xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 063246641d4a9e9de84a2466fbad50112faf88dc)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34 
35 /*
36  * GPUVM
37  * GPUVM is similar to the legacy gart on older asics, however
38  * rather than there being a single global gart table
39  * for the entire GPU, there are multiple VM page tables active
40  * at any given time.  The VM page tables can contain a mix
41  * vram pages and system memory pages and system memory pages
42  * can be mapped as snooped (cached system pages) or unsnooped
43  * (uncached system pages).
44  * Each VM has an ID associated with it and there is a page table
45  * associated with each VMID.  When execting a command buffer,
46  * the kernel tells the the ring what VMID to use for that command
47  * buffer.  VMIDs are allocated dynamically as commands are submitted.
48  * The userspace drivers maintain their own address space and the kernel
49  * sets up their pages tables accordingly when they submit their
50  * command buffers and a VMID is assigned.
51  * Cayman/Trinity support up to 8 active VMs at any given time;
52  * SI supports 16.
53  */
54 
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57 
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 		     START, LAST, static, amdgpu_vm_it)
60 
61 #undef START
62 #undef LAST
63 
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65  * the number of function parameters
66  */
67 struct amdgpu_pte_update_params {
68 	/* amdgpu device we do this update for */
69 	struct amdgpu_device *adev;
70 	/* optional amdgpu_vm we do this update for */
71 	struct amdgpu_vm *vm;
72 	/* address where to copy page table entries from */
73 	uint64_t src;
74 	/* indirect buffer to fill with commands */
75 	struct amdgpu_ib *ib;
76 	/* Function which actually does the update */
77 	void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 		     uint64_t addr, unsigned count, uint32_t incr,
79 		     uint64_t flags);
80 	/* indicate update pt or its shadow */
81 	bool shadow;
82 };
83 
84 /* Helper to disable partial resident texture feature from a fence callback */
85 struct amdgpu_prt_cb {
86 	struct amdgpu_device *adev;
87 	struct dma_fence_cb cb;
88 };
89 
90 /**
91  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
92  *
93  * @adev: amdgpu_device pointer
94  *
95  * Calculate the number of entries in a page directory or page table.
96  */
97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
98 				      unsigned level)
99 {
100 	if (level == 0)
101 		/* For the root directory */
102 		return adev->vm_manager.max_pfn >>
103 			(adev->vm_manager.block_size *
104 			 adev->vm_manager.num_level);
105 	else if (level == adev->vm_manager.num_level)
106 		/* For the page tables on the leaves */
107 		return AMDGPU_VM_PTE_COUNT(adev);
108 	else
109 		/* Everything in between */
110 		return 1 << adev->vm_manager.block_size;
111 }
112 
113 /**
114  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
115  *
116  * @adev: amdgpu_device pointer
117  *
118  * Calculate the size of the BO for a page directory or page table in bytes.
119  */
120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
121 {
122 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
123 }
124 
125 /**
126  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
127  *
128  * @vm: vm providing the BOs
129  * @validated: head of validation list
130  * @entry: entry to add
131  *
132  * Add the page directory to the list of BOs to
133  * validate for command submission.
134  */
135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
136 			 struct list_head *validated,
137 			 struct amdgpu_bo_list_entry *entry)
138 {
139 	entry->robj = vm->root.bo;
140 	entry->priority = 0;
141 	entry->tv.bo = &entry->robj->tbo;
142 	entry->tv.shared = true;
143 	entry->user_pages = NULL;
144 	list_add(&entry->tv.head, validated);
145 }
146 
147 /**
148  * amdgpu_vm_validate_layer - validate a single page table level
149  *
150  * @parent: parent page table level
151  * @validate: callback to do the validation
152  * @param: parameter for the validation callback
153  *
154  * Validate the page table BOs on command submission if neccessary.
155  */
156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
157 				    int (*validate)(void *, struct amdgpu_bo *),
158 				    void *param)
159 {
160 	unsigned i;
161 	int r;
162 
163 	if (!parent->entries)
164 		return 0;
165 
166 	for (i = 0; i <= parent->last_entry_used; ++i) {
167 		struct amdgpu_vm_pt *entry = &parent->entries[i];
168 
169 		if (!entry->bo)
170 			continue;
171 
172 		r = validate(param, entry->bo);
173 		if (r)
174 			return r;
175 
176 		/*
177 		 * Recurse into the sub directory. This is harmless because we
178 		 * have only a maximum of 5 layers.
179 		 */
180 		r = amdgpu_vm_validate_level(entry, validate, param);
181 		if (r)
182 			return r;
183 	}
184 
185 	return r;
186 }
187 
188 /**
189  * amdgpu_vm_validate_pt_bos - validate the page table BOs
190  *
191  * @adev: amdgpu device pointer
192  * @vm: vm providing the BOs
193  * @validate: callback to do the validation
194  * @param: parameter for the validation callback
195  *
196  * Validate the page table BOs on command submission if neccessary.
197  */
198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
199 			      int (*validate)(void *p, struct amdgpu_bo *bo),
200 			      void *param)
201 {
202 	uint64_t num_evictions;
203 
204 	/* We only need to validate the page tables
205 	 * if they aren't already valid.
206 	 */
207 	num_evictions = atomic64_read(&adev->num_evictions);
208 	if (num_evictions == vm->last_eviction_counter)
209 		return 0;
210 
211 	return amdgpu_vm_validate_level(&vm->root, validate, param);
212 }
213 
214 /**
215  * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail
216  *
217  * @adev: amdgpu device instance
218  * @vm: vm providing the BOs
219  *
220  * Move the PT BOs to the tail of the LRU.
221  */
222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent)
223 {
224 	unsigned i;
225 
226 	if (!parent->entries)
227 		return;
228 
229 	for (i = 0; i <= parent->last_entry_used; ++i) {
230 		struct amdgpu_vm_pt *entry = &parent->entries[i];
231 
232 		if (!entry->bo)
233 			continue;
234 
235 		ttm_bo_move_to_lru_tail(&entry->bo->tbo);
236 		amdgpu_vm_move_level_in_lru(entry);
237 	}
238 }
239 
240 /**
241  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
242  *
243  * @adev: amdgpu device instance
244  * @vm: vm providing the BOs
245  *
246  * Move the PT BOs to the tail of the LRU.
247  */
248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
249 				  struct amdgpu_vm *vm)
250 {
251 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
252 
253 	spin_lock(&glob->lru_lock);
254 	amdgpu_vm_move_level_in_lru(&vm->root);
255 	spin_unlock(&glob->lru_lock);
256 }
257 
258  /**
259  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
260  *
261  * @adev: amdgpu_device pointer
262  * @vm: requested vm
263  * @saddr: start of the address range
264  * @eaddr: end of the address range
265  *
266  * Make sure the page directories and page tables are allocated
267  */
268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
269 				  struct amdgpu_vm *vm,
270 				  struct amdgpu_vm_pt *parent,
271 				  uint64_t saddr, uint64_t eaddr,
272 				  unsigned level)
273 {
274 	unsigned shift = (adev->vm_manager.num_level - level) *
275 		adev->vm_manager.block_size;
276 	unsigned pt_idx, from, to;
277 	int r;
278 
279 	if (!parent->entries) {
280 		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
281 
282 		parent->entries = drm_calloc_large(num_entries,
283 						   sizeof(struct amdgpu_vm_pt));
284 		if (!parent->entries)
285 			return -ENOMEM;
286 		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
287 	}
288 
289 	from = saddr >> shift;
290 	to = eaddr >> shift;
291 	if (from >= amdgpu_vm_num_entries(adev, level) ||
292 	    to >= amdgpu_vm_num_entries(adev, level))
293 		return -EINVAL;
294 
295 	if (to > parent->last_entry_used)
296 		parent->last_entry_used = to;
297 
298 	++level;
299 	saddr = saddr & ((1 << shift) - 1);
300 	eaddr = eaddr & ((1 << shift) - 1);
301 
302 	/* walk over the address space and allocate the page tables */
303 	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
304 		struct reservation_object *resv = vm->root.bo->tbo.resv;
305 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
306 		struct amdgpu_bo *pt;
307 
308 		if (!entry->bo) {
309 			r = amdgpu_bo_create(adev,
310 					     amdgpu_vm_bo_size(adev, level),
311 					     AMDGPU_GPU_PAGE_SIZE, true,
312 					     AMDGPU_GEM_DOMAIN_VRAM,
313 					     AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
314 					     AMDGPU_GEM_CREATE_SHADOW |
315 					     AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
316 					     AMDGPU_GEM_CREATE_VRAM_CLEARED,
317 					     NULL, resv, &pt);
318 			if (r)
319 				return r;
320 
321 			/* Keep a reference to the root directory to avoid
322 			* freeing them up in the wrong order.
323 			*/
324 			pt->parent = amdgpu_bo_ref(vm->root.bo);
325 
326 			entry->bo = pt;
327 			entry->addr = 0;
328 		}
329 
330 		if (level < adev->vm_manager.num_level) {
331 			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
332 			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
333 				((1 << shift) - 1);
334 			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
335 						   sub_eaddr, level);
336 			if (r)
337 				return r;
338 		}
339 	}
340 
341 	return 0;
342 }
343 
344 /**
345  * amdgpu_vm_alloc_pts - Allocate page tables.
346  *
347  * @adev: amdgpu_device pointer
348  * @vm: VM to allocate page tables for
349  * @saddr: Start address which needs to be allocated
350  * @size: Size from start address we need.
351  *
352  * Make sure the page tables are allocated.
353  */
354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
355 			struct amdgpu_vm *vm,
356 			uint64_t saddr, uint64_t size)
357 {
358 	uint64_t last_pfn;
359 	uint64_t eaddr;
360 
361 	/* validate the parameters */
362 	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
363 		return -EINVAL;
364 
365 	eaddr = saddr + size - 1;
366 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
367 	if (last_pfn >= adev->vm_manager.max_pfn) {
368 		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
369 			last_pfn, adev->vm_manager.max_pfn);
370 		return -EINVAL;
371 	}
372 
373 	saddr /= AMDGPU_GPU_PAGE_SIZE;
374 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
375 
376 	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
377 }
378 
379 /**
380  * amdgpu_vm_had_gpu_reset - check if reset occured since last use
381  *
382  * @adev: amdgpu_device pointer
383  * @id: VMID structure
384  *
385  * Check if GPU reset occured since last use of the VMID.
386  */
387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
388 				    struct amdgpu_vm_id *id)
389 {
390 	return id->current_gpu_reset_count !=
391 		atomic_read(&adev->gpu_reset_counter);
392 }
393 
394 /**
395  * amdgpu_vm_grab_id - allocate the next free VMID
396  *
397  * @vm: vm to allocate id for
398  * @ring: ring we want to submit job to
399  * @sync: sync object where we add dependencies
400  * @fence: fence protecting ID from reuse
401  *
402  * Allocate an id for the vm, adding fences to the sync obj as necessary.
403  */
404 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
405 		      struct amdgpu_sync *sync, struct dma_fence *fence,
406 		      struct amdgpu_job *job)
407 {
408 	struct amdgpu_device *adev = ring->adev;
409 	uint64_t fence_context = adev->fence_context + ring->idx;
410 	struct dma_fence *updates = sync->last_vm_update;
411 	struct amdgpu_vm_id *id, *idle;
412 	struct dma_fence **fences;
413 	unsigned i;
414 	int r = 0;
415 
416 	fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids,
417 			       GFP_KERNEL);
418 	if (!fences)
419 		return -ENOMEM;
420 
421 	mutex_lock(&adev->vm_manager.lock);
422 
423 	/* Check if we have an idle VMID */
424 	i = 0;
425 	list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) {
426 		fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
427 		if (!fences[i])
428 			break;
429 		++i;
430 	}
431 
432 	/* If we can't find a idle VMID to use, wait till one becomes available */
433 	if (&idle->list == &adev->vm_manager.ids_lru) {
434 		u64 fence_context = adev->vm_manager.fence_context + ring->idx;
435 		unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
436 		struct dma_fence_array *array;
437 		unsigned j;
438 
439 		for (j = 0; j < i; ++j)
440 			dma_fence_get(fences[j]);
441 
442 		array = dma_fence_array_create(i, fences, fence_context,
443 					   seqno, true);
444 		if (!array) {
445 			for (j = 0; j < i; ++j)
446 				dma_fence_put(fences[j]);
447 			kfree(fences);
448 			r = -ENOMEM;
449 			goto error;
450 		}
451 
452 
453 		r = amdgpu_sync_fence(ring->adev, sync, &array->base);
454 		dma_fence_put(&array->base);
455 		if (r)
456 			goto error;
457 
458 		mutex_unlock(&adev->vm_manager.lock);
459 		return 0;
460 
461 	}
462 	kfree(fences);
463 
464 	job->vm_needs_flush = true;
465 	/* Check if we can use a VMID already assigned to this VM */
466 	i = ring->idx;
467 	do {
468 		struct dma_fence *flushed;
469 
470 		id = vm->ids[i++];
471 		if (i == AMDGPU_MAX_RINGS)
472 			i = 0;
473 
474 		/* Check all the prerequisites to using this VMID */
475 		if (!id)
476 			continue;
477 		if (amdgpu_vm_had_gpu_reset(adev, id))
478 			continue;
479 
480 		if (atomic64_read(&id->owner) != vm->client_id)
481 			continue;
482 
483 		if (job->vm_pd_addr != id->pd_gpu_addr)
484 			continue;
485 
486 		if (!id->last_flush)
487 			continue;
488 
489 		if (id->last_flush->context != fence_context &&
490 		    !dma_fence_is_signaled(id->last_flush))
491 			continue;
492 
493 		flushed  = id->flushed_updates;
494 		if (updates &&
495 		    (!flushed || dma_fence_is_later(updates, flushed)))
496 			continue;
497 
498 		/* Good we can use this VMID. Remember this submission as
499 		 * user of the VMID.
500 		 */
501 		r = amdgpu_sync_fence(ring->adev, &id->active, fence);
502 		if (r)
503 			goto error;
504 
505 		list_move_tail(&id->list, &adev->vm_manager.ids_lru);
506 		vm->ids[ring->idx] = id;
507 
508 		job->vm_id = id - adev->vm_manager.ids;
509 		job->vm_needs_flush = false;
510 		trace_amdgpu_vm_grab_id(vm, ring->idx, job);
511 
512 		mutex_unlock(&adev->vm_manager.lock);
513 		return 0;
514 
515 	} while (i != ring->idx);
516 
517 	/* Still no ID to use? Then use the idle one found earlier */
518 	id = idle;
519 
520 	/* Remember this submission as user of the VMID */
521 	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
522 	if (r)
523 		goto error;
524 
525 	dma_fence_put(id->last_flush);
526 	id->last_flush = NULL;
527 
528 	dma_fence_put(id->flushed_updates);
529 	id->flushed_updates = dma_fence_get(updates);
530 
531 	id->pd_gpu_addr = job->vm_pd_addr;
532 	id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
533 	list_move_tail(&id->list, &adev->vm_manager.ids_lru);
534 	atomic64_set(&id->owner, vm->client_id);
535 	vm->ids[ring->idx] = id;
536 
537 	job->vm_id = id - adev->vm_manager.ids;
538 	trace_amdgpu_vm_grab_id(vm, ring->idx, job);
539 
540 error:
541 	mutex_unlock(&adev->vm_manager.lock);
542 	return r;
543 }
544 
545 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
546 {
547 	struct amdgpu_device *adev = ring->adev;
548 	const struct amdgpu_ip_block *ip_block;
549 
550 	if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE)
551 		/* only compute rings */
552 		return false;
553 
554 	ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
555 	if (!ip_block)
556 		return false;
557 
558 	if (ip_block->version->major <= 7) {
559 		/* gfx7 has no workaround */
560 		return true;
561 	} else if (ip_block->version->major == 8) {
562 		if (adev->gfx.mec_fw_version >= 673)
563 			/* gfx8 is fixed in MEC firmware 673 */
564 			return false;
565 		else
566 			return true;
567 	}
568 	return false;
569 }
570 
571 static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr)
572 {
573 	u64 addr = mc_addr;
574 
575 	if (adev->gart.gart_funcs->adjust_mc_addr)
576 		addr = adev->gart.gart_funcs->adjust_mc_addr(adev, addr);
577 
578 	return addr;
579 }
580 
581 /**
582  * amdgpu_vm_flush - hardware flush the vm
583  *
584  * @ring: ring to use for flush
585  * @vm_id: vmid number to use
586  * @pd_addr: address of the page directory
587  *
588  * Emit a VM flush when it is necessary.
589  */
590 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
591 {
592 	struct amdgpu_device *adev = ring->adev;
593 	struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id];
594 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
595 		id->gds_base != job->gds_base ||
596 		id->gds_size != job->gds_size ||
597 		id->gws_base != job->gws_base ||
598 		id->gws_size != job->gws_size ||
599 		id->oa_base != job->oa_base ||
600 		id->oa_size != job->oa_size);
601 	bool vm_flush_needed = job->vm_needs_flush ||
602 		amdgpu_vm_ring_has_compute_vm_bug(ring);
603 	unsigned patch_offset = 0;
604 	int r;
605 
606 	if (amdgpu_vm_had_gpu_reset(adev, id)) {
607 		gds_switch_needed = true;
608 		vm_flush_needed = true;
609 	}
610 
611 	if (!vm_flush_needed && !gds_switch_needed)
612 		return 0;
613 
614 	if (ring->funcs->init_cond_exec)
615 		patch_offset = amdgpu_ring_init_cond_exec(ring);
616 
617 	if (ring->funcs->emit_pipeline_sync)
618 		amdgpu_ring_emit_pipeline_sync(ring);
619 
620 	if (ring->funcs->emit_vm_flush && vm_flush_needed) {
621 		u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr);
622 		struct dma_fence *fence;
623 
624 		trace_amdgpu_vm_flush(pd_addr, ring->idx, job->vm_id);
625 		amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr);
626 
627 		r = amdgpu_fence_emit(ring, &fence);
628 		if (r)
629 			return r;
630 
631 		mutex_lock(&adev->vm_manager.lock);
632 		dma_fence_put(id->last_flush);
633 		id->last_flush = fence;
634 		mutex_unlock(&adev->vm_manager.lock);
635 	}
636 
637 	if (gds_switch_needed) {
638 		id->gds_base = job->gds_base;
639 		id->gds_size = job->gds_size;
640 		id->gws_base = job->gws_base;
641 		id->gws_size = job->gws_size;
642 		id->oa_base = job->oa_base;
643 		id->oa_size = job->oa_size;
644 		amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
645 					    job->gds_size, job->gws_base,
646 					    job->gws_size, job->oa_base,
647 					    job->oa_size);
648 	}
649 
650 	if (ring->funcs->patch_cond_exec)
651 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
652 
653 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
654 	if (ring->funcs->emit_switch_buffer) {
655 		amdgpu_ring_emit_switch_buffer(ring);
656 		amdgpu_ring_emit_switch_buffer(ring);
657 	}
658 	return 0;
659 }
660 
661 /**
662  * amdgpu_vm_reset_id - reset VMID to zero
663  *
664  * @adev: amdgpu device structure
665  * @vm_id: vmid number to use
666  *
667  * Reset saved GDW, GWS and OA to force switch on next flush.
668  */
669 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
670 {
671 	struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
672 
673 	id->gds_base = 0;
674 	id->gds_size = 0;
675 	id->gws_base = 0;
676 	id->gws_size = 0;
677 	id->oa_base = 0;
678 	id->oa_size = 0;
679 }
680 
681 /**
682  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
683  *
684  * @vm: requested vm
685  * @bo: requested buffer object
686  *
687  * Find @bo inside the requested vm.
688  * Search inside the @bos vm list for the requested vm
689  * Returns the found bo_va or NULL if none is found
690  *
691  * Object has to be reserved!
692  */
693 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
694 				       struct amdgpu_bo *bo)
695 {
696 	struct amdgpu_bo_va *bo_va;
697 
698 	list_for_each_entry(bo_va, &bo->va, bo_list) {
699 		if (bo_va->vm == vm) {
700 			return bo_va;
701 		}
702 	}
703 	return NULL;
704 }
705 
706 /**
707  * amdgpu_vm_do_set_ptes - helper to call the right asic function
708  *
709  * @params: see amdgpu_pte_update_params definition
710  * @pe: addr of the page entry
711  * @addr: dst addr to write into pe
712  * @count: number of page entries to update
713  * @incr: increase next addr by incr bytes
714  * @flags: hw access flags
715  *
716  * Traces the parameters and calls the right asic functions
717  * to setup the page table using the DMA.
718  */
719 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
720 				  uint64_t pe, uint64_t addr,
721 				  unsigned count, uint32_t incr,
722 				  uint64_t flags)
723 {
724 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
725 
726 	if (count < 3) {
727 		amdgpu_vm_write_pte(params->adev, params->ib, pe,
728 				    addr | flags, count, incr);
729 
730 	} else {
731 		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
732 				      count, incr, flags);
733 	}
734 }
735 
736 /**
737  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
738  *
739  * @params: see amdgpu_pte_update_params definition
740  * @pe: addr of the page entry
741  * @addr: dst addr to write into pe
742  * @count: number of page entries to update
743  * @incr: increase next addr by incr bytes
744  * @flags: hw access flags
745  *
746  * Traces the parameters and calls the DMA function to copy the PTEs.
747  */
748 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
749 				   uint64_t pe, uint64_t addr,
750 				   unsigned count, uint32_t incr,
751 				   uint64_t flags)
752 {
753 	uint64_t src = (params->src + (addr >> 12) * 8);
754 
755 
756 	trace_amdgpu_vm_copy_ptes(pe, src, count);
757 
758 	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
759 }
760 
761 /**
762  * amdgpu_vm_map_gart - Resolve gart mapping of addr
763  *
764  * @pages_addr: optional DMA address to use for lookup
765  * @addr: the unmapped addr
766  *
767  * Look up the physical address of the page that the pte resolves
768  * to and return the pointer for the page table entry.
769  */
770 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
771 {
772 	uint64_t result;
773 
774 	/* page table offset */
775 	result = pages_addr[addr >> PAGE_SHIFT];
776 
777 	/* in case cpu page size != gpu page size*/
778 	result |= addr & (~PAGE_MASK);
779 
780 	result &= 0xFFFFFFFFFFFFF000ULL;
781 
782 	return result;
783 }
784 
785 /*
786  * amdgpu_vm_update_level - update a single level in the hierarchy
787  *
788  * @adev: amdgpu_device pointer
789  * @vm: requested vm
790  * @parent: parent directory
791  *
792  * Makes sure all entries in @parent are up to date.
793  * Returns 0 for success, error for failure.
794  */
795 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
796 				  struct amdgpu_vm *vm,
797 				  struct amdgpu_vm_pt *parent,
798 				  unsigned level)
799 {
800 	struct amdgpu_bo *shadow;
801 	struct amdgpu_ring *ring;
802 	uint64_t pd_addr, shadow_addr;
803 	uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
804 	uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
805 	unsigned count = 0, pt_idx, ndw;
806 	struct amdgpu_job *job;
807 	struct amdgpu_pte_update_params params;
808 	struct dma_fence *fence = NULL;
809 
810 	int r;
811 
812 	if (!parent->entries)
813 		return 0;
814 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
815 
816 	/* padding, etc. */
817 	ndw = 64;
818 
819 	/* assume the worst case */
820 	ndw += parent->last_entry_used * 6;
821 
822 	pd_addr = amdgpu_bo_gpu_offset(parent->bo);
823 
824 	shadow = parent->bo->shadow;
825 	if (shadow) {
826 		r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
827 		if (r)
828 			return r;
829 		shadow_addr = amdgpu_bo_gpu_offset(shadow);
830 		ndw *= 2;
831 	} else {
832 		shadow_addr = 0;
833 	}
834 
835 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
836 	if (r)
837 		return r;
838 
839 	memset(&params, 0, sizeof(params));
840 	params.adev = adev;
841 	params.ib = &job->ibs[0];
842 
843 	/* walk over the address space and update the directory */
844 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
845 		struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
846 		uint64_t pde, pt;
847 
848 		if (bo == NULL)
849 			continue;
850 
851 		if (bo->shadow) {
852 			struct amdgpu_bo *pt_shadow = bo->shadow;
853 
854 			r = amdgpu_ttm_bind(&pt_shadow->tbo,
855 					    &pt_shadow->tbo.mem);
856 			if (r)
857 				return r;
858 		}
859 
860 		pt = amdgpu_bo_gpu_offset(bo);
861 		if (parent->entries[pt_idx].addr == pt)
862 			continue;
863 
864 		parent->entries[pt_idx].addr = pt;
865 
866 		pde = pd_addr + pt_idx * 8;
867 		if (((last_pde + 8 * count) != pde) ||
868 		    ((last_pt + incr * count) != pt) ||
869 		    (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
870 
871 			if (count) {
872 				uint64_t pt_addr =
873 					amdgpu_vm_adjust_mc_addr(adev, last_pt);
874 
875 				if (shadow)
876 					amdgpu_vm_do_set_ptes(&params,
877 							      last_shadow,
878 							      pt_addr, count,
879 							      incr,
880 							      AMDGPU_PTE_VALID);
881 
882 				amdgpu_vm_do_set_ptes(&params, last_pde,
883 						      pt_addr, count, incr,
884 						      AMDGPU_PTE_VALID);
885 			}
886 
887 			count = 1;
888 			last_pde = pde;
889 			last_shadow = shadow_addr + pt_idx * 8;
890 			last_pt = pt;
891 		} else {
892 			++count;
893 		}
894 	}
895 
896 	if (count) {
897 		uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt);
898 
899 		if (vm->root.bo->shadow)
900 			amdgpu_vm_do_set_ptes(&params, last_shadow, pt_addr,
901 					      count, incr, AMDGPU_PTE_VALID);
902 
903 		amdgpu_vm_do_set_ptes(&params, last_pde, pt_addr,
904 				      count, incr, AMDGPU_PTE_VALID);
905 	}
906 
907 	if (params.ib->length_dw == 0) {
908 		amdgpu_job_free(job);
909 	} else {
910 		amdgpu_ring_pad_ib(ring, params.ib);
911 		amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
912 				 AMDGPU_FENCE_OWNER_VM);
913 		if (shadow)
914 			amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv,
915 					 AMDGPU_FENCE_OWNER_VM);
916 
917 		WARN_ON(params.ib->length_dw > ndw);
918 		r = amdgpu_job_submit(job, ring, &vm->entity,
919 				AMDGPU_FENCE_OWNER_VM, &fence);
920 		if (r)
921 			goto error_free;
922 
923 		amdgpu_bo_fence(parent->bo, fence, true);
924 		dma_fence_put(vm->last_dir_update);
925 		vm->last_dir_update = dma_fence_get(fence);
926 		dma_fence_put(fence);
927 	}
928 	/*
929 	 * Recurse into the subdirectories. This recursion is harmless because
930 	 * we only have a maximum of 5 layers.
931 	 */
932 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
933 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
934 
935 		if (!entry->bo)
936 			continue;
937 
938 		r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
939 		if (r)
940 			return r;
941 	}
942 
943 	return 0;
944 
945 error_free:
946 	amdgpu_job_free(job);
947 	return r;
948 }
949 
950 /*
951  * amdgpu_vm_update_directories - make sure that all directories are valid
952  *
953  * @adev: amdgpu_device pointer
954  * @vm: requested vm
955  *
956  * Makes sure all directories are up to date.
957  * Returns 0 for success, error for failure.
958  */
959 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
960 				 struct amdgpu_vm *vm)
961 {
962 	return amdgpu_vm_update_level(adev, vm, &vm->root, 0);
963 }
964 
965 /**
966  * amdgpu_vm_find_pt - find the page table for an address
967  *
968  * @p: see amdgpu_pte_update_params definition
969  * @addr: virtual address in question
970  *
971  * Find the page table BO for a virtual address, return NULL when none found.
972  */
973 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p,
974 					  uint64_t addr)
975 {
976 	struct amdgpu_vm_pt *entry = &p->vm->root;
977 	unsigned idx, level = p->adev->vm_manager.num_level;
978 
979 	while (entry->entries) {
980 		idx = addr >> (p->adev->vm_manager.block_size * level--);
981 		idx %= amdgpu_bo_size(entry->bo) / 8;
982 		entry = &entry->entries[idx];
983 	}
984 
985 	if (level)
986 		return NULL;
987 
988 	return entry->bo;
989 }
990 
991 /**
992  * amdgpu_vm_update_ptes - make sure that page tables are valid
993  *
994  * @params: see amdgpu_pte_update_params definition
995  * @vm: requested vm
996  * @start: start of GPU address range
997  * @end: end of GPU address range
998  * @dst: destination address to map to, the next dst inside the function
999  * @flags: mapping flags
1000  *
1001  * Update the page tables in the range @start - @end.
1002  */
1003 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1004 				  uint64_t start, uint64_t end,
1005 				  uint64_t dst, uint64_t flags)
1006 {
1007 	struct amdgpu_device *adev = params->adev;
1008 	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1009 
1010 	uint64_t cur_pe_start, cur_nptes, cur_dst;
1011 	uint64_t addr; /* next GPU address to be updated */
1012 	struct amdgpu_bo *pt;
1013 	unsigned nptes; /* next number of ptes to be updated */
1014 	uint64_t next_pe_start;
1015 
1016 	/* initialize the variables */
1017 	addr = start;
1018 	pt = amdgpu_vm_get_pt(params, addr);
1019 	if (!pt) {
1020 		pr_err("PT not found, aborting update_ptes\n");
1021 		return;
1022 	}
1023 
1024 	if (params->shadow) {
1025 		if (!pt->shadow)
1026 			return;
1027 		pt = pt->shadow;
1028 	}
1029 	if ((addr & ~mask) == (end & ~mask))
1030 		nptes = end - addr;
1031 	else
1032 		nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1033 
1034 	cur_pe_start = amdgpu_bo_gpu_offset(pt);
1035 	cur_pe_start += (addr & mask) * 8;
1036 	cur_nptes = nptes;
1037 	cur_dst = dst;
1038 
1039 	/* for next ptb*/
1040 	addr += nptes;
1041 	dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1042 
1043 	/* walk over the address space and update the page tables */
1044 	while (addr < end) {
1045 		pt = amdgpu_vm_get_pt(params, addr);
1046 		if (!pt) {
1047 			pr_err("PT not found, aborting update_ptes\n");
1048 			return;
1049 		}
1050 
1051 		if (params->shadow) {
1052 			if (!pt->shadow)
1053 				return;
1054 			pt = pt->shadow;
1055 		}
1056 
1057 		if ((addr & ~mask) == (end & ~mask))
1058 			nptes = end - addr;
1059 		else
1060 			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1061 
1062 		next_pe_start = amdgpu_bo_gpu_offset(pt);
1063 		next_pe_start += (addr & mask) * 8;
1064 
1065 		if ((cur_pe_start + 8 * cur_nptes) == next_pe_start &&
1066 		    ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) {
1067 			/* The next ptb is consecutive to current ptb.
1068 			 * Don't call the update function now.
1069 			 * Will update two ptbs together in future.
1070 			*/
1071 			cur_nptes += nptes;
1072 		} else {
1073 			params->func(params, cur_pe_start, cur_dst, cur_nptes,
1074 				     AMDGPU_GPU_PAGE_SIZE, flags);
1075 
1076 			cur_pe_start = next_pe_start;
1077 			cur_nptes = nptes;
1078 			cur_dst = dst;
1079 		}
1080 
1081 		/* for next ptb*/
1082 		addr += nptes;
1083 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
1084 	}
1085 
1086 	params->func(params, cur_pe_start, cur_dst, cur_nptes,
1087 		     AMDGPU_GPU_PAGE_SIZE, flags);
1088 }
1089 
1090 /*
1091  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1092  *
1093  * @params: see amdgpu_pte_update_params definition
1094  * @vm: requested vm
1095  * @start: first PTE to handle
1096  * @end: last PTE to handle
1097  * @dst: addr those PTEs should point to
1098  * @flags: hw mapping flags
1099  */
1100 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
1101 				uint64_t start, uint64_t end,
1102 				uint64_t dst, uint64_t flags)
1103 {
1104 	/**
1105 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1106 	 * field in the PTE. When this field is set to a non-zero value, page
1107 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1108 	 * flags are considered valid for all PTEs within the fragment range
1109 	 * and corresponding mappings are assumed to be physically contiguous.
1110 	 *
1111 	 * The L1 TLB can store a single PTE for the whole fragment,
1112 	 * significantly increasing the space available for translation
1113 	 * caching. This leads to large improvements in throughput when the
1114 	 * TLB is under pressure.
1115 	 *
1116 	 * The L2 TLB distributes small and large fragments into two
1117 	 * asymmetric partitions. The large fragment cache is significantly
1118 	 * larger. Thus, we try to use large fragments wherever possible.
1119 	 * Userspace can support this by aligning virtual base address and
1120 	 * allocation size to the fragment size.
1121 	 */
1122 
1123 	/* SI and newer are optimized for 64KB */
1124 	uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
1125 	uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
1126 
1127 	uint64_t frag_start = ALIGN(start, frag_align);
1128 	uint64_t frag_end = end & ~(frag_align - 1);
1129 
1130 	/* system pages are non continuously */
1131 	if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1132 	    (frag_start >= frag_end)) {
1133 
1134 		amdgpu_vm_update_ptes(params, start, end, dst, flags);
1135 		return;
1136 	}
1137 
1138 	/* handle the 4K area at the beginning */
1139 	if (start != frag_start) {
1140 		amdgpu_vm_update_ptes(params, start, frag_start,
1141 				      dst, flags);
1142 		dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1143 	}
1144 
1145 	/* handle the area in the middle */
1146 	amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1147 			      flags | frag_flags);
1148 
1149 	/* handle the 4K area at the end */
1150 	if (frag_end != end) {
1151 		dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1152 		amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1153 	}
1154 }
1155 
1156 /**
1157  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1158  *
1159  * @adev: amdgpu_device pointer
1160  * @exclusive: fence we need to sync to
1161  * @src: address where to copy page table entries from
1162  * @pages_addr: DMA addresses to use for mapping
1163  * @vm: requested vm
1164  * @start: start of mapped range
1165  * @last: last mapped entry
1166  * @flags: flags for the entries
1167  * @addr: addr to set the area to
1168  * @fence: optional resulting fence
1169  *
1170  * Fill in the page table entries between @start and @last.
1171  * Returns 0 for success, -EINVAL for failure.
1172  */
1173 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1174 				       struct dma_fence *exclusive,
1175 				       uint64_t src,
1176 				       dma_addr_t *pages_addr,
1177 				       struct amdgpu_vm *vm,
1178 				       uint64_t start, uint64_t last,
1179 				       uint64_t flags, uint64_t addr,
1180 				       struct dma_fence **fence)
1181 {
1182 	struct amdgpu_ring *ring;
1183 	void *owner = AMDGPU_FENCE_OWNER_VM;
1184 	unsigned nptes, ncmds, ndw;
1185 	struct amdgpu_job *job;
1186 	struct amdgpu_pte_update_params params;
1187 	struct dma_fence *f = NULL;
1188 	int r;
1189 
1190 	memset(&params, 0, sizeof(params));
1191 	params.adev = adev;
1192 	params.vm = vm;
1193 	params.src = src;
1194 
1195 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1196 
1197 	/* sync to everything on unmapping */
1198 	if (!(flags & AMDGPU_PTE_VALID))
1199 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1200 
1201 	nptes = last - start + 1;
1202 
1203 	/*
1204 	 * reserve space for one command every (1 << BLOCK_SIZE)
1205 	 *  entries or 2k dwords (whatever is smaller)
1206 	 */
1207 	ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1208 
1209 	/* padding, etc. */
1210 	ndw = 64;
1211 
1212 	if (src) {
1213 		/* only copy commands needed */
1214 		ndw += ncmds * 7;
1215 
1216 		params.func = amdgpu_vm_do_copy_ptes;
1217 
1218 	} else if (pages_addr) {
1219 		/* copy commands needed */
1220 		ndw += ncmds * 7;
1221 
1222 		/* and also PTEs */
1223 		ndw += nptes * 2;
1224 
1225 		params.func = amdgpu_vm_do_copy_ptes;
1226 
1227 	} else {
1228 		/* set page commands needed */
1229 		ndw += ncmds * 10;
1230 
1231 		/* two extra commands for begin/end of fragment */
1232 		ndw += 2 * 10;
1233 
1234 		params.func = amdgpu_vm_do_set_ptes;
1235 	}
1236 
1237 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1238 	if (r)
1239 		return r;
1240 
1241 	params.ib = &job->ibs[0];
1242 
1243 	if (!src && pages_addr) {
1244 		uint64_t *pte;
1245 		unsigned i;
1246 
1247 		/* Put the PTEs at the end of the IB. */
1248 		i = ndw - nptes * 2;
1249 		pte= (uint64_t *)&(job->ibs->ptr[i]);
1250 		params.src = job->ibs->gpu_addr + i * 4;
1251 
1252 		for (i = 0; i < nptes; ++i) {
1253 			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1254 						    AMDGPU_GPU_PAGE_SIZE);
1255 			pte[i] |= flags;
1256 		}
1257 		addr = 0;
1258 	}
1259 
1260 	r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1261 	if (r)
1262 		goto error_free;
1263 
1264 	r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1265 			     owner);
1266 	if (r)
1267 		goto error_free;
1268 
1269 	r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1270 	if (r)
1271 		goto error_free;
1272 
1273 	params.shadow = true;
1274 	amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1275 	params.shadow = false;
1276 	amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1277 
1278 	amdgpu_ring_pad_ib(ring, params.ib);
1279 	WARN_ON(params.ib->length_dw > ndw);
1280 	r = amdgpu_job_submit(job, ring, &vm->entity,
1281 			      AMDGPU_FENCE_OWNER_VM, &f);
1282 	if (r)
1283 		goto error_free;
1284 
1285 	amdgpu_bo_fence(vm->root.bo, f, true);
1286 	dma_fence_put(*fence);
1287 	*fence = f;
1288 	return 0;
1289 
1290 error_free:
1291 	amdgpu_job_free(job);
1292 	return r;
1293 }
1294 
1295 /**
1296  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1297  *
1298  * @adev: amdgpu_device pointer
1299  * @exclusive: fence we need to sync to
1300  * @gtt_flags: flags as they are used for GTT
1301  * @pages_addr: DMA addresses to use for mapping
1302  * @vm: requested vm
1303  * @mapping: mapped range and flags to use for the update
1304  * @flags: HW flags for the mapping
1305  * @nodes: array of drm_mm_nodes with the MC addresses
1306  * @fence: optional resulting fence
1307  *
1308  * Split the mapping into smaller chunks so that each update fits
1309  * into a SDMA IB.
1310  * Returns 0 for success, -EINVAL for failure.
1311  */
1312 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1313 				      struct dma_fence *exclusive,
1314 				      uint64_t gtt_flags,
1315 				      dma_addr_t *pages_addr,
1316 				      struct amdgpu_vm *vm,
1317 				      struct amdgpu_bo_va_mapping *mapping,
1318 				      uint64_t flags,
1319 				      struct drm_mm_node *nodes,
1320 				      struct dma_fence **fence)
1321 {
1322 	uint64_t pfn, src = 0, start = mapping->start;
1323 	int r;
1324 
1325 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1326 	 * but in case of something, we filter the flags in first place
1327 	 */
1328 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1329 		flags &= ~AMDGPU_PTE_READABLE;
1330 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1331 		flags &= ~AMDGPU_PTE_WRITEABLE;
1332 
1333 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1334 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1335 
1336 	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1337 	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1338 
1339 	trace_amdgpu_vm_bo_update(mapping);
1340 
1341 	pfn = mapping->offset >> PAGE_SHIFT;
1342 	if (nodes) {
1343 		while (pfn >= nodes->size) {
1344 			pfn -= nodes->size;
1345 			++nodes;
1346 		}
1347 	}
1348 
1349 	do {
1350 		uint64_t max_entries;
1351 		uint64_t addr, last;
1352 
1353 		if (nodes) {
1354 			addr = nodes->start << PAGE_SHIFT;
1355 			max_entries = (nodes->size - pfn) *
1356 				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1357 		} else {
1358 			addr = 0;
1359 			max_entries = S64_MAX;
1360 		}
1361 
1362 		if (pages_addr) {
1363 			if (flags == gtt_flags)
1364 				src = adev->gart.table_addr +
1365 					(addr >> AMDGPU_GPU_PAGE_SHIFT) * 8;
1366 			else
1367 				max_entries = min(max_entries, 16ull * 1024ull);
1368 			addr = 0;
1369 		} else if (flags & AMDGPU_PTE_VALID) {
1370 			addr += adev->vm_manager.vram_base_offset;
1371 		}
1372 		addr += pfn << PAGE_SHIFT;
1373 
1374 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1375 		r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1376 						src, pages_addr, vm,
1377 						start, last, flags, addr,
1378 						fence);
1379 		if (r)
1380 			return r;
1381 
1382 		pfn += last - start + 1;
1383 		if (nodes && nodes->size == pfn) {
1384 			pfn = 0;
1385 			++nodes;
1386 		}
1387 		start = last + 1;
1388 
1389 	} while (unlikely(start != mapping->last + 1));
1390 
1391 	return 0;
1392 }
1393 
1394 /**
1395  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1396  *
1397  * @adev: amdgpu_device pointer
1398  * @bo_va: requested BO and VM object
1399  * @clear: if true clear the entries
1400  *
1401  * Fill in the page table entries for @bo_va.
1402  * Returns 0 for success, -EINVAL for failure.
1403  */
1404 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1405 			struct amdgpu_bo_va *bo_va,
1406 			bool clear)
1407 {
1408 	struct amdgpu_vm *vm = bo_va->vm;
1409 	struct amdgpu_bo_va_mapping *mapping;
1410 	dma_addr_t *pages_addr = NULL;
1411 	uint64_t gtt_flags, flags;
1412 	struct ttm_mem_reg *mem;
1413 	struct drm_mm_node *nodes;
1414 	struct dma_fence *exclusive;
1415 	int r;
1416 
1417 	if (clear || !bo_va->bo) {
1418 		mem = NULL;
1419 		nodes = NULL;
1420 		exclusive = NULL;
1421 	} else {
1422 		struct ttm_dma_tt *ttm;
1423 
1424 		mem = &bo_va->bo->tbo.mem;
1425 		nodes = mem->mm_node;
1426 		if (mem->mem_type == TTM_PL_TT) {
1427 			ttm = container_of(bo_va->bo->tbo.ttm, struct
1428 					   ttm_dma_tt, ttm);
1429 			pages_addr = ttm->dma_address;
1430 		}
1431 		exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1432 	}
1433 
1434 	if (bo_va->bo) {
1435 		flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1436 		gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1437 			adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ?
1438 			flags : 0;
1439 	} else {
1440 		flags = 0x0;
1441 		gtt_flags = ~0x0;
1442 	}
1443 
1444 	spin_lock(&vm->status_lock);
1445 	if (!list_empty(&bo_va->vm_status))
1446 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1447 	spin_unlock(&vm->status_lock);
1448 
1449 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1450 		r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1451 					       gtt_flags, pages_addr, vm,
1452 					       mapping, flags, nodes,
1453 					       &bo_va->last_pt_update);
1454 		if (r)
1455 			return r;
1456 	}
1457 
1458 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1459 		list_for_each_entry(mapping, &bo_va->valids, list)
1460 			trace_amdgpu_vm_bo_mapping(mapping);
1461 
1462 		list_for_each_entry(mapping, &bo_va->invalids, list)
1463 			trace_amdgpu_vm_bo_mapping(mapping);
1464 	}
1465 
1466 	spin_lock(&vm->status_lock);
1467 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1468 	list_del_init(&bo_va->vm_status);
1469 	if (clear)
1470 		list_add(&bo_va->vm_status, &vm->cleared);
1471 	spin_unlock(&vm->status_lock);
1472 
1473 	return 0;
1474 }
1475 
1476 /**
1477  * amdgpu_vm_update_prt_state - update the global PRT state
1478  */
1479 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1480 {
1481 	unsigned long flags;
1482 	bool enable;
1483 
1484 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1485 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1486 	adev->gart.gart_funcs->set_prt(adev, enable);
1487 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1488 }
1489 
1490 /**
1491  * amdgpu_vm_prt_get - add a PRT user
1492  */
1493 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1494 {
1495 	if (!adev->gart.gart_funcs->set_prt)
1496 		return;
1497 
1498 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1499 		amdgpu_vm_update_prt_state(adev);
1500 }
1501 
1502 /**
1503  * amdgpu_vm_prt_put - drop a PRT user
1504  */
1505 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1506 {
1507 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1508 		amdgpu_vm_update_prt_state(adev);
1509 }
1510 
1511 /**
1512  * amdgpu_vm_prt_cb - callback for updating the PRT status
1513  */
1514 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1515 {
1516 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1517 
1518 	amdgpu_vm_prt_put(cb->adev);
1519 	kfree(cb);
1520 }
1521 
1522 /**
1523  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1524  */
1525 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1526 				 struct dma_fence *fence)
1527 {
1528 	struct amdgpu_prt_cb *cb;
1529 
1530 	if (!adev->gart.gart_funcs->set_prt)
1531 		return;
1532 
1533 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1534 	if (!cb) {
1535 		/* Last resort when we are OOM */
1536 		if (fence)
1537 			dma_fence_wait(fence, false);
1538 
1539 		amdgpu_vm_prt_put(adev);
1540 	} else {
1541 		cb->adev = adev;
1542 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1543 						     amdgpu_vm_prt_cb))
1544 			amdgpu_vm_prt_cb(fence, &cb->cb);
1545 	}
1546 }
1547 
1548 /**
1549  * amdgpu_vm_free_mapping - free a mapping
1550  *
1551  * @adev: amdgpu_device pointer
1552  * @vm: requested vm
1553  * @mapping: mapping to be freed
1554  * @fence: fence of the unmap operation
1555  *
1556  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1557  */
1558 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1559 				   struct amdgpu_vm *vm,
1560 				   struct amdgpu_bo_va_mapping *mapping,
1561 				   struct dma_fence *fence)
1562 {
1563 	if (mapping->flags & AMDGPU_PTE_PRT)
1564 		amdgpu_vm_add_prt_cb(adev, fence);
1565 	kfree(mapping);
1566 }
1567 
1568 /**
1569  * amdgpu_vm_prt_fini - finish all prt mappings
1570  *
1571  * @adev: amdgpu_device pointer
1572  * @vm: requested vm
1573  *
1574  * Register a cleanup callback to disable PRT support after VM dies.
1575  */
1576 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1577 {
1578 	struct reservation_object *resv = vm->root.bo->tbo.resv;
1579 	struct dma_fence *excl, **shared;
1580 	unsigned i, shared_count;
1581 	int r;
1582 
1583 	r = reservation_object_get_fences_rcu(resv, &excl,
1584 					      &shared_count, &shared);
1585 	if (r) {
1586 		/* Not enough memory to grab the fence list, as last resort
1587 		 * block for all the fences to complete.
1588 		 */
1589 		reservation_object_wait_timeout_rcu(resv, true, false,
1590 						    MAX_SCHEDULE_TIMEOUT);
1591 		return;
1592 	}
1593 
1594 	/* Add a callback for each fence in the reservation object */
1595 	amdgpu_vm_prt_get(adev);
1596 	amdgpu_vm_add_prt_cb(adev, excl);
1597 
1598 	for (i = 0; i < shared_count; ++i) {
1599 		amdgpu_vm_prt_get(adev);
1600 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1601 	}
1602 
1603 	kfree(shared);
1604 }
1605 
1606 /**
1607  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1608  *
1609  * @adev: amdgpu_device pointer
1610  * @vm: requested vm
1611  * @fence: optional resulting fence (unchanged if no work needed to be done
1612  * or if an error occurred)
1613  *
1614  * Make sure all freed BOs are cleared in the PT.
1615  * Returns 0 for success.
1616  *
1617  * PTs have to be reserved and mutex must be locked!
1618  */
1619 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1620 			  struct amdgpu_vm *vm,
1621 			  struct dma_fence **fence)
1622 {
1623 	struct amdgpu_bo_va_mapping *mapping;
1624 	struct dma_fence *f = NULL;
1625 	int r;
1626 
1627 	while (!list_empty(&vm->freed)) {
1628 		mapping = list_first_entry(&vm->freed,
1629 			struct amdgpu_bo_va_mapping, list);
1630 		list_del(&mapping->list);
1631 
1632 		r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping,
1633 					       0, 0, &f);
1634 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1635 		if (r) {
1636 			dma_fence_put(f);
1637 			return r;
1638 		}
1639 	}
1640 
1641 	if (fence && f) {
1642 		dma_fence_put(*fence);
1643 		*fence = f;
1644 	} else {
1645 		dma_fence_put(f);
1646 	}
1647 
1648 	return 0;
1649 
1650 }
1651 
1652 /**
1653  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1654  *
1655  * @adev: amdgpu_device pointer
1656  * @vm: requested vm
1657  *
1658  * Make sure all invalidated BOs are cleared in the PT.
1659  * Returns 0 for success.
1660  *
1661  * PTs have to be reserved and mutex must be locked!
1662  */
1663 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1664 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1665 {
1666 	struct amdgpu_bo_va *bo_va = NULL;
1667 	int r = 0;
1668 
1669 	spin_lock(&vm->status_lock);
1670 	while (!list_empty(&vm->invalidated)) {
1671 		bo_va = list_first_entry(&vm->invalidated,
1672 			struct amdgpu_bo_va, vm_status);
1673 		spin_unlock(&vm->status_lock);
1674 
1675 		r = amdgpu_vm_bo_update(adev, bo_va, true);
1676 		if (r)
1677 			return r;
1678 
1679 		spin_lock(&vm->status_lock);
1680 	}
1681 	spin_unlock(&vm->status_lock);
1682 
1683 	if (bo_va)
1684 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1685 
1686 	return r;
1687 }
1688 
1689 /**
1690  * amdgpu_vm_bo_add - add a bo to a specific vm
1691  *
1692  * @adev: amdgpu_device pointer
1693  * @vm: requested vm
1694  * @bo: amdgpu buffer object
1695  *
1696  * Add @bo into the requested vm.
1697  * Add @bo to the list of bos associated with the vm
1698  * Returns newly added bo_va or NULL for failure
1699  *
1700  * Object has to be reserved!
1701  */
1702 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1703 				      struct amdgpu_vm *vm,
1704 				      struct amdgpu_bo *bo)
1705 {
1706 	struct amdgpu_bo_va *bo_va;
1707 
1708 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1709 	if (bo_va == NULL) {
1710 		return NULL;
1711 	}
1712 	bo_va->vm = vm;
1713 	bo_va->bo = bo;
1714 	bo_va->ref_count = 1;
1715 	INIT_LIST_HEAD(&bo_va->bo_list);
1716 	INIT_LIST_HEAD(&bo_va->valids);
1717 	INIT_LIST_HEAD(&bo_va->invalids);
1718 	INIT_LIST_HEAD(&bo_va->vm_status);
1719 
1720 	if (bo)
1721 		list_add_tail(&bo_va->bo_list, &bo->va);
1722 
1723 	return bo_va;
1724 }
1725 
1726 /**
1727  * amdgpu_vm_bo_map - map bo inside a vm
1728  *
1729  * @adev: amdgpu_device pointer
1730  * @bo_va: bo_va to store the address
1731  * @saddr: where to map the BO
1732  * @offset: requested offset in the BO
1733  * @flags: attributes of pages (read/write/valid/etc.)
1734  *
1735  * Add a mapping of the BO at the specefied addr into the VM.
1736  * Returns 0 for success, error for failure.
1737  *
1738  * Object has to be reserved and unreserved outside!
1739  */
1740 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1741 		     struct amdgpu_bo_va *bo_va,
1742 		     uint64_t saddr, uint64_t offset,
1743 		     uint64_t size, uint64_t flags)
1744 {
1745 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1746 	struct amdgpu_vm *vm = bo_va->vm;
1747 	uint64_t eaddr;
1748 
1749 	/* validate the parameters */
1750 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1751 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1752 		return -EINVAL;
1753 
1754 	/* make sure object fit at this offset */
1755 	eaddr = saddr + size - 1;
1756 	if (saddr >= eaddr ||
1757 	    (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1758 		return -EINVAL;
1759 
1760 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1761 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1762 
1763 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1764 	if (tmp) {
1765 		/* bo and tmp overlap, invalid addr */
1766 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1767 			"0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr,
1768 			tmp->start, tmp->last + 1);
1769 		return -EINVAL;
1770 	}
1771 
1772 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1773 	if (!mapping)
1774 		return -ENOMEM;
1775 
1776 	INIT_LIST_HEAD(&mapping->list);
1777 	mapping->start = saddr;
1778 	mapping->last = eaddr;
1779 	mapping->offset = offset;
1780 	mapping->flags = flags;
1781 
1782 	list_add(&mapping->list, &bo_va->invalids);
1783 	amdgpu_vm_it_insert(mapping, &vm->va);
1784 
1785 	if (flags & AMDGPU_PTE_PRT)
1786 		amdgpu_vm_prt_get(adev);
1787 
1788 	return 0;
1789 }
1790 
1791 /**
1792  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1793  *
1794  * @adev: amdgpu_device pointer
1795  * @bo_va: bo_va to store the address
1796  * @saddr: where to map the BO
1797  * @offset: requested offset in the BO
1798  * @flags: attributes of pages (read/write/valid/etc.)
1799  *
1800  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1801  * mappings as we do so.
1802  * Returns 0 for success, error for failure.
1803  *
1804  * Object has to be reserved and unreserved outside!
1805  */
1806 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1807 			     struct amdgpu_bo_va *bo_va,
1808 			     uint64_t saddr, uint64_t offset,
1809 			     uint64_t size, uint64_t flags)
1810 {
1811 	struct amdgpu_bo_va_mapping *mapping;
1812 	struct amdgpu_vm *vm = bo_va->vm;
1813 	uint64_t eaddr;
1814 	int r;
1815 
1816 	/* validate the parameters */
1817 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1818 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1819 		return -EINVAL;
1820 
1821 	/* make sure object fit at this offset */
1822 	eaddr = saddr + size - 1;
1823 	if (saddr >= eaddr ||
1824 	    (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo)))
1825 		return -EINVAL;
1826 
1827 	/* Allocate all the needed memory */
1828 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1829 	if (!mapping)
1830 		return -ENOMEM;
1831 
1832 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size);
1833 	if (r) {
1834 		kfree(mapping);
1835 		return r;
1836 	}
1837 
1838 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1839 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1840 
1841 	mapping->start = saddr;
1842 	mapping->last = eaddr;
1843 	mapping->offset = offset;
1844 	mapping->flags = flags;
1845 
1846 	list_add(&mapping->list, &bo_va->invalids);
1847 	amdgpu_vm_it_insert(mapping, &vm->va);
1848 
1849 	if (flags & AMDGPU_PTE_PRT)
1850 		amdgpu_vm_prt_get(adev);
1851 
1852 	return 0;
1853 }
1854 
1855 /**
1856  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1857  *
1858  * @adev: amdgpu_device pointer
1859  * @bo_va: bo_va to remove the address from
1860  * @saddr: where to the BO is mapped
1861  *
1862  * Remove a mapping of the BO at the specefied addr from the VM.
1863  * Returns 0 for success, error for failure.
1864  *
1865  * Object has to be reserved and unreserved outside!
1866  */
1867 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1868 		       struct amdgpu_bo_va *bo_va,
1869 		       uint64_t saddr)
1870 {
1871 	struct amdgpu_bo_va_mapping *mapping;
1872 	struct amdgpu_vm *vm = bo_va->vm;
1873 	bool valid = true;
1874 
1875 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1876 
1877 	list_for_each_entry(mapping, &bo_va->valids, list) {
1878 		if (mapping->start == saddr)
1879 			break;
1880 	}
1881 
1882 	if (&mapping->list == &bo_va->valids) {
1883 		valid = false;
1884 
1885 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1886 			if (mapping->start == saddr)
1887 				break;
1888 		}
1889 
1890 		if (&mapping->list == &bo_va->invalids)
1891 			return -ENOENT;
1892 	}
1893 
1894 	list_del(&mapping->list);
1895 	amdgpu_vm_it_remove(mapping, &vm->va);
1896 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1897 
1898 	if (valid)
1899 		list_add(&mapping->list, &vm->freed);
1900 	else
1901 		amdgpu_vm_free_mapping(adev, vm, mapping,
1902 				       bo_va->last_pt_update);
1903 
1904 	return 0;
1905 }
1906 
1907 /**
1908  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1909  *
1910  * @adev: amdgpu_device pointer
1911  * @vm: VM structure to use
1912  * @saddr: start of the range
1913  * @size: size of the range
1914  *
1915  * Remove all mappings in a range, split them as appropriate.
1916  * Returns 0 for success, error for failure.
1917  */
1918 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1919 				struct amdgpu_vm *vm,
1920 				uint64_t saddr, uint64_t size)
1921 {
1922 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1923 	LIST_HEAD(removed);
1924 	uint64_t eaddr;
1925 
1926 	eaddr = saddr + size - 1;
1927 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1928 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1929 
1930 	/* Allocate all the needed memory */
1931 	before = kzalloc(sizeof(*before), GFP_KERNEL);
1932 	if (!before)
1933 		return -ENOMEM;
1934 	INIT_LIST_HEAD(&before->list);
1935 
1936 	after = kzalloc(sizeof(*after), GFP_KERNEL);
1937 	if (!after) {
1938 		kfree(before);
1939 		return -ENOMEM;
1940 	}
1941 	INIT_LIST_HEAD(&after->list);
1942 
1943 	/* Now gather all removed mappings */
1944 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1945 	while (tmp) {
1946 		/* Remember mapping split at the start */
1947 		if (tmp->start < saddr) {
1948 			before->start = tmp->start;
1949 			before->last = saddr - 1;
1950 			before->offset = tmp->offset;
1951 			before->flags = tmp->flags;
1952 			list_add(&before->list, &tmp->list);
1953 		}
1954 
1955 		/* Remember mapping split at the end */
1956 		if (tmp->last > eaddr) {
1957 			after->start = eaddr + 1;
1958 			after->last = tmp->last;
1959 			after->offset = tmp->offset;
1960 			after->offset += after->start - tmp->start;
1961 			after->flags = tmp->flags;
1962 			list_add(&after->list, &tmp->list);
1963 		}
1964 
1965 		list_del(&tmp->list);
1966 		list_add(&tmp->list, &removed);
1967 
1968 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1969 	}
1970 
1971 	/* And free them up */
1972 	list_for_each_entry_safe(tmp, next, &removed, list) {
1973 		amdgpu_vm_it_remove(tmp, &vm->va);
1974 		list_del(&tmp->list);
1975 
1976 		if (tmp->start < saddr)
1977 		    tmp->start = saddr;
1978 		if (tmp->last > eaddr)
1979 		    tmp->last = eaddr;
1980 
1981 		list_add(&tmp->list, &vm->freed);
1982 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1983 	}
1984 
1985 	/* Insert partial mapping before the range */
1986 	if (!list_empty(&before->list)) {
1987 		amdgpu_vm_it_insert(before, &vm->va);
1988 		if (before->flags & AMDGPU_PTE_PRT)
1989 			amdgpu_vm_prt_get(adev);
1990 	} else {
1991 		kfree(before);
1992 	}
1993 
1994 	/* Insert partial mapping after the range */
1995 	if (!list_empty(&after->list)) {
1996 		amdgpu_vm_it_insert(after, &vm->va);
1997 		if (after->flags & AMDGPU_PTE_PRT)
1998 			amdgpu_vm_prt_get(adev);
1999 	} else {
2000 		kfree(after);
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 /**
2007  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2008  *
2009  * @adev: amdgpu_device pointer
2010  * @bo_va: requested bo_va
2011  *
2012  * Remove @bo_va->bo from the requested vm.
2013  *
2014  * Object have to be reserved!
2015  */
2016 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2017 		      struct amdgpu_bo_va *bo_va)
2018 {
2019 	struct amdgpu_bo_va_mapping *mapping, *next;
2020 	struct amdgpu_vm *vm = bo_va->vm;
2021 
2022 	list_del(&bo_va->bo_list);
2023 
2024 	spin_lock(&vm->status_lock);
2025 	list_del(&bo_va->vm_status);
2026 	spin_unlock(&vm->status_lock);
2027 
2028 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2029 		list_del(&mapping->list);
2030 		amdgpu_vm_it_remove(mapping, &vm->va);
2031 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2032 		list_add(&mapping->list, &vm->freed);
2033 	}
2034 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2035 		list_del(&mapping->list);
2036 		amdgpu_vm_it_remove(mapping, &vm->va);
2037 		amdgpu_vm_free_mapping(adev, vm, mapping,
2038 				       bo_va->last_pt_update);
2039 	}
2040 
2041 	dma_fence_put(bo_va->last_pt_update);
2042 	kfree(bo_va);
2043 }
2044 
2045 /**
2046  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2047  *
2048  * @adev: amdgpu_device pointer
2049  * @vm: requested vm
2050  * @bo: amdgpu buffer object
2051  *
2052  * Mark @bo as invalid.
2053  */
2054 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2055 			     struct amdgpu_bo *bo)
2056 {
2057 	struct amdgpu_bo_va *bo_va;
2058 
2059 	list_for_each_entry(bo_va, &bo->va, bo_list) {
2060 		spin_lock(&bo_va->vm->status_lock);
2061 		if (list_empty(&bo_va->vm_status))
2062 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
2063 		spin_unlock(&bo_va->vm->status_lock);
2064 	}
2065 }
2066 
2067 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2068 {
2069 	/* Total bits covered by PD + PTs */
2070 	unsigned bits = ilog2(vm_size) + 18;
2071 
2072 	/* Make sure the PD is 4K in size up to 8GB address space.
2073 	   Above that split equal between PD and PTs */
2074 	if (vm_size <= 8)
2075 		return (bits - 9);
2076 	else
2077 		return ((bits + 3) / 2);
2078 }
2079 
2080 /**
2081  * amdgpu_vm_adjust_size - adjust vm size and block size
2082  *
2083  * @adev: amdgpu_device pointer
2084  * @vm_size: the default vm size if it's set auto
2085  */
2086 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size)
2087 {
2088 	/* adjust vm size firstly */
2089 	if (amdgpu_vm_size == -1)
2090 		adev->vm_manager.vm_size = vm_size;
2091 	else
2092 		adev->vm_manager.vm_size = amdgpu_vm_size;
2093 
2094 	/* block size depends on vm size */
2095 	if (amdgpu_vm_block_size == -1)
2096 		adev->vm_manager.block_size =
2097 			amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2098 	else
2099 		adev->vm_manager.block_size = amdgpu_vm_block_size;
2100 
2101 	DRM_INFO("vm size is %llu GB, block size is %u-bit\n",
2102 		adev->vm_manager.vm_size, adev->vm_manager.block_size);
2103 }
2104 
2105 /**
2106  * amdgpu_vm_init - initialize a vm instance
2107  *
2108  * @adev: amdgpu_device pointer
2109  * @vm: requested vm
2110  *
2111  * Init @vm fields.
2112  */
2113 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2114 {
2115 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2116 		AMDGPU_VM_PTE_COUNT(adev) * 8);
2117 	unsigned ring_instance;
2118 	struct amdgpu_ring *ring;
2119 	struct amd_sched_rq *rq;
2120 	int i, r;
2121 
2122 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2123 		vm->ids[i] = NULL;
2124 	vm->va = RB_ROOT;
2125 	vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2126 	spin_lock_init(&vm->status_lock);
2127 	INIT_LIST_HEAD(&vm->invalidated);
2128 	INIT_LIST_HEAD(&vm->cleared);
2129 	INIT_LIST_HEAD(&vm->freed);
2130 
2131 	/* create scheduler entity for page table updates */
2132 
2133 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2134 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
2135 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
2136 	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2137 	r = amd_sched_entity_init(&ring->sched, &vm->entity,
2138 				  rq, amdgpu_sched_jobs);
2139 	if (r)
2140 		return r;
2141 
2142 	vm->last_dir_update = NULL;
2143 
2144 	r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2145 			     AMDGPU_GEM_DOMAIN_VRAM,
2146 			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2147 			     AMDGPU_GEM_CREATE_SHADOW |
2148 			     AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2149 			     AMDGPU_GEM_CREATE_VRAM_CLEARED,
2150 			     NULL, NULL, &vm->root.bo);
2151 	if (r)
2152 		goto error_free_sched_entity;
2153 
2154 	r = amdgpu_bo_reserve(vm->root.bo, false);
2155 	if (r)
2156 		goto error_free_root;
2157 
2158 	vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2159 	amdgpu_bo_unreserve(vm->root.bo);
2160 
2161 	return 0;
2162 
2163 error_free_root:
2164 	amdgpu_bo_unref(&vm->root.bo->shadow);
2165 	amdgpu_bo_unref(&vm->root.bo);
2166 	vm->root.bo = NULL;
2167 
2168 error_free_sched_entity:
2169 	amd_sched_entity_fini(&ring->sched, &vm->entity);
2170 
2171 	return r;
2172 }
2173 
2174 /**
2175  * amdgpu_vm_free_levels - free PD/PT levels
2176  *
2177  * @level: PD/PT starting level to free
2178  *
2179  * Free the page directory or page table level and all sub levels.
2180  */
2181 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2182 {
2183 	unsigned i;
2184 
2185 	if (level->bo) {
2186 		amdgpu_bo_unref(&level->bo->shadow);
2187 		amdgpu_bo_unref(&level->bo);
2188 	}
2189 
2190 	if (level->entries)
2191 		for (i = 0; i <= level->last_entry_used; i++)
2192 			amdgpu_vm_free_levels(&level->entries[i]);
2193 
2194 	drm_free_large(level->entries);
2195 }
2196 
2197 /**
2198  * amdgpu_vm_fini - tear down a vm instance
2199  *
2200  * @adev: amdgpu_device pointer
2201  * @vm: requested vm
2202  *
2203  * Tear down @vm.
2204  * Unbind the VM and remove all bos from the vm bo list
2205  */
2206 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2207 {
2208 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2209 	bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2210 
2211 	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2212 
2213 	if (!RB_EMPTY_ROOT(&vm->va)) {
2214 		dev_err(adev->dev, "still active bo inside vm\n");
2215 	}
2216 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
2217 		list_del(&mapping->list);
2218 		amdgpu_vm_it_remove(mapping, &vm->va);
2219 		kfree(mapping);
2220 	}
2221 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2222 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2223 			amdgpu_vm_prt_fini(adev, vm);
2224 			prt_fini_needed = false;
2225 		}
2226 
2227 		list_del(&mapping->list);
2228 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2229 	}
2230 
2231 	amdgpu_vm_free_levels(&vm->root);
2232 	dma_fence_put(vm->last_dir_update);
2233 }
2234 
2235 /**
2236  * amdgpu_vm_manager_init - init the VM manager
2237  *
2238  * @adev: amdgpu_device pointer
2239  *
2240  * Initialize the VM manager structures
2241  */
2242 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2243 {
2244 	unsigned i;
2245 
2246 	INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
2247 
2248 	/* skip over VMID 0, since it is the system VM */
2249 	for (i = 1; i < adev->vm_manager.num_ids; ++i) {
2250 		amdgpu_vm_reset_id(adev, i);
2251 		amdgpu_sync_create(&adev->vm_manager.ids[i].active);
2252 		list_add_tail(&adev->vm_manager.ids[i].list,
2253 			      &adev->vm_manager.ids_lru);
2254 	}
2255 
2256 	adev->vm_manager.fence_context =
2257 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2258 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2259 		adev->vm_manager.seqno[i] = 0;
2260 
2261 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2262 	atomic64_set(&adev->vm_manager.client_counter, 0);
2263 	spin_lock_init(&adev->vm_manager.prt_lock);
2264 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2265 }
2266 
2267 /**
2268  * amdgpu_vm_manager_fini - cleanup VM manager
2269  *
2270  * @adev: amdgpu_device pointer
2271  *
2272  * Cleanup the VM manager and free resources.
2273  */
2274 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2275 {
2276 	unsigned i;
2277 
2278 	for (i = 0; i < AMDGPU_NUM_VM; ++i) {
2279 		struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
2280 
2281 		amdgpu_sync_free(&adev->vm_manager.ids[i].active);
2282 		dma_fence_put(id->flushed_updates);
2283 		dma_fence_put(id->last_flush);
2284 	}
2285 }
2286