1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 111 /** 112 * @kptr: 113 * 114 * Kernel pointer of PD/PT BO that needs to be updated, 115 * used during VM update by CPU 116 */ 117 void *kptr; 118 }; 119 120 /** 121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 122 */ 123 struct amdgpu_prt_cb { 124 125 /** 126 * @adev: amdgpu device 127 */ 128 struct amdgpu_device *adev; 129 130 /** 131 * @cb: callback 132 */ 133 struct dma_fence_cb cb; 134 }; 135 136 /** 137 * amdgpu_vm_level_shift - return the addr shift for each level 138 * 139 * @adev: amdgpu_device pointer 140 * @level: VMPT level 141 * 142 * Returns: 143 * The number of bits the pfn needs to be right shifted for a level. 144 */ 145 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 146 unsigned level) 147 { 148 unsigned shift = 0xff; 149 150 switch (level) { 151 case AMDGPU_VM_PDB2: 152 case AMDGPU_VM_PDB1: 153 case AMDGPU_VM_PDB0: 154 shift = 9 * (AMDGPU_VM_PDB0 - level) + 155 adev->vm_manager.block_size; 156 break; 157 case AMDGPU_VM_PTB: 158 shift = 0; 159 break; 160 default: 161 dev_err(adev->dev, "the level%d isn't supported.\n", level); 162 } 163 164 return shift; 165 } 166 167 /** 168 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 169 * 170 * @adev: amdgpu_device pointer 171 * @level: VMPT level 172 * 173 * Returns: 174 * The number of entries in a page directory or page table. 175 */ 176 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 177 unsigned level) 178 { 179 unsigned shift = amdgpu_vm_level_shift(adev, 180 adev->vm_manager.root_level); 181 182 if (level == adev->vm_manager.root_level) 183 /* For the root directory */ 184 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 185 else if (level != AMDGPU_VM_PTB) 186 /* Everything in between */ 187 return 512; 188 else 189 /* For the page tables on the leaves */ 190 return AMDGPU_VM_PTE_COUNT(adev); 191 } 192 193 /** 194 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 195 * 196 * @adev: amdgpu_device pointer 197 * @level: VMPT level 198 * 199 * Returns: 200 * The mask to extract the entry number of a PD/PT from an address. 201 */ 202 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 203 unsigned int level) 204 { 205 if (level <= adev->vm_manager.root_level) 206 return 0xffffffff; 207 else if (level != AMDGPU_VM_PTB) 208 return 0x1ff; 209 else 210 return AMDGPU_VM_PTE_COUNT(adev) - 1; 211 } 212 213 /** 214 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 215 * 216 * @adev: amdgpu_device pointer 217 * @level: VMPT level 218 * 219 * Returns: 220 * The size of the BO for a page directory or page table in bytes. 221 */ 222 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 223 { 224 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 225 } 226 227 /** 228 * amdgpu_vm_bo_evicted - vm_bo is evicted 229 * 230 * @vm_bo: vm_bo which is evicted 231 * 232 * State for PDs/PTs and per VM BOs which are not at the location they should 233 * be. 234 */ 235 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 236 { 237 struct amdgpu_vm *vm = vm_bo->vm; 238 struct amdgpu_bo *bo = vm_bo->bo; 239 240 vm_bo->moved = true; 241 if (bo->tbo.type == ttm_bo_type_kernel) 242 list_move(&vm_bo->vm_status, &vm->evicted); 243 else 244 list_move_tail(&vm_bo->vm_status, &vm->evicted); 245 } 246 247 /** 248 * amdgpu_vm_bo_relocated - vm_bo is reloacted 249 * 250 * @vm_bo: vm_bo which is relocated 251 * 252 * State for PDs/PTs which needs to update their parent PD. 253 */ 254 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 255 { 256 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 257 } 258 259 /** 260 * amdgpu_vm_bo_moved - vm_bo is moved 261 * 262 * @vm_bo: vm_bo which is moved 263 * 264 * State for per VM BOs which are moved, but that change is not yet reflected 265 * in the page tables. 266 */ 267 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 270 } 271 272 /** 273 * amdgpu_vm_bo_idle - vm_bo is idle 274 * 275 * @vm_bo: vm_bo which is now idle 276 * 277 * State for PDs/PTs and per VM BOs which have gone through the state machine 278 * and are now idle. 279 */ 280 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 283 vm_bo->moved = false; 284 } 285 286 /** 287 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 288 * 289 * @vm_bo: vm_bo which is now invalidated 290 * 291 * State for normal BOs which are invalidated and that change not yet reflected 292 * in the PTs. 293 */ 294 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 295 { 296 spin_lock(&vm_bo->vm->invalidated_lock); 297 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 298 spin_unlock(&vm_bo->vm->invalidated_lock); 299 } 300 301 /** 302 * amdgpu_vm_bo_done - vm_bo is done 303 * 304 * @vm_bo: vm_bo which is now done 305 * 306 * State for normal BOs which are invalidated and that change has been updated 307 * in the PTs. 308 */ 309 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 310 { 311 spin_lock(&vm_bo->vm->invalidated_lock); 312 list_del_init(&vm_bo->vm_status); 313 spin_unlock(&vm_bo->vm->invalidated_lock); 314 } 315 316 /** 317 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 318 * 319 * @base: base structure for tracking BO usage in a VM 320 * @vm: vm to which bo is to be added 321 * @bo: amdgpu buffer object 322 * 323 * Initialize a bo_va_base structure and add it to the appropriate lists 324 * 325 */ 326 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 327 struct amdgpu_vm *vm, 328 struct amdgpu_bo *bo) 329 { 330 base->vm = vm; 331 base->bo = bo; 332 base->next = NULL; 333 INIT_LIST_HEAD(&base->vm_status); 334 335 if (!bo) 336 return; 337 base->next = bo->vm_bo; 338 bo->vm_bo = base; 339 340 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 341 return; 342 343 vm->bulk_moveable = false; 344 if (bo->tbo.type == ttm_bo_type_kernel) 345 amdgpu_vm_bo_relocated(base); 346 else 347 amdgpu_vm_bo_idle(base); 348 349 if (bo->preferred_domains & 350 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 351 return; 352 353 /* 354 * we checked all the prerequisites, but it looks like this per vm bo 355 * is currently evicted. add the bo to the evicted list to make sure it 356 * is validated on next vm use to avoid fault. 357 * */ 358 amdgpu_vm_bo_evicted(base); 359 } 360 361 /** 362 * amdgpu_vm_pt_parent - get the parent page directory 363 * 364 * @pt: child page table 365 * 366 * Helper to get the parent entry for the child page table. NULL if we are at 367 * the root page directory. 368 */ 369 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 370 { 371 struct amdgpu_bo *parent = pt->base.bo->parent; 372 373 if (!parent) 374 return NULL; 375 376 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 377 } 378 379 /** 380 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 381 */ 382 struct amdgpu_vm_pt_cursor { 383 uint64_t pfn; 384 struct amdgpu_vm_pt *parent; 385 struct amdgpu_vm_pt *entry; 386 unsigned level; 387 }; 388 389 /** 390 * amdgpu_vm_pt_start - start PD/PT walk 391 * 392 * @adev: amdgpu_device pointer 393 * @vm: amdgpu_vm structure 394 * @start: start address of the walk 395 * @cursor: state to initialize 396 * 397 * Initialize a amdgpu_vm_pt_cursor to start a walk. 398 */ 399 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 400 struct amdgpu_vm *vm, uint64_t start, 401 struct amdgpu_vm_pt_cursor *cursor) 402 { 403 cursor->pfn = start; 404 cursor->parent = NULL; 405 cursor->entry = &vm->root; 406 cursor->level = adev->vm_manager.root_level; 407 } 408 409 /** 410 * amdgpu_vm_pt_descendant - go to child node 411 * 412 * @adev: amdgpu_device pointer 413 * @cursor: current state 414 * 415 * Walk to the child node of the current node. 416 * Returns: 417 * True if the walk was possible, false otherwise. 418 */ 419 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 420 struct amdgpu_vm_pt_cursor *cursor) 421 { 422 unsigned mask, shift, idx; 423 424 if (!cursor->entry->entries) 425 return false; 426 427 BUG_ON(!cursor->entry->base.bo); 428 mask = amdgpu_vm_entries_mask(adev, cursor->level); 429 shift = amdgpu_vm_level_shift(adev, cursor->level); 430 431 ++cursor->level; 432 idx = (cursor->pfn >> shift) & mask; 433 cursor->parent = cursor->entry; 434 cursor->entry = &cursor->entry->entries[idx]; 435 return true; 436 } 437 438 /** 439 * amdgpu_vm_pt_sibling - go to sibling node 440 * 441 * @adev: amdgpu_device pointer 442 * @cursor: current state 443 * 444 * Walk to the sibling node of the current node. 445 * Returns: 446 * True if the walk was possible, false otherwise. 447 */ 448 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 449 struct amdgpu_vm_pt_cursor *cursor) 450 { 451 unsigned shift, num_entries; 452 453 /* Root doesn't have a sibling */ 454 if (!cursor->parent) 455 return false; 456 457 /* Go to our parents and see if we got a sibling */ 458 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 459 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 460 461 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 462 return false; 463 464 cursor->pfn += 1ULL << shift; 465 cursor->pfn &= ~((1ULL << shift) - 1); 466 ++cursor->entry; 467 return true; 468 } 469 470 /** 471 * amdgpu_vm_pt_ancestor - go to parent node 472 * 473 * @cursor: current state 474 * 475 * Walk to the parent node of the current node. 476 * Returns: 477 * True if the walk was possible, false otherwise. 478 */ 479 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 480 { 481 if (!cursor->parent) 482 return false; 483 484 --cursor->level; 485 cursor->entry = cursor->parent; 486 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 487 return true; 488 } 489 490 /** 491 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 492 * 493 * @adev: amdgpu_device pointer 494 * @cursor: current state 495 * 496 * Walk the PD/PT tree to the next node. 497 */ 498 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 499 struct amdgpu_vm_pt_cursor *cursor) 500 { 501 /* First try a newborn child */ 502 if (amdgpu_vm_pt_descendant(adev, cursor)) 503 return; 504 505 /* If that didn't worked try to find a sibling */ 506 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 507 /* No sibling, go to our parents and grandparents */ 508 if (!amdgpu_vm_pt_ancestor(cursor)) { 509 cursor->pfn = ~0ll; 510 return; 511 } 512 } 513 } 514 515 /** 516 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT 517 * 518 * @adev: amdgpu_device pointer 519 * @vm: amdgpu_vm structure 520 * @start: start addr of the walk 521 * @cursor: state to initialize 522 * 523 * Start a walk and go directly to the leaf node. 524 */ 525 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev, 526 struct amdgpu_vm *vm, uint64_t start, 527 struct amdgpu_vm_pt_cursor *cursor) 528 { 529 amdgpu_vm_pt_start(adev, vm, start, cursor); 530 while (amdgpu_vm_pt_descendant(adev, cursor)); 531 } 532 533 /** 534 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT 535 * 536 * @adev: amdgpu_device pointer 537 * @cursor: current state 538 * 539 * Walk the PD/PT tree to the next leaf node. 540 */ 541 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev, 542 struct amdgpu_vm_pt_cursor *cursor) 543 { 544 amdgpu_vm_pt_next(adev, cursor); 545 if (cursor->pfn != ~0ll) 546 while (amdgpu_vm_pt_descendant(adev, cursor)); 547 } 548 549 /** 550 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy 551 */ 552 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \ 553 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \ 554 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor))) 555 556 /** 557 * amdgpu_vm_pt_first_dfs - start a deep first search 558 * 559 * @adev: amdgpu_device structure 560 * @vm: amdgpu_vm structure 561 * @cursor: state to initialize 562 * 563 * Starts a deep first traversal of the PD/PT tree. 564 */ 565 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 566 struct amdgpu_vm *vm, 567 struct amdgpu_vm_pt_cursor *cursor) 568 { 569 amdgpu_vm_pt_start(adev, vm, 0, cursor); 570 while (amdgpu_vm_pt_descendant(adev, cursor)); 571 } 572 573 /** 574 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 575 * 576 * @adev: amdgpu_device structure 577 * @cursor: current state 578 * 579 * Move the cursor to the next node in a deep first search. 580 */ 581 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 582 struct amdgpu_vm_pt_cursor *cursor) 583 { 584 if (!cursor->entry) 585 return; 586 587 if (!cursor->parent) 588 cursor->entry = NULL; 589 else if (amdgpu_vm_pt_sibling(adev, cursor)) 590 while (amdgpu_vm_pt_descendant(adev, cursor)); 591 else 592 amdgpu_vm_pt_ancestor(cursor); 593 } 594 595 /** 596 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 597 */ 598 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \ 599 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \ 600 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 601 (entry); (entry) = (cursor).entry, \ 602 amdgpu_vm_pt_next_dfs((adev), &(cursor))) 603 604 /** 605 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 606 * 607 * @vm: vm providing the BOs 608 * @validated: head of validation list 609 * @entry: entry to add 610 * 611 * Add the page directory to the list of BOs to 612 * validate for command submission. 613 */ 614 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 615 struct list_head *validated, 616 struct amdgpu_bo_list_entry *entry) 617 { 618 entry->priority = 0; 619 entry->tv.bo = &vm->root.base.bo->tbo; 620 entry->tv.shared = true; 621 entry->user_pages = NULL; 622 list_add(&entry->tv.head, validated); 623 } 624 625 /** 626 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 627 * 628 * @adev: amdgpu device pointer 629 * @vm: vm providing the BOs 630 * 631 * Move all BOs to the end of LRU and remember their positions to put them 632 * together. 633 */ 634 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 635 struct amdgpu_vm *vm) 636 { 637 struct ttm_bo_global *glob = adev->mman.bdev.glob; 638 struct amdgpu_vm_bo_base *bo_base; 639 640 if (vm->bulk_moveable) { 641 spin_lock(&glob->lru_lock); 642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 643 spin_unlock(&glob->lru_lock); 644 return; 645 } 646 647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 648 649 spin_lock(&glob->lru_lock); 650 list_for_each_entry(bo_base, &vm->idle, vm_status) { 651 struct amdgpu_bo *bo = bo_base->bo; 652 653 if (!bo->parent) 654 continue; 655 656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 657 if (bo->shadow) 658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 659 &vm->lru_bulk_move); 660 } 661 spin_unlock(&glob->lru_lock); 662 663 vm->bulk_moveable = true; 664 } 665 666 /** 667 * amdgpu_vm_validate_pt_bos - validate the page table BOs 668 * 669 * @adev: amdgpu device pointer 670 * @vm: vm providing the BOs 671 * @validate: callback to do the validation 672 * @param: parameter for the validation callback 673 * 674 * Validate the page table BOs on command submission if neccessary. 675 * 676 * Returns: 677 * Validation result. 678 */ 679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 680 int (*validate)(void *p, struct amdgpu_bo *bo), 681 void *param) 682 { 683 struct amdgpu_vm_bo_base *bo_base, *tmp; 684 int r = 0; 685 686 vm->bulk_moveable &= list_empty(&vm->evicted); 687 688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 689 struct amdgpu_bo *bo = bo_base->bo; 690 691 r = validate(param, bo); 692 if (r) 693 break; 694 695 if (bo->tbo.type != ttm_bo_type_kernel) { 696 amdgpu_vm_bo_moved(bo_base); 697 } else { 698 if (vm->use_cpu_for_update) 699 r = amdgpu_bo_kmap(bo, NULL); 700 else 701 r = amdgpu_ttm_alloc_gart(&bo->tbo); 702 if (r) 703 break; 704 if (bo->shadow) { 705 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo); 706 if (r) 707 break; 708 } 709 amdgpu_vm_bo_relocated(bo_base); 710 } 711 } 712 713 return r; 714 } 715 716 /** 717 * amdgpu_vm_ready - check VM is ready for updates 718 * 719 * @vm: VM to check 720 * 721 * Check if all VM PDs/PTs are ready for updates 722 * 723 * Returns: 724 * True if eviction list is empty. 725 */ 726 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 727 { 728 return list_empty(&vm->evicted); 729 } 730 731 /** 732 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 733 * 734 * @adev: amdgpu_device pointer 735 * @vm: VM to clear BO from 736 * @bo: BO to clear 737 * @level: level this BO is at 738 * @pte_support_ats: indicate ATS support from PTE 739 * 740 * Root PD needs to be reserved when calling this. 741 * 742 * Returns: 743 * 0 on success, errno otherwise. 744 */ 745 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 746 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 747 unsigned level, bool pte_support_ats) 748 { 749 struct ttm_operation_ctx ctx = { true, false }; 750 struct dma_fence *fence = NULL; 751 unsigned entries, ats_entries; 752 struct amdgpu_ring *ring; 753 struct amdgpu_job *job; 754 uint64_t addr; 755 int r; 756 757 entries = amdgpu_bo_size(bo) / 8; 758 759 if (pte_support_ats) { 760 if (level == adev->vm_manager.root_level) { 761 ats_entries = amdgpu_vm_level_shift(adev, level); 762 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 763 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries; 764 ats_entries = min(ats_entries, entries); 765 entries -= ats_entries; 766 } else { 767 ats_entries = entries; 768 entries = 0; 769 } 770 } else { 771 ats_entries = 0; 772 } 773 774 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 775 776 r = reservation_object_reserve_shared(bo->tbo.resv); 777 if (r) 778 return r; 779 780 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 781 if (r) 782 goto error; 783 784 r = amdgpu_ttm_alloc_gart(&bo->tbo); 785 if (r) 786 return r; 787 788 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 789 if (r) 790 goto error; 791 792 addr = amdgpu_bo_gpu_offset(bo); 793 if (ats_entries) { 794 uint64_t ats_value; 795 796 ats_value = AMDGPU_PTE_DEFAULT_ATC; 797 if (level != AMDGPU_VM_PTB) 798 ats_value |= AMDGPU_PDE_PTE; 799 800 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 801 ats_entries, 0, ats_value); 802 addr += ats_entries * 8; 803 } 804 805 if (entries) 806 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 807 entries, 0, 0); 808 809 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 810 811 WARN_ON(job->ibs[0].length_dw > 64); 812 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 813 AMDGPU_FENCE_OWNER_UNDEFINED, false); 814 if (r) 815 goto error_free; 816 817 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 818 &fence); 819 if (r) 820 goto error_free; 821 822 amdgpu_bo_fence(bo, fence, true); 823 dma_fence_put(fence); 824 825 if (bo->shadow) 826 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 827 level, pte_support_ats); 828 829 return 0; 830 831 error_free: 832 amdgpu_job_free(job); 833 834 error: 835 return r; 836 } 837 838 /** 839 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 840 * 841 * @adev: amdgpu_device pointer 842 * @vm: requesting vm 843 * @bp: resulting BO allocation parameters 844 */ 845 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 846 int level, struct amdgpu_bo_param *bp) 847 { 848 memset(bp, 0, sizeof(*bp)); 849 850 bp->size = amdgpu_vm_bo_size(adev, level); 851 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 852 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 853 if (bp->size <= PAGE_SIZE && adev->asic_type >= CHIP_VEGA10 && 854 adev->flags & AMD_IS_APU) 855 bp->domain |= AMDGPU_GEM_DOMAIN_GTT; 856 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 857 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 858 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 859 if (vm->use_cpu_for_update) 860 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 861 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 862 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 863 bp->type = ttm_bo_type_kernel; 864 if (vm->root.base.bo) 865 bp->resv = vm->root.base.bo->tbo.resv; 866 } 867 868 /** 869 * amdgpu_vm_alloc_pts - Allocate page tables. 870 * 871 * @adev: amdgpu_device pointer 872 * @vm: VM to allocate page tables for 873 * @saddr: Start address which needs to be allocated 874 * @size: Size from start address we need. 875 * 876 * Make sure the page directories and page tables are allocated 877 * 878 * Returns: 879 * 0 on success, errno otherwise. 880 */ 881 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 882 struct amdgpu_vm *vm, 883 uint64_t saddr, uint64_t size) 884 { 885 struct amdgpu_vm_pt_cursor cursor; 886 struct amdgpu_bo *pt; 887 bool ats = false; 888 uint64_t eaddr; 889 int r; 890 891 /* validate the parameters */ 892 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 893 return -EINVAL; 894 895 eaddr = saddr + size - 1; 896 897 if (vm->pte_support_ats) 898 ats = saddr < AMDGPU_GMC_HOLE_START; 899 900 saddr /= AMDGPU_GPU_PAGE_SIZE; 901 eaddr /= AMDGPU_GPU_PAGE_SIZE; 902 903 if (eaddr >= adev->vm_manager.max_pfn) { 904 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 905 eaddr, adev->vm_manager.max_pfn); 906 return -EINVAL; 907 } 908 909 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) { 910 struct amdgpu_vm_pt *entry = cursor.entry; 911 struct amdgpu_bo_param bp; 912 913 if (cursor.level < AMDGPU_VM_PTB) { 914 unsigned num_entries; 915 916 num_entries = amdgpu_vm_num_entries(adev, cursor.level); 917 entry->entries = kvmalloc_array(num_entries, 918 sizeof(*entry->entries), 919 GFP_KERNEL | 920 __GFP_ZERO); 921 if (!entry->entries) 922 return -ENOMEM; 923 } 924 925 926 if (entry->base.bo) 927 continue; 928 929 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp); 930 931 r = amdgpu_bo_create(adev, &bp, &pt); 932 if (r) 933 return r; 934 935 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats); 936 if (r) 937 goto error_free_pt; 938 939 if (vm->use_cpu_for_update) { 940 r = amdgpu_bo_kmap(pt, NULL); 941 if (r) 942 goto error_free_pt; 943 } 944 945 /* Keep a reference to the root directory to avoid 946 * freeing them up in the wrong order. 947 */ 948 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo); 949 950 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 951 } 952 953 return 0; 954 955 error_free_pt: 956 amdgpu_bo_unref(&pt->shadow); 957 amdgpu_bo_unref(&pt); 958 return r; 959 } 960 961 /** 962 * amdgpu_vm_free_pts - free PD/PT levels 963 * 964 * @adev: amdgpu device structure 965 * @vm: amdgpu vm structure 966 * 967 * Free the page directory or page table level and all sub levels. 968 */ 969 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 970 struct amdgpu_vm *vm) 971 { 972 struct amdgpu_vm_pt_cursor cursor; 973 struct amdgpu_vm_pt *entry; 974 975 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) { 976 977 if (entry->base.bo) { 978 entry->base.bo->vm_bo = NULL; 979 list_del(&entry->base.vm_status); 980 amdgpu_bo_unref(&entry->base.bo->shadow); 981 amdgpu_bo_unref(&entry->base.bo); 982 } 983 kvfree(entry->entries); 984 } 985 986 BUG_ON(vm->root.base.bo); 987 } 988 989 /** 990 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 991 * 992 * @adev: amdgpu_device pointer 993 */ 994 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 995 { 996 const struct amdgpu_ip_block *ip_block; 997 bool has_compute_vm_bug; 998 struct amdgpu_ring *ring; 999 int i; 1000 1001 has_compute_vm_bug = false; 1002 1003 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1004 if (ip_block) { 1005 /* Compute has a VM bug for GFX version < 7. 1006 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1007 if (ip_block->version->major <= 7) 1008 has_compute_vm_bug = true; 1009 else if (ip_block->version->major == 8) 1010 if (adev->gfx.mec_fw_version < 673) 1011 has_compute_vm_bug = true; 1012 } 1013 1014 for (i = 0; i < adev->num_rings; i++) { 1015 ring = adev->rings[i]; 1016 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1017 /* only compute rings */ 1018 ring->has_compute_vm_bug = has_compute_vm_bug; 1019 else 1020 ring->has_compute_vm_bug = false; 1021 } 1022 } 1023 1024 /** 1025 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1026 * 1027 * @ring: ring on which the job will be submitted 1028 * @job: job to submit 1029 * 1030 * Returns: 1031 * True if sync is needed. 1032 */ 1033 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1034 struct amdgpu_job *job) 1035 { 1036 struct amdgpu_device *adev = ring->adev; 1037 unsigned vmhub = ring->funcs->vmhub; 1038 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1039 struct amdgpu_vmid *id; 1040 bool gds_switch_needed; 1041 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1042 1043 if (job->vmid == 0) 1044 return false; 1045 id = &id_mgr->ids[job->vmid]; 1046 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1047 id->gds_base != job->gds_base || 1048 id->gds_size != job->gds_size || 1049 id->gws_base != job->gws_base || 1050 id->gws_size != job->gws_size || 1051 id->oa_base != job->oa_base || 1052 id->oa_size != job->oa_size); 1053 1054 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1055 return true; 1056 1057 return vm_flush_needed || gds_switch_needed; 1058 } 1059 1060 /** 1061 * amdgpu_vm_flush - hardware flush the vm 1062 * 1063 * @ring: ring to use for flush 1064 * @job: related job 1065 * @need_pipe_sync: is pipe sync needed 1066 * 1067 * Emit a VM flush when it is necessary. 1068 * 1069 * Returns: 1070 * 0 on success, errno otherwise. 1071 */ 1072 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1073 { 1074 struct amdgpu_device *adev = ring->adev; 1075 unsigned vmhub = ring->funcs->vmhub; 1076 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1077 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1078 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1079 id->gds_base != job->gds_base || 1080 id->gds_size != job->gds_size || 1081 id->gws_base != job->gws_base || 1082 id->gws_size != job->gws_size || 1083 id->oa_base != job->oa_base || 1084 id->oa_size != job->oa_size); 1085 bool vm_flush_needed = job->vm_needs_flush; 1086 bool pasid_mapping_needed = id->pasid != job->pasid || 1087 !id->pasid_mapping || 1088 !dma_fence_is_signaled(id->pasid_mapping); 1089 struct dma_fence *fence = NULL; 1090 unsigned patch_offset = 0; 1091 int r; 1092 1093 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1094 gds_switch_needed = true; 1095 vm_flush_needed = true; 1096 pasid_mapping_needed = true; 1097 } 1098 1099 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1100 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1101 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1102 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1103 ring->funcs->emit_wreg; 1104 1105 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1106 return 0; 1107 1108 if (ring->funcs->init_cond_exec) 1109 patch_offset = amdgpu_ring_init_cond_exec(ring); 1110 1111 if (need_pipe_sync) 1112 amdgpu_ring_emit_pipeline_sync(ring); 1113 1114 if (vm_flush_needed) { 1115 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1116 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1117 } 1118 1119 if (pasid_mapping_needed) 1120 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1121 1122 if (vm_flush_needed || pasid_mapping_needed) { 1123 r = amdgpu_fence_emit(ring, &fence, 0); 1124 if (r) 1125 return r; 1126 } 1127 1128 if (vm_flush_needed) { 1129 mutex_lock(&id_mgr->lock); 1130 dma_fence_put(id->last_flush); 1131 id->last_flush = dma_fence_get(fence); 1132 id->current_gpu_reset_count = 1133 atomic_read(&adev->gpu_reset_counter); 1134 mutex_unlock(&id_mgr->lock); 1135 } 1136 1137 if (pasid_mapping_needed) { 1138 id->pasid = job->pasid; 1139 dma_fence_put(id->pasid_mapping); 1140 id->pasid_mapping = dma_fence_get(fence); 1141 } 1142 dma_fence_put(fence); 1143 1144 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1145 id->gds_base = job->gds_base; 1146 id->gds_size = job->gds_size; 1147 id->gws_base = job->gws_base; 1148 id->gws_size = job->gws_size; 1149 id->oa_base = job->oa_base; 1150 id->oa_size = job->oa_size; 1151 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1152 job->gds_size, job->gws_base, 1153 job->gws_size, job->oa_base, 1154 job->oa_size); 1155 } 1156 1157 if (ring->funcs->patch_cond_exec) 1158 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1159 1160 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1161 if (ring->funcs->emit_switch_buffer) { 1162 amdgpu_ring_emit_switch_buffer(ring); 1163 amdgpu_ring_emit_switch_buffer(ring); 1164 } 1165 return 0; 1166 } 1167 1168 /** 1169 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1170 * 1171 * @vm: requested vm 1172 * @bo: requested buffer object 1173 * 1174 * Find @bo inside the requested vm. 1175 * Search inside the @bos vm list for the requested vm 1176 * Returns the found bo_va or NULL if none is found 1177 * 1178 * Object has to be reserved! 1179 * 1180 * Returns: 1181 * Found bo_va or NULL. 1182 */ 1183 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1184 struct amdgpu_bo *bo) 1185 { 1186 struct amdgpu_vm_bo_base *base; 1187 1188 for (base = bo->vm_bo; base; base = base->next) { 1189 if (base->vm != vm) 1190 continue; 1191 1192 return container_of(base, struct amdgpu_bo_va, base); 1193 } 1194 return NULL; 1195 } 1196 1197 /** 1198 * amdgpu_vm_do_set_ptes - helper to call the right asic function 1199 * 1200 * @params: see amdgpu_pte_update_params definition 1201 * @bo: PD/PT to update 1202 * @pe: addr of the page entry 1203 * @addr: dst addr to write into pe 1204 * @count: number of page entries to update 1205 * @incr: increase next addr by incr bytes 1206 * @flags: hw access flags 1207 * 1208 * Traces the parameters and calls the right asic functions 1209 * to setup the page table using the DMA. 1210 */ 1211 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 1212 struct amdgpu_bo *bo, 1213 uint64_t pe, uint64_t addr, 1214 unsigned count, uint32_t incr, 1215 uint64_t flags) 1216 { 1217 pe += amdgpu_bo_gpu_offset(bo); 1218 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1219 1220 if (count < 3) { 1221 amdgpu_vm_write_pte(params->adev, params->ib, pe, 1222 addr | flags, count, incr); 1223 1224 } else { 1225 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 1226 count, incr, flags); 1227 } 1228 } 1229 1230 /** 1231 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 1232 * 1233 * @params: see amdgpu_pte_update_params definition 1234 * @bo: PD/PT to update 1235 * @pe: addr of the page entry 1236 * @addr: dst addr to write into pe 1237 * @count: number of page entries to update 1238 * @incr: increase next addr by incr bytes 1239 * @flags: hw access flags 1240 * 1241 * Traces the parameters and calls the DMA function to copy the PTEs. 1242 */ 1243 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 1244 struct amdgpu_bo *bo, 1245 uint64_t pe, uint64_t addr, 1246 unsigned count, uint32_t incr, 1247 uint64_t flags) 1248 { 1249 uint64_t src = (params->src + (addr >> 12) * 8); 1250 1251 pe += amdgpu_bo_gpu_offset(bo); 1252 trace_amdgpu_vm_copy_ptes(pe, src, count); 1253 1254 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 1255 } 1256 1257 /** 1258 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1259 * 1260 * @pages_addr: optional DMA address to use for lookup 1261 * @addr: the unmapped addr 1262 * 1263 * Look up the physical address of the page that the pte resolves 1264 * to. 1265 * 1266 * Returns: 1267 * The pointer for the page table entry. 1268 */ 1269 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1270 { 1271 uint64_t result; 1272 1273 /* page table offset */ 1274 result = pages_addr[addr >> PAGE_SHIFT]; 1275 1276 /* in case cpu page size != gpu page size*/ 1277 result |= addr & (~PAGE_MASK); 1278 1279 result &= 0xFFFFFFFFFFFFF000ULL; 1280 1281 return result; 1282 } 1283 1284 /** 1285 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1286 * 1287 * @params: see amdgpu_pte_update_params definition 1288 * @bo: PD/PT to update 1289 * @pe: kmap addr of the page entry 1290 * @addr: dst addr to write into pe 1291 * @count: number of page entries to update 1292 * @incr: increase next addr by incr bytes 1293 * @flags: hw access flags 1294 * 1295 * Write count number of PT/PD entries directly. 1296 */ 1297 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1298 struct amdgpu_bo *bo, 1299 uint64_t pe, uint64_t addr, 1300 unsigned count, uint32_t incr, 1301 uint64_t flags) 1302 { 1303 unsigned int i; 1304 uint64_t value; 1305 1306 pe += (unsigned long)amdgpu_bo_kptr(bo); 1307 1308 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1309 1310 for (i = 0; i < count; i++) { 1311 value = params->pages_addr ? 1312 amdgpu_vm_map_gart(params->pages_addr, addr) : 1313 addr; 1314 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1315 i, value, flags); 1316 addr += incr; 1317 } 1318 } 1319 1320 1321 /** 1322 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 1323 * 1324 * @adev: amdgpu_device pointer 1325 * @vm: related vm 1326 * @owner: fence owner 1327 * 1328 * Returns: 1329 * 0 on success, errno otherwise. 1330 */ 1331 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1332 void *owner) 1333 { 1334 struct amdgpu_sync sync; 1335 int r; 1336 1337 amdgpu_sync_create(&sync); 1338 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1339 r = amdgpu_sync_wait(&sync, true); 1340 amdgpu_sync_free(&sync); 1341 1342 return r; 1343 } 1344 1345 /** 1346 * amdgpu_vm_update_func - helper to call update function 1347 * 1348 * Calls the update function for both the given BO as well as its shadow. 1349 */ 1350 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params, 1351 struct amdgpu_bo *bo, 1352 uint64_t pe, uint64_t addr, 1353 unsigned count, uint32_t incr, 1354 uint64_t flags) 1355 { 1356 if (bo->shadow) 1357 params->func(params, bo->shadow, pe, addr, count, incr, flags); 1358 params->func(params, bo, pe, addr, count, incr, flags); 1359 } 1360 1361 /* 1362 * amdgpu_vm_update_pde - update a single level in the hierarchy 1363 * 1364 * @param: parameters for the update 1365 * @vm: requested vm 1366 * @parent: parent directory 1367 * @entry: entry to update 1368 * 1369 * Makes sure the requested entry in parent is up to date. 1370 */ 1371 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1372 struct amdgpu_vm *vm, 1373 struct amdgpu_vm_pt *parent, 1374 struct amdgpu_vm_pt *entry) 1375 { 1376 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1377 uint64_t pde, pt, flags; 1378 unsigned level; 1379 1380 /* Don't update huge pages here */ 1381 if (entry->huge) 1382 return; 1383 1384 for (level = 0, pbo = bo->parent; pbo; ++level) 1385 pbo = pbo->parent; 1386 1387 level += params->adev->vm_manager.root_level; 1388 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1389 pde = (entry - parent->entries) * 8; 1390 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags); 1391 } 1392 1393 /* 1394 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1395 * 1396 * @adev: amdgpu_device pointer 1397 * @vm: related vm 1398 * 1399 * Mark all PD level as invalid after an error. 1400 */ 1401 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1402 struct amdgpu_vm *vm) 1403 { 1404 struct amdgpu_vm_pt_cursor cursor; 1405 struct amdgpu_vm_pt *entry; 1406 1407 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) 1408 if (entry->base.bo && !entry->base.moved) 1409 amdgpu_vm_bo_relocated(&entry->base); 1410 } 1411 1412 /* 1413 * amdgpu_vm_update_directories - make sure that all directories are valid 1414 * 1415 * @adev: amdgpu_device pointer 1416 * @vm: requested vm 1417 * 1418 * Makes sure all directories are up to date. 1419 * 1420 * Returns: 1421 * 0 for success, error for failure. 1422 */ 1423 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1424 struct amdgpu_vm *vm) 1425 { 1426 struct amdgpu_pte_update_params params; 1427 struct amdgpu_job *job; 1428 unsigned ndw = 0; 1429 int r = 0; 1430 1431 if (list_empty(&vm->relocated)) 1432 return 0; 1433 1434 restart: 1435 memset(¶ms, 0, sizeof(params)); 1436 params.adev = adev; 1437 1438 if (vm->use_cpu_for_update) { 1439 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1440 if (unlikely(r)) 1441 return r; 1442 1443 params.func = amdgpu_vm_cpu_set_ptes; 1444 } else { 1445 ndw = 512 * 8; 1446 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1447 if (r) 1448 return r; 1449 1450 params.ib = &job->ibs[0]; 1451 params.func = amdgpu_vm_do_set_ptes; 1452 } 1453 1454 while (!list_empty(&vm->relocated)) { 1455 struct amdgpu_vm_pt *pt, *entry; 1456 1457 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1458 base.vm_status); 1459 amdgpu_vm_bo_idle(&entry->base); 1460 1461 pt = amdgpu_vm_pt_parent(entry); 1462 if (!pt) 1463 continue; 1464 1465 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1466 1467 if (!vm->use_cpu_for_update && 1468 (ndw - params.ib->length_dw) < 32) 1469 break; 1470 } 1471 1472 if (vm->use_cpu_for_update) { 1473 /* Flush HDP */ 1474 mb(); 1475 amdgpu_asic_flush_hdp(adev, NULL); 1476 } else if (params.ib->length_dw == 0) { 1477 amdgpu_job_free(job); 1478 } else { 1479 struct amdgpu_bo *root = vm->root.base.bo; 1480 struct amdgpu_ring *ring; 1481 struct dma_fence *fence; 1482 1483 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1484 sched); 1485 1486 amdgpu_ring_pad_ib(ring, params.ib); 1487 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1488 AMDGPU_FENCE_OWNER_VM, false); 1489 WARN_ON(params.ib->length_dw > ndw); 1490 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1491 &fence); 1492 if (r) 1493 goto error; 1494 1495 amdgpu_bo_fence(root, fence, true); 1496 dma_fence_put(vm->last_update); 1497 vm->last_update = fence; 1498 } 1499 1500 if (!list_empty(&vm->relocated)) 1501 goto restart; 1502 1503 return 0; 1504 1505 error: 1506 amdgpu_vm_invalidate_pds(adev, vm); 1507 amdgpu_job_free(job); 1508 return r; 1509 } 1510 1511 /** 1512 * amdgpu_vm_update_huge - figure out parameters for PTE updates 1513 * 1514 * Make sure to set the right flags for the PTEs at the desired level. 1515 */ 1516 static void amdgpu_vm_update_huge(struct amdgpu_pte_update_params *params, 1517 struct amdgpu_bo *bo, unsigned level, 1518 uint64_t pe, uint64_t addr, 1519 unsigned count, uint32_t incr, 1520 uint64_t flags) 1521 1522 { 1523 if (level != AMDGPU_VM_PTB) { 1524 flags |= AMDGPU_PDE_PTE; 1525 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1526 } 1527 1528 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags); 1529 } 1530 1531 /** 1532 * amdgpu_vm_fragment - get fragment for PTEs 1533 * 1534 * @params: see amdgpu_pte_update_params definition 1535 * @start: first PTE to handle 1536 * @end: last PTE to handle 1537 * @flags: hw mapping flags 1538 * @frag: resulting fragment size 1539 * @frag_end: end of this fragment 1540 * 1541 * Returns the first possible fragment for the start and end address. 1542 */ 1543 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params, 1544 uint64_t start, uint64_t end, uint64_t flags, 1545 unsigned int *frag, uint64_t *frag_end) 1546 { 1547 /** 1548 * The MC L1 TLB supports variable sized pages, based on a fragment 1549 * field in the PTE. When this field is set to a non-zero value, page 1550 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1551 * flags are considered valid for all PTEs within the fragment range 1552 * and corresponding mappings are assumed to be physically contiguous. 1553 * 1554 * The L1 TLB can store a single PTE for the whole fragment, 1555 * significantly increasing the space available for translation 1556 * caching. This leads to large improvements in throughput when the 1557 * TLB is under pressure. 1558 * 1559 * The L2 TLB distributes small and large fragments into two 1560 * asymmetric partitions. The large fragment cache is significantly 1561 * larger. Thus, we try to use large fragments wherever possible. 1562 * Userspace can support this by aligning virtual base address and 1563 * allocation size to the fragment size. 1564 * 1565 * Starting with Vega10 the fragment size only controls the L1. The L2 1566 * is now directly feed with small/huge/giant pages from the walker. 1567 */ 1568 unsigned max_frag; 1569 1570 if (params->adev->asic_type < CHIP_VEGA10) 1571 max_frag = params->adev->vm_manager.fragment_size; 1572 else 1573 max_frag = 31; 1574 1575 /* system pages are non continuously */ 1576 if (params->src) { 1577 *frag = 0; 1578 *frag_end = end; 1579 return; 1580 } 1581 1582 /* This intentionally wraps around if no bit is set */ 1583 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1584 if (*frag >= max_frag) { 1585 *frag = max_frag; 1586 *frag_end = end & ~((1ULL << max_frag) - 1); 1587 } else { 1588 *frag_end = start + (1 << *frag); 1589 } 1590 } 1591 1592 /** 1593 * amdgpu_vm_update_ptes - make sure that page tables are valid 1594 * 1595 * @params: see amdgpu_pte_update_params definition 1596 * @start: start of GPU address range 1597 * @end: end of GPU address range 1598 * @dst: destination address to map to, the next dst inside the function 1599 * @flags: mapping flags 1600 * 1601 * Update the page tables in the range @start - @end. 1602 * 1603 * Returns: 1604 * 0 for success, -EINVAL for failure. 1605 */ 1606 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1607 uint64_t start, uint64_t end, 1608 uint64_t dst, uint64_t flags) 1609 { 1610 struct amdgpu_device *adev = params->adev; 1611 struct amdgpu_vm_pt_cursor cursor; 1612 uint64_t frag_start = start, frag_end; 1613 unsigned int frag; 1614 1615 /* figure out the initial fragment */ 1616 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1617 1618 /* walk over the address space and update the PTs */ 1619 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1620 while (cursor.pfn < end) { 1621 struct amdgpu_bo *pt = cursor.entry->base.bo; 1622 unsigned shift, parent_shift, mask; 1623 uint64_t incr, entry_end, pe_start; 1624 1625 if (!pt) 1626 return -ENOENT; 1627 1628 /* The root level can't be a huge page */ 1629 if (cursor.level == adev->vm_manager.root_level) { 1630 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1631 return -ENOENT; 1632 continue; 1633 } 1634 1635 /* First check if the entry is already handled */ 1636 if (cursor.pfn < frag_start) { 1637 cursor.entry->huge = true; 1638 amdgpu_vm_pt_next(adev, &cursor); 1639 continue; 1640 } 1641 1642 /* If it isn't already handled it can't be a huge page */ 1643 if (cursor.entry->huge) { 1644 /* Add the entry to the relocated list to update it. */ 1645 cursor.entry->huge = false; 1646 amdgpu_vm_bo_relocated(&cursor.entry->base); 1647 } 1648 1649 shift = amdgpu_vm_level_shift(adev, cursor.level); 1650 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1651 if (adev->asic_type < CHIP_VEGA10) { 1652 /* No huge page support before GMC v9 */ 1653 if (cursor.level != AMDGPU_VM_PTB) { 1654 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1655 return -ENOENT; 1656 continue; 1657 } 1658 } else if (frag < shift) { 1659 /* We can't use this level when the fragment size is 1660 * smaller than the address shift. Go to the next 1661 * child entry and try again. 1662 */ 1663 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1664 return -ENOENT; 1665 continue; 1666 } else if (frag >= parent_shift) { 1667 /* If the fragment size is even larger than the parent 1668 * shift we should go up one level and check it again. 1669 */ 1670 if (!amdgpu_vm_pt_ancestor(&cursor)) 1671 return -ENOENT; 1672 continue; 1673 } 1674 1675 /* Looks good so far, calculate parameters for the update */ 1676 incr = AMDGPU_GPU_PAGE_SIZE << shift; 1677 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1678 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1679 entry_end = (mask + 1) << shift; 1680 entry_end += cursor.pfn & ~(entry_end - 1); 1681 entry_end = min(entry_end, end); 1682 1683 do { 1684 uint64_t upd_end = min(entry_end, frag_end); 1685 unsigned nptes = (upd_end - frag_start) >> shift; 1686 1687 amdgpu_vm_update_huge(params, pt, cursor.level, 1688 pe_start, dst, nptes, incr, 1689 flags | AMDGPU_PTE_FRAG(frag)); 1690 1691 pe_start += nptes * 8; 1692 dst += nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1693 1694 frag_start = upd_end; 1695 if (frag_start >= frag_end) { 1696 /* figure out the next fragment */ 1697 amdgpu_vm_fragment(params, frag_start, end, 1698 flags, &frag, &frag_end); 1699 if (frag < shift) 1700 break; 1701 } 1702 } while (frag_start < entry_end); 1703 1704 if (frag >= shift) 1705 amdgpu_vm_pt_next(adev, &cursor); 1706 } 1707 1708 return 0; 1709 } 1710 1711 /** 1712 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1713 * 1714 * @adev: amdgpu_device pointer 1715 * @exclusive: fence we need to sync to 1716 * @pages_addr: DMA addresses to use for mapping 1717 * @vm: requested vm 1718 * @start: start of mapped range 1719 * @last: last mapped entry 1720 * @flags: flags for the entries 1721 * @addr: addr to set the area to 1722 * @fence: optional resulting fence 1723 * 1724 * Fill in the page table entries between @start and @last. 1725 * 1726 * Returns: 1727 * 0 for success, -EINVAL for failure. 1728 */ 1729 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1730 struct dma_fence *exclusive, 1731 dma_addr_t *pages_addr, 1732 struct amdgpu_vm *vm, 1733 uint64_t start, uint64_t last, 1734 uint64_t flags, uint64_t addr, 1735 struct dma_fence **fence) 1736 { 1737 struct amdgpu_ring *ring; 1738 void *owner = AMDGPU_FENCE_OWNER_VM; 1739 unsigned nptes, ncmds, ndw; 1740 struct amdgpu_job *job; 1741 struct amdgpu_pte_update_params params; 1742 struct dma_fence *f = NULL; 1743 int r; 1744 1745 memset(¶ms, 0, sizeof(params)); 1746 params.adev = adev; 1747 params.vm = vm; 1748 1749 /* sync to everything on unmapping */ 1750 if (!(flags & AMDGPU_PTE_VALID)) 1751 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1752 1753 if (vm->use_cpu_for_update) { 1754 /* params.src is used as flag to indicate system Memory */ 1755 if (pages_addr) 1756 params.src = ~0; 1757 1758 /* Wait for PT BOs to be free. PTs share the same resv. object 1759 * as the root PD BO 1760 */ 1761 r = amdgpu_vm_wait_pd(adev, vm, owner); 1762 if (unlikely(r)) 1763 return r; 1764 1765 params.func = amdgpu_vm_cpu_set_ptes; 1766 params.pages_addr = pages_addr; 1767 return amdgpu_vm_update_ptes(¶ms, start, last + 1, 1768 addr, flags); 1769 } 1770 1771 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1772 1773 nptes = last - start + 1; 1774 1775 /* 1776 * reserve space for two commands every (1 << BLOCK_SIZE) 1777 * entries or 2k dwords (whatever is smaller) 1778 * 1779 * The second command is for the shadow pagetables. 1780 */ 1781 if (vm->root.base.bo->shadow) 1782 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1783 else 1784 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1785 1786 /* padding, etc. */ 1787 ndw = 64; 1788 1789 if (pages_addr) { 1790 /* copy commands needed */ 1791 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1792 1793 /* and also PTEs */ 1794 ndw += nptes * 2; 1795 1796 params.func = amdgpu_vm_do_copy_ptes; 1797 1798 } else { 1799 /* set page commands needed */ 1800 ndw += ncmds * 10; 1801 1802 /* extra commands for begin/end fragments */ 1803 if (vm->root.base.bo->shadow) 1804 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1805 else 1806 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1807 1808 params.func = amdgpu_vm_do_set_ptes; 1809 } 1810 1811 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1812 if (r) 1813 return r; 1814 1815 params.ib = &job->ibs[0]; 1816 1817 if (pages_addr) { 1818 uint64_t *pte; 1819 unsigned i; 1820 1821 /* Put the PTEs at the end of the IB. */ 1822 i = ndw - nptes * 2; 1823 pte= (uint64_t *)&(job->ibs->ptr[i]); 1824 params.src = job->ibs->gpu_addr + i * 4; 1825 1826 for (i = 0; i < nptes; ++i) { 1827 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1828 AMDGPU_GPU_PAGE_SIZE); 1829 pte[i] |= flags; 1830 } 1831 addr = 0; 1832 } 1833 1834 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1835 if (r) 1836 goto error_free; 1837 1838 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1839 owner, false); 1840 if (r) 1841 goto error_free; 1842 1843 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1844 if (r) 1845 goto error_free; 1846 1847 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1848 if (r) 1849 goto error_free; 1850 1851 amdgpu_ring_pad_ib(ring, params.ib); 1852 WARN_ON(params.ib->length_dw > ndw); 1853 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1854 if (r) 1855 goto error_free; 1856 1857 amdgpu_bo_fence(vm->root.base.bo, f, true); 1858 dma_fence_put(*fence); 1859 *fence = f; 1860 return 0; 1861 1862 error_free: 1863 amdgpu_job_free(job); 1864 return r; 1865 } 1866 1867 /** 1868 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1869 * 1870 * @adev: amdgpu_device pointer 1871 * @exclusive: fence we need to sync to 1872 * @pages_addr: DMA addresses to use for mapping 1873 * @vm: requested vm 1874 * @mapping: mapped range and flags to use for the update 1875 * @flags: HW flags for the mapping 1876 * @nodes: array of drm_mm_nodes with the MC addresses 1877 * @fence: optional resulting fence 1878 * 1879 * Split the mapping into smaller chunks so that each update fits 1880 * into a SDMA IB. 1881 * 1882 * Returns: 1883 * 0 for success, -EINVAL for failure. 1884 */ 1885 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1886 struct dma_fence *exclusive, 1887 dma_addr_t *pages_addr, 1888 struct amdgpu_vm *vm, 1889 struct amdgpu_bo_va_mapping *mapping, 1890 uint64_t flags, 1891 struct drm_mm_node *nodes, 1892 struct dma_fence **fence) 1893 { 1894 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1895 uint64_t pfn, start = mapping->start; 1896 int r; 1897 1898 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1899 * but in case of something, we filter the flags in first place 1900 */ 1901 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1902 flags &= ~AMDGPU_PTE_READABLE; 1903 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1904 flags &= ~AMDGPU_PTE_WRITEABLE; 1905 1906 flags &= ~AMDGPU_PTE_EXECUTABLE; 1907 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1908 1909 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1910 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1911 1912 if ((mapping->flags & AMDGPU_PTE_PRT) && 1913 (adev->asic_type >= CHIP_VEGA10)) { 1914 flags |= AMDGPU_PTE_PRT; 1915 flags &= ~AMDGPU_PTE_VALID; 1916 } 1917 1918 trace_amdgpu_vm_bo_update(mapping); 1919 1920 pfn = mapping->offset >> PAGE_SHIFT; 1921 if (nodes) { 1922 while (pfn >= nodes->size) { 1923 pfn -= nodes->size; 1924 ++nodes; 1925 } 1926 } 1927 1928 do { 1929 dma_addr_t *dma_addr = NULL; 1930 uint64_t max_entries; 1931 uint64_t addr, last; 1932 1933 if (nodes) { 1934 addr = nodes->start << PAGE_SHIFT; 1935 max_entries = (nodes->size - pfn) * 1936 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1937 } else { 1938 addr = 0; 1939 max_entries = S64_MAX; 1940 } 1941 1942 if (pages_addr) { 1943 uint64_t count; 1944 1945 max_entries = min(max_entries, 16ull * 1024ull); 1946 for (count = 1; 1947 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1948 ++count) { 1949 uint64_t idx = pfn + count; 1950 1951 if (pages_addr[idx] != 1952 (pages_addr[idx - 1] + PAGE_SIZE)) 1953 break; 1954 } 1955 1956 if (count < min_linear_pages) { 1957 addr = pfn << PAGE_SHIFT; 1958 dma_addr = pages_addr; 1959 } else { 1960 addr = pages_addr[pfn]; 1961 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1962 } 1963 1964 } else if (flags & AMDGPU_PTE_VALID) { 1965 addr += adev->vm_manager.vram_base_offset; 1966 addr += pfn << PAGE_SHIFT; 1967 } 1968 1969 last = min((uint64_t)mapping->last, start + max_entries - 1); 1970 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1971 start, last, flags, addr, 1972 fence); 1973 if (r) 1974 return r; 1975 1976 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1977 if (nodes && nodes->size == pfn) { 1978 pfn = 0; 1979 ++nodes; 1980 } 1981 start = last + 1; 1982 1983 } while (unlikely(start != mapping->last + 1)); 1984 1985 return 0; 1986 } 1987 1988 /** 1989 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1990 * 1991 * @adev: amdgpu_device pointer 1992 * @bo_va: requested BO and VM object 1993 * @clear: if true clear the entries 1994 * 1995 * Fill in the page table entries for @bo_va. 1996 * 1997 * Returns: 1998 * 0 for success, -EINVAL for failure. 1999 */ 2000 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 2001 struct amdgpu_bo_va *bo_va, 2002 bool clear) 2003 { 2004 struct amdgpu_bo *bo = bo_va->base.bo; 2005 struct amdgpu_vm *vm = bo_va->base.vm; 2006 struct amdgpu_bo_va_mapping *mapping; 2007 dma_addr_t *pages_addr = NULL; 2008 struct ttm_mem_reg *mem; 2009 struct drm_mm_node *nodes; 2010 struct dma_fence *exclusive, **last_update; 2011 uint64_t flags; 2012 int r; 2013 2014 if (clear || !bo) { 2015 mem = NULL; 2016 nodes = NULL; 2017 exclusive = NULL; 2018 } else { 2019 struct ttm_dma_tt *ttm; 2020 2021 mem = &bo->tbo.mem; 2022 nodes = mem->mm_node; 2023 if (mem->mem_type == TTM_PL_TT) { 2024 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 2025 pages_addr = ttm->dma_address; 2026 } 2027 exclusive = reservation_object_get_excl(bo->tbo.resv); 2028 } 2029 2030 if (bo) 2031 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 2032 else 2033 flags = 0x0; 2034 2035 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 2036 last_update = &vm->last_update; 2037 else 2038 last_update = &bo_va->last_pt_update; 2039 2040 if (!clear && bo_va->base.moved) { 2041 bo_va->base.moved = false; 2042 list_splice_init(&bo_va->valids, &bo_va->invalids); 2043 2044 } else if (bo_va->cleared != clear) { 2045 list_splice_init(&bo_va->valids, &bo_va->invalids); 2046 } 2047 2048 list_for_each_entry(mapping, &bo_va->invalids, list) { 2049 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 2050 mapping, flags, nodes, 2051 last_update); 2052 if (r) 2053 return r; 2054 } 2055 2056 if (vm->use_cpu_for_update) { 2057 /* Flush HDP */ 2058 mb(); 2059 amdgpu_asic_flush_hdp(adev, NULL); 2060 } 2061 2062 /* If the BO is not in its preferred location add it back to 2063 * the evicted list so that it gets validated again on the 2064 * next command submission. 2065 */ 2066 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2067 uint32_t mem_type = bo->tbo.mem.mem_type; 2068 2069 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 2070 amdgpu_vm_bo_evicted(&bo_va->base); 2071 else 2072 amdgpu_vm_bo_idle(&bo_va->base); 2073 } else { 2074 amdgpu_vm_bo_done(&bo_va->base); 2075 } 2076 2077 list_splice_init(&bo_va->invalids, &bo_va->valids); 2078 bo_va->cleared = clear; 2079 2080 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2081 list_for_each_entry(mapping, &bo_va->valids, list) 2082 trace_amdgpu_vm_bo_mapping(mapping); 2083 } 2084 2085 return 0; 2086 } 2087 2088 /** 2089 * amdgpu_vm_update_prt_state - update the global PRT state 2090 * 2091 * @adev: amdgpu_device pointer 2092 */ 2093 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2094 { 2095 unsigned long flags; 2096 bool enable; 2097 2098 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2099 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2100 adev->gmc.gmc_funcs->set_prt(adev, enable); 2101 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2102 } 2103 2104 /** 2105 * amdgpu_vm_prt_get - add a PRT user 2106 * 2107 * @adev: amdgpu_device pointer 2108 */ 2109 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2110 { 2111 if (!adev->gmc.gmc_funcs->set_prt) 2112 return; 2113 2114 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2115 amdgpu_vm_update_prt_state(adev); 2116 } 2117 2118 /** 2119 * amdgpu_vm_prt_put - drop a PRT user 2120 * 2121 * @adev: amdgpu_device pointer 2122 */ 2123 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2124 { 2125 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2126 amdgpu_vm_update_prt_state(adev); 2127 } 2128 2129 /** 2130 * amdgpu_vm_prt_cb - callback for updating the PRT status 2131 * 2132 * @fence: fence for the callback 2133 * @_cb: the callback function 2134 */ 2135 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2136 { 2137 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2138 2139 amdgpu_vm_prt_put(cb->adev); 2140 kfree(cb); 2141 } 2142 2143 /** 2144 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2145 * 2146 * @adev: amdgpu_device pointer 2147 * @fence: fence for the callback 2148 */ 2149 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2150 struct dma_fence *fence) 2151 { 2152 struct amdgpu_prt_cb *cb; 2153 2154 if (!adev->gmc.gmc_funcs->set_prt) 2155 return; 2156 2157 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2158 if (!cb) { 2159 /* Last resort when we are OOM */ 2160 if (fence) 2161 dma_fence_wait(fence, false); 2162 2163 amdgpu_vm_prt_put(adev); 2164 } else { 2165 cb->adev = adev; 2166 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2167 amdgpu_vm_prt_cb)) 2168 amdgpu_vm_prt_cb(fence, &cb->cb); 2169 } 2170 } 2171 2172 /** 2173 * amdgpu_vm_free_mapping - free a mapping 2174 * 2175 * @adev: amdgpu_device pointer 2176 * @vm: requested vm 2177 * @mapping: mapping to be freed 2178 * @fence: fence of the unmap operation 2179 * 2180 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2181 */ 2182 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2183 struct amdgpu_vm *vm, 2184 struct amdgpu_bo_va_mapping *mapping, 2185 struct dma_fence *fence) 2186 { 2187 if (mapping->flags & AMDGPU_PTE_PRT) 2188 amdgpu_vm_add_prt_cb(adev, fence); 2189 kfree(mapping); 2190 } 2191 2192 /** 2193 * amdgpu_vm_prt_fini - finish all prt mappings 2194 * 2195 * @adev: amdgpu_device pointer 2196 * @vm: requested vm 2197 * 2198 * Register a cleanup callback to disable PRT support after VM dies. 2199 */ 2200 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2201 { 2202 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 2203 struct dma_fence *excl, **shared; 2204 unsigned i, shared_count; 2205 int r; 2206 2207 r = reservation_object_get_fences_rcu(resv, &excl, 2208 &shared_count, &shared); 2209 if (r) { 2210 /* Not enough memory to grab the fence list, as last resort 2211 * block for all the fences to complete. 2212 */ 2213 reservation_object_wait_timeout_rcu(resv, true, false, 2214 MAX_SCHEDULE_TIMEOUT); 2215 return; 2216 } 2217 2218 /* Add a callback for each fence in the reservation object */ 2219 amdgpu_vm_prt_get(adev); 2220 amdgpu_vm_add_prt_cb(adev, excl); 2221 2222 for (i = 0; i < shared_count; ++i) { 2223 amdgpu_vm_prt_get(adev); 2224 amdgpu_vm_add_prt_cb(adev, shared[i]); 2225 } 2226 2227 kfree(shared); 2228 } 2229 2230 /** 2231 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2232 * 2233 * @adev: amdgpu_device pointer 2234 * @vm: requested vm 2235 * @fence: optional resulting fence (unchanged if no work needed to be done 2236 * or if an error occurred) 2237 * 2238 * Make sure all freed BOs are cleared in the PT. 2239 * PTs have to be reserved and mutex must be locked! 2240 * 2241 * Returns: 2242 * 0 for success. 2243 * 2244 */ 2245 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2246 struct amdgpu_vm *vm, 2247 struct dma_fence **fence) 2248 { 2249 struct amdgpu_bo_va_mapping *mapping; 2250 uint64_t init_pte_value = 0; 2251 struct dma_fence *f = NULL; 2252 int r; 2253 2254 while (!list_empty(&vm->freed)) { 2255 mapping = list_first_entry(&vm->freed, 2256 struct amdgpu_bo_va_mapping, list); 2257 list_del(&mapping->list); 2258 2259 if (vm->pte_support_ats && 2260 mapping->start < AMDGPU_GMC_HOLE_START) 2261 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2262 2263 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2264 mapping->start, mapping->last, 2265 init_pte_value, 0, &f); 2266 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2267 if (r) { 2268 dma_fence_put(f); 2269 return r; 2270 } 2271 } 2272 2273 if (fence && f) { 2274 dma_fence_put(*fence); 2275 *fence = f; 2276 } else { 2277 dma_fence_put(f); 2278 } 2279 2280 return 0; 2281 2282 } 2283 2284 /** 2285 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2286 * 2287 * @adev: amdgpu_device pointer 2288 * @vm: requested vm 2289 * 2290 * Make sure all BOs which are moved are updated in the PTs. 2291 * 2292 * Returns: 2293 * 0 for success. 2294 * 2295 * PTs have to be reserved! 2296 */ 2297 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2298 struct amdgpu_vm *vm) 2299 { 2300 struct amdgpu_bo_va *bo_va, *tmp; 2301 struct reservation_object *resv; 2302 bool clear; 2303 int r; 2304 2305 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2306 /* Per VM BOs never need to bo cleared in the page tables */ 2307 r = amdgpu_vm_bo_update(adev, bo_va, false); 2308 if (r) 2309 return r; 2310 } 2311 2312 spin_lock(&vm->invalidated_lock); 2313 while (!list_empty(&vm->invalidated)) { 2314 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2315 base.vm_status); 2316 resv = bo_va->base.bo->tbo.resv; 2317 spin_unlock(&vm->invalidated_lock); 2318 2319 /* Try to reserve the BO to avoid clearing its ptes */ 2320 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2321 clear = false; 2322 /* Somebody else is using the BO right now */ 2323 else 2324 clear = true; 2325 2326 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2327 if (r) 2328 return r; 2329 2330 if (!clear) 2331 reservation_object_unlock(resv); 2332 spin_lock(&vm->invalidated_lock); 2333 } 2334 spin_unlock(&vm->invalidated_lock); 2335 2336 return 0; 2337 } 2338 2339 /** 2340 * amdgpu_vm_bo_add - add a bo to a specific vm 2341 * 2342 * @adev: amdgpu_device pointer 2343 * @vm: requested vm 2344 * @bo: amdgpu buffer object 2345 * 2346 * Add @bo into the requested vm. 2347 * Add @bo to the list of bos associated with the vm 2348 * 2349 * Returns: 2350 * Newly added bo_va or NULL for failure 2351 * 2352 * Object has to be reserved! 2353 */ 2354 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2355 struct amdgpu_vm *vm, 2356 struct amdgpu_bo *bo) 2357 { 2358 struct amdgpu_bo_va *bo_va; 2359 2360 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2361 if (bo_va == NULL) { 2362 return NULL; 2363 } 2364 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2365 2366 bo_va->ref_count = 1; 2367 INIT_LIST_HEAD(&bo_va->valids); 2368 INIT_LIST_HEAD(&bo_va->invalids); 2369 2370 return bo_va; 2371 } 2372 2373 2374 /** 2375 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2376 * 2377 * @adev: amdgpu_device pointer 2378 * @bo_va: bo_va to store the address 2379 * @mapping: the mapping to insert 2380 * 2381 * Insert a new mapping into all structures. 2382 */ 2383 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2384 struct amdgpu_bo_va *bo_va, 2385 struct amdgpu_bo_va_mapping *mapping) 2386 { 2387 struct amdgpu_vm *vm = bo_va->base.vm; 2388 struct amdgpu_bo *bo = bo_va->base.bo; 2389 2390 mapping->bo_va = bo_va; 2391 list_add(&mapping->list, &bo_va->invalids); 2392 amdgpu_vm_it_insert(mapping, &vm->va); 2393 2394 if (mapping->flags & AMDGPU_PTE_PRT) 2395 amdgpu_vm_prt_get(adev); 2396 2397 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2398 !bo_va->base.moved) { 2399 list_move(&bo_va->base.vm_status, &vm->moved); 2400 } 2401 trace_amdgpu_vm_bo_map(bo_va, mapping); 2402 } 2403 2404 /** 2405 * amdgpu_vm_bo_map - map bo inside a vm 2406 * 2407 * @adev: amdgpu_device pointer 2408 * @bo_va: bo_va to store the address 2409 * @saddr: where to map the BO 2410 * @offset: requested offset in the BO 2411 * @size: BO size in bytes 2412 * @flags: attributes of pages (read/write/valid/etc.) 2413 * 2414 * Add a mapping of the BO at the specefied addr into the VM. 2415 * 2416 * Returns: 2417 * 0 for success, error for failure. 2418 * 2419 * Object has to be reserved and unreserved outside! 2420 */ 2421 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2422 struct amdgpu_bo_va *bo_va, 2423 uint64_t saddr, uint64_t offset, 2424 uint64_t size, uint64_t flags) 2425 { 2426 struct amdgpu_bo_va_mapping *mapping, *tmp; 2427 struct amdgpu_bo *bo = bo_va->base.bo; 2428 struct amdgpu_vm *vm = bo_va->base.vm; 2429 uint64_t eaddr; 2430 2431 /* validate the parameters */ 2432 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2433 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2434 return -EINVAL; 2435 2436 /* make sure object fit at this offset */ 2437 eaddr = saddr + size - 1; 2438 if (saddr >= eaddr || 2439 (bo && offset + size > amdgpu_bo_size(bo))) 2440 return -EINVAL; 2441 2442 saddr /= AMDGPU_GPU_PAGE_SIZE; 2443 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2444 2445 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2446 if (tmp) { 2447 /* bo and tmp overlap, invalid addr */ 2448 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2449 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2450 tmp->start, tmp->last + 1); 2451 return -EINVAL; 2452 } 2453 2454 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2455 if (!mapping) 2456 return -ENOMEM; 2457 2458 mapping->start = saddr; 2459 mapping->last = eaddr; 2460 mapping->offset = offset; 2461 mapping->flags = flags; 2462 2463 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2464 2465 return 0; 2466 } 2467 2468 /** 2469 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2470 * 2471 * @adev: amdgpu_device pointer 2472 * @bo_va: bo_va to store the address 2473 * @saddr: where to map the BO 2474 * @offset: requested offset in the BO 2475 * @size: BO size in bytes 2476 * @flags: attributes of pages (read/write/valid/etc.) 2477 * 2478 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2479 * mappings as we do so. 2480 * 2481 * Returns: 2482 * 0 for success, error for failure. 2483 * 2484 * Object has to be reserved and unreserved outside! 2485 */ 2486 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2487 struct amdgpu_bo_va *bo_va, 2488 uint64_t saddr, uint64_t offset, 2489 uint64_t size, uint64_t flags) 2490 { 2491 struct amdgpu_bo_va_mapping *mapping; 2492 struct amdgpu_bo *bo = bo_va->base.bo; 2493 uint64_t eaddr; 2494 int r; 2495 2496 /* validate the parameters */ 2497 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2498 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2499 return -EINVAL; 2500 2501 /* make sure object fit at this offset */ 2502 eaddr = saddr + size - 1; 2503 if (saddr >= eaddr || 2504 (bo && offset + size > amdgpu_bo_size(bo))) 2505 return -EINVAL; 2506 2507 /* Allocate all the needed memory */ 2508 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2509 if (!mapping) 2510 return -ENOMEM; 2511 2512 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2513 if (r) { 2514 kfree(mapping); 2515 return r; 2516 } 2517 2518 saddr /= AMDGPU_GPU_PAGE_SIZE; 2519 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2520 2521 mapping->start = saddr; 2522 mapping->last = eaddr; 2523 mapping->offset = offset; 2524 mapping->flags = flags; 2525 2526 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2527 2528 return 0; 2529 } 2530 2531 /** 2532 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2533 * 2534 * @adev: amdgpu_device pointer 2535 * @bo_va: bo_va to remove the address from 2536 * @saddr: where to the BO is mapped 2537 * 2538 * Remove a mapping of the BO at the specefied addr from the VM. 2539 * 2540 * Returns: 2541 * 0 for success, error for failure. 2542 * 2543 * Object has to be reserved and unreserved outside! 2544 */ 2545 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2546 struct amdgpu_bo_va *bo_va, 2547 uint64_t saddr) 2548 { 2549 struct amdgpu_bo_va_mapping *mapping; 2550 struct amdgpu_vm *vm = bo_va->base.vm; 2551 bool valid = true; 2552 2553 saddr /= AMDGPU_GPU_PAGE_SIZE; 2554 2555 list_for_each_entry(mapping, &bo_va->valids, list) { 2556 if (mapping->start == saddr) 2557 break; 2558 } 2559 2560 if (&mapping->list == &bo_va->valids) { 2561 valid = false; 2562 2563 list_for_each_entry(mapping, &bo_va->invalids, list) { 2564 if (mapping->start == saddr) 2565 break; 2566 } 2567 2568 if (&mapping->list == &bo_va->invalids) 2569 return -ENOENT; 2570 } 2571 2572 list_del(&mapping->list); 2573 amdgpu_vm_it_remove(mapping, &vm->va); 2574 mapping->bo_va = NULL; 2575 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2576 2577 if (valid) 2578 list_add(&mapping->list, &vm->freed); 2579 else 2580 amdgpu_vm_free_mapping(adev, vm, mapping, 2581 bo_va->last_pt_update); 2582 2583 return 0; 2584 } 2585 2586 /** 2587 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2588 * 2589 * @adev: amdgpu_device pointer 2590 * @vm: VM structure to use 2591 * @saddr: start of the range 2592 * @size: size of the range 2593 * 2594 * Remove all mappings in a range, split them as appropriate. 2595 * 2596 * Returns: 2597 * 0 for success, error for failure. 2598 */ 2599 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2600 struct amdgpu_vm *vm, 2601 uint64_t saddr, uint64_t size) 2602 { 2603 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2604 LIST_HEAD(removed); 2605 uint64_t eaddr; 2606 2607 eaddr = saddr + size - 1; 2608 saddr /= AMDGPU_GPU_PAGE_SIZE; 2609 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2610 2611 /* Allocate all the needed memory */ 2612 before = kzalloc(sizeof(*before), GFP_KERNEL); 2613 if (!before) 2614 return -ENOMEM; 2615 INIT_LIST_HEAD(&before->list); 2616 2617 after = kzalloc(sizeof(*after), GFP_KERNEL); 2618 if (!after) { 2619 kfree(before); 2620 return -ENOMEM; 2621 } 2622 INIT_LIST_HEAD(&after->list); 2623 2624 /* Now gather all removed mappings */ 2625 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2626 while (tmp) { 2627 /* Remember mapping split at the start */ 2628 if (tmp->start < saddr) { 2629 before->start = tmp->start; 2630 before->last = saddr - 1; 2631 before->offset = tmp->offset; 2632 before->flags = tmp->flags; 2633 before->bo_va = tmp->bo_va; 2634 list_add(&before->list, &tmp->bo_va->invalids); 2635 } 2636 2637 /* Remember mapping split at the end */ 2638 if (tmp->last > eaddr) { 2639 after->start = eaddr + 1; 2640 after->last = tmp->last; 2641 after->offset = tmp->offset; 2642 after->offset += after->start - tmp->start; 2643 after->flags = tmp->flags; 2644 after->bo_va = tmp->bo_va; 2645 list_add(&after->list, &tmp->bo_va->invalids); 2646 } 2647 2648 list_del(&tmp->list); 2649 list_add(&tmp->list, &removed); 2650 2651 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2652 } 2653 2654 /* And free them up */ 2655 list_for_each_entry_safe(tmp, next, &removed, list) { 2656 amdgpu_vm_it_remove(tmp, &vm->va); 2657 list_del(&tmp->list); 2658 2659 if (tmp->start < saddr) 2660 tmp->start = saddr; 2661 if (tmp->last > eaddr) 2662 tmp->last = eaddr; 2663 2664 tmp->bo_va = NULL; 2665 list_add(&tmp->list, &vm->freed); 2666 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2667 } 2668 2669 /* Insert partial mapping before the range */ 2670 if (!list_empty(&before->list)) { 2671 amdgpu_vm_it_insert(before, &vm->va); 2672 if (before->flags & AMDGPU_PTE_PRT) 2673 amdgpu_vm_prt_get(adev); 2674 } else { 2675 kfree(before); 2676 } 2677 2678 /* Insert partial mapping after the range */ 2679 if (!list_empty(&after->list)) { 2680 amdgpu_vm_it_insert(after, &vm->va); 2681 if (after->flags & AMDGPU_PTE_PRT) 2682 amdgpu_vm_prt_get(adev); 2683 } else { 2684 kfree(after); 2685 } 2686 2687 return 0; 2688 } 2689 2690 /** 2691 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2692 * 2693 * @vm: the requested VM 2694 * @addr: the address 2695 * 2696 * Find a mapping by it's address. 2697 * 2698 * Returns: 2699 * The amdgpu_bo_va_mapping matching for addr or NULL 2700 * 2701 */ 2702 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2703 uint64_t addr) 2704 { 2705 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2706 } 2707 2708 /** 2709 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2710 * 2711 * @vm: the requested vm 2712 * @ticket: CS ticket 2713 * 2714 * Trace all mappings of BOs reserved during a command submission. 2715 */ 2716 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2717 { 2718 struct amdgpu_bo_va_mapping *mapping; 2719 2720 if (!trace_amdgpu_vm_bo_cs_enabled()) 2721 return; 2722 2723 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2724 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2725 if (mapping->bo_va && mapping->bo_va->base.bo) { 2726 struct amdgpu_bo *bo; 2727 2728 bo = mapping->bo_va->base.bo; 2729 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2730 continue; 2731 } 2732 2733 trace_amdgpu_vm_bo_cs(mapping); 2734 } 2735 } 2736 2737 /** 2738 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2739 * 2740 * @adev: amdgpu_device pointer 2741 * @bo_va: requested bo_va 2742 * 2743 * Remove @bo_va->bo from the requested vm. 2744 * 2745 * Object have to be reserved! 2746 */ 2747 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2748 struct amdgpu_bo_va *bo_va) 2749 { 2750 struct amdgpu_bo_va_mapping *mapping, *next; 2751 struct amdgpu_bo *bo = bo_va->base.bo; 2752 struct amdgpu_vm *vm = bo_va->base.vm; 2753 struct amdgpu_vm_bo_base **base; 2754 2755 if (bo) { 2756 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2757 vm->bulk_moveable = false; 2758 2759 for (base = &bo_va->base.bo->vm_bo; *base; 2760 base = &(*base)->next) { 2761 if (*base != &bo_va->base) 2762 continue; 2763 2764 *base = bo_va->base.next; 2765 break; 2766 } 2767 } 2768 2769 spin_lock(&vm->invalidated_lock); 2770 list_del(&bo_va->base.vm_status); 2771 spin_unlock(&vm->invalidated_lock); 2772 2773 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2774 list_del(&mapping->list); 2775 amdgpu_vm_it_remove(mapping, &vm->va); 2776 mapping->bo_va = NULL; 2777 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2778 list_add(&mapping->list, &vm->freed); 2779 } 2780 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2781 list_del(&mapping->list); 2782 amdgpu_vm_it_remove(mapping, &vm->va); 2783 amdgpu_vm_free_mapping(adev, vm, mapping, 2784 bo_va->last_pt_update); 2785 } 2786 2787 dma_fence_put(bo_va->last_pt_update); 2788 kfree(bo_va); 2789 } 2790 2791 /** 2792 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2793 * 2794 * @adev: amdgpu_device pointer 2795 * @bo: amdgpu buffer object 2796 * @evicted: is the BO evicted 2797 * 2798 * Mark @bo as invalid. 2799 */ 2800 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2801 struct amdgpu_bo *bo, bool evicted) 2802 { 2803 struct amdgpu_vm_bo_base *bo_base; 2804 2805 /* shadow bo doesn't have bo base, its validation needs its parent */ 2806 if (bo->parent && bo->parent->shadow == bo) 2807 bo = bo->parent; 2808 2809 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2810 struct amdgpu_vm *vm = bo_base->vm; 2811 2812 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2813 amdgpu_vm_bo_evicted(bo_base); 2814 continue; 2815 } 2816 2817 if (bo_base->moved) 2818 continue; 2819 bo_base->moved = true; 2820 2821 if (bo->tbo.type == ttm_bo_type_kernel) 2822 amdgpu_vm_bo_relocated(bo_base); 2823 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2824 amdgpu_vm_bo_moved(bo_base); 2825 else 2826 amdgpu_vm_bo_invalidated(bo_base); 2827 } 2828 } 2829 2830 /** 2831 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2832 * 2833 * @vm_size: VM size 2834 * 2835 * Returns: 2836 * VM page table as power of two 2837 */ 2838 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2839 { 2840 /* Total bits covered by PD + PTs */ 2841 unsigned bits = ilog2(vm_size) + 18; 2842 2843 /* Make sure the PD is 4K in size up to 8GB address space. 2844 Above that split equal between PD and PTs */ 2845 if (vm_size <= 8) 2846 return (bits - 9); 2847 else 2848 return ((bits + 3) / 2); 2849 } 2850 2851 /** 2852 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2853 * 2854 * @adev: amdgpu_device pointer 2855 * @min_vm_size: the minimum vm size in GB if it's set auto 2856 * @fragment_size_default: Default PTE fragment size 2857 * @max_level: max VMPT level 2858 * @max_bits: max address space size in bits 2859 * 2860 */ 2861 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2862 uint32_t fragment_size_default, unsigned max_level, 2863 unsigned max_bits) 2864 { 2865 unsigned int max_size = 1 << (max_bits - 30); 2866 unsigned int vm_size; 2867 uint64_t tmp; 2868 2869 /* adjust vm size first */ 2870 if (amdgpu_vm_size != -1) { 2871 vm_size = amdgpu_vm_size; 2872 if (vm_size > max_size) { 2873 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2874 amdgpu_vm_size, max_size); 2875 vm_size = max_size; 2876 } 2877 } else { 2878 struct sysinfo si; 2879 unsigned int phys_ram_gb; 2880 2881 /* Optimal VM size depends on the amount of physical 2882 * RAM available. Underlying requirements and 2883 * assumptions: 2884 * 2885 * - Need to map system memory and VRAM from all GPUs 2886 * - VRAM from other GPUs not known here 2887 * - Assume VRAM <= system memory 2888 * - On GFX8 and older, VM space can be segmented for 2889 * different MTYPEs 2890 * - Need to allow room for fragmentation, guard pages etc. 2891 * 2892 * This adds up to a rough guess of system memory x3. 2893 * Round up to power of two to maximize the available 2894 * VM size with the given page table size. 2895 */ 2896 si_meminfo(&si); 2897 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2898 (1 << 30) - 1) >> 30; 2899 vm_size = roundup_pow_of_two( 2900 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2901 } 2902 2903 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2904 2905 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2906 if (amdgpu_vm_block_size != -1) 2907 tmp >>= amdgpu_vm_block_size - 9; 2908 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2909 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2910 switch (adev->vm_manager.num_level) { 2911 case 3: 2912 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2913 break; 2914 case 2: 2915 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2916 break; 2917 case 1: 2918 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2919 break; 2920 default: 2921 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2922 } 2923 /* block size depends on vm size and hw setup*/ 2924 if (amdgpu_vm_block_size != -1) 2925 adev->vm_manager.block_size = 2926 min((unsigned)amdgpu_vm_block_size, max_bits 2927 - AMDGPU_GPU_PAGE_SHIFT 2928 - 9 * adev->vm_manager.num_level); 2929 else if (adev->vm_manager.num_level > 1) 2930 adev->vm_manager.block_size = 9; 2931 else 2932 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2933 2934 if (amdgpu_vm_fragment_size == -1) 2935 adev->vm_manager.fragment_size = fragment_size_default; 2936 else 2937 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2938 2939 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2940 vm_size, adev->vm_manager.num_level + 1, 2941 adev->vm_manager.block_size, 2942 adev->vm_manager.fragment_size); 2943 } 2944 2945 static struct amdgpu_retryfault_hashtable *init_fault_hash(void) 2946 { 2947 struct amdgpu_retryfault_hashtable *fault_hash; 2948 2949 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL); 2950 if (!fault_hash) 2951 return fault_hash; 2952 2953 INIT_CHASH_TABLE(fault_hash->hash, 2954 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0); 2955 spin_lock_init(&fault_hash->lock); 2956 fault_hash->count = 0; 2957 2958 return fault_hash; 2959 } 2960 2961 /** 2962 * amdgpu_vm_init - initialize a vm instance 2963 * 2964 * @adev: amdgpu_device pointer 2965 * @vm: requested vm 2966 * @vm_context: Indicates if it GFX or Compute context 2967 * @pasid: Process address space identifier 2968 * 2969 * Init @vm fields. 2970 * 2971 * Returns: 2972 * 0 for success, error for failure. 2973 */ 2974 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2975 int vm_context, unsigned int pasid) 2976 { 2977 struct amdgpu_bo_param bp; 2978 struct amdgpu_bo *root; 2979 int r, i; 2980 2981 vm->va = RB_ROOT_CACHED; 2982 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2983 vm->reserved_vmid[i] = NULL; 2984 INIT_LIST_HEAD(&vm->evicted); 2985 INIT_LIST_HEAD(&vm->relocated); 2986 INIT_LIST_HEAD(&vm->moved); 2987 INIT_LIST_HEAD(&vm->idle); 2988 INIT_LIST_HEAD(&vm->invalidated); 2989 spin_lock_init(&vm->invalidated_lock); 2990 INIT_LIST_HEAD(&vm->freed); 2991 2992 /* create scheduler entity for page table updates */ 2993 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2994 adev->vm_manager.vm_pte_num_rqs, NULL); 2995 if (r) 2996 return r; 2997 2998 vm->pte_support_ats = false; 2999 3000 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 3001 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3002 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3003 3004 if (adev->asic_type == CHIP_RAVEN) 3005 vm->pte_support_ats = true; 3006 } else { 3007 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3008 AMDGPU_VM_USE_CPU_FOR_GFX); 3009 } 3010 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3011 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3012 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3013 "CPU update of VM recommended only for large BAR system\n"); 3014 vm->last_update = NULL; 3015 3016 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 3017 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 3018 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 3019 r = amdgpu_bo_create(adev, &bp, &root); 3020 if (r) 3021 goto error_free_sched_entity; 3022 3023 r = amdgpu_bo_reserve(root, true); 3024 if (r) 3025 goto error_free_root; 3026 3027 r = amdgpu_vm_clear_bo(adev, vm, root, 3028 adev->vm_manager.root_level, 3029 vm->pte_support_ats); 3030 if (r) 3031 goto error_unreserve; 3032 3033 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 3034 amdgpu_bo_unreserve(vm->root.base.bo); 3035 3036 if (pasid) { 3037 unsigned long flags; 3038 3039 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3040 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3041 GFP_ATOMIC); 3042 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3043 if (r < 0) 3044 goto error_free_root; 3045 3046 vm->pasid = pasid; 3047 } 3048 3049 vm->fault_hash = init_fault_hash(); 3050 if (!vm->fault_hash) { 3051 r = -ENOMEM; 3052 goto error_free_root; 3053 } 3054 3055 INIT_KFIFO(vm->faults); 3056 vm->fault_credit = 16; 3057 3058 return 0; 3059 3060 error_unreserve: 3061 amdgpu_bo_unreserve(vm->root.base.bo); 3062 3063 error_free_root: 3064 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3065 amdgpu_bo_unref(&vm->root.base.bo); 3066 vm->root.base.bo = NULL; 3067 3068 error_free_sched_entity: 3069 drm_sched_entity_destroy(&vm->entity); 3070 3071 return r; 3072 } 3073 3074 /** 3075 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3076 * 3077 * @adev: amdgpu_device pointer 3078 * @vm: requested vm 3079 * 3080 * This only works on GFX VMs that don't have any BOs added and no 3081 * page tables allocated yet. 3082 * 3083 * Changes the following VM parameters: 3084 * - use_cpu_for_update 3085 * - pte_supports_ats 3086 * - pasid (old PASID is released, because compute manages its own PASIDs) 3087 * 3088 * Reinitializes the page directory to reflect the changed ATS 3089 * setting. 3090 * 3091 * Returns: 3092 * 0 for success, -errno for errors. 3093 */ 3094 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 3095 { 3096 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3097 int r; 3098 3099 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3100 if (r) 3101 return r; 3102 3103 /* Sanity checks */ 3104 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 3105 r = -EINVAL; 3106 goto unreserve_bo; 3107 } 3108 3109 if (pasid) { 3110 unsigned long flags; 3111 3112 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3113 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3114 GFP_ATOMIC); 3115 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3116 3117 if (r == -ENOSPC) 3118 goto unreserve_bo; 3119 r = 0; 3120 } 3121 3122 /* Check if PD needs to be reinitialized and do it before 3123 * changing any other state, in case it fails. 3124 */ 3125 if (pte_support_ats != vm->pte_support_ats) { 3126 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 3127 adev->vm_manager.root_level, 3128 pte_support_ats); 3129 if (r) 3130 goto free_idr; 3131 } 3132 3133 /* Update VM state */ 3134 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3135 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3136 vm->pte_support_ats = pte_support_ats; 3137 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3138 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3139 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3140 "CPU update of VM recommended only for large BAR system\n"); 3141 3142 if (vm->pasid) { 3143 unsigned long flags; 3144 3145 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3146 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3147 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3148 3149 /* Free the original amdgpu allocated pasid 3150 * Will be replaced with kfd allocated pasid 3151 */ 3152 amdgpu_pasid_free(vm->pasid); 3153 vm->pasid = 0; 3154 } 3155 3156 /* Free the shadow bo for compute VM */ 3157 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3158 3159 if (pasid) 3160 vm->pasid = pasid; 3161 3162 goto unreserve_bo; 3163 3164 free_idr: 3165 if (pasid) { 3166 unsigned long flags; 3167 3168 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3169 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3170 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3171 } 3172 unreserve_bo: 3173 amdgpu_bo_unreserve(vm->root.base.bo); 3174 return r; 3175 } 3176 3177 /** 3178 * amdgpu_vm_release_compute - release a compute vm 3179 * @adev: amdgpu_device pointer 3180 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3181 * 3182 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3183 * pasid from vm. Compute should stop use of vm after this call. 3184 */ 3185 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3186 { 3187 if (vm->pasid) { 3188 unsigned long flags; 3189 3190 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3191 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3192 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3193 } 3194 vm->pasid = 0; 3195 } 3196 3197 /** 3198 * amdgpu_vm_fini - tear down a vm instance 3199 * 3200 * @adev: amdgpu_device pointer 3201 * @vm: requested vm 3202 * 3203 * Tear down @vm. 3204 * Unbind the VM and remove all bos from the vm bo list 3205 */ 3206 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3207 { 3208 struct amdgpu_bo_va_mapping *mapping, *tmp; 3209 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3210 struct amdgpu_bo *root; 3211 u64 fault; 3212 int i, r; 3213 3214 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3215 3216 /* Clear pending page faults from IH when the VM is destroyed */ 3217 while (kfifo_get(&vm->faults, &fault)) 3218 amdgpu_vm_clear_fault(vm->fault_hash, fault); 3219 3220 if (vm->pasid) { 3221 unsigned long flags; 3222 3223 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3224 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3225 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3226 } 3227 3228 kfree(vm->fault_hash); 3229 vm->fault_hash = NULL; 3230 3231 drm_sched_entity_destroy(&vm->entity); 3232 3233 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3234 dev_err(adev->dev, "still active bo inside vm\n"); 3235 } 3236 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3237 &vm->va.rb_root, rb) { 3238 /* Don't remove the mapping here, we don't want to trigger a 3239 * rebalance and the tree is about to be destroyed anyway. 3240 */ 3241 list_del(&mapping->list); 3242 kfree(mapping); 3243 } 3244 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3245 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3246 amdgpu_vm_prt_fini(adev, vm); 3247 prt_fini_needed = false; 3248 } 3249 3250 list_del(&mapping->list); 3251 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3252 } 3253 3254 root = amdgpu_bo_ref(vm->root.base.bo); 3255 r = amdgpu_bo_reserve(root, true); 3256 if (r) { 3257 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 3258 } else { 3259 amdgpu_vm_free_pts(adev, vm); 3260 amdgpu_bo_unreserve(root); 3261 } 3262 amdgpu_bo_unref(&root); 3263 dma_fence_put(vm->last_update); 3264 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3265 amdgpu_vmid_free_reserved(adev, vm, i); 3266 } 3267 3268 /** 3269 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 3270 * 3271 * @adev: amdgpu_device pointer 3272 * @pasid: PASID do identify the VM 3273 * 3274 * This function is expected to be called in interrupt context. 3275 * 3276 * Returns: 3277 * True if there was fault credit, false otherwise 3278 */ 3279 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 3280 unsigned int pasid) 3281 { 3282 struct amdgpu_vm *vm; 3283 3284 spin_lock(&adev->vm_manager.pasid_lock); 3285 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3286 if (!vm) { 3287 /* VM not found, can't track fault credit */ 3288 spin_unlock(&adev->vm_manager.pasid_lock); 3289 return true; 3290 } 3291 3292 /* No lock needed. only accessed by IRQ handler */ 3293 if (!vm->fault_credit) { 3294 /* Too many faults in this VM */ 3295 spin_unlock(&adev->vm_manager.pasid_lock); 3296 return false; 3297 } 3298 3299 vm->fault_credit--; 3300 spin_unlock(&adev->vm_manager.pasid_lock); 3301 return true; 3302 } 3303 3304 /** 3305 * amdgpu_vm_manager_init - init the VM manager 3306 * 3307 * @adev: amdgpu_device pointer 3308 * 3309 * Initialize the VM manager structures 3310 */ 3311 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3312 { 3313 unsigned i; 3314 3315 amdgpu_vmid_mgr_init(adev); 3316 3317 adev->vm_manager.fence_context = 3318 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3319 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3320 adev->vm_manager.seqno[i] = 0; 3321 3322 spin_lock_init(&adev->vm_manager.prt_lock); 3323 atomic_set(&adev->vm_manager.num_prt_users, 0); 3324 3325 /* If not overridden by the user, by default, only in large BAR systems 3326 * Compute VM tables will be updated by CPU 3327 */ 3328 #ifdef CONFIG_X86_64 3329 if (amdgpu_vm_update_mode == -1) { 3330 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3331 adev->vm_manager.vm_update_mode = 3332 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3333 else 3334 adev->vm_manager.vm_update_mode = 0; 3335 } else 3336 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3337 #else 3338 adev->vm_manager.vm_update_mode = 0; 3339 #endif 3340 3341 idr_init(&adev->vm_manager.pasid_idr); 3342 spin_lock_init(&adev->vm_manager.pasid_lock); 3343 } 3344 3345 /** 3346 * amdgpu_vm_manager_fini - cleanup VM manager 3347 * 3348 * @adev: amdgpu_device pointer 3349 * 3350 * Cleanup the VM manager and free resources. 3351 */ 3352 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3353 { 3354 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3355 idr_destroy(&adev->vm_manager.pasid_idr); 3356 3357 amdgpu_vmid_mgr_fini(adev); 3358 } 3359 3360 /** 3361 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3362 * 3363 * @dev: drm device pointer 3364 * @data: drm_amdgpu_vm 3365 * @filp: drm file pointer 3366 * 3367 * Returns: 3368 * 0 for success, -errno for errors. 3369 */ 3370 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3371 { 3372 union drm_amdgpu_vm *args = data; 3373 struct amdgpu_device *adev = dev->dev_private; 3374 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3375 int r; 3376 3377 switch (args->in.op) { 3378 case AMDGPU_VM_OP_RESERVE_VMID: 3379 /* current, we only have requirement to reserve vmid from gfxhub */ 3380 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3381 if (r) 3382 return r; 3383 break; 3384 case AMDGPU_VM_OP_UNRESERVE_VMID: 3385 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3386 break; 3387 default: 3388 return -EINVAL; 3389 } 3390 3391 return 0; 3392 } 3393 3394 /** 3395 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3396 * 3397 * @adev: drm device pointer 3398 * @pasid: PASID identifier for VM 3399 * @task_info: task_info to fill. 3400 */ 3401 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3402 struct amdgpu_task_info *task_info) 3403 { 3404 struct amdgpu_vm *vm; 3405 3406 spin_lock(&adev->vm_manager.pasid_lock); 3407 3408 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3409 if (vm) 3410 *task_info = vm->task_info; 3411 3412 spin_unlock(&adev->vm_manager.pasid_lock); 3413 } 3414 3415 /** 3416 * amdgpu_vm_set_task_info - Sets VMs task info. 3417 * 3418 * @vm: vm for which to set the info 3419 */ 3420 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3421 { 3422 if (!vm->task_info.pid) { 3423 vm->task_info.pid = current->pid; 3424 get_task_comm(vm->task_info.task_name, current); 3425 3426 if (current->group_leader->mm == current->mm) { 3427 vm->task_info.tgid = current->group_leader->pid; 3428 get_task_comm(vm->task_info.process_name, current->group_leader); 3429 } 3430 } 3431 } 3432 3433 /** 3434 * amdgpu_vm_add_fault - Add a page fault record to fault hash table 3435 * 3436 * @fault_hash: fault hash table 3437 * @key: 64-bit encoding of PASID and address 3438 * 3439 * This should be called when a retry page fault interrupt is 3440 * received. If this is a new page fault, it will be added to a hash 3441 * table. The return value indicates whether this is a new fault, or 3442 * a fault that was already known and is already being handled. 3443 * 3444 * If there are too many pending page faults, this will fail. Retry 3445 * interrupts should be ignored in this case until there is enough 3446 * free space. 3447 * 3448 * Returns 0 if the fault was added, 1 if the fault was already known, 3449 * -ENOSPC if there are too many pending faults. 3450 */ 3451 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3452 { 3453 unsigned long flags; 3454 int r = -ENOSPC; 3455 3456 if (WARN_ON_ONCE(!fault_hash)) 3457 /* Should be allocated in amdgpu_vm_init 3458 */ 3459 return r; 3460 3461 spin_lock_irqsave(&fault_hash->lock, flags); 3462 3463 /* Only let the hash table fill up to 50% for best performance */ 3464 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1))) 3465 goto unlock_out; 3466 3467 r = chash_table_copy_in(&fault_hash->hash, key, NULL); 3468 if (!r) 3469 fault_hash->count++; 3470 3471 /* chash_table_copy_in should never fail unless we're losing count */ 3472 WARN_ON_ONCE(r < 0); 3473 3474 unlock_out: 3475 spin_unlock_irqrestore(&fault_hash->lock, flags); 3476 return r; 3477 } 3478 3479 /** 3480 * amdgpu_vm_clear_fault - Remove a page fault record 3481 * 3482 * @fault_hash: fault hash table 3483 * @key: 64-bit encoding of PASID and address 3484 * 3485 * This should be called when a page fault has been handled. Any 3486 * future interrupt with this key will be processed as a new 3487 * page fault. 3488 */ 3489 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3490 { 3491 unsigned long flags; 3492 int r; 3493 3494 if (!fault_hash) 3495 return; 3496 3497 spin_lock_irqsave(&fault_hash->lock, flags); 3498 3499 r = chash_table_remove(&fault_hash->hash, key, NULL); 3500 if (!WARN_ON_ONCE(r < 0)) { 3501 fault_hash->count--; 3502 WARN_ON_ONCE(fault_hash->count < 0); 3503 } 3504 3505 spin_unlock_irqrestore(&fault_hash->lock, flags); 3506 } 3507