_funcs->set_prt)
1346 		return;
1347 
1348 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1349 	if (!cb) {
1350 		/* Last resort when we are OOM */
1351 		if (fence)
1352 			dma_fence_wait(fence, false);
1353 
1354 		amdgpu_vm_prt_put(adev);
1355 	} else {
1356 		cb->adev = adev;
1357 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1358 						     amdgpu_vm_prt_cb))
1359 			amdgpu_vm_prt_cb(fence, &cb->cb);
1360 	}
1361 }
1362 
1363 /**
1364  * amdgpu_vm_free_mapping - free a mapping
1365  *
1366  * @adev: amdgpu_device pointer
1367  * @vm: requested vm
1368  * @mapping: mapping to be freed
1369  * @fence: fence of the unmap operation
1370  *
1371  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1372  */
1373 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1374 				   struct amdgpu_vm *vm,
1375 				   struct amdgpu_bo_va_mapping *mapping,
1376 				   struct dma_fence *fence)
1377 {
1378 	if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev))
1379 		amdgpu_vm_add_prt_cb(adev, fence);
1380 	kfree(mapping);
1381 }
1382 
1383 /**
1384  * amdgpu_vm_prt_fini - finish all prt mappings
1385  *
1386  * @adev: amdgpu_device pointer
1387  * @vm: requested vm
1388  *
1389  * Register a cleanup callback to disable PRT support after VM dies.
1390  */
1391 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1392 {
1393 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1394 	struct dma_resv_iter cursor;
1395 	struct dma_fence *fence;
1396 
1397 	dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
1398 		/* Add a callback for each fence in the reservation object */
1399 		amdgpu_vm_prt_get(adev);
1400 		amdgpu_vm_add_prt_cb(adev, fence);
1401 	}
1402 }
1403 
1404 /**
1405  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1406  *
1407  * @adev: amdgpu_device pointer
1408  * @vm: requested vm
1409  * @fence: optional resulting fence (unchanged if no work needed to be done
1410  * or if an error occurred)
1411  *
1412  * Make sure all freed BOs are cleared in the PT.
1413  * PTs have to be reserved and mutex must be locked!
1414  *
1415  * Returns:
1416  * 0 for success.
1417  *
1418  */
1419 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1420 			  struct amdgpu_vm *vm,
1421 			  struct dma_fence **fence)
1422 {
1423 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1424 	struct amdgpu_bo_va_mapping *mapping;
1425 	uint64_t init_pte_value = 0;
1426 	struct dma_fence *f = NULL;
1427 	int r;
1428 
1429 	while (!list_empty(&vm->freed)) {
1430 		mapping = list_first_entry(&vm->freed,
1431 			struct amdgpu_bo_va_mapping, list);
1432 		list_del(&mapping->list);
1433 
1434 		r = amdgpu_vm_update_range(adev, vm, false, false, true, false,
1435 					   resv, mapping->start, mapping->last,
1436 					   init_pte_value, 0, 0, NULL, NULL,
1437 					   &f);
1438 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1439 		if (r) {
1440 			dma_fence_put(f);
1441 			return r;
1442 		}
1443 	}
1444 
1445 	if (fence && f) {
1446 		dma_fence_put(*fence);
1447 		*fence = f;
1448 	} else {
1449 		dma_fence_put(f);
1450 	}
1451 
1452 	return 0;
1453 
1454 }
1455 
1456 /**
1457  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1458  *
1459  * @adev: amdgpu_device pointer
1460  * @vm: requested vm
1461  * @ticket: optional reservation ticket used to reserve the VM
1462  *
1463  * Make sure all BOs which are moved are updated in the PTs.
1464  *
1465  * Returns:
1466  * 0 for success.
1467  *
1468  * PTs have to be reserved!
1469  */
1470 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1471 			   struct amdgpu_vm *vm,
1472 			   struct ww_acquire_ctx *ticket)
1473 {
1474 	struct amdgpu_bo_va *bo_va;
1475 	struct dma_resv *resv;
1476 	bool clear, unlock;
1477 	int r;
1478 
1479 	spin_lock(&vm->status_lock);
1480 	while (!list_empty(&vm->moved)) {
1481 		bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va,
1482 					 base.vm_status);
1483 		spin_unlock(&vm->status_lock);
1484 
1485 		/* Per VM BOs never need to bo cleared in the page tables */
1486 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1487 		if (r)
1488 			return r;
1489 		spin_lock(&vm->status_lock);
1490 	}
1491 
1492 	while (!list_empty(&vm->invalidated)) {
1493 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1494 					 base.vm_status);
1495 		resv = bo_va->base.bo->tbo.base.resv;
1496 		spin_unlock(&vm->status_lock);
1497 
1498 		/* Try to reserve the BO to avoid clearing its ptes */
1499 		if (!adev->debug_vm && dma_resv_trylock(resv)) {
1500 			clear = false;
1501 			unlock = true;
1502 		/* The caller is already holding the reservation lock */
1503 		} else if (ticket && dma_resv_locking_ctx(resv) == ticket) {
1504 			clear = false;
1505 			unlock = false;
1506 		/* Somebody else is using the BO right now */
1507 		} else {
1508 			clear = true;
1509 			unlock = false;
1510 		}
1511 
1512 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1513 
1514 		if (unlock)
1515 			dma_resv_unlock(resv);
1516 		if (r)
1517 			return r;
1518 
1519 		/* Remember evicted DMABuf imports in compute VMs for later
1520 		 * validation
1521 		 */
1522 		if (vm->is_compute_context &&
1523 		    bo_va->base.bo->tbo.base.import_attach &&
1524 		    (!bo_va->base.bo->tbo.resource ||
1525 		     bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM))
1526 			amdgpu_vm_bo_evicted_user(&bo_va->base);
1527 
1528 		spin_lock(&vm->status_lock);
1529 	}
1530 	spin_unlock(&vm->status_lock);
1531 
1532 	return 0;
1533 }
1534 
1535 /**
1536  * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM
1537  *
1538  * @adev: amdgpu_device pointer
1539  * @vm: requested vm
1540  * @flush_type: flush type
1541  * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush.
1542  *
1543  * Flush TLB if needed for a compute VM.
1544  *
1545  * Returns:
1546  * 0 for success.
1547  */
1548 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev,
1549 				struct amdgpu_vm *vm,
1550 				uint32_t flush_type,
1551 				uint32_t xcc_mask)
1552 {
1553 	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1554 	bool all_hub = false;
1555 	int xcc = 0, r = 0;
1556 
1557 	WARN_ON_ONCE(!vm->is_compute_context);
1558 
1559 	/*
1560 	 * It can be that we race and lose here, but that is extremely unlikely
1561 	 * and the worst thing which could happen is that we flush the changes
1562 	 * into the TLB once more which is harmless.
1563 	 */
1564 	if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq)
1565 		return 0;
1566 
1567 	if (adev->family == AMDGPU_FAMILY_AI ||
1568 	    adev->family == AMDGPU_FAMILY_RV)
1569 		all_hub = true;
1570 
1571 	for_each_inst(xcc, xcc_mask) {
1572 		r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type,
1573 						   all_hub, xcc);
1574 		if (r)
1575 			break;
1576 	}
1577 	return r;
1578 }
1579 
1580 /**
1581  * amdgpu_vm_bo_add - add a bo to a specific vm
1582  *
1583  * @adev: amdgpu_device pointer
1584  * @vm: requested vm
1585  * @bo: amdgpu buffer object
1586  *
1587  * Add @bo into the requested vm.
1588  * Add @bo to the list of bos associated with the vm
1589  *
1590  * Returns:
1591  * Newly added bo_va or NULL for failure
1592  *
1593  * Object has to be reserved!
1594  */
1595 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1596 				      struct amdgpu_vm *vm,
1597 				      struct amdgpu_bo *bo)
1598 {
1599 	struct amdgpu_bo_va *bo_va;
1600 
1601 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1602 	if (bo_va == NULL) {
1603 		return NULL;
1604 	}
1605 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
1606 
1607 	bo_va->ref_count = 1;
1608 	bo_va->last_pt_update = dma_fence_get_stub();
1609 	INIT_LIST_HEAD(&bo_va->valids);
1610 	INIT_LIST_HEAD(&bo_va->invalids);
1611 
1612 	if (!bo)
1613 		return bo_va;
1614 
1615 	dma_resv_assert_held(bo->tbo.base.resv);
1616 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
1617 		bo_va->is_xgmi = true;
1618 		/* Power up XGMI if it can be potentially used */
1619 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
1620 	}
1621 
1622 	return bo_va;
1623 }
1624 
1625 
1626 /**
1627  * amdgpu_vm_bo_insert_map - insert a new mapping
1628  *
1629  * @adev: amdgpu_device pointer
1630  * @bo_va: bo_va to store the address
1631  * @mapping: the mapping to insert
1632  *
1633  * Insert a new mapping into all structures.
1634  */
1635 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1636 				    struct amdgpu_bo_va *bo_va,
1637 				    struct amdgpu_bo_va_mapping *mapping)
1638 {
1639 	struct amdgpu_vm *vm = bo_va->base.vm;
1640 	struct amdgpu_bo *bo = bo_va->base.bo;
1641 
1642 	mapping->bo_va = bo_va;
1643 	list_add(&mapping->list, &bo_va->invalids);
1644 	amdgpu_vm_it_insert(mapping, &vm->va);
1645 
1646 	if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev))
1647 		amdgpu_vm_prt_get(adev);
1648 
1649 	if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved)
1650 		amdgpu_vm_bo_moved(&bo_va->base);
1651 
1652 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1653 }
1654 
1655 /* Validate operation parameters to prevent potential abuse */
1656 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev,
1657 					  struct amdgpu_bo *bo,
1658 					  uint64_t saddr,
1659 					  uint64_t offset,
1660 					  uint64_t size)
1661 {
1662 	uint64_t tmp, lpfn;
1663 
1664 	if (saddr & AMDGPU_GPU_PAGE_MASK
1665 	    || offset & AMDGPU_GPU_PAGE_MASK
1666 	    || size & AMDGPU_GPU_PAGE_MASK)
1667 		return -EINVAL;
1668 
1669 	if (check_add_overflow(saddr, size, &tmp)
1670 	    || check_add_overflow(offset, size, &tmp)
1671 	    || size == 0 /* which also leads to end < begin */)
1672 		return -EINVAL;
1673 
1674 	/* make sure object fit at this offset */
1675 	if (bo && offset + size > amdgpu_bo_size(bo))
1676 		return -EINVAL;
1677 
1678 	/* Ensure last pfn not exceed max_pfn */
1679 	lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT;
1680 	if (lpfn >= adev->vm_manager.max_pfn)
1681 		return -EINVAL;
1682 
1683 	return 0;
1684 }
1685 
1686 /**
1687  * amdgpu_vm_bo_map - map bo inside a vm
1688  *
1689  * @adev: amdgpu_device pointer
1690  * @bo_va: bo_va to store the address
1691  * @saddr: where to map the BO
1692  * @offset: requested offset in the BO
1693  * @size: BO size in bytes
1694  * @flags: attributes of pages (read/write/valid/etc.)
1695  *
1696  * Add a mapping of the BO at the specefied addr into the VM.
1697  *
1698  * Returns:
1699  * 0 for success, error for failure.
1700  *
1701  * Object has to be reserved and unreserved outside!
1702  */
1703 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1704 		     struct amdgpu_bo_va *bo_va,
1705 		     uint64_t saddr, uint64_t offset,
1706 		     uint64_t size, uint64_t flags)
1707 {
1708 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1709 	struct amdgpu_bo *bo = bo_va->base.bo;
1710 	struct amdgpu_vm *vm = bo_va->base.vm;
1711 	uint64_t eaddr;
1712 	int r;
1713 
1714 	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1715 	if (r)
1716 		return r;
1717 
1718 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1719 	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1720 
1721 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1722 	if (tmp) {
1723 		/* bo and tmp overlap, invalid addr */
1724 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1725 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1726 			tmp->start, tmp->last + 1);
1727 		return -EINVAL;
1728 	}
1729 
1730 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1731 	if (!mapping)
1732 		return -ENOMEM;
1733 
1734 	mapping->start = saddr;
1735 	mapping->last = eaddr;
1736 	mapping->offset = offset;
1737 	mapping->flags = flags;
1738 
1739 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1740 
1741 	return 0;
1742 }
1743 
1744 /**
1745  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1746  *
1747  * @adev: amdgpu_device pointer
1748  * @bo_va: bo_va to store the address
1749  * @saddr: where to map the BO
1750  * @offset: requested offset in the BO
1751  * @size: BO size in bytes
1752  * @flags: attributes of pages (read/write/valid/etc.)
1753  *
1754  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1755  * mappings as we do so.
1756  *
1757  * Returns:
1758  * 0 for success, error for failure.
1759  *
1760  * Object has to be reserved and unreserved outside!
1761  */
1762 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1763 			     struct amdgpu_bo_va *bo_va,
1764 			     uint64_t saddr, uint64_t offset,
1765 			     uint64_t size, uint64_t flags)
1766 {
1767 	struct amdgpu_bo_va_mapping *mapping;
1768 	struct amdgpu_bo *bo = bo_va->base.bo;
1769 	uint64_t eaddr;
1770 	int r;
1771 
1772 	r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size);
1773 	if (r)
1774 		return r;
1775 
1776 	/* Allocate all the needed memory */
1777 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1778 	if (!mapping)
1779 		return -ENOMEM;
1780 
1781 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1782 	if (r) {
1783 		kfree(mapping);
1784 		return r;
1785 	}
1786 
1787 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1788 	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1789 
1790 	mapping->start = saddr;
1791 	mapping->last = eaddr;
1792 	mapping->offset = offset;
1793 	mapping->flags = flags;
1794 
1795 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1796 
1797 	return 0;
1798 }
1799 
1800 /**
1801  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1802  *
1803  * @adev: amdgpu_device pointer
1804  * @bo_va: bo_va to remove the address from
1805  * @saddr: where to the BO is mapped
1806  *
1807  * Remove a mapping of the BO at the specefied addr from the VM.
1808  *
1809  * Returns:
1810  * 0 for success, error for failure.
1811  *
1812  * Object has to be reserved and unreserved outside!
1813  */
1814 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1815 		       struct amdgpu_bo_va *bo_va,
1816 		       uint64_t saddr)
1817 {
1818 	struct amdgpu_bo_va_mapping *mapping;
1819 	struct amdgpu_vm *vm = bo_va->base.vm;
1820 	bool valid = true;
1821 
1822 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1823 
1824 	list_for_each_entry(mapping, &bo_va->valids, list) {
1825 		if (mapping->start == saddr)
1826 			break;
1827 	}
1828 
1829 	if (&mapping->list == &bo_va->valids) {
1830 		valid = false;
1831 
1832 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1833 			if (mapping->start == saddr)
1834 				break;
1835 		}
1836 
1837 		if (&mapping->list == &bo_va->invalids)
1838 			return -ENOENT;
1839 	}
1840 
1841 	list_del(&mapping->list);
1842 	amdgpu_vm_it_remove(mapping, &vm->va);
1843 	mapping->bo_va = NULL;
1844 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1845 
1846 	if (valid)
1847 		list_add(&mapping->list, &vm->freed);
1848 	else
1849 		amdgpu_vm_free_mapping(adev, vm, mapping,
1850 				       bo_va->last_pt_update);
1851 
1852 	return 0;
1853 }
1854 
1855 /**
1856  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1857  *
1858  * @adev: amdgpu_device pointer
1859  * @vm: VM structure to use
1860  * @saddr: start of the range
1861  * @size: size of the range
1862  *
1863  * Remove all mappings in a range, split them as appropriate.
1864  *
1865  * Returns:
1866  * 0 for success, error for failure.
1867  */
1868 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1869 				struct amdgpu_vm *vm,
1870 				uint64_t saddr, uint64_t size)
1871 {
1872 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1873 	LIST_HEAD(removed);
1874 	uint64_t eaddr;
1875 	int r;
1876 
1877 	r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size);
1878 	if (r)
1879 		return r;
1880 
1881 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1882 	eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE;
1883 
1884 	/* Allocate all the needed memory */
1885 	before = kzalloc(sizeof(*before), GFP_KERNEL);
1886 	if (!before)
1887 		return -ENOMEM;
1888 	INIT_LIST_HEAD(&before->list);
1889 
1890 	after = kzalloc(sizeof(*after), GFP_KERNEL);
1891 	if (!after) {
1892 		kfree(before);
1893 		return -ENOMEM;
1894 	}
1895 	INIT_LIST_HEAD(&after->list);
1896 
1897 	/* Now gather all removed mappings */
1898 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1899 	while (tmp) {
1900 		/* Remember mapping split at the start */
1901 		if (tmp->start < saddr) {
1902 			before->start = tmp->start;
1903 			before->last = saddr - 1;
1904 			before->offset = tmp->offset;
1905 			before->flags = tmp->flags;
1906 			before->bo_va = tmp->bo_va;
1907 			list_add(&before->list, &tmp->bo_va->invalids);
1908 		}
1909 
1910 		/* Remember mapping split at the end */
1911 		if (tmp->last > eaddr) {
1912 			after->start = eaddr + 1;
1913 			after->last = tmp->last;
1914 			after->offset = tmp->offset;
1915 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
1916 			after->flags = tmp->flags;
1917 			after->bo_va = tmp->bo_va;
1918 			list_add(&after->list, &tmp->bo_va->invalids);
1919 		}
1920 
1921 		list_del(&tmp->list);
1922 		list_add(&tmp->list, &removed);
1923 
1924 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1925 	}
1926 
1927 	/* And free them up */
1928 	list_for_each_entry_safe(tmp, next, &removed, list) {
1929 		amdgpu_vm_it_remove(tmp, &vm->va);
1930 		list_del(&tmp->list);
1931 
1932 		if (tmp->start < saddr)
1933 		    tmp->start = saddr;
1934 		if (tmp->last > eaddr)
1935 		    tmp->last = eaddr;
1936 
1937 		tmp->bo_va = NULL;
1938 		list_add(&tmp->list, &vm->freed);
1939 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1940 	}
1941 
1942 	/* Insert partial mapping before the range */
1943 	if (!list_empty(&before->list)) {
1944 		struct amdgpu_bo *bo = before->bo_va->base.bo;
1945 
1946 		amdgpu_vm_it_insert(before, &vm->va);
1947 		if (before->flags & AMDGPU_PTE_PRT_FLAG(adev))
1948 			amdgpu_vm_prt_get(adev);
1949 
1950 		if (amdgpu_vm_is_bo_always_valid(vm, bo) &&
1951 		    !before->bo_va->base.moved)
1952 			amdgpu_vm_bo_moved(&before->bo_va->base);
1953 	} else {
1954 		kfree(before);
1955 	}
1956 
1957 	/* Insert partial mapping after the range */
1958 	if (!list_empty(&after->list)) {
1959 		struct amdgpu_bo *bo = after->bo_va->base.bo;
1960 
1961 		amdgpu_vm_it_insert(after, &vm->va);
1962 		if (after->flags & AMDGPU_PTE_PRT_FLAG(adev))
1963 			amdgpu_vm_prt_get(adev);
1964 
1965 		if (amdgpu_vm_is_bo_always_valid(vm, bo) &&
1966 		    !after->bo_va->base.moved)
1967 			amdgpu_vm_bo_moved(&after->bo_va->base);
1968 	} else {
1969 		kfree(after);
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 /**
1976  * amdgpu_vm_bo_lookup_mapping - find mapping by address
1977  *
1978  * @vm: the requested VM
1979  * @addr: the address
1980  *
1981  * Find a mapping by it's address.
1982  *
1983  * Returns:
1984  * The amdgpu_bo_va_mapping matching for addr or NULL
1985  *
1986  */
1987 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
1988 							 uint64_t addr)
1989 {
1990 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
1991 }
1992 
1993 /**
1994  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
1995  *
1996  * @vm: the requested vm
1997  * @ticket: CS ticket
1998  *
1999  * Trace all mappings of BOs reserved during a command submission.
2000  */
2001 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2002 {
2003 	struct amdgpu_bo_va_mapping *mapping;
2004 
2005 	if (!trace_amdgpu_vm_bo_cs_enabled())
2006 		return;
2007 
2008 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2009 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2010 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2011 			struct amdgpu_bo *bo;
2012 
2013 			bo = mapping->bo_va->base.bo;
2014 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2015 			    ticket)
2016 				continue;
2017 		}
2018 
2019 		trace_amdgpu_vm_bo_cs(mapping);
2020 	}
2021 }
2022 
2023 /**
2024  * amdgpu_vm_bo_del - remove a bo from a specific vm
2025  *
2026  * @adev: amdgpu_device pointer
2027  * @bo_va: requested bo_va
2028  *
2029  * Remove @bo_va->bo from the requested vm.
2030  *
2031  * Object have to be reserved!
2032  */
2033 void amdgpu_vm_bo_del(struct amdgpu_device *adev,
2034 		      struct amdgpu_bo_va *bo_va)
2035 {
2036 	struct amdgpu_bo_va_mapping *mapping, *next;
2037 	struct amdgpu_bo *bo = bo_va->base.bo;
2038 	struct amdgpu_vm *vm = bo_va->base.vm;
2039 	struct amdgpu_vm_bo_base **base;
2040 
2041 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
2042 
2043 	if (bo) {
2044 		dma_resv_assert_held(bo->tbo.base.resv);
2045 		if (amdgpu_vm_is_bo_always_valid(vm, bo))
2046 			ttm_bo_set_bulk_move(&bo->tbo, NULL);
2047 
2048 		for (base = &bo_va->base.bo->vm_bo; *base;
2049 		     base = &(*base)->next) {
2050 			if (*base != &bo_va->base)
2051 				continue;
2052 
2053 			*base = bo_va->base.next;
2054 			break;
2055 		}
2056 	}
2057 
2058 	spin_lock(&vm->status_lock);
2059 	list_del(&bo_va->base.vm_status);
2060 	spin_unlock(&vm->status_lock);
2061 
2062 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2063 		list_del(&mapping->list);
2064 		amdgpu_vm_it_remove(mapping, &vm->va);
2065 		mapping->bo_va = NULL;
2066 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2067 		list_add(&mapping->list, &vm->freed);
2068 	}
2069 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2070 		list_del(&mapping->list);
2071 		amdgpu_vm_it_remove(mapping, &vm->va);
2072 		amdgpu_vm_free_mapping(adev, vm, mapping,
2073 				       bo_va->last_pt_update);
2074 	}
2075 
2076 	dma_fence_put(bo_va->last_pt_update);
2077 
2078 	if (bo && bo_va->is_xgmi)
2079 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2080 
2081 	kfree(bo_va);
2082 }
2083 
2084 /**
2085  * amdgpu_vm_evictable - check if we can evict a VM
2086  *
2087  * @bo: A page table of the VM.
2088  *
2089  * Check if it is possible to evict a VM.
2090  */
2091 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2092 {
2093 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2094 
2095 	/* Page tables of a destroyed VM can go away immediately */
2096 	if (!bo_base || !bo_base->vm)
2097 		return true;
2098 
2099 	/* Don't evict VM page tables while they are busy */
2100 	if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP))
2101 		return false;
2102 
2103 	/* Try to block ongoing updates */
2104 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2105 		return false;
2106 
2107 	/* Don't evict VM page tables while they are updated */
2108 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2109 		amdgpu_vm_eviction_unlock(bo_base->vm);
2110 		return false;
2111 	}
2112 
2113 	bo_base->vm->evicting = true;
2114 	amdgpu_vm_eviction_unlock(bo_base->vm);
2115 	return true;
2116 }
2117 
2118 /**
2119  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2120  *
2121  * @adev: amdgpu_device pointer
2122  * @bo: amdgpu buffer object
2123  * @evicted: is the BO evicted
2124  *
2125  * Mark @bo as invalid.
2126  */
2127 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2128 			     struct amdgpu_bo *bo, bool evicted)
2129 {
2130 	struct amdgpu_vm_bo_base *bo_base;
2131 
2132 	/* shadow bo doesn't have bo base, its validation needs its parent */
2133 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2134 		bo = bo->parent;
2135 
2136 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2137 		struct amdgpu_vm *vm = bo_base->vm;
2138 
2139 		if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) {
2140 			amdgpu_vm_bo_evicted(bo_base);
2141 			continue;
2142 		}
2143 
2144 		if (bo_base->moved)
2145 			continue;
2146 		bo_base->moved = true;
2147 
2148 		if (bo->tbo.type == ttm_bo_type_kernel)
2149 			amdgpu_vm_bo_relocated(bo_base);
2150 		else if (amdgpu_vm_is_bo_always_valid(vm, bo))
2151 			amdgpu_vm_bo_moved(bo_base);
2152 		else
2153 			amdgpu_vm_bo_invalidated(bo_base);
2154 	}
2155 }
2156 
2157 /**
2158  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2159  *
2160  * @vm_size: VM size
2161  *
2162  * Returns:
2163  * VM page table as power of two
2164  */
2165 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2166 {
2167 	/* Total bits covered by PD + PTs */
2168 	unsigned bits = ilog2(vm_size) + 18;
2169 
2170 	/* Make sure the PD is 4K in size up to 8GB address space.
2171 	   Above that split equal between PD and PTs */
2172 	if (vm_size <= 8)
2173 		return (bits - 9);
2174 	else
2175 		return ((bits + 3) / 2);
2176 }
2177 
2178 /**
2179  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2180  *
2181  * @adev: amdgpu_device pointer
2182  * @min_vm_size: the minimum vm size in GB if it's set auto
2183  * @fragment_size_default: Default PTE fragment size
2184  * @max_level: max VMPT level
2185  * @max_bits: max address space size in bits
2186  *
2187  */
2188 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2189 			   uint32_t fragment_size_default, unsigned max_level,
2190 			   unsigned max_bits)
2191 {
2192 	unsigned int max_size = 1 << (max_bits - 30);
2193 	unsigned int vm_size;
2194 	uint64_t tmp;
2195 
2196 	/* adjust vm size first */
2197 	if (amdgpu_vm_size != -1) {
2198 		vm_size = amdgpu_vm_size;
2199 		if (vm_size > max_size) {
2200 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2201 				 amdgpu_vm_size, max_size);
2202 			vm_size = max_size;
2203 		}
2204 	} else {
2205 		struct sysinfo si;
2206 		unsigned int phys_ram_gb;
2207 
2208 		/* Optimal VM size depends on the amount of physical
2209 		 * RAM available. Underlying requirements and
2210 		 * assumptions:
2211 		 *
2212 		 *  - Need to map system memory and VRAM from all GPUs
2213 		 *     - VRAM from other GPUs not known here
2214 		 *     - Assume VRAM <= system memory
2215 		 *  - On GFX8 and older, VM space can be segmented for
2216 		 *    different MTYPEs
2217 		 *  - Need to allow room for fragmentation, guard pages etc.
2218 		 *
2219 		 * This adds up to a rough guess of system memory x3.
2220 		 * Round up to power of two to maximize the available
2221 		 * VM size with the given page table size.
2222 		 */
2223 		si_meminfo(&si);
2224 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2225 			       (1 << 30) - 1) >> 30;
2226 		vm_size = roundup_pow_of_two(
2227 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2228 	}
2229 
2230 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2231 
2232 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2233 	if (amdgpu_vm_block_size != -1)
2234 		tmp >>= amdgpu_vm_block_size - 9;
2235 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2236 	adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp);
2237 	switch (adev->vm_manager.num_level) {
2238 	case 3:
2239 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2240 		break;
2241 	case 2:
2242 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2243 		break;
2244 	case 1:
2245 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2246 		break;
2247 	default:
2248 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2249 	}
2250 	/* block size depends on vm size and hw setup*/
2251 	if (amdgpu_vm_block_size != -1)
2252 		adev->vm_manager.block_size =
2253 			min((unsigned)amdgpu_vm_block_size, max_bits
2254 			    - AMDGPU_GPU_PAGE_SHIFT
2255 			    - 9 * adev->vm_manager.num_level);
2256 	else if (adev->vm_manager.num_level > 1)
2257 		adev->vm_manager.block_size = 9;
2258 	else
2259 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2260 
2261 	if (amdgpu_vm_fragment_size == -1)
2262 		adev->vm_manager.fragment_size = fragment_size_default;
2263 	else
2264 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2265 
2266 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2267 		 vm_size, adev->vm_manager.num_level + 1,
2268 		 adev->vm_manager.block_size,
2269 		 adev->vm_manager.fragment_size);
2270 }
2271 
2272 /**
2273  * amdgpu_vm_wait_idle - wait for the VM to become idle
2274  *
2275  * @vm: VM object to wait for
2276  * @timeout: timeout to wait for VM to become idle
2277  */
2278 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2279 {
2280 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv,
2281 					DMA_RESV_USAGE_BOOKKEEP,
2282 					true, timeout);
2283 	if (timeout <= 0)
2284 		return timeout;
2285 
2286 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2287 }
2288 
2289 static void amdgpu_vm_destroy_task_info(struct kref *kref)
2290 {
2291 	struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount);
2292 
2293 	kfree(ti);
2294 }
2295 
2296 static inline struct amdgpu_vm *
2297 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid)
2298 {
2299 	struct amdgpu_vm *vm;
2300 	unsigned long flags;
2301 
2302 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2303 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2304 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2305 
2306 	return vm;
2307 }
2308 
2309 /**
2310  * amdgpu_vm_put_task_info - reference down the vm task_info ptr
2311  *
2312  * @task_info: task_info struct under discussion.
2313  *
2314  * frees the vm task_info ptr at the last put
2315  */
2316 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info)
2317 {
2318 	kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info);
2319 }
2320 
2321 /**
2322  * amdgpu_vm_get_task_info_vm - Extracts task info for a vm.
2323  *
2324  * @vm: VM to get info from
2325  *
2326  * Returns the reference counted task_info structure, which must be
2327  * referenced down with amdgpu_vm_put_task_info.
2328  */
2329 struct amdgpu_task_info *
2330 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm)
2331 {
2332 	struct amdgpu_task_info *ti = NULL;
2333 
2334 	if (vm) {
2335 		ti = vm->task_info;
2336 		kref_get(&vm->task_info->refcount);
2337 	}
2338 
2339 	return ti;
2340 }
2341 
2342 /**
2343  * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID.
2344  *
2345  * @adev: drm device pointer
2346  * @pasid: PASID identifier for VM
2347  *
2348  * Returns the reference counted task_info structure, which must be
2349  * referenced down with amdgpu_vm_put_task_info.
2350  */
2351 struct amdgpu_task_info *
2352 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid)
2353 {
2354 	return amdgpu_vm_get_task_info_vm(
2355 			amdgpu_vm_get_vm_from_pasid(adev, pasid));
2356 }
2357 
2358 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm)
2359 {
2360 	vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL);
2361 	if (!vm->task_info)
2362 		return -ENOMEM;
2363 
2364 	kref_init(&vm->task_info->refcount);
2365 	return 0;
2366 }
2367 
2368 /**
2369  * amdgpu_vm_set_task_info - Sets VMs task info.
2370  *
2371  * @vm: vm for which to set the info
2372  */
2373 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
2374 {
2375 	if (!vm->task_info)
2376 		return;
2377 
2378 	if (vm->task_info->pid == current->pid)
2379 		return;
2380 
2381 	vm->task_info->pid = current->pid;
2382 	get_task_comm(vm->task_info->task_name, current);
2383 
2384 	if (current->group_leader->mm != current->mm)
2385 		return;
2386 
2387 	vm->task_info->tgid = current->group_leader->pid;
2388 	get_task_comm(vm->task_info->process_name, current->group_leader);
2389 }
2390 
2391 /**
2392  * amdgpu_vm_init - initialize a vm instance
2393  *
2394  * @adev: amdgpu_device pointer
2395  * @vm: requested vm
2396  * @xcp_id: GPU partition selection id
2397  *
2398  * Init @vm fields.
2399  *
2400  * Returns:
2401  * 0 for success, error for failure.
2402  */
2403 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2404 		   int32_t xcp_id)
2405 {
2406 	struct amdgpu_ip_block *ip_block;
2407 	struct amdgpu_bo *root_bo;
2408 	struct amdgpu_bo_vm *root;
2409 	int r, i;
2410 
2411 	vm->va = RB_ROOT_CACHED;
2412 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2413 		vm->reserved_vmid[i] = NULL;
2414 	INIT_LIST_HEAD(&vm->evicted);
2415 	INIT_LIST_HEAD(&vm->evicted_user);
2416 	INIT_LIST_HEAD(&vm->relocated);
2417 	INIT_LIST_HEAD(&vm->moved);
2418 	INIT_LIST_HEAD(&vm->idle);
2419 	INIT_LIST_HEAD(&vm->invalidated);
2420 	spin_lock_init(&vm->status_lock);
2421 	INIT_LIST_HEAD(&vm->freed);
2422 	INIT_LIST_HEAD(&vm->done);
2423 	INIT_LIST_HEAD(&vm->pt_freed);
2424 	INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work);
2425 	INIT_KFIFO(vm->faults);
2426 
2427 	r = amdgpu_vm_init_entities(adev, vm);
2428 	if (r)
2429 		return r;
2430 
2431 	vm->is_compute_context = false;
2432 
2433 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2434 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2435 
2436 	/* use CPU for page table update if SDMA is unavailable */
2437 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_SDMA);
2438 	if (!ip_block || ip_block->status.valid == false)
2439 		vm->use_cpu_for_update = true;
2440 
2441 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2442 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2443 	WARN_ONCE((vm->use_cpu_for_update &&
2444 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2445 		  "CPU update of VM recommended only for large BAR system\n");
2446 
2447 	if (vm->use_cpu_for_update)
2448 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2449 	else
2450 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2451 
2452 	vm->last_update = dma_fence_get_stub();
2453 	vm->last_unlocked = dma_fence_get_stub();
2454 	vm->last_tlb_flush = dma_fence_get_stub();
2455 	vm->generation = amdgpu_vm_generation(adev, NULL);
2456 
2457 	mutex_init(&vm->eviction_lock);
2458 	vm->evicting = false;
2459 	vm->tlb_fence_context = dma_fence_context_alloc(1);
2460 
2461 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2462 				false, &root, xcp_id);
2463 	if (r)
2464 		goto error_free_delayed;
2465 
2466 	root_bo = amdgpu_bo_ref(&root->bo);
2467 	r = amdgpu_bo_reserve(root_bo, true);
2468 	if (r) {
2469 		amdgpu_bo_unref(&root->shadow);
2470 		amdgpu_bo_unref(&root_bo);
2471 		goto error_free_delayed;
2472 	}
2473 
2474 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2475 	r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1);
2476 	if (r)
2477 		goto error_free_root;
2478 
2479 	r = amdgpu_vm_pt_clear(adev, vm, root, false);
2480 	if (r)
2481 		goto error_free_root;
2482 
2483 	r = amdgpu_vm_create_task_info(vm);
2484 	if (r)
2485 		DRM_DEBUG("Failed to create task info for VM\n");
2486 
2487 	amdgpu_bo_unreserve(vm->root.bo);
2488 	amdgpu_bo_unref(&root_bo);
2489 
2490 	return 0;
2491 
2492 error_free_root:
2493 	amdgpu_vm_pt_free_root(adev, vm);
2494 	amdgpu_bo_unreserve(vm->root.bo);
2495 	amdgpu_bo_unref(&root_bo);
2496 
2497 error_free_delayed:
2498 	dma_fence_put(vm->last_tlb_flush);
2499 	dma_fence_put(vm->last_unlocked);
2500 	amdgpu_vm_fini_entities(vm);
2501 
2502 	return r;
2503 }
2504 
2505 /**
2506  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2507  *
2508  * @adev: amdgpu_device pointer
2509  * @vm: requested vm
2510  *
2511  * This only works on GFX VMs that don't have any BOs added and no
2512  * page tables allocated yet.
2513  *
2514  * Changes the following VM parameters:
2515  * - use_cpu_for_update
2516  * - pte_supports_ats
2517  *
2518  * Reinitializes the page directory to reflect the changed ATS
2519  * setting.
2520  *
2521  * Returns:
2522  * 0 for success, -errno for errors.
2523  */
2524 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2525 {
2526 	int r;
2527 
2528 	r = amdgpu_bo_reserve(vm->root.bo, true);
2529 	if (r)
2530 		return r;
2531 
2532 	/* Update VM state */
2533 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2534 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2535 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2536 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2537 	WARN_ONCE((vm->use_cpu_for_update &&
2538 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2539 		  "CPU update of VM recommended only for large BAR system\n");
2540 
2541 	if (vm->use_cpu_for_update) {
2542 		/* Sync with last SDMA update/clear before switching to CPU */
2543 		r = amdgpu_bo_sync_wait(vm->root.bo,
2544 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
2545 		if (r)
2546 			goto unreserve_bo;
2547 
2548 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2549 		r = amdgpu_vm_pt_map_tables(adev, vm);
2550 		if (r)
2551 			goto unreserve_bo;
2552 
2553 	} else {
2554 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2555 	}
2556 
2557 	dma_fence_put(vm->last_update);
2558 	vm->last_update = dma_fence_get_stub();
2559 	vm->is_compute_context = true;
2560 
2561 	/* Free the shadow bo for compute VM */
2562 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
2563 
2564 	goto unreserve_bo;
2565 
2566 unreserve_bo:
2567 	amdgpu_bo_unreserve(vm->root.bo);
2568 	return r;
2569 }
2570 
2571 /**
2572  * amdgpu_vm_release_compute - release a compute vm
2573  * @adev: amdgpu_device pointer
2574  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2575  *
2576  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2577  * pasid from vm. Compute should stop use of vm after this call.
2578  */
2579 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2580 {
2581 	amdgpu_vm_set_pasid(adev, vm, 0);
2582 	vm->is_compute_context = false;
2583 }
2584 
2585 /**
2586  * amdgpu_vm_fini - tear down a vm instance
2587  *
2588  * @adev: amdgpu_device pointer
2589  * @vm: requested vm
2590  *
2591  * Tear down @vm.
2592  * Unbind the VM and remove all bos from the vm bo list
2593  */
2594 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2595 {
2596 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2597 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2598 	struct amdgpu_bo *root;
2599 	unsigned long flags;
2600 	int i;
2601 
2602 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2603 
2604 	flush_work(&vm->pt_free_work);
2605 
2606 	root = amdgpu_bo_ref(vm->root.bo);
2607 	amdgpu_bo_reserve(root, true);
2608 	amdgpu_vm_put_task_info(vm->task_info);
2609 	amdgpu_vm_set_pasid(adev, vm, 0);
2610 	dma_fence_wait(vm->last_unlocked, false);
2611 	dma_fence_put(vm->last_unlocked);
2612 	dma_fence_wait(vm->last_tlb_flush, false);
2613 	/* Make sure that all fence callbacks have completed */
2614 	spin_lock_irqsave(vm->last_tlb_flush->lock, flags);
2615 	spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags);
2616 	dma_fence_put(vm->last_tlb_flush);
2617 
2618 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2619 		if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) {
2620 			amdgpu_vm_prt_fini(adev, vm);
2621 			prt_fini_needed = false;
2622 		}
2623 
2624 		list_del(&mapping->list);
2625 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2626 	}
2627 
2628 	amdgpu_vm_pt_free_root(adev, vm);
2629 	amdgpu_bo_unreserve(root);
2630 	amdgpu_bo_unref(&root);
2631 	WARN_ON(vm->root.bo);
2632 
2633 	amdgpu_vm_fini_entities(vm);
2634 
2635 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2636 		dev_err(adev->dev, "still active bo inside vm\n");
2637 	}
2638 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2639 					     &vm->va.rb_root, rb) {
2640 		/* Don't remove the mapping here, we don't want to trigger a
2641 		 * rebalance and the tree is about to be destroyed anyway.
2642 		 */
2643 		list_del(&mapping->list);
2644 		kfree(mapping);
2645 	}
2646 
2647 	dma_fence_put(vm->last_update);
2648 
2649 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) {
2650 		if (vm->reserved_vmid[i]) {
2651 			amdgpu_vmid_free_reserved(adev, i);
2652 			vm->reserved_vmid[i] = false;
2653 		}
2654 	}
2655 
2656 }
2657 
2658 /**
2659  * amdgpu_vm_manager_init - init the VM manager
2660  *
2661  * @adev: amdgpu_device pointer
2662  *
2663  * Initialize the VM manager structures
2664  */
2665 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2666 {
2667 	unsigned i;
2668 
2669 	/* Concurrent flushes are only possible starting with Vega10 and
2670 	 * are broken on Navi10 and Navi14.
2671 	 */
2672 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
2673 					      adev->asic_type == CHIP_NAVI10 ||
2674 					      adev->asic_type == CHIP_NAVI14);
2675 	amdgpu_vmid_mgr_init(adev);
2676 
2677 	adev->vm_manager.fence_context =
2678 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2679 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2680 		adev->vm_manager.seqno[i] = 0;
2681 
2682 	spin_lock_init(&adev->vm_manager.prt_lock);
2683 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2684 
2685 	/* If not overridden by the user, by default, only in large BAR systems
2686 	 * Compute VM tables will be updated by CPU
2687 	 */
2688 #ifdef CONFIG_X86_64
2689 	if (amdgpu_vm_update_mode == -1) {
2690 		/* For asic with VF MMIO access protection
2691 		 * avoid using CPU for VM table updates
2692 		 */
2693 		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
2694 		    !amdgpu_sriov_vf_mmio_access_protection(adev))
2695 			adev->vm_manager.vm_update_mode =
2696 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2697 		else
2698 			adev->vm_manager.vm_update_mode = 0;
2699 	} else
2700 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2701 #else
2702 	adev->vm_manager.vm_update_mode = 0;
2703 #endif
2704 
2705 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
2706 }
2707 
2708 /**
2709  * amdgpu_vm_manager_fini - cleanup VM manager
2710  *
2711  * @adev: amdgpu_device pointer
2712  *
2713  * Cleanup the VM manager and free resources.
2714  */
2715 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2716 {
2717 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
2718 	xa_destroy(&adev->vm_manager.pasids);
2719 
2720 	amdgpu_vmid_mgr_fini(adev);
2721 }
2722 
2723 /**
2724  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
2725  *
2726  * @dev: drm device pointer
2727  * @data: drm_amdgpu_vm
2728  * @filp: drm file pointer
2729  *
2730  * Returns:
2731  * 0 for success, -errno for errors.
2732  */
2733 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2734 {
2735 	union drm_amdgpu_vm *args = data;
2736 	struct amdgpu_device *adev = drm_to_adev(dev);
2737 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2738 
2739 	/* No valid flags defined yet */
2740 	if (args->in.flags)
2741 		return -EINVAL;
2742 
2743 	switch (args->in.op) {
2744 	case AMDGPU_VM_OP_RESERVE_VMID:
2745 		/* We only have requirement to reserve vmid from gfxhub */
2746 		if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2747 			amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0));
2748 			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true;
2749 		}
2750 
2751 		break;
2752 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2753 		if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) {
2754 			amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0));
2755 			fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false;
2756 		}
2757 		break;
2758 	default:
2759 		return -EINVAL;
2760 	}
2761 
2762 	return 0;
2763 }
2764 
2765 /**
2766  * amdgpu_vm_handle_fault - graceful handling of VM faults.
2767  * @adev: amdgpu device pointer
2768  * @pasid: PASID of the VM
2769  * @vmid: VMID, only used for GFX 9.4.3.
2770  * @node_id: Node_id received in IH cookie. Only applicable for
2771  *           GFX 9.4.3.
2772  * @addr: Address of the fault
2773  * @write_fault: true is write fault, false is read fault
2774  *
2775  * Try to gracefully handle a VM fault. Return true if the fault was handled and
2776  * shouldn't be reported any more.
2777  */
2778 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
2779 			    u32 vmid, u32 node_id, uint64_t addr,
2780 			    bool write_fault)
2781 {
2782 	bool is_compute_context = false;
2783 	struct amdgpu_bo *root;
2784 	unsigned long irqflags;
2785 	uint64_t value, flags;
2786 	struct amdgpu_vm *vm;
2787 	int r;
2788 
2789 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2790 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2791 	if (vm) {
2792 		root = amdgpu_bo_ref(vm->root.bo);
2793 		is_compute_context = vm->is_compute_context;
2794 	} else {
2795 		root = NULL;
2796 	}
2797 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2798 
2799 	if (!root)
2800 		return false;
2801 
2802 	addr /= AMDGPU_GPU_PAGE_SIZE;
2803 
2804 	if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid,
2805 	    node_id, addr, write_fault)) {
2806 		amdgpu_bo_unref(&root);
2807 		return true;
2808 	}
2809 
2810 	r = amdgpu_bo_reserve(root, true);
2811 	if (r)
2812 		goto error_unref;
2813 
2814 	/* Double check that the VM still exists */
2815 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2816 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2817 	if (vm && vm->root.bo != root)
2818 		vm = NULL;
2819 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2820 	if (!vm)
2821 		goto error_unlock;
2822 
2823 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
2824 		AMDGPU_PTE_SYSTEM;
2825 
2826 	if (is_compute_context) {
2827 		/* Intentionally setting invalid PTE flag
2828 		 * combination to force a no-retry-fault
2829 		 */
2830 		flags = AMDGPU_VM_NORETRY_FLAGS;
2831 		value = 0;
2832 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
2833 		/* Redirect the access to the dummy page */
2834 		value = adev->dummy_page_addr;
2835 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
2836 			AMDGPU_PTE_WRITEABLE;
2837 
2838 	} else {
2839 		/* Let the hw retry silently on the PTE */
2840 		value = 0;
2841 	}
2842 
2843 	r = dma_resv_reserve_fences(root->tbo.base.resv, 1);
2844 	if (r) {
2845 		pr_debug("failed %d to reserve fence slot\n", r);
2846 		goto error_unlock;
2847 	}
2848 
2849 	r = amdgpu_vm_update_range(adev, vm, true, false, false, false,
2850 				   NULL, addr, addr, flags, value, 0, NULL, NULL, NULL);
2851 	if (r)
2852 		goto error_unlock;
2853 
2854 	r = amdgpu_vm_update_pdes(adev, vm, true);
2855 
2856 error_unlock:
2857 	amdgpu_bo_unreserve(root);
2858 	if (r < 0)
2859 		DRM_ERROR("Can't handle page fault (%d)\n", r);
2860 
2861 error_unref:
2862 	amdgpu_bo_unref(&root);
2863 
2864 	return false;
2865 }
2866 
2867 #if defined(CONFIG_DEBUG_FS)
2868 /**
2869  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
2870  *
2871  * @vm: Requested VM for printing BO info
2872  * @m: debugfs file
2873  *
2874  * Print BO information in debugfs file for the VM
2875  */
2876 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
2877 {
2878 	struct amdgpu_bo_va *bo_va, *tmp;
2879 	u64 total_idle = 0;
2880 	u64 total_evicted = 0;
2881 	u64 total_relocated = 0;
2882 	u64 total_moved = 0;
2883 	u64 total_invalidated = 0;
2884 	u64 total_done = 0;
2885 	unsigned int total_idle_objs = 0;
2886 	unsigned int total_evicted_objs = 0;
2887 	unsigned int total_relocated_objs = 0;
2888 	unsigned int total_moved_objs = 0;
2889 	unsigned int total_invalidated_objs = 0;
2890 	unsigned int total_done_objs = 0;
2891 	unsigned int id = 0;
2892 
2893 	spin_lock(&vm->status_lock);
2894 	seq_puts(m, "\tIdle BOs:\n");
2895 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
2896 		if (!bo_va->base.bo)
2897 			continue;
2898 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2899 	}
2900 	total_idle_objs = id;
2901 	id = 0;
2902 
2903 	seq_puts(m, "\tEvicted BOs:\n");
2904 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
2905 		if (!bo_va->base.bo)
2906 			continue;
2907 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2908 	}
2909 	total_evicted_objs = id;
2910 	id = 0;
2911 
2912 	seq_puts(m, "\tRelocated BOs:\n");
2913 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
2914 		if (!bo_va->base.bo)
2915 			continue;
2916 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2917 	}
2918 	total_relocated_objs = id;
2919 	id = 0;
2920 
2921 	seq_puts(m, "\tMoved BOs:\n");
2922 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2923 		if (!bo_va->base.bo)
2924 			continue;
2925 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2926 	}
2927 	total_moved_objs = id;
2928 	id = 0;
2929 
2930 	seq_puts(m, "\tInvalidated BOs:\n");
2931 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
2932 		if (!bo_va->base.bo)
2933 			continue;
2934 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
2935 	}
2936 	total_invalidated_objs = id;
2937 	id = 0;
2938 
2939 	seq_puts(m, "\tDone BOs:\n");
2940 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
2941 		if (!bo_va->base.bo)
2942 			continue;
2943 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2944 	}
2945 	spin_unlock(&vm->status_lock);
2946 	total_done_objs = id;
2947 
2948 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
2949 		   total_idle_objs);
2950 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
2951 		   total_evicted_objs);
2952 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
2953 		   total_relocated_objs);
2954 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
2955 		   total_moved_objs);
2956 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
2957 		   total_invalidated_objs);
2958 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
2959 		   total_done_objs);
2960 }
2961 #endif
2962 
2963 /**
2964  * amdgpu_vm_update_fault_cache - update cached fault into.
2965  * @adev: amdgpu device pointer
2966  * @pasid: PASID of the VM
2967  * @addr: Address of the fault
2968  * @status: GPUVM fault status register
2969  * @vmhub: which vmhub got the fault
2970  *
2971  * Cache the fault info for later use by userspace in debugging.
2972  */
2973 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev,
2974 				  unsigned int pasid,
2975 				  uint64_t addr,
2976 				  uint32_t status,
2977 				  unsigned int vmhub)
2978 {
2979 	struct amdgpu_vm *vm;
2980 	unsigned long flags;
2981 
2982 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2983 
2984 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2985 	/* Don't update the fault cache if status is 0.  In the multiple
2986 	 * fault case, subsequent faults will return a 0 status which is
2987 	 * useless for userspace and replaces the useful fault status, so
2988 	 * only update if status is non-0.
2989 	 */
2990 	if (vm && status) {
2991 		vm->fault_info.addr = addr;
2992 		vm->fault_info.status = status;
2993 		/*
2994 		 * Update the fault information globally for later usage
2995 		 * when vm could be stale or freed.
2996 		 */
2997 		adev->vm_manager.fault_info.addr = addr;
2998 		adev->vm_manager.fault_info.vmhub = vmhub;
2999 		adev->vm_manager.fault_info.status = status;
3000 
3001 		if (AMDGPU_IS_GFXHUB(vmhub)) {
3002 			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX;
3003 			vm->fault_info.vmhub |=
3004 				(vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT;
3005 		} else if (AMDGPU_IS_MMHUB0(vmhub)) {
3006 			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0;
3007 			vm->fault_info.vmhub |=
3008 				(vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT;
3009 		} else if (AMDGPU_IS_MMHUB1(vmhub)) {
3010 			vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1;
3011 			vm->fault_info.vmhub |=
3012 				(vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT;
3013 		} else {
3014 			WARN_ONCE(1, "Invalid vmhub %u\n", vmhub);
3015 		}
3016 	}
3017 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3018 }
3019 
3020 /**
3021  * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid
3022  *
3023  * @vm: VM to test against.
3024  * @bo: BO to be tested.
3025  *
3026  * Returns true if the BO shares the dma_resv object with the root PD and is
3027  * always guaranteed to be valid inside the VM.
3028  */
3029 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo)
3030 {
3031 	return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv;
3032 }
3033