1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <drm/drmP.h> 31 #include <drm/amdgpu_drm.h> 32 #include "amdgpu.h" 33 #include "amdgpu_trace.h" 34 35 /* 36 * GPUVM 37 * GPUVM is similar to the legacy gart on older asics, however 38 * rather than there being a single global gart table 39 * for the entire GPU, there are multiple VM page tables active 40 * at any given time. The VM page tables can contain a mix 41 * vram pages and system memory pages and system memory pages 42 * can be mapped as snooped (cached system pages) or unsnooped 43 * (uncached system pages). 44 * Each VM has an ID associated with it and there is a page table 45 * associated with each VMID. When execting a command buffer, 46 * the kernel tells the the ring what VMID to use for that command 47 * buffer. VMIDs are allocated dynamically as commands are submitted. 48 * The userspace drivers maintain their own address space and the kernel 49 * sets up their pages tables accordingly when they submit their 50 * command buffers and a VMID is assigned. 51 * Cayman/Trinity support up to 8 active VMs at any given time; 52 * SI supports 16. 53 */ 54 55 #define START(node) ((node)->start) 56 #define LAST(node) ((node)->last) 57 58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 59 START, LAST, static, amdgpu_vm_it) 60 61 #undef START 62 #undef LAST 63 64 /* Local structure. Encapsulate some VM table update parameters to reduce 65 * the number of function parameters 66 */ 67 struct amdgpu_pte_update_params { 68 /* amdgpu device we do this update for */ 69 struct amdgpu_device *adev; 70 /* optional amdgpu_vm we do this update for */ 71 struct amdgpu_vm *vm; 72 /* address where to copy page table entries from */ 73 uint64_t src; 74 /* indirect buffer to fill with commands */ 75 struct amdgpu_ib *ib; 76 /* Function which actually does the update */ 77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, 78 uint64_t addr, unsigned count, uint32_t incr, 79 uint64_t flags); 80 /* indicate update pt or its shadow */ 81 bool shadow; 82 }; 83 84 /* Helper to disable partial resident texture feature from a fence callback */ 85 struct amdgpu_prt_cb { 86 struct amdgpu_device *adev; 87 struct dma_fence_cb cb; 88 }; 89 90 /** 91 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 92 * 93 * @adev: amdgpu_device pointer 94 * 95 * Calculate the number of entries in a page directory or page table. 96 */ 97 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 98 unsigned level) 99 { 100 if (level == 0) 101 /* For the root directory */ 102 return adev->vm_manager.max_pfn >> 103 (adev->vm_manager.block_size * 104 adev->vm_manager.num_level); 105 else if (level == adev->vm_manager.num_level) 106 /* For the page tables on the leaves */ 107 return AMDGPU_VM_PTE_COUNT(adev); 108 else 109 /* Everything in between */ 110 return 1 << adev->vm_manager.block_size; 111 } 112 113 /** 114 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 115 * 116 * @adev: amdgpu_device pointer 117 * 118 * Calculate the size of the BO for a page directory or page table in bytes. 119 */ 120 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 121 { 122 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 123 } 124 125 /** 126 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 127 * 128 * @vm: vm providing the BOs 129 * @validated: head of validation list 130 * @entry: entry to add 131 * 132 * Add the page directory to the list of BOs to 133 * validate for command submission. 134 */ 135 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 136 struct list_head *validated, 137 struct amdgpu_bo_list_entry *entry) 138 { 139 entry->robj = vm->root.bo; 140 entry->priority = 0; 141 entry->tv.bo = &entry->robj->tbo; 142 entry->tv.shared = true; 143 entry->user_pages = NULL; 144 list_add(&entry->tv.head, validated); 145 } 146 147 /** 148 * amdgpu_vm_validate_layer - validate a single page table level 149 * 150 * @parent: parent page table level 151 * @validate: callback to do the validation 152 * @param: parameter for the validation callback 153 * 154 * Validate the page table BOs on command submission if neccessary. 155 */ 156 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent, 157 int (*validate)(void *, struct amdgpu_bo *), 158 void *param) 159 { 160 unsigned i; 161 int r; 162 163 if (!parent->entries) 164 return 0; 165 166 for (i = 0; i <= parent->last_entry_used; ++i) { 167 struct amdgpu_vm_pt *entry = &parent->entries[i]; 168 169 if (!entry->bo) 170 continue; 171 172 r = validate(param, entry->bo); 173 if (r) 174 return r; 175 176 /* 177 * Recurse into the sub directory. This is harmless because we 178 * have only a maximum of 5 layers. 179 */ 180 r = amdgpu_vm_validate_level(entry, validate, param); 181 if (r) 182 return r; 183 } 184 185 return r; 186 } 187 188 /** 189 * amdgpu_vm_validate_pt_bos - validate the page table BOs 190 * 191 * @adev: amdgpu device pointer 192 * @vm: vm providing the BOs 193 * @validate: callback to do the validation 194 * @param: parameter for the validation callback 195 * 196 * Validate the page table BOs on command submission if neccessary. 197 */ 198 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 199 int (*validate)(void *p, struct amdgpu_bo *bo), 200 void *param) 201 { 202 uint64_t num_evictions; 203 204 /* We only need to validate the page tables 205 * if they aren't already valid. 206 */ 207 num_evictions = atomic64_read(&adev->num_evictions); 208 if (num_evictions == vm->last_eviction_counter) 209 return 0; 210 211 return amdgpu_vm_validate_level(&vm->root, validate, param); 212 } 213 214 /** 215 * amdgpu_vm_move_level_in_lru - move one level of PT BOs to the LRU tail 216 * 217 * @adev: amdgpu device instance 218 * @vm: vm providing the BOs 219 * 220 * Move the PT BOs to the tail of the LRU. 221 */ 222 static void amdgpu_vm_move_level_in_lru(struct amdgpu_vm_pt *parent) 223 { 224 unsigned i; 225 226 if (!parent->entries) 227 return; 228 229 for (i = 0; i <= parent->last_entry_used; ++i) { 230 struct amdgpu_vm_pt *entry = &parent->entries[i]; 231 232 if (!entry->bo) 233 continue; 234 235 ttm_bo_move_to_lru_tail(&entry->bo->tbo); 236 amdgpu_vm_move_level_in_lru(entry); 237 } 238 } 239 240 /** 241 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail 242 * 243 * @adev: amdgpu device instance 244 * @vm: vm providing the BOs 245 * 246 * Move the PT BOs to the tail of the LRU. 247 */ 248 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev, 249 struct amdgpu_vm *vm) 250 { 251 struct ttm_bo_global *glob = adev->mman.bdev.glob; 252 253 spin_lock(&glob->lru_lock); 254 amdgpu_vm_move_level_in_lru(&vm->root); 255 spin_unlock(&glob->lru_lock); 256 } 257 258 /** 259 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 260 * 261 * @adev: amdgpu_device pointer 262 * @vm: requested vm 263 * @saddr: start of the address range 264 * @eaddr: end of the address range 265 * 266 * Make sure the page directories and page tables are allocated 267 */ 268 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 269 struct amdgpu_vm *vm, 270 struct amdgpu_vm_pt *parent, 271 uint64_t saddr, uint64_t eaddr, 272 unsigned level) 273 { 274 unsigned shift = (adev->vm_manager.num_level - level) * 275 adev->vm_manager.block_size; 276 unsigned pt_idx, from, to; 277 int r; 278 279 if (!parent->entries) { 280 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 281 282 parent->entries = drm_calloc_large(num_entries, 283 sizeof(struct amdgpu_vm_pt)); 284 if (!parent->entries) 285 return -ENOMEM; 286 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 287 } 288 289 from = saddr >> shift; 290 to = eaddr >> shift; 291 if (from >= amdgpu_vm_num_entries(adev, level) || 292 to >= amdgpu_vm_num_entries(adev, level)) 293 return -EINVAL; 294 295 if (to > parent->last_entry_used) 296 parent->last_entry_used = to; 297 298 ++level; 299 saddr = saddr & ((1 << shift) - 1); 300 eaddr = eaddr & ((1 << shift) - 1); 301 302 /* walk over the address space and allocate the page tables */ 303 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 304 struct reservation_object *resv = vm->root.bo->tbo.resv; 305 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 306 struct amdgpu_bo *pt; 307 308 if (!entry->bo) { 309 r = amdgpu_bo_create(adev, 310 amdgpu_vm_bo_size(adev, level), 311 AMDGPU_GPU_PAGE_SIZE, true, 312 AMDGPU_GEM_DOMAIN_VRAM, 313 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 314 AMDGPU_GEM_CREATE_SHADOW | 315 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 316 AMDGPU_GEM_CREATE_VRAM_CLEARED, 317 NULL, resv, &pt); 318 if (r) 319 return r; 320 321 /* Keep a reference to the root directory to avoid 322 * freeing them up in the wrong order. 323 */ 324 pt->parent = amdgpu_bo_ref(vm->root.bo); 325 326 entry->bo = pt; 327 entry->addr = 0; 328 } 329 330 if (level < adev->vm_manager.num_level) { 331 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 332 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 333 ((1 << shift) - 1); 334 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 335 sub_eaddr, level); 336 if (r) 337 return r; 338 } 339 } 340 341 return 0; 342 } 343 344 /** 345 * amdgpu_vm_alloc_pts - Allocate page tables. 346 * 347 * @adev: amdgpu_device pointer 348 * @vm: VM to allocate page tables for 349 * @saddr: Start address which needs to be allocated 350 * @size: Size from start address we need. 351 * 352 * Make sure the page tables are allocated. 353 */ 354 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 355 struct amdgpu_vm *vm, 356 uint64_t saddr, uint64_t size) 357 { 358 uint64_t last_pfn; 359 uint64_t eaddr; 360 361 /* validate the parameters */ 362 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 363 return -EINVAL; 364 365 eaddr = saddr + size - 1; 366 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 367 if (last_pfn >= adev->vm_manager.max_pfn) { 368 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 369 last_pfn, adev->vm_manager.max_pfn); 370 return -EINVAL; 371 } 372 373 saddr /= AMDGPU_GPU_PAGE_SIZE; 374 eaddr /= AMDGPU_GPU_PAGE_SIZE; 375 376 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0); 377 } 378 379 /** 380 * amdgpu_vm_had_gpu_reset - check if reset occured since last use 381 * 382 * @adev: amdgpu_device pointer 383 * @id: VMID structure 384 * 385 * Check if GPU reset occured since last use of the VMID. 386 */ 387 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev, 388 struct amdgpu_vm_id *id) 389 { 390 return id->current_gpu_reset_count != 391 atomic_read(&adev->gpu_reset_counter); 392 } 393 394 /** 395 * amdgpu_vm_grab_id - allocate the next free VMID 396 * 397 * @vm: vm to allocate id for 398 * @ring: ring we want to submit job to 399 * @sync: sync object where we add dependencies 400 * @fence: fence protecting ID from reuse 401 * 402 * Allocate an id for the vm, adding fences to the sync obj as necessary. 403 */ 404 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 405 struct amdgpu_sync *sync, struct dma_fence *fence, 406 struct amdgpu_job *job) 407 { 408 struct amdgpu_device *adev = ring->adev; 409 uint64_t fence_context = adev->fence_context + ring->idx; 410 struct dma_fence *updates = sync->last_vm_update; 411 struct amdgpu_vm_id *id, *idle; 412 struct dma_fence **fences; 413 unsigned i; 414 int r = 0; 415 416 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids, 417 GFP_KERNEL); 418 if (!fences) 419 return -ENOMEM; 420 421 mutex_lock(&adev->vm_manager.lock); 422 423 /* Check if we have an idle VMID */ 424 i = 0; 425 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) { 426 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); 427 if (!fences[i]) 428 break; 429 ++i; 430 } 431 432 /* If we can't find a idle VMID to use, wait till one becomes available */ 433 if (&idle->list == &adev->vm_manager.ids_lru) { 434 u64 fence_context = adev->vm_manager.fence_context + ring->idx; 435 unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; 436 struct dma_fence_array *array; 437 unsigned j; 438 439 for (j = 0; j < i; ++j) 440 dma_fence_get(fences[j]); 441 442 array = dma_fence_array_create(i, fences, fence_context, 443 seqno, true); 444 if (!array) { 445 for (j = 0; j < i; ++j) 446 dma_fence_put(fences[j]); 447 kfree(fences); 448 r = -ENOMEM; 449 goto error; 450 } 451 452 453 r = amdgpu_sync_fence(ring->adev, sync, &array->base); 454 dma_fence_put(&array->base); 455 if (r) 456 goto error; 457 458 mutex_unlock(&adev->vm_manager.lock); 459 return 0; 460 461 } 462 kfree(fences); 463 464 job->vm_needs_flush = true; 465 /* Check if we can use a VMID already assigned to this VM */ 466 i = ring->idx; 467 do { 468 struct dma_fence *flushed; 469 470 id = vm->ids[i++]; 471 if (i == AMDGPU_MAX_RINGS) 472 i = 0; 473 474 /* Check all the prerequisites to using this VMID */ 475 if (!id) 476 continue; 477 if (amdgpu_vm_had_gpu_reset(adev, id)) 478 continue; 479 480 if (atomic64_read(&id->owner) != vm->client_id) 481 continue; 482 483 if (job->vm_pd_addr != id->pd_gpu_addr) 484 continue; 485 486 if (!id->last_flush) 487 continue; 488 489 if (id->last_flush->context != fence_context && 490 !dma_fence_is_signaled(id->last_flush)) 491 continue; 492 493 flushed = id->flushed_updates; 494 if (updates && 495 (!flushed || dma_fence_is_later(updates, flushed))) 496 continue; 497 498 /* Good we can use this VMID. Remember this submission as 499 * user of the VMID. 500 */ 501 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 502 if (r) 503 goto error; 504 505 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 506 vm->ids[ring->idx] = id; 507 508 job->vm_id = id - adev->vm_manager.ids; 509 job->vm_needs_flush = false; 510 trace_amdgpu_vm_grab_id(vm, ring->idx, job); 511 512 mutex_unlock(&adev->vm_manager.lock); 513 return 0; 514 515 } while (i != ring->idx); 516 517 /* Still no ID to use? Then use the idle one found earlier */ 518 id = idle; 519 520 /* Remember this submission as user of the VMID */ 521 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 522 if (r) 523 goto error; 524 525 dma_fence_put(id->last_flush); 526 id->last_flush = NULL; 527 528 dma_fence_put(id->flushed_updates); 529 id->flushed_updates = dma_fence_get(updates); 530 531 id->pd_gpu_addr = job->vm_pd_addr; 532 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 533 list_move_tail(&id->list, &adev->vm_manager.ids_lru); 534 atomic64_set(&id->owner, vm->client_id); 535 vm->ids[ring->idx] = id; 536 537 job->vm_id = id - adev->vm_manager.ids; 538 trace_amdgpu_vm_grab_id(vm, ring->idx, job); 539 540 error: 541 mutex_unlock(&adev->vm_manager.lock); 542 return r; 543 } 544 545 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring) 546 { 547 struct amdgpu_device *adev = ring->adev; 548 const struct amdgpu_ip_block *ip_block; 549 550 if (ring->funcs->type != AMDGPU_RING_TYPE_COMPUTE) 551 /* only compute rings */ 552 return false; 553 554 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 555 if (!ip_block) 556 return false; 557 558 if (ip_block->version->major <= 7) { 559 /* gfx7 has no workaround */ 560 return true; 561 } else if (ip_block->version->major == 8) { 562 if (adev->gfx.mec_fw_version >= 673) 563 /* gfx8 is fixed in MEC firmware 673 */ 564 return false; 565 else 566 return true; 567 } 568 return false; 569 } 570 571 static u64 amdgpu_vm_adjust_mc_addr(struct amdgpu_device *adev, u64 mc_addr) 572 { 573 u64 addr = mc_addr; 574 575 if (adev->gart.gart_funcs->adjust_mc_addr) 576 addr = adev->gart.gart_funcs->adjust_mc_addr(adev, addr); 577 578 return addr; 579 } 580 581 /** 582 * amdgpu_vm_flush - hardware flush the vm 583 * 584 * @ring: ring to use for flush 585 * @vm_id: vmid number to use 586 * @pd_addr: address of the page directory 587 * 588 * Emit a VM flush when it is necessary. 589 */ 590 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job) 591 { 592 struct amdgpu_device *adev = ring->adev; 593 struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id]; 594 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 595 id->gds_base != job->gds_base || 596 id->gds_size != job->gds_size || 597 id->gws_base != job->gws_base || 598 id->gws_size != job->gws_size || 599 id->oa_base != job->oa_base || 600 id->oa_size != job->oa_size); 601 bool vm_flush_needed = job->vm_needs_flush || 602 amdgpu_vm_ring_has_compute_vm_bug(ring); 603 unsigned patch_offset = 0; 604 int r; 605 606 if (amdgpu_vm_had_gpu_reset(adev, id)) { 607 gds_switch_needed = true; 608 vm_flush_needed = true; 609 } 610 611 if (!vm_flush_needed && !gds_switch_needed) 612 return 0; 613 614 if (ring->funcs->init_cond_exec) 615 patch_offset = amdgpu_ring_init_cond_exec(ring); 616 617 if (ring->funcs->emit_pipeline_sync) 618 amdgpu_ring_emit_pipeline_sync(ring); 619 620 if (ring->funcs->emit_vm_flush && vm_flush_needed) { 621 u64 pd_addr = amdgpu_vm_adjust_mc_addr(adev, job->vm_pd_addr); 622 struct dma_fence *fence; 623 624 trace_amdgpu_vm_flush(pd_addr, ring->idx, job->vm_id); 625 amdgpu_ring_emit_vm_flush(ring, job->vm_id, pd_addr); 626 627 r = amdgpu_fence_emit(ring, &fence); 628 if (r) 629 return r; 630 631 mutex_lock(&adev->vm_manager.lock); 632 dma_fence_put(id->last_flush); 633 id->last_flush = fence; 634 mutex_unlock(&adev->vm_manager.lock); 635 } 636 637 if (gds_switch_needed) { 638 id->gds_base = job->gds_base; 639 id->gds_size = job->gds_size; 640 id->gws_base = job->gws_base; 641 id->gws_size = job->gws_size; 642 id->oa_base = job->oa_base; 643 id->oa_size = job->oa_size; 644 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base, 645 job->gds_size, job->gws_base, 646 job->gws_size, job->oa_base, 647 job->oa_size); 648 } 649 650 if (ring->funcs->patch_cond_exec) 651 amdgpu_ring_patch_cond_exec(ring, patch_offset); 652 653 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 654 if (ring->funcs->emit_switch_buffer) { 655 amdgpu_ring_emit_switch_buffer(ring); 656 amdgpu_ring_emit_switch_buffer(ring); 657 } 658 return 0; 659 } 660 661 /** 662 * amdgpu_vm_reset_id - reset VMID to zero 663 * 664 * @adev: amdgpu device structure 665 * @vm_id: vmid number to use 666 * 667 * Reset saved GDW, GWS and OA to force switch on next flush. 668 */ 669 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id) 670 { 671 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id]; 672 673 id->gds_base = 0; 674 id->gds_size = 0; 675 id->gws_base = 0; 676 id->gws_size = 0; 677 id->oa_base = 0; 678 id->oa_size = 0; 679 } 680 681 /** 682 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 683 * 684 * @vm: requested vm 685 * @bo: requested buffer object 686 * 687 * Find @bo inside the requested vm. 688 * Search inside the @bos vm list for the requested vm 689 * Returns the found bo_va or NULL if none is found 690 * 691 * Object has to be reserved! 692 */ 693 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 694 struct amdgpu_bo *bo) 695 { 696 struct amdgpu_bo_va *bo_va; 697 698 list_for_each_entry(bo_va, &bo->va, bo_list) { 699 if (bo_va->vm == vm) { 700 return bo_va; 701 } 702 } 703 return NULL; 704 } 705 706 /** 707 * amdgpu_vm_do_set_ptes - helper to call the right asic function 708 * 709 * @params: see amdgpu_pte_update_params definition 710 * @pe: addr of the page entry 711 * @addr: dst addr to write into pe 712 * @count: number of page entries to update 713 * @incr: increase next addr by incr bytes 714 * @flags: hw access flags 715 * 716 * Traces the parameters and calls the right asic functions 717 * to setup the page table using the DMA. 718 */ 719 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 720 uint64_t pe, uint64_t addr, 721 unsigned count, uint32_t incr, 722 uint64_t flags) 723 { 724 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 725 726 if (count < 3) { 727 amdgpu_vm_write_pte(params->adev, params->ib, pe, 728 addr | flags, count, incr); 729 730 } else { 731 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 732 count, incr, flags); 733 } 734 } 735 736 /** 737 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 738 * 739 * @params: see amdgpu_pte_update_params definition 740 * @pe: addr of the page entry 741 * @addr: dst addr to write into pe 742 * @count: number of page entries to update 743 * @incr: increase next addr by incr bytes 744 * @flags: hw access flags 745 * 746 * Traces the parameters and calls the DMA function to copy the PTEs. 747 */ 748 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 749 uint64_t pe, uint64_t addr, 750 unsigned count, uint32_t incr, 751 uint64_t flags) 752 { 753 uint64_t src = (params->src + (addr >> 12) * 8); 754 755 756 trace_amdgpu_vm_copy_ptes(pe, src, count); 757 758 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 759 } 760 761 /** 762 * amdgpu_vm_map_gart - Resolve gart mapping of addr 763 * 764 * @pages_addr: optional DMA address to use for lookup 765 * @addr: the unmapped addr 766 * 767 * Look up the physical address of the page that the pte resolves 768 * to and return the pointer for the page table entry. 769 */ 770 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 771 { 772 uint64_t result; 773 774 /* page table offset */ 775 result = pages_addr[addr >> PAGE_SHIFT]; 776 777 /* in case cpu page size != gpu page size*/ 778 result |= addr & (~PAGE_MASK); 779 780 result &= 0xFFFFFFFFFFFFF000ULL; 781 782 return result; 783 } 784 785 /* 786 * amdgpu_vm_update_level - update a single level in the hierarchy 787 * 788 * @adev: amdgpu_device pointer 789 * @vm: requested vm 790 * @parent: parent directory 791 * 792 * Makes sure all entries in @parent are up to date. 793 * Returns 0 for success, error for failure. 794 */ 795 static int amdgpu_vm_update_level(struct amdgpu_device *adev, 796 struct amdgpu_vm *vm, 797 struct amdgpu_vm_pt *parent, 798 unsigned level) 799 { 800 struct amdgpu_bo *shadow; 801 struct amdgpu_ring *ring; 802 uint64_t pd_addr, shadow_addr; 803 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1); 804 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0; 805 unsigned count = 0, pt_idx, ndw; 806 struct amdgpu_job *job; 807 struct amdgpu_pte_update_params params; 808 struct dma_fence *fence = NULL; 809 810 int r; 811 812 if (!parent->entries) 813 return 0; 814 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 815 816 /* padding, etc. */ 817 ndw = 64; 818 819 /* assume the worst case */ 820 ndw += parent->last_entry_used * 6; 821 822 pd_addr = amdgpu_bo_gpu_offset(parent->bo); 823 824 shadow = parent->bo->shadow; 825 if (shadow) { 826 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem); 827 if (r) 828 return r; 829 shadow_addr = amdgpu_bo_gpu_offset(shadow); 830 ndw *= 2; 831 } else { 832 shadow_addr = 0; 833 } 834 835 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 836 if (r) 837 return r; 838 839 memset(¶ms, 0, sizeof(params)); 840 params.adev = adev; 841 params.ib = &job->ibs[0]; 842 843 /* walk over the address space and update the directory */ 844 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 845 struct amdgpu_bo *bo = parent->entries[pt_idx].bo; 846 uint64_t pde, pt; 847 848 if (bo == NULL) 849 continue; 850 851 if (bo->shadow) { 852 struct amdgpu_bo *pt_shadow = bo->shadow; 853 854 r = amdgpu_ttm_bind(&pt_shadow->tbo, 855 &pt_shadow->tbo.mem); 856 if (r) 857 return r; 858 } 859 860 pt = amdgpu_bo_gpu_offset(bo); 861 if (parent->entries[pt_idx].addr == pt) 862 continue; 863 864 parent->entries[pt_idx].addr = pt; 865 866 pde = pd_addr + pt_idx * 8; 867 if (((last_pde + 8 * count) != pde) || 868 ((last_pt + incr * count) != pt) || 869 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { 870 871 if (count) { 872 uint64_t pt_addr = 873 amdgpu_vm_adjust_mc_addr(adev, last_pt); 874 875 if (shadow) 876 amdgpu_vm_do_set_ptes(¶ms, 877 last_shadow, 878 pt_addr, count, 879 incr, 880 AMDGPU_PTE_VALID); 881 882 amdgpu_vm_do_set_ptes(¶ms, last_pde, 883 pt_addr, count, incr, 884 AMDGPU_PTE_VALID); 885 } 886 887 count = 1; 888 last_pde = pde; 889 last_shadow = shadow_addr + pt_idx * 8; 890 last_pt = pt; 891 } else { 892 ++count; 893 } 894 } 895 896 if (count) { 897 uint64_t pt_addr = amdgpu_vm_adjust_mc_addr(adev, last_pt); 898 899 if (vm->root.bo->shadow) 900 amdgpu_vm_do_set_ptes(¶ms, last_shadow, pt_addr, 901 count, incr, AMDGPU_PTE_VALID); 902 903 amdgpu_vm_do_set_ptes(¶ms, last_pde, pt_addr, 904 count, incr, AMDGPU_PTE_VALID); 905 } 906 907 if (params.ib->length_dw == 0) { 908 amdgpu_job_free(job); 909 } else { 910 amdgpu_ring_pad_ib(ring, params.ib); 911 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv, 912 AMDGPU_FENCE_OWNER_VM); 913 if (shadow) 914 amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv, 915 AMDGPU_FENCE_OWNER_VM); 916 917 WARN_ON(params.ib->length_dw > ndw); 918 r = amdgpu_job_submit(job, ring, &vm->entity, 919 AMDGPU_FENCE_OWNER_VM, &fence); 920 if (r) 921 goto error_free; 922 923 amdgpu_bo_fence(parent->bo, fence, true); 924 dma_fence_put(vm->last_dir_update); 925 vm->last_dir_update = dma_fence_get(fence); 926 dma_fence_put(fence); 927 } 928 /* 929 * Recurse into the subdirectories. This recursion is harmless because 930 * we only have a maximum of 5 layers. 931 */ 932 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 933 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 934 935 if (!entry->bo) 936 continue; 937 938 r = amdgpu_vm_update_level(adev, vm, entry, level + 1); 939 if (r) 940 return r; 941 } 942 943 return 0; 944 945 error_free: 946 amdgpu_job_free(job); 947 return r; 948 } 949 950 /* 951 * amdgpu_vm_update_directories - make sure that all directories are valid 952 * 953 * @adev: amdgpu_device pointer 954 * @vm: requested vm 955 * 956 * Makes sure all directories are up to date. 957 * Returns 0 for success, error for failure. 958 */ 959 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 960 struct amdgpu_vm *vm) 961 { 962 return amdgpu_vm_update_level(adev, vm, &vm->root, 0); 963 } 964 965 /** 966 * amdgpu_vm_find_pt - find the page table for an address 967 * 968 * @p: see amdgpu_pte_update_params definition 969 * @addr: virtual address in question 970 * 971 * Find the page table BO for a virtual address, return NULL when none found. 972 */ 973 static struct amdgpu_bo *amdgpu_vm_get_pt(struct amdgpu_pte_update_params *p, 974 uint64_t addr) 975 { 976 struct amdgpu_vm_pt *entry = &p->vm->root; 977 unsigned idx, level = p->adev->vm_manager.num_level; 978 979 while (entry->entries) { 980 idx = addr >> (p->adev->vm_manager.block_size * level--); 981 idx %= amdgpu_bo_size(entry->bo) / 8; 982 entry = &entry->entries[idx]; 983 } 984 985 if (level) 986 return NULL; 987 988 return entry->bo; 989 } 990 991 /** 992 * amdgpu_vm_update_ptes - make sure that page tables are valid 993 * 994 * @params: see amdgpu_pte_update_params definition 995 * @vm: requested vm 996 * @start: start of GPU address range 997 * @end: end of GPU address range 998 * @dst: destination address to map to, the next dst inside the function 999 * @flags: mapping flags 1000 * 1001 * Update the page tables in the range @start - @end. 1002 */ 1003 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1004 uint64_t start, uint64_t end, 1005 uint64_t dst, uint64_t flags) 1006 { 1007 struct amdgpu_device *adev = params->adev; 1008 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1009 1010 uint64_t cur_pe_start, cur_nptes, cur_dst; 1011 uint64_t addr; /* next GPU address to be updated */ 1012 struct amdgpu_bo *pt; 1013 unsigned nptes; /* next number of ptes to be updated */ 1014 uint64_t next_pe_start; 1015 1016 /* initialize the variables */ 1017 addr = start; 1018 pt = amdgpu_vm_get_pt(params, addr); 1019 if (!pt) { 1020 pr_err("PT not found, aborting update_ptes\n"); 1021 return; 1022 } 1023 1024 if (params->shadow) { 1025 if (!pt->shadow) 1026 return; 1027 pt = pt->shadow; 1028 } 1029 if ((addr & ~mask) == (end & ~mask)) 1030 nptes = end - addr; 1031 else 1032 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1033 1034 cur_pe_start = amdgpu_bo_gpu_offset(pt); 1035 cur_pe_start += (addr & mask) * 8; 1036 cur_nptes = nptes; 1037 cur_dst = dst; 1038 1039 /* for next ptb*/ 1040 addr += nptes; 1041 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 1042 1043 /* walk over the address space and update the page tables */ 1044 while (addr < end) { 1045 pt = amdgpu_vm_get_pt(params, addr); 1046 if (!pt) { 1047 pr_err("PT not found, aborting update_ptes\n"); 1048 return; 1049 } 1050 1051 if (params->shadow) { 1052 if (!pt->shadow) 1053 return; 1054 pt = pt->shadow; 1055 } 1056 1057 if ((addr & ~mask) == (end & ~mask)) 1058 nptes = end - addr; 1059 else 1060 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1061 1062 next_pe_start = amdgpu_bo_gpu_offset(pt); 1063 next_pe_start += (addr & mask) * 8; 1064 1065 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start && 1066 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) { 1067 /* The next ptb is consecutive to current ptb. 1068 * Don't call the update function now. 1069 * Will update two ptbs together in future. 1070 */ 1071 cur_nptes += nptes; 1072 } else { 1073 params->func(params, cur_pe_start, cur_dst, cur_nptes, 1074 AMDGPU_GPU_PAGE_SIZE, flags); 1075 1076 cur_pe_start = next_pe_start; 1077 cur_nptes = nptes; 1078 cur_dst = dst; 1079 } 1080 1081 /* for next ptb*/ 1082 addr += nptes; 1083 dst += nptes * AMDGPU_GPU_PAGE_SIZE; 1084 } 1085 1086 params->func(params, cur_pe_start, cur_dst, cur_nptes, 1087 AMDGPU_GPU_PAGE_SIZE, flags); 1088 } 1089 1090 /* 1091 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1092 * 1093 * @params: see amdgpu_pte_update_params definition 1094 * @vm: requested vm 1095 * @start: first PTE to handle 1096 * @end: last PTE to handle 1097 * @dst: addr those PTEs should point to 1098 * @flags: hw mapping flags 1099 */ 1100 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1101 uint64_t start, uint64_t end, 1102 uint64_t dst, uint64_t flags) 1103 { 1104 /** 1105 * The MC L1 TLB supports variable sized pages, based on a fragment 1106 * field in the PTE. When this field is set to a non-zero value, page 1107 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1108 * flags are considered valid for all PTEs within the fragment range 1109 * and corresponding mappings are assumed to be physically contiguous. 1110 * 1111 * The L1 TLB can store a single PTE for the whole fragment, 1112 * significantly increasing the space available for translation 1113 * caching. This leads to large improvements in throughput when the 1114 * TLB is under pressure. 1115 * 1116 * The L2 TLB distributes small and large fragments into two 1117 * asymmetric partitions. The large fragment cache is significantly 1118 * larger. Thus, we try to use large fragments wherever possible. 1119 * Userspace can support this by aligning virtual base address and 1120 * allocation size to the fragment size. 1121 */ 1122 1123 /* SI and newer are optimized for 64KB */ 1124 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG); 1125 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG; 1126 1127 uint64_t frag_start = ALIGN(start, frag_align); 1128 uint64_t frag_end = end & ~(frag_align - 1); 1129 1130 /* system pages are non continuously */ 1131 if (params->src || !(flags & AMDGPU_PTE_VALID) || 1132 (frag_start >= frag_end)) { 1133 1134 amdgpu_vm_update_ptes(params, start, end, dst, flags); 1135 return; 1136 } 1137 1138 /* handle the 4K area at the beginning */ 1139 if (start != frag_start) { 1140 amdgpu_vm_update_ptes(params, start, frag_start, 1141 dst, flags); 1142 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE; 1143 } 1144 1145 /* handle the area in the middle */ 1146 amdgpu_vm_update_ptes(params, frag_start, frag_end, dst, 1147 flags | frag_flags); 1148 1149 /* handle the 4K area at the end */ 1150 if (frag_end != end) { 1151 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE; 1152 amdgpu_vm_update_ptes(params, frag_end, end, dst, flags); 1153 } 1154 } 1155 1156 /** 1157 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1158 * 1159 * @adev: amdgpu_device pointer 1160 * @exclusive: fence we need to sync to 1161 * @src: address where to copy page table entries from 1162 * @pages_addr: DMA addresses to use for mapping 1163 * @vm: requested vm 1164 * @start: start of mapped range 1165 * @last: last mapped entry 1166 * @flags: flags for the entries 1167 * @addr: addr to set the area to 1168 * @fence: optional resulting fence 1169 * 1170 * Fill in the page table entries between @start and @last. 1171 * Returns 0 for success, -EINVAL for failure. 1172 */ 1173 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1174 struct dma_fence *exclusive, 1175 uint64_t src, 1176 dma_addr_t *pages_addr, 1177 struct amdgpu_vm *vm, 1178 uint64_t start, uint64_t last, 1179 uint64_t flags, uint64_t addr, 1180 struct dma_fence **fence) 1181 { 1182 struct amdgpu_ring *ring; 1183 void *owner = AMDGPU_FENCE_OWNER_VM; 1184 unsigned nptes, ncmds, ndw; 1185 struct amdgpu_job *job; 1186 struct amdgpu_pte_update_params params; 1187 struct dma_fence *f = NULL; 1188 int r; 1189 1190 memset(¶ms, 0, sizeof(params)); 1191 params.adev = adev; 1192 params.vm = vm; 1193 params.src = src; 1194 1195 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1196 1197 /* sync to everything on unmapping */ 1198 if (!(flags & AMDGPU_PTE_VALID)) 1199 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1200 1201 nptes = last - start + 1; 1202 1203 /* 1204 * reserve space for one command every (1 << BLOCK_SIZE) 1205 * entries or 2k dwords (whatever is smaller) 1206 */ 1207 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1; 1208 1209 /* padding, etc. */ 1210 ndw = 64; 1211 1212 if (src) { 1213 /* only copy commands needed */ 1214 ndw += ncmds * 7; 1215 1216 params.func = amdgpu_vm_do_copy_ptes; 1217 1218 } else if (pages_addr) { 1219 /* copy commands needed */ 1220 ndw += ncmds * 7; 1221 1222 /* and also PTEs */ 1223 ndw += nptes * 2; 1224 1225 params.func = amdgpu_vm_do_copy_ptes; 1226 1227 } else { 1228 /* set page commands needed */ 1229 ndw += ncmds * 10; 1230 1231 /* two extra commands for begin/end of fragment */ 1232 ndw += 2 * 10; 1233 1234 params.func = amdgpu_vm_do_set_ptes; 1235 } 1236 1237 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1238 if (r) 1239 return r; 1240 1241 params.ib = &job->ibs[0]; 1242 1243 if (!src && pages_addr) { 1244 uint64_t *pte; 1245 unsigned i; 1246 1247 /* Put the PTEs at the end of the IB. */ 1248 i = ndw - nptes * 2; 1249 pte= (uint64_t *)&(job->ibs->ptr[i]); 1250 params.src = job->ibs->gpu_addr + i * 4; 1251 1252 for (i = 0; i < nptes; ++i) { 1253 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1254 AMDGPU_GPU_PAGE_SIZE); 1255 pte[i] |= flags; 1256 } 1257 addr = 0; 1258 } 1259 1260 r = amdgpu_sync_fence(adev, &job->sync, exclusive); 1261 if (r) 1262 goto error_free; 1263 1264 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv, 1265 owner); 1266 if (r) 1267 goto error_free; 1268 1269 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv); 1270 if (r) 1271 goto error_free; 1272 1273 params.shadow = true; 1274 amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1275 params.shadow = false; 1276 amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1277 1278 amdgpu_ring_pad_ib(ring, params.ib); 1279 WARN_ON(params.ib->length_dw > ndw); 1280 r = amdgpu_job_submit(job, ring, &vm->entity, 1281 AMDGPU_FENCE_OWNER_VM, &f); 1282 if (r) 1283 goto error_free; 1284 1285 amdgpu_bo_fence(vm->root.bo, f, true); 1286 dma_fence_put(*fence); 1287 *fence = f; 1288 return 0; 1289 1290 error_free: 1291 amdgpu_job_free(job); 1292 return r; 1293 } 1294 1295 /** 1296 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1297 * 1298 * @adev: amdgpu_device pointer 1299 * @exclusive: fence we need to sync to 1300 * @gtt_flags: flags as they are used for GTT 1301 * @pages_addr: DMA addresses to use for mapping 1302 * @vm: requested vm 1303 * @mapping: mapped range and flags to use for the update 1304 * @flags: HW flags for the mapping 1305 * @nodes: array of drm_mm_nodes with the MC addresses 1306 * @fence: optional resulting fence 1307 * 1308 * Split the mapping into smaller chunks so that each update fits 1309 * into a SDMA IB. 1310 * Returns 0 for success, -EINVAL for failure. 1311 */ 1312 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1313 struct dma_fence *exclusive, 1314 uint64_t gtt_flags, 1315 dma_addr_t *pages_addr, 1316 struct amdgpu_vm *vm, 1317 struct amdgpu_bo_va_mapping *mapping, 1318 uint64_t flags, 1319 struct drm_mm_node *nodes, 1320 struct dma_fence **fence) 1321 { 1322 uint64_t pfn, src = 0, start = mapping->start; 1323 int r; 1324 1325 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1326 * but in case of something, we filter the flags in first place 1327 */ 1328 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1329 flags &= ~AMDGPU_PTE_READABLE; 1330 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1331 flags &= ~AMDGPU_PTE_WRITEABLE; 1332 1333 flags &= ~AMDGPU_PTE_EXECUTABLE; 1334 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1335 1336 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1337 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1338 1339 trace_amdgpu_vm_bo_update(mapping); 1340 1341 pfn = mapping->offset >> PAGE_SHIFT; 1342 if (nodes) { 1343 while (pfn >= nodes->size) { 1344 pfn -= nodes->size; 1345 ++nodes; 1346 } 1347 } 1348 1349 do { 1350 uint64_t max_entries; 1351 uint64_t addr, last; 1352 1353 if (nodes) { 1354 addr = nodes->start << PAGE_SHIFT; 1355 max_entries = (nodes->size - pfn) * 1356 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1357 } else { 1358 addr = 0; 1359 max_entries = S64_MAX; 1360 } 1361 1362 if (pages_addr) { 1363 if (flags == gtt_flags) 1364 src = adev->gart.table_addr + 1365 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8; 1366 else 1367 max_entries = min(max_entries, 16ull * 1024ull); 1368 addr = 0; 1369 } else if (flags & AMDGPU_PTE_VALID) { 1370 addr += adev->vm_manager.vram_base_offset; 1371 } 1372 addr += pfn << PAGE_SHIFT; 1373 1374 last = min((uint64_t)mapping->last, start + max_entries - 1); 1375 r = amdgpu_vm_bo_update_mapping(adev, exclusive, 1376 src, pages_addr, vm, 1377 start, last, flags, addr, 1378 fence); 1379 if (r) 1380 return r; 1381 1382 pfn += last - start + 1; 1383 if (nodes && nodes->size == pfn) { 1384 pfn = 0; 1385 ++nodes; 1386 } 1387 start = last + 1; 1388 1389 } while (unlikely(start != mapping->last + 1)); 1390 1391 return 0; 1392 } 1393 1394 /** 1395 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1396 * 1397 * @adev: amdgpu_device pointer 1398 * @bo_va: requested BO and VM object 1399 * @clear: if true clear the entries 1400 * 1401 * Fill in the page table entries for @bo_va. 1402 * Returns 0 for success, -EINVAL for failure. 1403 */ 1404 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1405 struct amdgpu_bo_va *bo_va, 1406 bool clear) 1407 { 1408 struct amdgpu_vm *vm = bo_va->vm; 1409 struct amdgpu_bo_va_mapping *mapping; 1410 dma_addr_t *pages_addr = NULL; 1411 uint64_t gtt_flags, flags; 1412 struct ttm_mem_reg *mem; 1413 struct drm_mm_node *nodes; 1414 struct dma_fence *exclusive; 1415 int r; 1416 1417 if (clear || !bo_va->bo) { 1418 mem = NULL; 1419 nodes = NULL; 1420 exclusive = NULL; 1421 } else { 1422 struct ttm_dma_tt *ttm; 1423 1424 mem = &bo_va->bo->tbo.mem; 1425 nodes = mem->mm_node; 1426 if (mem->mem_type == TTM_PL_TT) { 1427 ttm = container_of(bo_va->bo->tbo.ttm, struct 1428 ttm_dma_tt, ttm); 1429 pages_addr = ttm->dma_address; 1430 } 1431 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv); 1432 } 1433 1434 if (bo_va->bo) { 1435 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); 1436 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) && 1437 adev == amdgpu_ttm_adev(bo_va->bo->tbo.bdev)) ? 1438 flags : 0; 1439 } else { 1440 flags = 0x0; 1441 gtt_flags = ~0x0; 1442 } 1443 1444 spin_lock(&vm->status_lock); 1445 if (!list_empty(&bo_va->vm_status)) 1446 list_splice_init(&bo_va->valids, &bo_va->invalids); 1447 spin_unlock(&vm->status_lock); 1448 1449 list_for_each_entry(mapping, &bo_va->invalids, list) { 1450 r = amdgpu_vm_bo_split_mapping(adev, exclusive, 1451 gtt_flags, pages_addr, vm, 1452 mapping, flags, nodes, 1453 &bo_va->last_pt_update); 1454 if (r) 1455 return r; 1456 } 1457 1458 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1459 list_for_each_entry(mapping, &bo_va->valids, list) 1460 trace_amdgpu_vm_bo_mapping(mapping); 1461 1462 list_for_each_entry(mapping, &bo_va->invalids, list) 1463 trace_amdgpu_vm_bo_mapping(mapping); 1464 } 1465 1466 spin_lock(&vm->status_lock); 1467 list_splice_init(&bo_va->invalids, &bo_va->valids); 1468 list_del_init(&bo_va->vm_status); 1469 if (clear) 1470 list_add(&bo_va->vm_status, &vm->cleared); 1471 spin_unlock(&vm->status_lock); 1472 1473 return 0; 1474 } 1475 1476 /** 1477 * amdgpu_vm_update_prt_state - update the global PRT state 1478 */ 1479 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1480 { 1481 unsigned long flags; 1482 bool enable; 1483 1484 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1485 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1486 adev->gart.gart_funcs->set_prt(adev, enable); 1487 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1488 } 1489 1490 /** 1491 * amdgpu_vm_prt_get - add a PRT user 1492 */ 1493 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1494 { 1495 if (!adev->gart.gart_funcs->set_prt) 1496 return; 1497 1498 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1499 amdgpu_vm_update_prt_state(adev); 1500 } 1501 1502 /** 1503 * amdgpu_vm_prt_put - drop a PRT user 1504 */ 1505 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1506 { 1507 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1508 amdgpu_vm_update_prt_state(adev); 1509 } 1510 1511 /** 1512 * amdgpu_vm_prt_cb - callback for updating the PRT status 1513 */ 1514 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1515 { 1516 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1517 1518 amdgpu_vm_prt_put(cb->adev); 1519 kfree(cb); 1520 } 1521 1522 /** 1523 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1524 */ 1525 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1526 struct dma_fence *fence) 1527 { 1528 struct amdgpu_prt_cb *cb; 1529 1530 if (!adev->gart.gart_funcs->set_prt) 1531 return; 1532 1533 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1534 if (!cb) { 1535 /* Last resort when we are OOM */ 1536 if (fence) 1537 dma_fence_wait(fence, false); 1538 1539 amdgpu_vm_prt_put(adev); 1540 } else { 1541 cb->adev = adev; 1542 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1543 amdgpu_vm_prt_cb)) 1544 amdgpu_vm_prt_cb(fence, &cb->cb); 1545 } 1546 } 1547 1548 /** 1549 * amdgpu_vm_free_mapping - free a mapping 1550 * 1551 * @adev: amdgpu_device pointer 1552 * @vm: requested vm 1553 * @mapping: mapping to be freed 1554 * @fence: fence of the unmap operation 1555 * 1556 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1557 */ 1558 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1559 struct amdgpu_vm *vm, 1560 struct amdgpu_bo_va_mapping *mapping, 1561 struct dma_fence *fence) 1562 { 1563 if (mapping->flags & AMDGPU_PTE_PRT) 1564 amdgpu_vm_add_prt_cb(adev, fence); 1565 kfree(mapping); 1566 } 1567 1568 /** 1569 * amdgpu_vm_prt_fini - finish all prt mappings 1570 * 1571 * @adev: amdgpu_device pointer 1572 * @vm: requested vm 1573 * 1574 * Register a cleanup callback to disable PRT support after VM dies. 1575 */ 1576 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1577 { 1578 struct reservation_object *resv = vm->root.bo->tbo.resv; 1579 struct dma_fence *excl, **shared; 1580 unsigned i, shared_count; 1581 int r; 1582 1583 r = reservation_object_get_fences_rcu(resv, &excl, 1584 &shared_count, &shared); 1585 if (r) { 1586 /* Not enough memory to grab the fence list, as last resort 1587 * block for all the fences to complete. 1588 */ 1589 reservation_object_wait_timeout_rcu(resv, true, false, 1590 MAX_SCHEDULE_TIMEOUT); 1591 return; 1592 } 1593 1594 /* Add a callback for each fence in the reservation object */ 1595 amdgpu_vm_prt_get(adev); 1596 amdgpu_vm_add_prt_cb(adev, excl); 1597 1598 for (i = 0; i < shared_count; ++i) { 1599 amdgpu_vm_prt_get(adev); 1600 amdgpu_vm_add_prt_cb(adev, shared[i]); 1601 } 1602 1603 kfree(shared); 1604 } 1605 1606 /** 1607 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1608 * 1609 * @adev: amdgpu_device pointer 1610 * @vm: requested vm 1611 * @fence: optional resulting fence (unchanged if no work needed to be done 1612 * or if an error occurred) 1613 * 1614 * Make sure all freed BOs are cleared in the PT. 1615 * Returns 0 for success. 1616 * 1617 * PTs have to be reserved and mutex must be locked! 1618 */ 1619 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1620 struct amdgpu_vm *vm, 1621 struct dma_fence **fence) 1622 { 1623 struct amdgpu_bo_va_mapping *mapping; 1624 struct dma_fence *f = NULL; 1625 int r; 1626 1627 while (!list_empty(&vm->freed)) { 1628 mapping = list_first_entry(&vm->freed, 1629 struct amdgpu_bo_va_mapping, list); 1630 list_del(&mapping->list); 1631 1632 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping, 1633 0, 0, &f); 1634 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1635 if (r) { 1636 dma_fence_put(f); 1637 return r; 1638 } 1639 } 1640 1641 if (fence && f) { 1642 dma_fence_put(*fence); 1643 *fence = f; 1644 } else { 1645 dma_fence_put(f); 1646 } 1647 1648 return 0; 1649 1650 } 1651 1652 /** 1653 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT 1654 * 1655 * @adev: amdgpu_device pointer 1656 * @vm: requested vm 1657 * 1658 * Make sure all invalidated BOs are cleared in the PT. 1659 * Returns 0 for success. 1660 * 1661 * PTs have to be reserved and mutex must be locked! 1662 */ 1663 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, 1664 struct amdgpu_vm *vm, struct amdgpu_sync *sync) 1665 { 1666 struct amdgpu_bo_va *bo_va = NULL; 1667 int r = 0; 1668 1669 spin_lock(&vm->status_lock); 1670 while (!list_empty(&vm->invalidated)) { 1671 bo_va = list_first_entry(&vm->invalidated, 1672 struct amdgpu_bo_va, vm_status); 1673 spin_unlock(&vm->status_lock); 1674 1675 r = amdgpu_vm_bo_update(adev, bo_va, true); 1676 if (r) 1677 return r; 1678 1679 spin_lock(&vm->status_lock); 1680 } 1681 spin_unlock(&vm->status_lock); 1682 1683 if (bo_va) 1684 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 1685 1686 return r; 1687 } 1688 1689 /** 1690 * amdgpu_vm_bo_add - add a bo to a specific vm 1691 * 1692 * @adev: amdgpu_device pointer 1693 * @vm: requested vm 1694 * @bo: amdgpu buffer object 1695 * 1696 * Add @bo into the requested vm. 1697 * Add @bo to the list of bos associated with the vm 1698 * Returns newly added bo_va or NULL for failure 1699 * 1700 * Object has to be reserved! 1701 */ 1702 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1703 struct amdgpu_vm *vm, 1704 struct amdgpu_bo *bo) 1705 { 1706 struct amdgpu_bo_va *bo_va; 1707 1708 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1709 if (bo_va == NULL) { 1710 return NULL; 1711 } 1712 bo_va->vm = vm; 1713 bo_va->bo = bo; 1714 bo_va->ref_count = 1; 1715 INIT_LIST_HEAD(&bo_va->bo_list); 1716 INIT_LIST_HEAD(&bo_va->valids); 1717 INIT_LIST_HEAD(&bo_va->invalids); 1718 INIT_LIST_HEAD(&bo_va->vm_status); 1719 1720 if (bo) 1721 list_add_tail(&bo_va->bo_list, &bo->va); 1722 1723 return bo_va; 1724 } 1725 1726 /** 1727 * amdgpu_vm_bo_map - map bo inside a vm 1728 * 1729 * @adev: amdgpu_device pointer 1730 * @bo_va: bo_va to store the address 1731 * @saddr: where to map the BO 1732 * @offset: requested offset in the BO 1733 * @flags: attributes of pages (read/write/valid/etc.) 1734 * 1735 * Add a mapping of the BO at the specefied addr into the VM. 1736 * Returns 0 for success, error for failure. 1737 * 1738 * Object has to be reserved and unreserved outside! 1739 */ 1740 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1741 struct amdgpu_bo_va *bo_va, 1742 uint64_t saddr, uint64_t offset, 1743 uint64_t size, uint64_t flags) 1744 { 1745 struct amdgpu_bo_va_mapping *mapping, *tmp; 1746 struct amdgpu_vm *vm = bo_va->vm; 1747 uint64_t eaddr; 1748 1749 /* validate the parameters */ 1750 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1751 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1752 return -EINVAL; 1753 1754 /* make sure object fit at this offset */ 1755 eaddr = saddr + size - 1; 1756 if (saddr >= eaddr || 1757 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 1758 return -EINVAL; 1759 1760 saddr /= AMDGPU_GPU_PAGE_SIZE; 1761 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1762 1763 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1764 if (tmp) { 1765 /* bo and tmp overlap, invalid addr */ 1766 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1767 "0x%010Lx-0x%010Lx\n", bo_va->bo, saddr, eaddr, 1768 tmp->start, tmp->last + 1); 1769 return -EINVAL; 1770 } 1771 1772 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1773 if (!mapping) 1774 return -ENOMEM; 1775 1776 INIT_LIST_HEAD(&mapping->list); 1777 mapping->start = saddr; 1778 mapping->last = eaddr; 1779 mapping->offset = offset; 1780 mapping->flags = flags; 1781 1782 list_add(&mapping->list, &bo_va->invalids); 1783 amdgpu_vm_it_insert(mapping, &vm->va); 1784 1785 if (flags & AMDGPU_PTE_PRT) 1786 amdgpu_vm_prt_get(adev); 1787 1788 return 0; 1789 } 1790 1791 /** 1792 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1793 * 1794 * @adev: amdgpu_device pointer 1795 * @bo_va: bo_va to store the address 1796 * @saddr: where to map the BO 1797 * @offset: requested offset in the BO 1798 * @flags: attributes of pages (read/write/valid/etc.) 1799 * 1800 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1801 * mappings as we do so. 1802 * Returns 0 for success, error for failure. 1803 * 1804 * Object has to be reserved and unreserved outside! 1805 */ 1806 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1807 struct amdgpu_bo_va *bo_va, 1808 uint64_t saddr, uint64_t offset, 1809 uint64_t size, uint64_t flags) 1810 { 1811 struct amdgpu_bo_va_mapping *mapping; 1812 struct amdgpu_vm *vm = bo_va->vm; 1813 uint64_t eaddr; 1814 int r; 1815 1816 /* validate the parameters */ 1817 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1818 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1819 return -EINVAL; 1820 1821 /* make sure object fit at this offset */ 1822 eaddr = saddr + size - 1; 1823 if (saddr >= eaddr || 1824 (bo_va->bo && offset + size > amdgpu_bo_size(bo_va->bo))) 1825 return -EINVAL; 1826 1827 /* Allocate all the needed memory */ 1828 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1829 if (!mapping) 1830 return -ENOMEM; 1831 1832 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->vm, saddr, size); 1833 if (r) { 1834 kfree(mapping); 1835 return r; 1836 } 1837 1838 saddr /= AMDGPU_GPU_PAGE_SIZE; 1839 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1840 1841 mapping->start = saddr; 1842 mapping->last = eaddr; 1843 mapping->offset = offset; 1844 mapping->flags = flags; 1845 1846 list_add(&mapping->list, &bo_va->invalids); 1847 amdgpu_vm_it_insert(mapping, &vm->va); 1848 1849 if (flags & AMDGPU_PTE_PRT) 1850 amdgpu_vm_prt_get(adev); 1851 1852 return 0; 1853 } 1854 1855 /** 1856 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1857 * 1858 * @adev: amdgpu_device pointer 1859 * @bo_va: bo_va to remove the address from 1860 * @saddr: where to the BO is mapped 1861 * 1862 * Remove a mapping of the BO at the specefied addr from the VM. 1863 * Returns 0 for success, error for failure. 1864 * 1865 * Object has to be reserved and unreserved outside! 1866 */ 1867 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1868 struct amdgpu_bo_va *bo_va, 1869 uint64_t saddr) 1870 { 1871 struct amdgpu_bo_va_mapping *mapping; 1872 struct amdgpu_vm *vm = bo_va->vm; 1873 bool valid = true; 1874 1875 saddr /= AMDGPU_GPU_PAGE_SIZE; 1876 1877 list_for_each_entry(mapping, &bo_va->valids, list) { 1878 if (mapping->start == saddr) 1879 break; 1880 } 1881 1882 if (&mapping->list == &bo_va->valids) { 1883 valid = false; 1884 1885 list_for_each_entry(mapping, &bo_va->invalids, list) { 1886 if (mapping->start == saddr) 1887 break; 1888 } 1889 1890 if (&mapping->list == &bo_va->invalids) 1891 return -ENOENT; 1892 } 1893 1894 list_del(&mapping->list); 1895 amdgpu_vm_it_remove(mapping, &vm->va); 1896 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1897 1898 if (valid) 1899 list_add(&mapping->list, &vm->freed); 1900 else 1901 amdgpu_vm_free_mapping(adev, vm, mapping, 1902 bo_va->last_pt_update); 1903 1904 return 0; 1905 } 1906 1907 /** 1908 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1909 * 1910 * @adev: amdgpu_device pointer 1911 * @vm: VM structure to use 1912 * @saddr: start of the range 1913 * @size: size of the range 1914 * 1915 * Remove all mappings in a range, split them as appropriate. 1916 * Returns 0 for success, error for failure. 1917 */ 1918 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1919 struct amdgpu_vm *vm, 1920 uint64_t saddr, uint64_t size) 1921 { 1922 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1923 LIST_HEAD(removed); 1924 uint64_t eaddr; 1925 1926 eaddr = saddr + size - 1; 1927 saddr /= AMDGPU_GPU_PAGE_SIZE; 1928 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1929 1930 /* Allocate all the needed memory */ 1931 before = kzalloc(sizeof(*before), GFP_KERNEL); 1932 if (!before) 1933 return -ENOMEM; 1934 INIT_LIST_HEAD(&before->list); 1935 1936 after = kzalloc(sizeof(*after), GFP_KERNEL); 1937 if (!after) { 1938 kfree(before); 1939 return -ENOMEM; 1940 } 1941 INIT_LIST_HEAD(&after->list); 1942 1943 /* Now gather all removed mappings */ 1944 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1945 while (tmp) { 1946 /* Remember mapping split at the start */ 1947 if (tmp->start < saddr) { 1948 before->start = tmp->start; 1949 before->last = saddr - 1; 1950 before->offset = tmp->offset; 1951 before->flags = tmp->flags; 1952 list_add(&before->list, &tmp->list); 1953 } 1954 1955 /* Remember mapping split at the end */ 1956 if (tmp->last > eaddr) { 1957 after->start = eaddr + 1; 1958 after->last = tmp->last; 1959 after->offset = tmp->offset; 1960 after->offset += after->start - tmp->start; 1961 after->flags = tmp->flags; 1962 list_add(&after->list, &tmp->list); 1963 } 1964 1965 list_del(&tmp->list); 1966 list_add(&tmp->list, &removed); 1967 1968 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1969 } 1970 1971 /* And free them up */ 1972 list_for_each_entry_safe(tmp, next, &removed, list) { 1973 amdgpu_vm_it_remove(tmp, &vm->va); 1974 list_del(&tmp->list); 1975 1976 if (tmp->start < saddr) 1977 tmp->start = saddr; 1978 if (tmp->last > eaddr) 1979 tmp->last = eaddr; 1980 1981 list_add(&tmp->list, &vm->freed); 1982 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1983 } 1984 1985 /* Insert partial mapping before the range */ 1986 if (!list_empty(&before->list)) { 1987 amdgpu_vm_it_insert(before, &vm->va); 1988 if (before->flags & AMDGPU_PTE_PRT) 1989 amdgpu_vm_prt_get(adev); 1990 } else { 1991 kfree(before); 1992 } 1993 1994 /* Insert partial mapping after the range */ 1995 if (!list_empty(&after->list)) { 1996 amdgpu_vm_it_insert(after, &vm->va); 1997 if (after->flags & AMDGPU_PTE_PRT) 1998 amdgpu_vm_prt_get(adev); 1999 } else { 2000 kfree(after); 2001 } 2002 2003 return 0; 2004 } 2005 2006 /** 2007 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2008 * 2009 * @adev: amdgpu_device pointer 2010 * @bo_va: requested bo_va 2011 * 2012 * Remove @bo_va->bo from the requested vm. 2013 * 2014 * Object have to be reserved! 2015 */ 2016 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2017 struct amdgpu_bo_va *bo_va) 2018 { 2019 struct amdgpu_bo_va_mapping *mapping, *next; 2020 struct amdgpu_vm *vm = bo_va->vm; 2021 2022 list_del(&bo_va->bo_list); 2023 2024 spin_lock(&vm->status_lock); 2025 list_del(&bo_va->vm_status); 2026 spin_unlock(&vm->status_lock); 2027 2028 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2029 list_del(&mapping->list); 2030 amdgpu_vm_it_remove(mapping, &vm->va); 2031 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2032 list_add(&mapping->list, &vm->freed); 2033 } 2034 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2035 list_del(&mapping->list); 2036 amdgpu_vm_it_remove(mapping, &vm->va); 2037 amdgpu_vm_free_mapping(adev, vm, mapping, 2038 bo_va->last_pt_update); 2039 } 2040 2041 dma_fence_put(bo_va->last_pt_update); 2042 kfree(bo_va); 2043 } 2044 2045 /** 2046 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2047 * 2048 * @adev: amdgpu_device pointer 2049 * @vm: requested vm 2050 * @bo: amdgpu buffer object 2051 * 2052 * Mark @bo as invalid. 2053 */ 2054 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2055 struct amdgpu_bo *bo) 2056 { 2057 struct amdgpu_bo_va *bo_va; 2058 2059 list_for_each_entry(bo_va, &bo->va, bo_list) { 2060 spin_lock(&bo_va->vm->status_lock); 2061 if (list_empty(&bo_va->vm_status)) 2062 list_add(&bo_va->vm_status, &bo_va->vm->invalidated); 2063 spin_unlock(&bo_va->vm->status_lock); 2064 } 2065 } 2066 2067 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2068 { 2069 /* Total bits covered by PD + PTs */ 2070 unsigned bits = ilog2(vm_size) + 18; 2071 2072 /* Make sure the PD is 4K in size up to 8GB address space. 2073 Above that split equal between PD and PTs */ 2074 if (vm_size <= 8) 2075 return (bits - 9); 2076 else 2077 return ((bits + 3) / 2); 2078 } 2079 2080 /** 2081 * amdgpu_vm_adjust_size - adjust vm size and block size 2082 * 2083 * @adev: amdgpu_device pointer 2084 * @vm_size: the default vm size if it's set auto 2085 */ 2086 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size) 2087 { 2088 /* adjust vm size firstly */ 2089 if (amdgpu_vm_size == -1) 2090 adev->vm_manager.vm_size = vm_size; 2091 else 2092 adev->vm_manager.vm_size = amdgpu_vm_size; 2093 2094 /* block size depends on vm size */ 2095 if (amdgpu_vm_block_size == -1) 2096 adev->vm_manager.block_size = 2097 amdgpu_vm_get_block_size(adev->vm_manager.vm_size); 2098 else 2099 adev->vm_manager.block_size = amdgpu_vm_block_size; 2100 2101 DRM_INFO("vm size is %llu GB, block size is %u-bit\n", 2102 adev->vm_manager.vm_size, adev->vm_manager.block_size); 2103 } 2104 2105 /** 2106 * amdgpu_vm_init - initialize a vm instance 2107 * 2108 * @adev: amdgpu_device pointer 2109 * @vm: requested vm 2110 * 2111 * Init @vm fields. 2112 */ 2113 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2114 { 2115 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2116 AMDGPU_VM_PTE_COUNT(adev) * 8); 2117 unsigned ring_instance; 2118 struct amdgpu_ring *ring; 2119 struct amd_sched_rq *rq; 2120 int i, r; 2121 2122 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2123 vm->ids[i] = NULL; 2124 vm->va = RB_ROOT; 2125 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 2126 spin_lock_init(&vm->status_lock); 2127 INIT_LIST_HEAD(&vm->invalidated); 2128 INIT_LIST_HEAD(&vm->cleared); 2129 INIT_LIST_HEAD(&vm->freed); 2130 2131 /* create scheduler entity for page table updates */ 2132 2133 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2134 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2135 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2136 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 2137 r = amd_sched_entity_init(&ring->sched, &vm->entity, 2138 rq, amdgpu_sched_jobs); 2139 if (r) 2140 return r; 2141 2142 vm->last_dir_update = NULL; 2143 2144 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true, 2145 AMDGPU_GEM_DOMAIN_VRAM, 2146 AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 2147 AMDGPU_GEM_CREATE_SHADOW | 2148 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 2149 AMDGPU_GEM_CREATE_VRAM_CLEARED, 2150 NULL, NULL, &vm->root.bo); 2151 if (r) 2152 goto error_free_sched_entity; 2153 2154 r = amdgpu_bo_reserve(vm->root.bo, false); 2155 if (r) 2156 goto error_free_root; 2157 2158 vm->last_eviction_counter = atomic64_read(&adev->num_evictions); 2159 amdgpu_bo_unreserve(vm->root.bo); 2160 2161 return 0; 2162 2163 error_free_root: 2164 amdgpu_bo_unref(&vm->root.bo->shadow); 2165 amdgpu_bo_unref(&vm->root.bo); 2166 vm->root.bo = NULL; 2167 2168 error_free_sched_entity: 2169 amd_sched_entity_fini(&ring->sched, &vm->entity); 2170 2171 return r; 2172 } 2173 2174 /** 2175 * amdgpu_vm_free_levels - free PD/PT levels 2176 * 2177 * @level: PD/PT starting level to free 2178 * 2179 * Free the page directory or page table level and all sub levels. 2180 */ 2181 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level) 2182 { 2183 unsigned i; 2184 2185 if (level->bo) { 2186 amdgpu_bo_unref(&level->bo->shadow); 2187 amdgpu_bo_unref(&level->bo); 2188 } 2189 2190 if (level->entries) 2191 for (i = 0; i <= level->last_entry_used; i++) 2192 amdgpu_vm_free_levels(&level->entries[i]); 2193 2194 drm_free_large(level->entries); 2195 } 2196 2197 /** 2198 * amdgpu_vm_fini - tear down a vm instance 2199 * 2200 * @adev: amdgpu_device pointer 2201 * @vm: requested vm 2202 * 2203 * Tear down @vm. 2204 * Unbind the VM and remove all bos from the vm bo list 2205 */ 2206 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2207 { 2208 struct amdgpu_bo_va_mapping *mapping, *tmp; 2209 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt; 2210 2211 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 2212 2213 if (!RB_EMPTY_ROOT(&vm->va)) { 2214 dev_err(adev->dev, "still active bo inside vm\n"); 2215 } 2216 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) { 2217 list_del(&mapping->list); 2218 amdgpu_vm_it_remove(mapping, &vm->va); 2219 kfree(mapping); 2220 } 2221 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2222 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2223 amdgpu_vm_prt_fini(adev, vm); 2224 prt_fini_needed = false; 2225 } 2226 2227 list_del(&mapping->list); 2228 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2229 } 2230 2231 amdgpu_vm_free_levels(&vm->root); 2232 dma_fence_put(vm->last_dir_update); 2233 } 2234 2235 /** 2236 * amdgpu_vm_manager_init - init the VM manager 2237 * 2238 * @adev: amdgpu_device pointer 2239 * 2240 * Initialize the VM manager structures 2241 */ 2242 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2243 { 2244 unsigned i; 2245 2246 INIT_LIST_HEAD(&adev->vm_manager.ids_lru); 2247 2248 /* skip over VMID 0, since it is the system VM */ 2249 for (i = 1; i < adev->vm_manager.num_ids; ++i) { 2250 amdgpu_vm_reset_id(adev, i); 2251 amdgpu_sync_create(&adev->vm_manager.ids[i].active); 2252 list_add_tail(&adev->vm_manager.ids[i].list, 2253 &adev->vm_manager.ids_lru); 2254 } 2255 2256 adev->vm_manager.fence_context = 2257 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2258 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2259 adev->vm_manager.seqno[i] = 0; 2260 2261 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2262 atomic64_set(&adev->vm_manager.client_counter, 0); 2263 spin_lock_init(&adev->vm_manager.prt_lock); 2264 atomic_set(&adev->vm_manager.num_prt_users, 0); 2265 } 2266 2267 /** 2268 * amdgpu_vm_manager_fini - cleanup VM manager 2269 * 2270 * @adev: amdgpu_device pointer 2271 * 2272 * Cleanup the VM manager and free resources. 2273 */ 2274 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2275 { 2276 unsigned i; 2277 2278 for (i = 0; i < AMDGPU_NUM_VM; ++i) { 2279 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i]; 2280 2281 amdgpu_sync_free(&adev->vm_manager.ids[i].active); 2282 dma_fence_put(id->flushed_updates); 2283 dma_fence_put(id->last_flush); 2284 } 2285 } 2286