1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When execting a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 70 START, LAST, static, amdgpu_vm_it) 71 72 #undef START 73 #undef LAST 74 75 /** 76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 77 */ 78 struct amdgpu_prt_cb { 79 80 /** 81 * @adev: amdgpu device 82 */ 83 struct amdgpu_device *adev; 84 85 /** 86 * @cb: callback 87 */ 88 struct dma_fence_cb cb; 89 }; 90 91 /* 92 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 93 * happens while holding this lock anywhere to prevent deadlocks when 94 * an MMU notifier runs in reclaim-FS context. 95 */ 96 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 97 { 98 mutex_lock(&vm->eviction_lock); 99 vm->saved_flags = memalloc_noreclaim_save(); 100 } 101 102 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 103 { 104 if (mutex_trylock(&vm->eviction_lock)) { 105 vm->saved_flags = memalloc_noreclaim_save(); 106 return 1; 107 } 108 return 0; 109 } 110 111 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 112 { 113 memalloc_noreclaim_restore(vm->saved_flags); 114 mutex_unlock(&vm->eviction_lock); 115 } 116 117 /** 118 * amdgpu_vm_level_shift - return the addr shift for each level 119 * 120 * @adev: amdgpu_device pointer 121 * @level: VMPT level 122 * 123 * Returns: 124 * The number of bits the pfn needs to be right shifted for a level. 125 */ 126 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 127 unsigned level) 128 { 129 switch (level) { 130 case AMDGPU_VM_PDB2: 131 case AMDGPU_VM_PDB1: 132 case AMDGPU_VM_PDB0: 133 return 9 * (AMDGPU_VM_PDB0 - level) + 134 adev->vm_manager.block_size; 135 case AMDGPU_VM_PTB: 136 return 0; 137 default: 138 return ~0; 139 } 140 } 141 142 /** 143 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 144 * 145 * @adev: amdgpu_device pointer 146 * @level: VMPT level 147 * 148 * Returns: 149 * The number of entries in a page directory or page table. 150 */ 151 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 152 unsigned level) 153 { 154 unsigned shift = amdgpu_vm_level_shift(adev, 155 adev->vm_manager.root_level); 156 157 if (level == adev->vm_manager.root_level) 158 /* For the root directory */ 159 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 160 >> shift; 161 else if (level != AMDGPU_VM_PTB) 162 /* Everything in between */ 163 return 512; 164 else 165 /* For the page tables on the leaves */ 166 return AMDGPU_VM_PTE_COUNT(adev); 167 } 168 169 /** 170 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 171 * 172 * @adev: amdgpu_device pointer 173 * 174 * Returns: 175 * The number of entries in the root page directory which needs the ATS setting. 176 */ 177 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 178 { 179 unsigned shift; 180 181 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 182 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 183 } 184 185 /** 186 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 187 * 188 * @adev: amdgpu_device pointer 189 * @level: VMPT level 190 * 191 * Returns: 192 * The mask to extract the entry number of a PD/PT from an address. 193 */ 194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 195 unsigned int level) 196 { 197 if (level <= adev->vm_manager.root_level) 198 return 0xffffffff; 199 else if (level != AMDGPU_VM_PTB) 200 return 0x1ff; 201 else 202 return AMDGPU_VM_PTE_COUNT(adev) - 1; 203 } 204 205 /** 206 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 207 * 208 * @adev: amdgpu_device pointer 209 * @level: VMPT level 210 * 211 * Returns: 212 * The size of the BO for a page directory or page table in bytes. 213 */ 214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 215 { 216 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 217 } 218 219 /** 220 * amdgpu_vm_bo_evicted - vm_bo is evicted 221 * 222 * @vm_bo: vm_bo which is evicted 223 * 224 * State for PDs/PTs and per VM BOs which are not at the location they should 225 * be. 226 */ 227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 228 { 229 struct amdgpu_vm *vm = vm_bo->vm; 230 struct amdgpu_bo *bo = vm_bo->bo; 231 232 vm_bo->moved = true; 233 if (bo->tbo.type == ttm_bo_type_kernel) 234 list_move(&vm_bo->vm_status, &vm->evicted); 235 else 236 list_move_tail(&vm_bo->vm_status, &vm->evicted); 237 } 238 /** 239 * amdgpu_vm_bo_moved - vm_bo is moved 240 * 241 * @vm_bo: vm_bo which is moved 242 * 243 * State for per VM BOs which are moved, but that change is not yet reflected 244 * in the page tables. 245 */ 246 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 247 { 248 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 249 } 250 251 /** 252 * amdgpu_vm_bo_idle - vm_bo is idle 253 * 254 * @vm_bo: vm_bo which is now idle 255 * 256 * State for PDs/PTs and per VM BOs which have gone through the state machine 257 * and are now idle. 258 */ 259 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 260 { 261 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 262 vm_bo->moved = false; 263 } 264 265 /** 266 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 267 * 268 * @vm_bo: vm_bo which is now invalidated 269 * 270 * State for normal BOs which are invalidated and that change not yet reflected 271 * in the PTs. 272 */ 273 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 274 { 275 spin_lock(&vm_bo->vm->invalidated_lock); 276 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 277 spin_unlock(&vm_bo->vm->invalidated_lock); 278 } 279 280 /** 281 * amdgpu_vm_bo_relocated - vm_bo is reloacted 282 * 283 * @vm_bo: vm_bo which is relocated 284 * 285 * State for PDs/PTs which needs to update their parent PD. 286 * For the root PD, just move to idle state. 287 */ 288 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 289 { 290 if (vm_bo->bo->parent) 291 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 292 else 293 amdgpu_vm_bo_idle(vm_bo); 294 } 295 296 /** 297 * amdgpu_vm_bo_done - vm_bo is done 298 * 299 * @vm_bo: vm_bo which is now done 300 * 301 * State for normal BOs which are invalidated and that change has been updated 302 * in the PTs. 303 */ 304 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 305 { 306 spin_lock(&vm_bo->vm->invalidated_lock); 307 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 308 spin_unlock(&vm_bo->vm->invalidated_lock); 309 } 310 311 /** 312 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 313 * 314 * @base: base structure for tracking BO usage in a VM 315 * @vm: vm to which bo is to be added 316 * @bo: amdgpu buffer object 317 * 318 * Initialize a bo_va_base structure and add it to the appropriate lists 319 * 320 */ 321 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 322 struct amdgpu_vm *vm, 323 struct amdgpu_bo *bo) 324 { 325 base->vm = vm; 326 base->bo = bo; 327 base->next = NULL; 328 INIT_LIST_HEAD(&base->vm_status); 329 330 if (!bo) 331 return; 332 base->next = bo->vm_bo; 333 bo->vm_bo = base; 334 335 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 336 return; 337 338 vm->bulk_moveable = false; 339 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 340 amdgpu_vm_bo_relocated(base); 341 else 342 amdgpu_vm_bo_idle(base); 343 344 if (bo->preferred_domains & 345 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 346 return; 347 348 /* 349 * we checked all the prerequisites, but it looks like this per vm bo 350 * is currently evicted. add the bo to the evicted list to make sure it 351 * is validated on next vm use to avoid fault. 352 * */ 353 amdgpu_vm_bo_evicted(base); 354 } 355 356 /** 357 * amdgpu_vm_pt_parent - get the parent page directory 358 * 359 * @pt: child page table 360 * 361 * Helper to get the parent entry for the child page table. NULL if we are at 362 * the root page directory. 363 */ 364 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 365 { 366 struct amdgpu_bo *parent = pt->base.bo->parent; 367 368 if (!parent) 369 return NULL; 370 371 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 372 } 373 374 /* 375 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 376 */ 377 struct amdgpu_vm_pt_cursor { 378 uint64_t pfn; 379 struct amdgpu_vm_pt *parent; 380 struct amdgpu_vm_pt *entry; 381 unsigned level; 382 }; 383 384 /** 385 * amdgpu_vm_pt_start - start PD/PT walk 386 * 387 * @adev: amdgpu_device pointer 388 * @vm: amdgpu_vm structure 389 * @start: start address of the walk 390 * @cursor: state to initialize 391 * 392 * Initialize a amdgpu_vm_pt_cursor to start a walk. 393 */ 394 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 395 struct amdgpu_vm *vm, uint64_t start, 396 struct amdgpu_vm_pt_cursor *cursor) 397 { 398 cursor->pfn = start; 399 cursor->parent = NULL; 400 cursor->entry = &vm->root; 401 cursor->level = adev->vm_manager.root_level; 402 } 403 404 /** 405 * amdgpu_vm_pt_descendant - go to child node 406 * 407 * @adev: amdgpu_device pointer 408 * @cursor: current state 409 * 410 * Walk to the child node of the current node. 411 * Returns: 412 * True if the walk was possible, false otherwise. 413 */ 414 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 415 struct amdgpu_vm_pt_cursor *cursor) 416 { 417 unsigned mask, shift, idx; 418 419 if (!cursor->entry->entries) 420 return false; 421 422 BUG_ON(!cursor->entry->base.bo); 423 mask = amdgpu_vm_entries_mask(adev, cursor->level); 424 shift = amdgpu_vm_level_shift(adev, cursor->level); 425 426 ++cursor->level; 427 idx = (cursor->pfn >> shift) & mask; 428 cursor->parent = cursor->entry; 429 cursor->entry = &cursor->entry->entries[idx]; 430 return true; 431 } 432 433 /** 434 * amdgpu_vm_pt_sibling - go to sibling node 435 * 436 * @adev: amdgpu_device pointer 437 * @cursor: current state 438 * 439 * Walk to the sibling node of the current node. 440 * Returns: 441 * True if the walk was possible, false otherwise. 442 */ 443 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 444 struct amdgpu_vm_pt_cursor *cursor) 445 { 446 unsigned shift, num_entries; 447 448 /* Root doesn't have a sibling */ 449 if (!cursor->parent) 450 return false; 451 452 /* Go to our parents and see if we got a sibling */ 453 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 454 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 455 456 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 457 return false; 458 459 cursor->pfn += 1ULL << shift; 460 cursor->pfn &= ~((1ULL << shift) - 1); 461 ++cursor->entry; 462 return true; 463 } 464 465 /** 466 * amdgpu_vm_pt_ancestor - go to parent node 467 * 468 * @cursor: current state 469 * 470 * Walk to the parent node of the current node. 471 * Returns: 472 * True if the walk was possible, false otherwise. 473 */ 474 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 475 { 476 if (!cursor->parent) 477 return false; 478 479 --cursor->level; 480 cursor->entry = cursor->parent; 481 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 482 return true; 483 } 484 485 /** 486 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 487 * 488 * @adev: amdgpu_device pointer 489 * @cursor: current state 490 * 491 * Walk the PD/PT tree to the next node. 492 */ 493 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 494 struct amdgpu_vm_pt_cursor *cursor) 495 { 496 /* First try a newborn child */ 497 if (amdgpu_vm_pt_descendant(adev, cursor)) 498 return; 499 500 /* If that didn't worked try to find a sibling */ 501 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 502 /* No sibling, go to our parents and grandparents */ 503 if (!amdgpu_vm_pt_ancestor(cursor)) { 504 cursor->pfn = ~0ll; 505 return; 506 } 507 } 508 } 509 510 /** 511 * amdgpu_vm_pt_first_dfs - start a deep first search 512 * 513 * @adev: amdgpu_device structure 514 * @vm: amdgpu_vm structure 515 * @start: optional cursor to start with 516 * @cursor: state to initialize 517 * 518 * Starts a deep first traversal of the PD/PT tree. 519 */ 520 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 521 struct amdgpu_vm *vm, 522 struct amdgpu_vm_pt_cursor *start, 523 struct amdgpu_vm_pt_cursor *cursor) 524 { 525 if (start) 526 *cursor = *start; 527 else 528 amdgpu_vm_pt_start(adev, vm, 0, cursor); 529 while (amdgpu_vm_pt_descendant(adev, cursor)); 530 } 531 532 /** 533 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 534 * 535 * @start: starting point for the search 536 * @entry: current entry 537 * 538 * Returns: 539 * True when the search should continue, false otherwise. 540 */ 541 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 542 struct amdgpu_vm_pt *entry) 543 { 544 return entry && (!start || entry != start->entry); 545 } 546 547 /** 548 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 549 * 550 * @adev: amdgpu_device structure 551 * @cursor: current state 552 * 553 * Move the cursor to the next node in a deep first search. 554 */ 555 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 556 struct amdgpu_vm_pt_cursor *cursor) 557 { 558 if (!cursor->entry) 559 return; 560 561 if (!cursor->parent) 562 cursor->entry = NULL; 563 else if (amdgpu_vm_pt_sibling(adev, cursor)) 564 while (amdgpu_vm_pt_descendant(adev, cursor)); 565 else 566 amdgpu_vm_pt_ancestor(cursor); 567 } 568 569 /* 570 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 571 */ 572 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 573 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 574 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 575 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 576 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 577 578 /** 579 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 580 * 581 * @vm: vm providing the BOs 582 * @validated: head of validation list 583 * @entry: entry to add 584 * 585 * Add the page directory to the list of BOs to 586 * validate for command submission. 587 */ 588 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 589 struct list_head *validated, 590 struct amdgpu_bo_list_entry *entry) 591 { 592 entry->priority = 0; 593 entry->tv.bo = &vm->root.base.bo->tbo; 594 /* Two for VM updates, one for TTM and one for the CS job */ 595 entry->tv.num_shared = 4; 596 entry->user_pages = NULL; 597 list_add(&entry->tv.head, validated); 598 } 599 600 /** 601 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 602 * 603 * @bo: BO which was removed from the LRU 604 * 605 * Make sure the bulk_moveable flag is updated when a BO is removed from the 606 * LRU. 607 */ 608 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 609 { 610 struct amdgpu_bo *abo; 611 struct amdgpu_vm_bo_base *bo_base; 612 613 if (!amdgpu_bo_is_amdgpu_bo(bo)) 614 return; 615 616 if (bo->pin_count) 617 return; 618 619 abo = ttm_to_amdgpu_bo(bo); 620 if (!abo->parent) 621 return; 622 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 623 struct amdgpu_vm *vm = bo_base->vm; 624 625 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 626 vm->bulk_moveable = false; 627 } 628 629 } 630 /** 631 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 632 * 633 * @adev: amdgpu device pointer 634 * @vm: vm providing the BOs 635 * 636 * Move all BOs to the end of LRU and remember their positions to put them 637 * together. 638 */ 639 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 640 struct amdgpu_vm *vm) 641 { 642 struct amdgpu_vm_bo_base *bo_base; 643 644 if (vm->bulk_moveable) { 645 spin_lock(&adev->mman.bdev.lru_lock); 646 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 647 spin_unlock(&adev->mman.bdev.lru_lock); 648 return; 649 } 650 651 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 652 653 spin_lock(&adev->mman.bdev.lru_lock); 654 list_for_each_entry(bo_base, &vm->idle, vm_status) { 655 struct amdgpu_bo *bo = bo_base->bo; 656 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 657 658 if (!bo->parent) 659 continue; 660 661 ttm_bo_move_to_lru_tail(&bo->tbo, &bo->tbo.mem, 662 &vm->lru_bulk_move); 663 if (shadow) 664 ttm_bo_move_to_lru_tail(&shadow->tbo, &shadow->tbo.mem, 665 &vm->lru_bulk_move); 666 } 667 spin_unlock(&adev->mman.bdev.lru_lock); 668 669 vm->bulk_moveable = true; 670 } 671 672 /** 673 * amdgpu_vm_validate_pt_bos - validate the page table BOs 674 * 675 * @adev: amdgpu device pointer 676 * @vm: vm providing the BOs 677 * @validate: callback to do the validation 678 * @param: parameter for the validation callback 679 * 680 * Validate the page table BOs on command submission if neccessary. 681 * 682 * Returns: 683 * Validation result. 684 */ 685 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 686 int (*validate)(void *p, struct amdgpu_bo *bo), 687 void *param) 688 { 689 struct amdgpu_vm_bo_base *bo_base, *tmp; 690 int r; 691 692 vm->bulk_moveable &= list_empty(&vm->evicted); 693 694 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 695 struct amdgpu_bo *bo = bo_base->bo; 696 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 697 698 r = validate(param, bo); 699 if (r) 700 return r; 701 if (shadow) { 702 r = validate(param, shadow); 703 if (r) 704 return r; 705 } 706 707 if (bo->tbo.type != ttm_bo_type_kernel) { 708 amdgpu_vm_bo_moved(bo_base); 709 } else { 710 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 711 amdgpu_vm_bo_relocated(bo_base); 712 } 713 } 714 715 amdgpu_vm_eviction_lock(vm); 716 vm->evicting = false; 717 amdgpu_vm_eviction_unlock(vm); 718 719 return 0; 720 } 721 722 /** 723 * amdgpu_vm_ready - check VM is ready for updates 724 * 725 * @vm: VM to check 726 * 727 * Check if all VM PDs/PTs are ready for updates 728 * 729 * Returns: 730 * True if eviction list is empty. 731 */ 732 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 733 { 734 return list_empty(&vm->evicted); 735 } 736 737 /** 738 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 739 * 740 * @adev: amdgpu_device pointer 741 * @vm: VM to clear BO from 742 * @vmbo: BO to clear 743 * @immediate: use an immediate update 744 * 745 * Root PD needs to be reserved when calling this. 746 * 747 * Returns: 748 * 0 on success, errno otherwise. 749 */ 750 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 751 struct amdgpu_vm *vm, 752 struct amdgpu_bo_vm *vmbo, 753 bool immediate) 754 { 755 struct ttm_operation_ctx ctx = { true, false }; 756 unsigned level = adev->vm_manager.root_level; 757 struct amdgpu_vm_update_params params; 758 struct amdgpu_bo *ancestor = &vmbo->bo; 759 struct amdgpu_bo *bo = &vmbo->bo; 760 unsigned entries, ats_entries; 761 uint64_t addr; 762 int r; 763 764 /* Figure out our place in the hierarchy */ 765 if (ancestor->parent) { 766 ++level; 767 while (ancestor->parent->parent) { 768 ++level; 769 ancestor = ancestor->parent; 770 } 771 } 772 773 entries = amdgpu_bo_size(bo) / 8; 774 if (!vm->pte_support_ats) { 775 ats_entries = 0; 776 777 } else if (!bo->parent) { 778 ats_entries = amdgpu_vm_num_ats_entries(adev); 779 ats_entries = min(ats_entries, entries); 780 entries -= ats_entries; 781 782 } else { 783 struct amdgpu_vm_pt *pt; 784 785 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 786 ats_entries = amdgpu_vm_num_ats_entries(adev); 787 if ((pt - vm->root.entries) >= ats_entries) { 788 ats_entries = 0; 789 } else { 790 ats_entries = entries; 791 entries = 0; 792 } 793 } 794 795 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 796 if (r) 797 return r; 798 799 if (vmbo->shadow) { 800 struct amdgpu_bo *shadow = vmbo->shadow; 801 802 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 803 if (r) 804 return r; 805 } 806 807 r = vm->update_funcs->map_table(vmbo); 808 if (r) 809 return r; 810 811 memset(¶ms, 0, sizeof(params)); 812 params.adev = adev; 813 params.vm = vm; 814 params.immediate = immediate; 815 816 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 817 if (r) 818 return r; 819 820 addr = 0; 821 if (ats_entries) { 822 uint64_t value = 0, flags; 823 824 flags = AMDGPU_PTE_DEFAULT_ATC; 825 if (level != AMDGPU_VM_PTB) { 826 /* Handle leaf PDEs as PTEs */ 827 flags |= AMDGPU_PDE_PTE; 828 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 829 } 830 831 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 832 value, flags); 833 if (r) 834 return r; 835 836 addr += ats_entries * 8; 837 } 838 839 if (entries) { 840 uint64_t value = 0, flags = 0; 841 842 if (adev->asic_type >= CHIP_VEGA10) { 843 if (level != AMDGPU_VM_PTB) { 844 /* Handle leaf PDEs as PTEs */ 845 flags |= AMDGPU_PDE_PTE; 846 amdgpu_gmc_get_vm_pde(adev, level, 847 &value, &flags); 848 } else { 849 /* Workaround for fault priority problem on GMC9 */ 850 flags = AMDGPU_PTE_EXECUTABLE; 851 } 852 } 853 854 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 855 value, flags); 856 if (r) 857 return r; 858 } 859 860 return vm->update_funcs->commit(¶ms, NULL); 861 } 862 863 /** 864 * amdgpu_vm_pt_create - create bo for PD/PT 865 * 866 * @adev: amdgpu_device pointer 867 * @vm: requesting vm 868 * @level: the page table level 869 * @immediate: use a immediate update 870 * @vmbo: pointer to the buffer object pointer 871 */ 872 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 873 struct amdgpu_vm *vm, 874 int level, bool immediate, 875 struct amdgpu_bo_vm **vmbo) 876 { 877 struct amdgpu_bo_param bp; 878 struct amdgpu_bo *bo; 879 struct dma_resv *resv; 880 unsigned int num_entries; 881 int r; 882 883 memset(&bp, 0, sizeof(bp)); 884 885 bp.size = amdgpu_vm_bo_size(adev, level); 886 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 887 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 888 bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain); 889 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 890 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 891 892 if (level < AMDGPU_VM_PTB) 893 num_entries = amdgpu_vm_num_entries(adev, level); 894 else 895 num_entries = 0; 896 897 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 898 899 if (vm->use_cpu_for_update) 900 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 901 902 bp.type = ttm_bo_type_kernel; 903 bp.no_wait_gpu = immediate; 904 if (vm->root.base.bo) 905 bp.resv = vm->root.base.bo->tbo.base.resv; 906 907 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 908 if (r) 909 return r; 910 911 bo = &(*vmbo)->bo; 912 if (vm->is_compute_context && (adev->flags & AMD_IS_APU)) { 913 (*vmbo)->shadow = NULL; 914 return 0; 915 } 916 917 if (!bp.resv) 918 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 919 NULL)); 920 resv = bp.resv; 921 memset(&bp, 0, sizeof(bp)); 922 bp.size = amdgpu_vm_bo_size(adev, level); 923 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 924 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 925 bp.type = ttm_bo_type_kernel; 926 bp.resv = bo->tbo.base.resv; 927 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 928 929 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 930 931 if (!resv) 932 dma_resv_unlock(bo->tbo.base.resv); 933 934 if (r) { 935 amdgpu_bo_unref(&bo); 936 return r; 937 } 938 939 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 940 amdgpu_bo_add_to_shadow_list((*vmbo)->shadow); 941 942 return 0; 943 } 944 945 /** 946 * amdgpu_vm_alloc_pts - Allocate a specific page table 947 * 948 * @adev: amdgpu_device pointer 949 * @vm: VM to allocate page tables for 950 * @cursor: Which page table to allocate 951 * @immediate: use an immediate update 952 * 953 * Make sure a specific page table or directory is allocated. 954 * 955 * Returns: 956 * 1 if page table needed to be allocated, 0 if page table was already 957 * allocated, negative errno if an error occurred. 958 */ 959 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 960 struct amdgpu_vm *vm, 961 struct amdgpu_vm_pt_cursor *cursor, 962 bool immediate) 963 { 964 struct amdgpu_vm_pt *entry = cursor->entry; 965 struct amdgpu_bo *pt_bo; 966 struct amdgpu_bo_vm *pt; 967 int r; 968 969 if (entry->base.bo) { 970 if (cursor->level < AMDGPU_VM_PTB) 971 entry->entries = 972 to_amdgpu_bo_vm(entry->base.bo)->entries; 973 else 974 entry->entries = NULL; 975 return 0; 976 } 977 978 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 979 if (r) 980 return r; 981 982 /* Keep a reference to the root directory to avoid 983 * freeing them up in the wrong order. 984 */ 985 pt_bo = &pt->bo; 986 pt_bo->parent = amdgpu_bo_ref(cursor->parent->base.bo); 987 amdgpu_vm_bo_base_init(&entry->base, vm, pt_bo); 988 if (cursor->level < AMDGPU_VM_PTB) 989 entry->entries = pt->entries; 990 else 991 entry->entries = NULL; 992 993 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 994 if (r) 995 goto error_free_pt; 996 997 return 0; 998 999 error_free_pt: 1000 amdgpu_bo_unref(&pt->shadow); 1001 amdgpu_bo_unref(&pt_bo); 1002 return r; 1003 } 1004 1005 /** 1006 * amdgpu_vm_free_table - fre one PD/PT 1007 * 1008 * @entry: PDE to free 1009 */ 1010 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 1011 { 1012 struct amdgpu_bo *shadow; 1013 1014 if (entry->base.bo) { 1015 shadow = amdgpu_bo_shadowed(entry->base.bo); 1016 entry->base.bo->vm_bo = NULL; 1017 list_del(&entry->base.vm_status); 1018 amdgpu_bo_unref(&shadow); 1019 amdgpu_bo_unref(&entry->base.bo); 1020 } 1021 entry->entries = NULL; 1022 } 1023 1024 /** 1025 * amdgpu_vm_free_pts - free PD/PT levels 1026 * 1027 * @adev: amdgpu device structure 1028 * @vm: amdgpu vm structure 1029 * @start: optional cursor where to start freeing PDs/PTs 1030 * 1031 * Free the page directory or page table level and all sub levels. 1032 */ 1033 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1034 struct amdgpu_vm *vm, 1035 struct amdgpu_vm_pt_cursor *start) 1036 { 1037 struct amdgpu_vm_pt_cursor cursor; 1038 struct amdgpu_vm_pt *entry; 1039 1040 vm->bulk_moveable = false; 1041 1042 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1043 amdgpu_vm_free_table(entry); 1044 1045 if (start) 1046 amdgpu_vm_free_table(start->entry); 1047 } 1048 1049 /** 1050 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1051 * 1052 * @adev: amdgpu_device pointer 1053 */ 1054 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1055 { 1056 const struct amdgpu_ip_block *ip_block; 1057 bool has_compute_vm_bug; 1058 struct amdgpu_ring *ring; 1059 int i; 1060 1061 has_compute_vm_bug = false; 1062 1063 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1064 if (ip_block) { 1065 /* Compute has a VM bug for GFX version < 7. 1066 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1067 if (ip_block->version->major <= 7) 1068 has_compute_vm_bug = true; 1069 else if (ip_block->version->major == 8) 1070 if (adev->gfx.mec_fw_version < 673) 1071 has_compute_vm_bug = true; 1072 } 1073 1074 for (i = 0; i < adev->num_rings; i++) { 1075 ring = adev->rings[i]; 1076 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1077 /* only compute rings */ 1078 ring->has_compute_vm_bug = has_compute_vm_bug; 1079 else 1080 ring->has_compute_vm_bug = false; 1081 } 1082 } 1083 1084 /** 1085 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1086 * 1087 * @ring: ring on which the job will be submitted 1088 * @job: job to submit 1089 * 1090 * Returns: 1091 * True if sync is needed. 1092 */ 1093 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1094 struct amdgpu_job *job) 1095 { 1096 struct amdgpu_device *adev = ring->adev; 1097 unsigned vmhub = ring->funcs->vmhub; 1098 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1099 struct amdgpu_vmid *id; 1100 bool gds_switch_needed; 1101 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1102 1103 if (job->vmid == 0) 1104 return false; 1105 id = &id_mgr->ids[job->vmid]; 1106 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1107 id->gds_base != job->gds_base || 1108 id->gds_size != job->gds_size || 1109 id->gws_base != job->gws_base || 1110 id->gws_size != job->gws_size || 1111 id->oa_base != job->oa_base || 1112 id->oa_size != job->oa_size); 1113 1114 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1115 return true; 1116 1117 return vm_flush_needed || gds_switch_needed; 1118 } 1119 1120 /** 1121 * amdgpu_vm_flush - hardware flush the vm 1122 * 1123 * @ring: ring to use for flush 1124 * @job: related job 1125 * @need_pipe_sync: is pipe sync needed 1126 * 1127 * Emit a VM flush when it is necessary. 1128 * 1129 * Returns: 1130 * 0 on success, errno otherwise. 1131 */ 1132 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1133 bool need_pipe_sync) 1134 { 1135 struct amdgpu_device *adev = ring->adev; 1136 unsigned vmhub = ring->funcs->vmhub; 1137 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1138 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1139 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1140 id->gds_base != job->gds_base || 1141 id->gds_size != job->gds_size || 1142 id->gws_base != job->gws_base || 1143 id->gws_size != job->gws_size || 1144 id->oa_base != job->oa_base || 1145 id->oa_size != job->oa_size); 1146 bool vm_flush_needed = job->vm_needs_flush; 1147 struct dma_fence *fence = NULL; 1148 bool pasid_mapping_needed = false; 1149 unsigned patch_offset = 0; 1150 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1151 int r; 1152 1153 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1154 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1155 1156 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1157 gds_switch_needed = true; 1158 vm_flush_needed = true; 1159 pasid_mapping_needed = true; 1160 } 1161 1162 mutex_lock(&id_mgr->lock); 1163 if (id->pasid != job->pasid || !id->pasid_mapping || 1164 !dma_fence_is_signaled(id->pasid_mapping)) 1165 pasid_mapping_needed = true; 1166 mutex_unlock(&id_mgr->lock); 1167 1168 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1169 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1170 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1171 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1172 ring->funcs->emit_wreg; 1173 1174 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1175 return 0; 1176 1177 if (ring->funcs->init_cond_exec) 1178 patch_offset = amdgpu_ring_init_cond_exec(ring); 1179 1180 if (need_pipe_sync) 1181 amdgpu_ring_emit_pipeline_sync(ring); 1182 1183 if (vm_flush_needed) { 1184 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1185 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1186 } 1187 1188 if (pasid_mapping_needed) 1189 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1190 1191 if (vm_flush_needed || pasid_mapping_needed) { 1192 r = amdgpu_fence_emit(ring, &fence, 0); 1193 if (r) 1194 return r; 1195 } 1196 1197 if (vm_flush_needed) { 1198 mutex_lock(&id_mgr->lock); 1199 dma_fence_put(id->last_flush); 1200 id->last_flush = dma_fence_get(fence); 1201 id->current_gpu_reset_count = 1202 atomic_read(&adev->gpu_reset_counter); 1203 mutex_unlock(&id_mgr->lock); 1204 } 1205 1206 if (pasid_mapping_needed) { 1207 mutex_lock(&id_mgr->lock); 1208 id->pasid = job->pasid; 1209 dma_fence_put(id->pasid_mapping); 1210 id->pasid_mapping = dma_fence_get(fence); 1211 mutex_unlock(&id_mgr->lock); 1212 } 1213 dma_fence_put(fence); 1214 1215 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1216 id->gds_base = job->gds_base; 1217 id->gds_size = job->gds_size; 1218 id->gws_base = job->gws_base; 1219 id->gws_size = job->gws_size; 1220 id->oa_base = job->oa_base; 1221 id->oa_size = job->oa_size; 1222 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1223 job->gds_size, job->gws_base, 1224 job->gws_size, job->oa_base, 1225 job->oa_size); 1226 } 1227 1228 if (ring->funcs->patch_cond_exec) 1229 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1230 1231 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1232 if (ring->funcs->emit_switch_buffer) { 1233 amdgpu_ring_emit_switch_buffer(ring); 1234 amdgpu_ring_emit_switch_buffer(ring); 1235 } 1236 return 0; 1237 } 1238 1239 /** 1240 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1241 * 1242 * @vm: requested vm 1243 * @bo: requested buffer object 1244 * 1245 * Find @bo inside the requested vm. 1246 * Search inside the @bos vm list for the requested vm 1247 * Returns the found bo_va or NULL if none is found 1248 * 1249 * Object has to be reserved! 1250 * 1251 * Returns: 1252 * Found bo_va or NULL. 1253 */ 1254 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1255 struct amdgpu_bo *bo) 1256 { 1257 struct amdgpu_vm_bo_base *base; 1258 1259 for (base = bo->vm_bo; base; base = base->next) { 1260 if (base->vm != vm) 1261 continue; 1262 1263 return container_of(base, struct amdgpu_bo_va, base); 1264 } 1265 return NULL; 1266 } 1267 1268 /** 1269 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1270 * 1271 * @pages_addr: optional DMA address to use for lookup 1272 * @addr: the unmapped addr 1273 * 1274 * Look up the physical address of the page that the pte resolves 1275 * to. 1276 * 1277 * Returns: 1278 * The pointer for the page table entry. 1279 */ 1280 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1281 { 1282 uint64_t result; 1283 1284 /* page table offset */ 1285 result = pages_addr[addr >> PAGE_SHIFT]; 1286 1287 /* in case cpu page size != gpu page size*/ 1288 result |= addr & (~PAGE_MASK); 1289 1290 result &= 0xFFFFFFFFFFFFF000ULL; 1291 1292 return result; 1293 } 1294 1295 /** 1296 * amdgpu_vm_update_pde - update a single level in the hierarchy 1297 * 1298 * @params: parameters for the update 1299 * @vm: requested vm 1300 * @entry: entry to update 1301 * 1302 * Makes sure the requested entry in parent is up to date. 1303 */ 1304 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1305 struct amdgpu_vm *vm, 1306 struct amdgpu_vm_pt *entry) 1307 { 1308 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1309 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1310 uint64_t pde, pt, flags; 1311 unsigned level; 1312 1313 for (level = 0, pbo = bo->parent; pbo; ++level) 1314 pbo = pbo->parent; 1315 1316 level += params->adev->vm_manager.root_level; 1317 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1318 pde = (entry - parent->entries) * 8; 1319 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1320 1, 0, flags); 1321 } 1322 1323 /** 1324 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1325 * 1326 * @adev: amdgpu_device pointer 1327 * @vm: related vm 1328 * 1329 * Mark all PD level as invalid after an error. 1330 */ 1331 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1332 struct amdgpu_vm *vm) 1333 { 1334 struct amdgpu_vm_pt_cursor cursor; 1335 struct amdgpu_vm_pt *entry; 1336 1337 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1338 if (entry->base.bo && !entry->base.moved) 1339 amdgpu_vm_bo_relocated(&entry->base); 1340 } 1341 1342 /** 1343 * amdgpu_vm_update_pdes - make sure that all directories are valid 1344 * 1345 * @adev: amdgpu_device pointer 1346 * @vm: requested vm 1347 * @immediate: submit immediately to the paging queue 1348 * 1349 * Makes sure all directories are up to date. 1350 * 1351 * Returns: 1352 * 0 for success, error for failure. 1353 */ 1354 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1355 struct amdgpu_vm *vm, bool immediate) 1356 { 1357 struct amdgpu_vm_update_params params; 1358 int r; 1359 1360 if (list_empty(&vm->relocated)) 1361 return 0; 1362 1363 memset(¶ms, 0, sizeof(params)); 1364 params.adev = adev; 1365 params.vm = vm; 1366 params.immediate = immediate; 1367 1368 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1369 if (r) 1370 return r; 1371 1372 while (!list_empty(&vm->relocated)) { 1373 struct amdgpu_vm_pt *entry; 1374 1375 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1376 base.vm_status); 1377 amdgpu_vm_bo_idle(&entry->base); 1378 1379 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1380 if (r) 1381 goto error; 1382 } 1383 1384 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1385 if (r) 1386 goto error; 1387 return 0; 1388 1389 error: 1390 amdgpu_vm_invalidate_pds(adev, vm); 1391 return r; 1392 } 1393 1394 /* 1395 * amdgpu_vm_update_flags - figure out flags for PTE updates 1396 * 1397 * Make sure to set the right flags for the PTEs at the desired level. 1398 */ 1399 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1400 struct amdgpu_bo_vm *pt, unsigned int level, 1401 uint64_t pe, uint64_t addr, 1402 unsigned int count, uint32_t incr, 1403 uint64_t flags) 1404 1405 { 1406 if (level != AMDGPU_VM_PTB) { 1407 flags |= AMDGPU_PDE_PTE; 1408 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1409 1410 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1411 !(flags & AMDGPU_PTE_VALID) && 1412 !(flags & AMDGPU_PTE_PRT)) { 1413 1414 /* Workaround for fault priority problem on GMC9 */ 1415 flags |= AMDGPU_PTE_EXECUTABLE; 1416 } 1417 1418 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1419 flags); 1420 } 1421 1422 /** 1423 * amdgpu_vm_fragment - get fragment for PTEs 1424 * 1425 * @params: see amdgpu_vm_update_params definition 1426 * @start: first PTE to handle 1427 * @end: last PTE to handle 1428 * @flags: hw mapping flags 1429 * @frag: resulting fragment size 1430 * @frag_end: end of this fragment 1431 * 1432 * Returns the first possible fragment for the start and end address. 1433 */ 1434 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1435 uint64_t start, uint64_t end, uint64_t flags, 1436 unsigned int *frag, uint64_t *frag_end) 1437 { 1438 /** 1439 * The MC L1 TLB supports variable sized pages, based on a fragment 1440 * field in the PTE. When this field is set to a non-zero value, page 1441 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1442 * flags are considered valid for all PTEs within the fragment range 1443 * and corresponding mappings are assumed to be physically contiguous. 1444 * 1445 * The L1 TLB can store a single PTE for the whole fragment, 1446 * significantly increasing the space available for translation 1447 * caching. This leads to large improvements in throughput when the 1448 * TLB is under pressure. 1449 * 1450 * The L2 TLB distributes small and large fragments into two 1451 * asymmetric partitions. The large fragment cache is significantly 1452 * larger. Thus, we try to use large fragments wherever possible. 1453 * Userspace can support this by aligning virtual base address and 1454 * allocation size to the fragment size. 1455 * 1456 * Starting with Vega10 the fragment size only controls the L1. The L2 1457 * is now directly feed with small/huge/giant pages from the walker. 1458 */ 1459 unsigned max_frag; 1460 1461 if (params->adev->asic_type < CHIP_VEGA10) 1462 max_frag = params->adev->vm_manager.fragment_size; 1463 else 1464 max_frag = 31; 1465 1466 /* system pages are non continuously */ 1467 if (params->pages_addr) { 1468 *frag = 0; 1469 *frag_end = end; 1470 return; 1471 } 1472 1473 /* This intentionally wraps around if no bit is set */ 1474 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1475 if (*frag >= max_frag) { 1476 *frag = max_frag; 1477 *frag_end = end & ~((1ULL << max_frag) - 1); 1478 } else { 1479 *frag_end = start + (1 << *frag); 1480 } 1481 } 1482 1483 /** 1484 * amdgpu_vm_update_ptes - make sure that page tables are valid 1485 * 1486 * @params: see amdgpu_vm_update_params definition 1487 * @start: start of GPU address range 1488 * @end: end of GPU address range 1489 * @dst: destination address to map to, the next dst inside the function 1490 * @flags: mapping flags 1491 * 1492 * Update the page tables in the range @start - @end. 1493 * 1494 * Returns: 1495 * 0 for success, -EINVAL for failure. 1496 */ 1497 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1498 uint64_t start, uint64_t end, 1499 uint64_t dst, uint64_t flags) 1500 { 1501 struct amdgpu_device *adev = params->adev; 1502 struct amdgpu_vm_pt_cursor cursor; 1503 uint64_t frag_start = start, frag_end; 1504 unsigned int frag; 1505 int r; 1506 1507 /* figure out the initial fragment */ 1508 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1509 1510 /* walk over the address space and update the PTs */ 1511 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1512 while (cursor.pfn < end) { 1513 unsigned shift, parent_shift, mask; 1514 uint64_t incr, entry_end, pe_start; 1515 struct amdgpu_bo *pt; 1516 1517 if (!params->unlocked) { 1518 /* make sure that the page tables covering the 1519 * address range are actually allocated 1520 */ 1521 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1522 &cursor, params->immediate); 1523 if (r) 1524 return r; 1525 } 1526 1527 shift = amdgpu_vm_level_shift(adev, cursor.level); 1528 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1529 if (params->unlocked) { 1530 /* Unlocked updates are only allowed on the leaves */ 1531 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1532 continue; 1533 } else if (adev->asic_type < CHIP_VEGA10 && 1534 (flags & AMDGPU_PTE_VALID)) { 1535 /* No huge page support before GMC v9 */ 1536 if (cursor.level != AMDGPU_VM_PTB) { 1537 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1538 return -ENOENT; 1539 continue; 1540 } 1541 } else if (frag < shift) { 1542 /* We can't use this level when the fragment size is 1543 * smaller than the address shift. Go to the next 1544 * child entry and try again. 1545 */ 1546 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1547 continue; 1548 } else if (frag >= parent_shift) { 1549 /* If the fragment size is even larger than the parent 1550 * shift we should go up one level and check it again. 1551 */ 1552 if (!amdgpu_vm_pt_ancestor(&cursor)) 1553 return -EINVAL; 1554 continue; 1555 } 1556 1557 pt = cursor.entry->base.bo; 1558 if (!pt) { 1559 /* We need all PDs and PTs for mapping something, */ 1560 if (flags & AMDGPU_PTE_VALID) 1561 return -ENOENT; 1562 1563 /* but unmapping something can happen at a higher 1564 * level. 1565 */ 1566 if (!amdgpu_vm_pt_ancestor(&cursor)) 1567 return -EINVAL; 1568 1569 pt = cursor.entry->base.bo; 1570 shift = parent_shift; 1571 frag_end = max(frag_end, ALIGN(frag_start + 1, 1572 1ULL << shift)); 1573 } 1574 1575 /* Looks good so far, calculate parameters for the update */ 1576 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1577 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1578 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1579 entry_end = ((uint64_t)mask + 1) << shift; 1580 entry_end += cursor.pfn & ~(entry_end - 1); 1581 entry_end = min(entry_end, end); 1582 1583 do { 1584 struct amdgpu_vm *vm = params->vm; 1585 uint64_t upd_end = min(entry_end, frag_end); 1586 unsigned nptes = (upd_end - frag_start) >> shift; 1587 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1588 1589 /* This can happen when we set higher level PDs to 1590 * silent to stop fault floods. 1591 */ 1592 nptes = max(nptes, 1u); 1593 1594 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1595 nptes, dst, incr, upd_flags, 1596 vm->task_info.pid, 1597 vm->immediate.fence_context); 1598 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1599 cursor.level, pe_start, dst, 1600 nptes, incr, upd_flags); 1601 1602 pe_start += nptes * 8; 1603 dst += nptes * incr; 1604 1605 frag_start = upd_end; 1606 if (frag_start >= frag_end) { 1607 /* figure out the next fragment */ 1608 amdgpu_vm_fragment(params, frag_start, end, 1609 flags, &frag, &frag_end); 1610 if (frag < shift) 1611 break; 1612 } 1613 } while (frag_start < entry_end); 1614 1615 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1616 /* Free all child entries. 1617 * Update the tables with the flags and addresses and free up subsequent 1618 * tables in the case of huge pages or freed up areas. 1619 * This is the maximum you can free, because all other page tables are not 1620 * completely covered by the range and so potentially still in use. 1621 */ 1622 while (cursor.pfn < frag_start) { 1623 /* Make sure previous mapping is freed */ 1624 if (cursor.entry->base.bo) { 1625 params->table_freed = true; 1626 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1627 } 1628 amdgpu_vm_pt_next(adev, &cursor); 1629 } 1630 1631 } else if (frag >= shift) { 1632 /* or just move on to the next on the same level. */ 1633 amdgpu_vm_pt_next(adev, &cursor); 1634 } 1635 } 1636 1637 return 0; 1638 } 1639 1640 /** 1641 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1642 * 1643 * @adev: amdgpu_device pointer of the VM 1644 * @bo_adev: amdgpu_device pointer of the mapped BO 1645 * @vm: requested vm 1646 * @immediate: immediate submission in a page fault 1647 * @unlocked: unlocked invalidation during MM callback 1648 * @resv: fences we need to sync to 1649 * @start: start of mapped range 1650 * @last: last mapped entry 1651 * @flags: flags for the entries 1652 * @offset: offset into nodes and pages_addr 1653 * @res: ttm_resource to map 1654 * @pages_addr: DMA addresses to use for mapping 1655 * @fence: optional resulting fence 1656 * @table_freed: return true if page table is freed 1657 * 1658 * Fill in the page table entries between @start and @last. 1659 * 1660 * Returns: 1661 * 0 for success, -EINVAL for failure. 1662 */ 1663 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1664 struct amdgpu_device *bo_adev, 1665 struct amdgpu_vm *vm, bool immediate, 1666 bool unlocked, struct dma_resv *resv, 1667 uint64_t start, uint64_t last, 1668 uint64_t flags, uint64_t offset, 1669 struct ttm_resource *res, 1670 dma_addr_t *pages_addr, 1671 struct dma_fence **fence, 1672 bool *table_freed) 1673 { 1674 struct amdgpu_vm_update_params params; 1675 struct amdgpu_res_cursor cursor; 1676 enum amdgpu_sync_mode sync_mode; 1677 int r, idx; 1678 1679 if (!drm_dev_enter(&adev->ddev, &idx)) 1680 return -ENODEV; 1681 1682 memset(¶ms, 0, sizeof(params)); 1683 params.adev = adev; 1684 params.vm = vm; 1685 params.immediate = immediate; 1686 params.pages_addr = pages_addr; 1687 params.unlocked = unlocked; 1688 1689 /* Implicitly sync to command submissions in the same VM before 1690 * unmapping. Sync to moving fences before mapping. 1691 */ 1692 if (!(flags & AMDGPU_PTE_VALID)) 1693 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1694 else 1695 sync_mode = AMDGPU_SYNC_EXPLICIT; 1696 1697 amdgpu_vm_eviction_lock(vm); 1698 if (vm->evicting) { 1699 r = -EBUSY; 1700 goto error_unlock; 1701 } 1702 1703 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1704 struct dma_fence *tmp = dma_fence_get_stub(); 1705 1706 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true); 1707 swap(vm->last_unlocked, tmp); 1708 dma_fence_put(tmp); 1709 } 1710 1711 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1712 if (r) 1713 goto error_unlock; 1714 1715 amdgpu_res_first(res, offset, (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, 1716 &cursor); 1717 while (cursor.remaining) { 1718 uint64_t tmp, num_entries, addr; 1719 1720 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1721 if (pages_addr) { 1722 bool contiguous = true; 1723 1724 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1725 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1726 uint64_t count; 1727 1728 contiguous = pages_addr[pfn + 1] == 1729 pages_addr[pfn] + PAGE_SIZE; 1730 1731 tmp = num_entries / 1732 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1733 for (count = 2; count < tmp; ++count) { 1734 uint64_t idx = pfn + count; 1735 1736 if (contiguous != (pages_addr[idx] == 1737 pages_addr[idx - 1] + PAGE_SIZE)) 1738 break; 1739 } 1740 num_entries = count * 1741 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1742 } 1743 1744 if (!contiguous) { 1745 addr = cursor.start; 1746 params.pages_addr = pages_addr; 1747 } else { 1748 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1749 params.pages_addr = NULL; 1750 } 1751 1752 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1753 addr = bo_adev->vm_manager.vram_base_offset + 1754 cursor.start; 1755 } else { 1756 addr = 0; 1757 } 1758 1759 tmp = start + num_entries; 1760 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1761 if (r) 1762 goto error_unlock; 1763 1764 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1765 start = tmp; 1766 } 1767 1768 r = vm->update_funcs->commit(¶ms, fence); 1769 1770 if (table_freed) 1771 *table_freed = *table_freed || params.table_freed; 1772 1773 error_unlock: 1774 amdgpu_vm_eviction_unlock(vm); 1775 drm_dev_exit(idx); 1776 return r; 1777 } 1778 1779 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1780 uint64_t *gtt_mem, uint64_t *cpu_mem) 1781 { 1782 struct amdgpu_bo_va *bo_va, *tmp; 1783 1784 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1785 if (!bo_va->base.bo) 1786 continue; 1787 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1788 gtt_mem, cpu_mem); 1789 } 1790 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1791 if (!bo_va->base.bo) 1792 continue; 1793 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1794 gtt_mem, cpu_mem); 1795 } 1796 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1797 if (!bo_va->base.bo) 1798 continue; 1799 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1800 gtt_mem, cpu_mem); 1801 } 1802 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1803 if (!bo_va->base.bo) 1804 continue; 1805 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1806 gtt_mem, cpu_mem); 1807 } 1808 spin_lock(&vm->invalidated_lock); 1809 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1810 if (!bo_va->base.bo) 1811 continue; 1812 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1813 gtt_mem, cpu_mem); 1814 } 1815 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1816 if (!bo_va->base.bo) 1817 continue; 1818 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1819 gtt_mem, cpu_mem); 1820 } 1821 spin_unlock(&vm->invalidated_lock); 1822 } 1823 /** 1824 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1825 * 1826 * @adev: amdgpu_device pointer 1827 * @bo_va: requested BO and VM object 1828 * @clear: if true clear the entries 1829 * 1830 * Fill in the page table entries for @bo_va. 1831 * 1832 * Returns: 1833 * 0 for success, -EINVAL for failure. 1834 */ 1835 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1836 bool clear, bool *table_freed) 1837 { 1838 struct amdgpu_bo *bo = bo_va->base.bo; 1839 struct amdgpu_vm *vm = bo_va->base.vm; 1840 struct amdgpu_bo_va_mapping *mapping; 1841 dma_addr_t *pages_addr = NULL; 1842 struct ttm_resource *mem; 1843 struct dma_fence **last_update; 1844 struct dma_resv *resv; 1845 uint64_t flags; 1846 struct amdgpu_device *bo_adev = adev; 1847 int r; 1848 1849 if (clear || !bo) { 1850 mem = NULL; 1851 resv = vm->root.base.bo->tbo.base.resv; 1852 } else { 1853 struct drm_gem_object *obj = &bo->tbo.base; 1854 1855 resv = bo->tbo.base.resv; 1856 if (obj->import_attach && bo_va->is_xgmi) { 1857 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1858 struct drm_gem_object *gobj = dma_buf->priv; 1859 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1860 1861 if (abo->tbo.mem.mem_type == TTM_PL_VRAM) 1862 bo = gem_to_amdgpu_bo(gobj); 1863 } 1864 mem = &bo->tbo.mem; 1865 if (mem->mem_type == TTM_PL_TT || 1866 mem->mem_type == AMDGPU_PL_PREEMPT) 1867 pages_addr = bo->tbo.ttm->dma_address; 1868 } 1869 1870 if (bo) { 1871 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1872 1873 if (amdgpu_bo_encrypted(bo)) 1874 flags |= AMDGPU_PTE_TMZ; 1875 1876 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1877 } else { 1878 flags = 0x0; 1879 } 1880 1881 if (clear || (bo && bo->tbo.base.resv == 1882 vm->root.base.bo->tbo.base.resv)) 1883 last_update = &vm->last_update; 1884 else 1885 last_update = &bo_va->last_pt_update; 1886 1887 if (!clear && bo_va->base.moved) { 1888 bo_va->base.moved = false; 1889 list_splice_init(&bo_va->valids, &bo_va->invalids); 1890 1891 } else if (bo_va->cleared != clear) { 1892 list_splice_init(&bo_va->valids, &bo_va->invalids); 1893 } 1894 1895 list_for_each_entry(mapping, &bo_va->invalids, list) { 1896 uint64_t update_flags = flags; 1897 1898 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1899 * but in case of something, we filter the flags in first place 1900 */ 1901 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1902 update_flags &= ~AMDGPU_PTE_READABLE; 1903 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1904 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1905 1906 /* Apply ASIC specific mapping flags */ 1907 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1908 1909 trace_amdgpu_vm_bo_update(mapping); 1910 1911 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1912 resv, mapping->start, 1913 mapping->last, update_flags, 1914 mapping->offset, mem, 1915 pages_addr, last_update, table_freed); 1916 if (r) 1917 return r; 1918 } 1919 1920 /* If the BO is not in its preferred location add it back to 1921 * the evicted list so that it gets validated again on the 1922 * next command submission. 1923 */ 1924 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1925 uint32_t mem_type = bo->tbo.mem.mem_type; 1926 1927 if (!(bo->preferred_domains & 1928 amdgpu_mem_type_to_domain(mem_type))) 1929 amdgpu_vm_bo_evicted(&bo_va->base); 1930 else 1931 amdgpu_vm_bo_idle(&bo_va->base); 1932 } else { 1933 amdgpu_vm_bo_done(&bo_va->base); 1934 } 1935 1936 list_splice_init(&bo_va->invalids, &bo_va->valids); 1937 bo_va->cleared = clear; 1938 1939 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1940 list_for_each_entry(mapping, &bo_va->valids, list) 1941 trace_amdgpu_vm_bo_mapping(mapping); 1942 } 1943 1944 return 0; 1945 } 1946 1947 /** 1948 * amdgpu_vm_update_prt_state - update the global PRT state 1949 * 1950 * @adev: amdgpu_device pointer 1951 */ 1952 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1953 { 1954 unsigned long flags; 1955 bool enable; 1956 1957 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1958 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1959 adev->gmc.gmc_funcs->set_prt(adev, enable); 1960 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1961 } 1962 1963 /** 1964 * amdgpu_vm_prt_get - add a PRT user 1965 * 1966 * @adev: amdgpu_device pointer 1967 */ 1968 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1969 { 1970 if (!adev->gmc.gmc_funcs->set_prt) 1971 return; 1972 1973 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1974 amdgpu_vm_update_prt_state(adev); 1975 } 1976 1977 /** 1978 * amdgpu_vm_prt_put - drop a PRT user 1979 * 1980 * @adev: amdgpu_device pointer 1981 */ 1982 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1983 { 1984 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1985 amdgpu_vm_update_prt_state(adev); 1986 } 1987 1988 /** 1989 * amdgpu_vm_prt_cb - callback for updating the PRT status 1990 * 1991 * @fence: fence for the callback 1992 * @_cb: the callback function 1993 */ 1994 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1995 { 1996 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1997 1998 amdgpu_vm_prt_put(cb->adev); 1999 kfree(cb); 2000 } 2001 2002 /** 2003 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2004 * 2005 * @adev: amdgpu_device pointer 2006 * @fence: fence for the callback 2007 */ 2008 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2009 struct dma_fence *fence) 2010 { 2011 struct amdgpu_prt_cb *cb; 2012 2013 if (!adev->gmc.gmc_funcs->set_prt) 2014 return; 2015 2016 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2017 if (!cb) { 2018 /* Last resort when we are OOM */ 2019 if (fence) 2020 dma_fence_wait(fence, false); 2021 2022 amdgpu_vm_prt_put(adev); 2023 } else { 2024 cb->adev = adev; 2025 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2026 amdgpu_vm_prt_cb)) 2027 amdgpu_vm_prt_cb(fence, &cb->cb); 2028 } 2029 } 2030 2031 /** 2032 * amdgpu_vm_free_mapping - free a mapping 2033 * 2034 * @adev: amdgpu_device pointer 2035 * @vm: requested vm 2036 * @mapping: mapping to be freed 2037 * @fence: fence of the unmap operation 2038 * 2039 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2040 */ 2041 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2042 struct amdgpu_vm *vm, 2043 struct amdgpu_bo_va_mapping *mapping, 2044 struct dma_fence *fence) 2045 { 2046 if (mapping->flags & AMDGPU_PTE_PRT) 2047 amdgpu_vm_add_prt_cb(adev, fence); 2048 kfree(mapping); 2049 } 2050 2051 /** 2052 * amdgpu_vm_prt_fini - finish all prt mappings 2053 * 2054 * @adev: amdgpu_device pointer 2055 * @vm: requested vm 2056 * 2057 * Register a cleanup callback to disable PRT support after VM dies. 2058 */ 2059 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2060 { 2061 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2062 struct dma_fence *excl, **shared; 2063 unsigned i, shared_count; 2064 int r; 2065 2066 r = dma_resv_get_fences_rcu(resv, &excl, 2067 &shared_count, &shared); 2068 if (r) { 2069 /* Not enough memory to grab the fence list, as last resort 2070 * block for all the fences to complete. 2071 */ 2072 dma_resv_wait_timeout_rcu(resv, true, false, 2073 MAX_SCHEDULE_TIMEOUT); 2074 return; 2075 } 2076 2077 /* Add a callback for each fence in the reservation object */ 2078 amdgpu_vm_prt_get(adev); 2079 amdgpu_vm_add_prt_cb(adev, excl); 2080 2081 for (i = 0; i < shared_count; ++i) { 2082 amdgpu_vm_prt_get(adev); 2083 amdgpu_vm_add_prt_cb(adev, shared[i]); 2084 } 2085 2086 kfree(shared); 2087 } 2088 2089 /** 2090 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2091 * 2092 * @adev: amdgpu_device pointer 2093 * @vm: requested vm 2094 * @fence: optional resulting fence (unchanged if no work needed to be done 2095 * or if an error occurred) 2096 * 2097 * Make sure all freed BOs are cleared in the PT. 2098 * PTs have to be reserved and mutex must be locked! 2099 * 2100 * Returns: 2101 * 0 for success. 2102 * 2103 */ 2104 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2105 struct amdgpu_vm *vm, 2106 struct dma_fence **fence) 2107 { 2108 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2109 struct amdgpu_bo_va_mapping *mapping; 2110 uint64_t init_pte_value = 0; 2111 struct dma_fence *f = NULL; 2112 int r; 2113 2114 while (!list_empty(&vm->freed)) { 2115 mapping = list_first_entry(&vm->freed, 2116 struct amdgpu_bo_va_mapping, list); 2117 list_del(&mapping->list); 2118 2119 if (vm->pte_support_ats && 2120 mapping->start < AMDGPU_GMC_HOLE_START) 2121 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2122 2123 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2124 resv, mapping->start, 2125 mapping->last, init_pte_value, 2126 0, NULL, NULL, &f, NULL); 2127 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2128 if (r) { 2129 dma_fence_put(f); 2130 return r; 2131 } 2132 } 2133 2134 if (fence && f) { 2135 dma_fence_put(*fence); 2136 *fence = f; 2137 } else { 2138 dma_fence_put(f); 2139 } 2140 2141 return 0; 2142 2143 } 2144 2145 /** 2146 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2147 * 2148 * @adev: amdgpu_device pointer 2149 * @vm: requested vm 2150 * 2151 * Make sure all BOs which are moved are updated in the PTs. 2152 * 2153 * Returns: 2154 * 0 for success. 2155 * 2156 * PTs have to be reserved! 2157 */ 2158 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2159 struct amdgpu_vm *vm) 2160 { 2161 struct amdgpu_bo_va *bo_va, *tmp; 2162 struct dma_resv *resv; 2163 bool clear; 2164 int r; 2165 2166 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2167 /* Per VM BOs never need to bo cleared in the page tables */ 2168 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 2169 if (r) 2170 return r; 2171 } 2172 2173 spin_lock(&vm->invalidated_lock); 2174 while (!list_empty(&vm->invalidated)) { 2175 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2176 base.vm_status); 2177 resv = bo_va->base.bo->tbo.base.resv; 2178 spin_unlock(&vm->invalidated_lock); 2179 2180 /* Try to reserve the BO to avoid clearing its ptes */ 2181 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2182 clear = false; 2183 /* Somebody else is using the BO right now */ 2184 else 2185 clear = true; 2186 2187 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL); 2188 if (r) 2189 return r; 2190 2191 if (!clear) 2192 dma_resv_unlock(resv); 2193 spin_lock(&vm->invalidated_lock); 2194 } 2195 spin_unlock(&vm->invalidated_lock); 2196 2197 return 0; 2198 } 2199 2200 /** 2201 * amdgpu_vm_bo_add - add a bo to a specific vm 2202 * 2203 * @adev: amdgpu_device pointer 2204 * @vm: requested vm 2205 * @bo: amdgpu buffer object 2206 * 2207 * Add @bo into the requested vm. 2208 * Add @bo to the list of bos associated with the vm 2209 * 2210 * Returns: 2211 * Newly added bo_va or NULL for failure 2212 * 2213 * Object has to be reserved! 2214 */ 2215 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2216 struct amdgpu_vm *vm, 2217 struct amdgpu_bo *bo) 2218 { 2219 struct amdgpu_bo_va *bo_va; 2220 2221 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2222 if (bo_va == NULL) { 2223 return NULL; 2224 } 2225 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2226 2227 bo_va->ref_count = 1; 2228 INIT_LIST_HEAD(&bo_va->valids); 2229 INIT_LIST_HEAD(&bo_va->invalids); 2230 2231 if (!bo) 2232 return bo_va; 2233 2234 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2235 bo_va->is_xgmi = true; 2236 /* Power up XGMI if it can be potentially used */ 2237 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2238 } 2239 2240 return bo_va; 2241 } 2242 2243 2244 /** 2245 * amdgpu_vm_bo_insert_map - insert a new mapping 2246 * 2247 * @adev: amdgpu_device pointer 2248 * @bo_va: bo_va to store the address 2249 * @mapping: the mapping to insert 2250 * 2251 * Insert a new mapping into all structures. 2252 */ 2253 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2254 struct amdgpu_bo_va *bo_va, 2255 struct amdgpu_bo_va_mapping *mapping) 2256 { 2257 struct amdgpu_vm *vm = bo_va->base.vm; 2258 struct amdgpu_bo *bo = bo_va->base.bo; 2259 2260 mapping->bo_va = bo_va; 2261 list_add(&mapping->list, &bo_va->invalids); 2262 amdgpu_vm_it_insert(mapping, &vm->va); 2263 2264 if (mapping->flags & AMDGPU_PTE_PRT) 2265 amdgpu_vm_prt_get(adev); 2266 2267 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2268 !bo_va->base.moved) { 2269 list_move(&bo_va->base.vm_status, &vm->moved); 2270 } 2271 trace_amdgpu_vm_bo_map(bo_va, mapping); 2272 } 2273 2274 /** 2275 * amdgpu_vm_bo_map - map bo inside a vm 2276 * 2277 * @adev: amdgpu_device pointer 2278 * @bo_va: bo_va to store the address 2279 * @saddr: where to map the BO 2280 * @offset: requested offset in the BO 2281 * @size: BO size in bytes 2282 * @flags: attributes of pages (read/write/valid/etc.) 2283 * 2284 * Add a mapping of the BO at the specefied addr into the VM. 2285 * 2286 * Returns: 2287 * 0 for success, error for failure. 2288 * 2289 * Object has to be reserved and unreserved outside! 2290 */ 2291 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2292 struct amdgpu_bo_va *bo_va, 2293 uint64_t saddr, uint64_t offset, 2294 uint64_t size, uint64_t flags) 2295 { 2296 struct amdgpu_bo_va_mapping *mapping, *tmp; 2297 struct amdgpu_bo *bo = bo_va->base.bo; 2298 struct amdgpu_vm *vm = bo_va->base.vm; 2299 uint64_t eaddr; 2300 2301 /* validate the parameters */ 2302 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2303 size == 0 || size & ~PAGE_MASK) 2304 return -EINVAL; 2305 2306 /* make sure object fit at this offset */ 2307 eaddr = saddr + size - 1; 2308 if (saddr >= eaddr || 2309 (bo && offset + size > amdgpu_bo_size(bo)) || 2310 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2311 return -EINVAL; 2312 2313 saddr /= AMDGPU_GPU_PAGE_SIZE; 2314 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2315 2316 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2317 if (tmp) { 2318 /* bo and tmp overlap, invalid addr */ 2319 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2320 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2321 tmp->start, tmp->last + 1); 2322 return -EINVAL; 2323 } 2324 2325 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2326 if (!mapping) 2327 return -ENOMEM; 2328 2329 mapping->start = saddr; 2330 mapping->last = eaddr; 2331 mapping->offset = offset; 2332 mapping->flags = flags; 2333 2334 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2335 2336 return 0; 2337 } 2338 2339 /** 2340 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2341 * 2342 * @adev: amdgpu_device pointer 2343 * @bo_va: bo_va to store the address 2344 * @saddr: where to map the BO 2345 * @offset: requested offset in the BO 2346 * @size: BO size in bytes 2347 * @flags: attributes of pages (read/write/valid/etc.) 2348 * 2349 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2350 * mappings as we do so. 2351 * 2352 * Returns: 2353 * 0 for success, error for failure. 2354 * 2355 * Object has to be reserved and unreserved outside! 2356 */ 2357 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2358 struct amdgpu_bo_va *bo_va, 2359 uint64_t saddr, uint64_t offset, 2360 uint64_t size, uint64_t flags) 2361 { 2362 struct amdgpu_bo_va_mapping *mapping; 2363 struct amdgpu_bo *bo = bo_va->base.bo; 2364 uint64_t eaddr; 2365 int r; 2366 2367 /* validate the parameters */ 2368 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2369 size == 0 || size & ~PAGE_MASK) 2370 return -EINVAL; 2371 2372 /* make sure object fit at this offset */ 2373 eaddr = saddr + size - 1; 2374 if (saddr >= eaddr || 2375 (bo && offset + size > amdgpu_bo_size(bo)) || 2376 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2377 return -EINVAL; 2378 2379 /* Allocate all the needed memory */ 2380 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2381 if (!mapping) 2382 return -ENOMEM; 2383 2384 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2385 if (r) { 2386 kfree(mapping); 2387 return r; 2388 } 2389 2390 saddr /= AMDGPU_GPU_PAGE_SIZE; 2391 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2392 2393 mapping->start = saddr; 2394 mapping->last = eaddr; 2395 mapping->offset = offset; 2396 mapping->flags = flags; 2397 2398 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2399 2400 return 0; 2401 } 2402 2403 /** 2404 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2405 * 2406 * @adev: amdgpu_device pointer 2407 * @bo_va: bo_va to remove the address from 2408 * @saddr: where to the BO is mapped 2409 * 2410 * Remove a mapping of the BO at the specefied addr from the VM. 2411 * 2412 * Returns: 2413 * 0 for success, error for failure. 2414 * 2415 * Object has to be reserved and unreserved outside! 2416 */ 2417 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2418 struct amdgpu_bo_va *bo_va, 2419 uint64_t saddr) 2420 { 2421 struct amdgpu_bo_va_mapping *mapping; 2422 struct amdgpu_vm *vm = bo_va->base.vm; 2423 bool valid = true; 2424 2425 saddr /= AMDGPU_GPU_PAGE_SIZE; 2426 2427 list_for_each_entry(mapping, &bo_va->valids, list) { 2428 if (mapping->start == saddr) 2429 break; 2430 } 2431 2432 if (&mapping->list == &bo_va->valids) { 2433 valid = false; 2434 2435 list_for_each_entry(mapping, &bo_va->invalids, list) { 2436 if (mapping->start == saddr) 2437 break; 2438 } 2439 2440 if (&mapping->list == &bo_va->invalids) 2441 return -ENOENT; 2442 } 2443 2444 list_del(&mapping->list); 2445 amdgpu_vm_it_remove(mapping, &vm->va); 2446 mapping->bo_va = NULL; 2447 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2448 2449 if (valid) 2450 list_add(&mapping->list, &vm->freed); 2451 else 2452 amdgpu_vm_free_mapping(adev, vm, mapping, 2453 bo_va->last_pt_update); 2454 2455 return 0; 2456 } 2457 2458 /** 2459 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2460 * 2461 * @adev: amdgpu_device pointer 2462 * @vm: VM structure to use 2463 * @saddr: start of the range 2464 * @size: size of the range 2465 * 2466 * Remove all mappings in a range, split them as appropriate. 2467 * 2468 * Returns: 2469 * 0 for success, error for failure. 2470 */ 2471 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2472 struct amdgpu_vm *vm, 2473 uint64_t saddr, uint64_t size) 2474 { 2475 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2476 LIST_HEAD(removed); 2477 uint64_t eaddr; 2478 2479 eaddr = saddr + size - 1; 2480 saddr /= AMDGPU_GPU_PAGE_SIZE; 2481 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2482 2483 /* Allocate all the needed memory */ 2484 before = kzalloc(sizeof(*before), GFP_KERNEL); 2485 if (!before) 2486 return -ENOMEM; 2487 INIT_LIST_HEAD(&before->list); 2488 2489 after = kzalloc(sizeof(*after), GFP_KERNEL); 2490 if (!after) { 2491 kfree(before); 2492 return -ENOMEM; 2493 } 2494 INIT_LIST_HEAD(&after->list); 2495 2496 /* Now gather all removed mappings */ 2497 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2498 while (tmp) { 2499 /* Remember mapping split at the start */ 2500 if (tmp->start < saddr) { 2501 before->start = tmp->start; 2502 before->last = saddr - 1; 2503 before->offset = tmp->offset; 2504 before->flags = tmp->flags; 2505 before->bo_va = tmp->bo_va; 2506 list_add(&before->list, &tmp->bo_va->invalids); 2507 } 2508 2509 /* Remember mapping split at the end */ 2510 if (tmp->last > eaddr) { 2511 after->start = eaddr + 1; 2512 after->last = tmp->last; 2513 after->offset = tmp->offset; 2514 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2515 after->flags = tmp->flags; 2516 after->bo_va = tmp->bo_va; 2517 list_add(&after->list, &tmp->bo_va->invalids); 2518 } 2519 2520 list_del(&tmp->list); 2521 list_add(&tmp->list, &removed); 2522 2523 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2524 } 2525 2526 /* And free them up */ 2527 list_for_each_entry_safe(tmp, next, &removed, list) { 2528 amdgpu_vm_it_remove(tmp, &vm->va); 2529 list_del(&tmp->list); 2530 2531 if (tmp->start < saddr) 2532 tmp->start = saddr; 2533 if (tmp->last > eaddr) 2534 tmp->last = eaddr; 2535 2536 tmp->bo_va = NULL; 2537 list_add(&tmp->list, &vm->freed); 2538 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2539 } 2540 2541 /* Insert partial mapping before the range */ 2542 if (!list_empty(&before->list)) { 2543 amdgpu_vm_it_insert(before, &vm->va); 2544 if (before->flags & AMDGPU_PTE_PRT) 2545 amdgpu_vm_prt_get(adev); 2546 } else { 2547 kfree(before); 2548 } 2549 2550 /* Insert partial mapping after the range */ 2551 if (!list_empty(&after->list)) { 2552 amdgpu_vm_it_insert(after, &vm->va); 2553 if (after->flags & AMDGPU_PTE_PRT) 2554 amdgpu_vm_prt_get(adev); 2555 } else { 2556 kfree(after); 2557 } 2558 2559 return 0; 2560 } 2561 2562 /** 2563 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2564 * 2565 * @vm: the requested VM 2566 * @addr: the address 2567 * 2568 * Find a mapping by it's address. 2569 * 2570 * Returns: 2571 * The amdgpu_bo_va_mapping matching for addr or NULL 2572 * 2573 */ 2574 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2575 uint64_t addr) 2576 { 2577 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2578 } 2579 2580 /** 2581 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2582 * 2583 * @vm: the requested vm 2584 * @ticket: CS ticket 2585 * 2586 * Trace all mappings of BOs reserved during a command submission. 2587 */ 2588 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2589 { 2590 struct amdgpu_bo_va_mapping *mapping; 2591 2592 if (!trace_amdgpu_vm_bo_cs_enabled()) 2593 return; 2594 2595 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2596 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2597 if (mapping->bo_va && mapping->bo_va->base.bo) { 2598 struct amdgpu_bo *bo; 2599 2600 bo = mapping->bo_va->base.bo; 2601 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2602 ticket) 2603 continue; 2604 } 2605 2606 trace_amdgpu_vm_bo_cs(mapping); 2607 } 2608 } 2609 2610 /** 2611 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2612 * 2613 * @adev: amdgpu_device pointer 2614 * @bo_va: requested bo_va 2615 * 2616 * Remove @bo_va->bo from the requested vm. 2617 * 2618 * Object have to be reserved! 2619 */ 2620 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2621 struct amdgpu_bo_va *bo_va) 2622 { 2623 struct amdgpu_bo_va_mapping *mapping, *next; 2624 struct amdgpu_bo *bo = bo_va->base.bo; 2625 struct amdgpu_vm *vm = bo_va->base.vm; 2626 struct amdgpu_vm_bo_base **base; 2627 2628 if (bo) { 2629 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2630 vm->bulk_moveable = false; 2631 2632 for (base = &bo_va->base.bo->vm_bo; *base; 2633 base = &(*base)->next) { 2634 if (*base != &bo_va->base) 2635 continue; 2636 2637 *base = bo_va->base.next; 2638 break; 2639 } 2640 } 2641 2642 spin_lock(&vm->invalidated_lock); 2643 list_del(&bo_va->base.vm_status); 2644 spin_unlock(&vm->invalidated_lock); 2645 2646 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2647 list_del(&mapping->list); 2648 amdgpu_vm_it_remove(mapping, &vm->va); 2649 mapping->bo_va = NULL; 2650 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2651 list_add(&mapping->list, &vm->freed); 2652 } 2653 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2654 list_del(&mapping->list); 2655 amdgpu_vm_it_remove(mapping, &vm->va); 2656 amdgpu_vm_free_mapping(adev, vm, mapping, 2657 bo_va->last_pt_update); 2658 } 2659 2660 dma_fence_put(bo_va->last_pt_update); 2661 2662 if (bo && bo_va->is_xgmi) 2663 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2664 2665 kfree(bo_va); 2666 } 2667 2668 /** 2669 * amdgpu_vm_evictable - check if we can evict a VM 2670 * 2671 * @bo: A page table of the VM. 2672 * 2673 * Check if it is possible to evict a VM. 2674 */ 2675 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2676 { 2677 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2678 2679 /* Page tables of a destroyed VM can go away immediately */ 2680 if (!bo_base || !bo_base->vm) 2681 return true; 2682 2683 /* Don't evict VM page tables while they are busy */ 2684 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2685 return false; 2686 2687 /* Try to block ongoing updates */ 2688 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2689 return false; 2690 2691 /* Don't evict VM page tables while they are updated */ 2692 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2693 amdgpu_vm_eviction_unlock(bo_base->vm); 2694 return false; 2695 } 2696 2697 bo_base->vm->evicting = true; 2698 amdgpu_vm_eviction_unlock(bo_base->vm); 2699 return true; 2700 } 2701 2702 /** 2703 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2704 * 2705 * @adev: amdgpu_device pointer 2706 * @bo: amdgpu buffer object 2707 * @evicted: is the BO evicted 2708 * 2709 * Mark @bo as invalid. 2710 */ 2711 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2712 struct amdgpu_bo *bo, bool evicted) 2713 { 2714 struct amdgpu_vm_bo_base *bo_base; 2715 2716 /* shadow bo doesn't have bo base, its validation needs its parent */ 2717 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2718 bo = bo->parent; 2719 2720 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2721 struct amdgpu_vm *vm = bo_base->vm; 2722 2723 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2724 amdgpu_vm_bo_evicted(bo_base); 2725 continue; 2726 } 2727 2728 if (bo_base->moved) 2729 continue; 2730 bo_base->moved = true; 2731 2732 if (bo->tbo.type == ttm_bo_type_kernel) 2733 amdgpu_vm_bo_relocated(bo_base); 2734 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2735 amdgpu_vm_bo_moved(bo_base); 2736 else 2737 amdgpu_vm_bo_invalidated(bo_base); 2738 } 2739 } 2740 2741 /** 2742 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2743 * 2744 * @vm_size: VM size 2745 * 2746 * Returns: 2747 * VM page table as power of two 2748 */ 2749 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2750 { 2751 /* Total bits covered by PD + PTs */ 2752 unsigned bits = ilog2(vm_size) + 18; 2753 2754 /* Make sure the PD is 4K in size up to 8GB address space. 2755 Above that split equal between PD and PTs */ 2756 if (vm_size <= 8) 2757 return (bits - 9); 2758 else 2759 return ((bits + 3) / 2); 2760 } 2761 2762 /** 2763 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2764 * 2765 * @adev: amdgpu_device pointer 2766 * @min_vm_size: the minimum vm size in GB if it's set auto 2767 * @fragment_size_default: Default PTE fragment size 2768 * @max_level: max VMPT level 2769 * @max_bits: max address space size in bits 2770 * 2771 */ 2772 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2773 uint32_t fragment_size_default, unsigned max_level, 2774 unsigned max_bits) 2775 { 2776 unsigned int max_size = 1 << (max_bits - 30); 2777 unsigned int vm_size; 2778 uint64_t tmp; 2779 2780 /* adjust vm size first */ 2781 if (amdgpu_vm_size != -1) { 2782 vm_size = amdgpu_vm_size; 2783 if (vm_size > max_size) { 2784 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2785 amdgpu_vm_size, max_size); 2786 vm_size = max_size; 2787 } 2788 } else { 2789 struct sysinfo si; 2790 unsigned int phys_ram_gb; 2791 2792 /* Optimal VM size depends on the amount of physical 2793 * RAM available. Underlying requirements and 2794 * assumptions: 2795 * 2796 * - Need to map system memory and VRAM from all GPUs 2797 * - VRAM from other GPUs not known here 2798 * - Assume VRAM <= system memory 2799 * - On GFX8 and older, VM space can be segmented for 2800 * different MTYPEs 2801 * - Need to allow room for fragmentation, guard pages etc. 2802 * 2803 * This adds up to a rough guess of system memory x3. 2804 * Round up to power of two to maximize the available 2805 * VM size with the given page table size. 2806 */ 2807 si_meminfo(&si); 2808 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2809 (1 << 30) - 1) >> 30; 2810 vm_size = roundup_pow_of_two( 2811 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2812 } 2813 2814 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2815 2816 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2817 if (amdgpu_vm_block_size != -1) 2818 tmp >>= amdgpu_vm_block_size - 9; 2819 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2820 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2821 switch (adev->vm_manager.num_level) { 2822 case 3: 2823 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2824 break; 2825 case 2: 2826 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2827 break; 2828 case 1: 2829 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2830 break; 2831 default: 2832 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2833 } 2834 /* block size depends on vm size and hw setup*/ 2835 if (amdgpu_vm_block_size != -1) 2836 adev->vm_manager.block_size = 2837 min((unsigned)amdgpu_vm_block_size, max_bits 2838 - AMDGPU_GPU_PAGE_SHIFT 2839 - 9 * adev->vm_manager.num_level); 2840 else if (adev->vm_manager.num_level > 1) 2841 adev->vm_manager.block_size = 9; 2842 else 2843 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2844 2845 if (amdgpu_vm_fragment_size == -1) 2846 adev->vm_manager.fragment_size = fragment_size_default; 2847 else 2848 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2849 2850 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2851 vm_size, adev->vm_manager.num_level + 1, 2852 adev->vm_manager.block_size, 2853 adev->vm_manager.fragment_size); 2854 } 2855 2856 /** 2857 * amdgpu_vm_wait_idle - wait for the VM to become idle 2858 * 2859 * @vm: VM object to wait for 2860 * @timeout: timeout to wait for VM to become idle 2861 */ 2862 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2863 { 2864 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2865 true, true, timeout); 2866 if (timeout <= 0) 2867 return timeout; 2868 2869 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2870 } 2871 2872 /** 2873 * amdgpu_vm_init - initialize a vm instance 2874 * 2875 * @adev: amdgpu_device pointer 2876 * @vm: requested vm 2877 * @pasid: Process address space identifier 2878 * 2879 * Init @vm fields. 2880 * 2881 * Returns: 2882 * 0 for success, error for failure. 2883 */ 2884 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid) 2885 { 2886 struct amdgpu_bo *root_bo; 2887 struct amdgpu_bo_vm *root; 2888 int r, i; 2889 2890 vm->va = RB_ROOT_CACHED; 2891 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2892 vm->reserved_vmid[i] = NULL; 2893 INIT_LIST_HEAD(&vm->evicted); 2894 INIT_LIST_HEAD(&vm->relocated); 2895 INIT_LIST_HEAD(&vm->moved); 2896 INIT_LIST_HEAD(&vm->idle); 2897 INIT_LIST_HEAD(&vm->invalidated); 2898 spin_lock_init(&vm->invalidated_lock); 2899 INIT_LIST_HEAD(&vm->freed); 2900 INIT_LIST_HEAD(&vm->done); 2901 2902 /* create scheduler entities for page table updates */ 2903 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2904 adev->vm_manager.vm_pte_scheds, 2905 adev->vm_manager.vm_pte_num_scheds, NULL); 2906 if (r) 2907 return r; 2908 2909 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2910 adev->vm_manager.vm_pte_scheds, 2911 adev->vm_manager.vm_pte_num_scheds, NULL); 2912 if (r) 2913 goto error_free_immediate; 2914 2915 vm->pte_support_ats = false; 2916 vm->is_compute_context = false; 2917 2918 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2919 AMDGPU_VM_USE_CPU_FOR_GFX); 2920 2921 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2922 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2923 WARN_ONCE((vm->use_cpu_for_update && 2924 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2925 "CPU update of VM recommended only for large BAR system\n"); 2926 2927 if (vm->use_cpu_for_update) 2928 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2929 else 2930 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2931 vm->last_update = NULL; 2932 vm->last_unlocked = dma_fence_get_stub(); 2933 2934 mutex_init(&vm->eviction_lock); 2935 vm->evicting = false; 2936 2937 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2938 false, &root); 2939 if (r) 2940 goto error_free_delayed; 2941 root_bo = &root->bo; 2942 r = amdgpu_bo_reserve(root_bo, true); 2943 if (r) 2944 goto error_free_root; 2945 2946 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1); 2947 if (r) 2948 goto error_unreserve; 2949 2950 amdgpu_vm_bo_base_init(&vm->root.base, vm, root_bo); 2951 2952 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2953 if (r) 2954 goto error_unreserve; 2955 2956 amdgpu_bo_unreserve(vm->root.base.bo); 2957 2958 if (pasid) { 2959 unsigned long flags; 2960 2961 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2962 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2963 GFP_ATOMIC); 2964 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2965 if (r < 0) 2966 goto error_free_root; 2967 2968 vm->pasid = pasid; 2969 } 2970 2971 INIT_KFIFO(vm->faults); 2972 2973 return 0; 2974 2975 error_unreserve: 2976 amdgpu_bo_unreserve(vm->root.base.bo); 2977 2978 error_free_root: 2979 amdgpu_bo_unref(&root->shadow); 2980 amdgpu_bo_unref(&root_bo); 2981 vm->root.base.bo = NULL; 2982 2983 error_free_delayed: 2984 dma_fence_put(vm->last_unlocked); 2985 drm_sched_entity_destroy(&vm->delayed); 2986 2987 error_free_immediate: 2988 drm_sched_entity_destroy(&vm->immediate); 2989 2990 return r; 2991 } 2992 2993 /** 2994 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2995 * 2996 * @adev: amdgpu_device pointer 2997 * @vm: the VM to check 2998 * 2999 * check all entries of the root PD, if any subsequent PDs are allocated, 3000 * it means there are page table creating and filling, and is no a clean 3001 * VM 3002 * 3003 * Returns: 3004 * 0 if this VM is clean 3005 */ 3006 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 3007 struct amdgpu_vm *vm) 3008 { 3009 enum amdgpu_vm_level root = adev->vm_manager.root_level; 3010 unsigned int entries = amdgpu_vm_num_entries(adev, root); 3011 unsigned int i = 0; 3012 3013 if (!(vm->root.entries)) 3014 return 0; 3015 3016 for (i = 0; i < entries; i++) { 3017 if (vm->root.entries[i].base.bo) 3018 return -EINVAL; 3019 } 3020 3021 return 0; 3022 } 3023 3024 /** 3025 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3026 * 3027 * @adev: amdgpu_device pointer 3028 * @vm: requested vm 3029 * @pasid: pasid to use 3030 * 3031 * This only works on GFX VMs that don't have any BOs added and no 3032 * page tables allocated yet. 3033 * 3034 * Changes the following VM parameters: 3035 * - use_cpu_for_update 3036 * - pte_supports_ats 3037 * - pasid (old PASID is released, because compute manages its own PASIDs) 3038 * 3039 * Reinitializes the page directory to reflect the changed ATS 3040 * setting. 3041 * 3042 * Returns: 3043 * 0 for success, -errno for errors. 3044 */ 3045 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 3046 u32 pasid) 3047 { 3048 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3049 int r; 3050 3051 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3052 if (r) 3053 return r; 3054 3055 /* Sanity checks */ 3056 r = amdgpu_vm_check_clean_reserved(adev, vm); 3057 if (r) 3058 goto unreserve_bo; 3059 3060 if (pasid) { 3061 unsigned long flags; 3062 3063 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3064 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3065 GFP_ATOMIC); 3066 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3067 3068 if (r == -ENOSPC) 3069 goto unreserve_bo; 3070 r = 0; 3071 } 3072 3073 /* Check if PD needs to be reinitialized and do it before 3074 * changing any other state, in case it fails. 3075 */ 3076 if (pte_support_ats != vm->pte_support_ats) { 3077 vm->pte_support_ats = pte_support_ats; 3078 r = amdgpu_vm_clear_bo(adev, vm, 3079 to_amdgpu_bo_vm(vm->root.base.bo), 3080 false); 3081 if (r) 3082 goto free_idr; 3083 } 3084 3085 /* Update VM state */ 3086 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3087 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3088 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3089 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3090 WARN_ONCE((vm->use_cpu_for_update && 3091 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3092 "CPU update of VM recommended only for large BAR system\n"); 3093 3094 if (vm->use_cpu_for_update) { 3095 /* Sync with last SDMA update/clear before switching to CPU */ 3096 r = amdgpu_bo_sync_wait(vm->root.base.bo, 3097 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3098 if (r) 3099 goto free_idr; 3100 3101 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3102 } else { 3103 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3104 } 3105 dma_fence_put(vm->last_update); 3106 vm->last_update = NULL; 3107 vm->is_compute_context = true; 3108 3109 if (vm->pasid) { 3110 unsigned long flags; 3111 3112 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3113 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3114 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3115 3116 /* Free the original amdgpu allocated pasid 3117 * Will be replaced with kfd allocated pasid 3118 */ 3119 amdgpu_pasid_free(vm->pasid); 3120 vm->pasid = 0; 3121 } 3122 3123 /* Free the shadow bo for compute VM */ 3124 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.base.bo)->shadow); 3125 3126 if (pasid) 3127 vm->pasid = pasid; 3128 3129 goto unreserve_bo; 3130 3131 free_idr: 3132 if (pasid) { 3133 unsigned long flags; 3134 3135 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3136 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3137 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3138 } 3139 unreserve_bo: 3140 amdgpu_bo_unreserve(vm->root.base.bo); 3141 return r; 3142 } 3143 3144 /** 3145 * amdgpu_vm_release_compute - release a compute vm 3146 * @adev: amdgpu_device pointer 3147 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3148 * 3149 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3150 * pasid from vm. Compute should stop use of vm after this call. 3151 */ 3152 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3153 { 3154 if (vm->pasid) { 3155 unsigned long flags; 3156 3157 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3158 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3159 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3160 } 3161 vm->pasid = 0; 3162 vm->is_compute_context = false; 3163 } 3164 3165 /** 3166 * amdgpu_vm_fini - tear down a vm instance 3167 * 3168 * @adev: amdgpu_device pointer 3169 * @vm: requested vm 3170 * 3171 * Tear down @vm. 3172 * Unbind the VM and remove all bos from the vm bo list 3173 */ 3174 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3175 { 3176 struct amdgpu_bo_va_mapping *mapping, *tmp; 3177 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3178 struct amdgpu_bo *root; 3179 int i; 3180 3181 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3182 3183 root = amdgpu_bo_ref(vm->root.base.bo); 3184 amdgpu_bo_reserve(root, true); 3185 if (vm->pasid) { 3186 unsigned long flags; 3187 3188 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3189 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3190 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3191 vm->pasid = 0; 3192 } 3193 3194 dma_fence_wait(vm->last_unlocked, false); 3195 dma_fence_put(vm->last_unlocked); 3196 3197 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3198 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3199 amdgpu_vm_prt_fini(adev, vm); 3200 prt_fini_needed = false; 3201 } 3202 3203 list_del(&mapping->list); 3204 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3205 } 3206 3207 amdgpu_vm_free_pts(adev, vm, NULL); 3208 amdgpu_bo_unreserve(root); 3209 amdgpu_bo_unref(&root); 3210 WARN_ON(vm->root.base.bo); 3211 3212 drm_sched_entity_destroy(&vm->immediate); 3213 drm_sched_entity_destroy(&vm->delayed); 3214 3215 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3216 dev_err(adev->dev, "still active bo inside vm\n"); 3217 } 3218 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3219 &vm->va.rb_root, rb) { 3220 /* Don't remove the mapping here, we don't want to trigger a 3221 * rebalance and the tree is about to be destroyed anyway. 3222 */ 3223 list_del(&mapping->list); 3224 kfree(mapping); 3225 } 3226 3227 dma_fence_put(vm->last_update); 3228 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3229 amdgpu_vmid_free_reserved(adev, vm, i); 3230 } 3231 3232 /** 3233 * amdgpu_vm_manager_init - init the VM manager 3234 * 3235 * @adev: amdgpu_device pointer 3236 * 3237 * Initialize the VM manager structures 3238 */ 3239 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3240 { 3241 unsigned i; 3242 3243 /* Concurrent flushes are only possible starting with Vega10 and 3244 * are broken on Navi10 and Navi14. 3245 */ 3246 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3247 adev->asic_type == CHIP_NAVI10 || 3248 adev->asic_type == CHIP_NAVI14); 3249 amdgpu_vmid_mgr_init(adev); 3250 3251 adev->vm_manager.fence_context = 3252 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3253 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3254 adev->vm_manager.seqno[i] = 0; 3255 3256 spin_lock_init(&adev->vm_manager.prt_lock); 3257 atomic_set(&adev->vm_manager.num_prt_users, 0); 3258 3259 /* If not overridden by the user, by default, only in large BAR systems 3260 * Compute VM tables will be updated by CPU 3261 */ 3262 #ifdef CONFIG_X86_64 3263 if (amdgpu_vm_update_mode == -1) { 3264 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3265 adev->vm_manager.vm_update_mode = 3266 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3267 else 3268 adev->vm_manager.vm_update_mode = 0; 3269 } else 3270 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3271 #else 3272 adev->vm_manager.vm_update_mode = 0; 3273 #endif 3274 3275 idr_init(&adev->vm_manager.pasid_idr); 3276 spin_lock_init(&adev->vm_manager.pasid_lock); 3277 } 3278 3279 /** 3280 * amdgpu_vm_manager_fini - cleanup VM manager 3281 * 3282 * @adev: amdgpu_device pointer 3283 * 3284 * Cleanup the VM manager and free resources. 3285 */ 3286 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3287 { 3288 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3289 idr_destroy(&adev->vm_manager.pasid_idr); 3290 3291 amdgpu_vmid_mgr_fini(adev); 3292 } 3293 3294 /** 3295 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3296 * 3297 * @dev: drm device pointer 3298 * @data: drm_amdgpu_vm 3299 * @filp: drm file pointer 3300 * 3301 * Returns: 3302 * 0 for success, -errno for errors. 3303 */ 3304 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3305 { 3306 union drm_amdgpu_vm *args = data; 3307 struct amdgpu_device *adev = drm_to_adev(dev); 3308 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3309 long timeout = msecs_to_jiffies(2000); 3310 int r; 3311 3312 switch (args->in.op) { 3313 case AMDGPU_VM_OP_RESERVE_VMID: 3314 /* We only have requirement to reserve vmid from gfxhub */ 3315 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3316 AMDGPU_GFXHUB_0); 3317 if (r) 3318 return r; 3319 break; 3320 case AMDGPU_VM_OP_UNRESERVE_VMID: 3321 if (amdgpu_sriov_runtime(adev)) 3322 timeout = 8 * timeout; 3323 3324 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3325 * not referenced anymore. 3326 */ 3327 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true); 3328 if (r) 3329 return r; 3330 3331 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3332 if (r < 0) 3333 return r; 3334 3335 amdgpu_bo_unreserve(fpriv->vm.root.base.bo); 3336 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3337 break; 3338 default: 3339 return -EINVAL; 3340 } 3341 3342 return 0; 3343 } 3344 3345 /** 3346 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3347 * 3348 * @adev: drm device pointer 3349 * @pasid: PASID identifier for VM 3350 * @task_info: task_info to fill. 3351 */ 3352 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3353 struct amdgpu_task_info *task_info) 3354 { 3355 struct amdgpu_vm *vm; 3356 unsigned long flags; 3357 3358 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3359 3360 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3361 if (vm) 3362 *task_info = vm->task_info; 3363 3364 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3365 } 3366 3367 /** 3368 * amdgpu_vm_set_task_info - Sets VMs task info. 3369 * 3370 * @vm: vm for which to set the info 3371 */ 3372 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3373 { 3374 if (vm->task_info.pid) 3375 return; 3376 3377 vm->task_info.pid = current->pid; 3378 get_task_comm(vm->task_info.task_name, current); 3379 3380 if (current->group_leader->mm != current->mm) 3381 return; 3382 3383 vm->task_info.tgid = current->group_leader->pid; 3384 get_task_comm(vm->task_info.process_name, current->group_leader); 3385 } 3386 3387 /** 3388 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3389 * @adev: amdgpu device pointer 3390 * @pasid: PASID of the VM 3391 * @addr: Address of the fault 3392 * 3393 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3394 * shouldn't be reported any more. 3395 */ 3396 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3397 uint64_t addr) 3398 { 3399 bool is_compute_context = false; 3400 struct amdgpu_bo *root; 3401 uint64_t value, flags; 3402 struct amdgpu_vm *vm; 3403 int r; 3404 3405 spin_lock(&adev->vm_manager.pasid_lock); 3406 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3407 if (vm) { 3408 root = amdgpu_bo_ref(vm->root.base.bo); 3409 is_compute_context = vm->is_compute_context; 3410 } else { 3411 root = NULL; 3412 } 3413 spin_unlock(&adev->vm_manager.pasid_lock); 3414 3415 if (!root) 3416 return false; 3417 3418 addr /= AMDGPU_GPU_PAGE_SIZE; 3419 3420 if (is_compute_context && 3421 !svm_range_restore_pages(adev, pasid, addr)) { 3422 amdgpu_bo_unref(&root); 3423 return true; 3424 } 3425 3426 r = amdgpu_bo_reserve(root, true); 3427 if (r) 3428 goto error_unref; 3429 3430 /* Double check that the VM still exists */ 3431 spin_lock(&adev->vm_manager.pasid_lock); 3432 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3433 if (vm && vm->root.base.bo != root) 3434 vm = NULL; 3435 spin_unlock(&adev->vm_manager.pasid_lock); 3436 if (!vm) 3437 goto error_unlock; 3438 3439 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3440 AMDGPU_PTE_SYSTEM; 3441 3442 if (is_compute_context) { 3443 /* Intentionally setting invalid PTE flag 3444 * combination to force a no-retry-fault 3445 */ 3446 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3447 AMDGPU_PTE_TF; 3448 value = 0; 3449 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3450 /* Redirect the access to the dummy page */ 3451 value = adev->dummy_page_addr; 3452 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3453 AMDGPU_PTE_WRITEABLE; 3454 3455 } else { 3456 /* Let the hw retry silently on the PTE */ 3457 value = 0; 3458 } 3459 3460 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3461 if (r) { 3462 pr_debug("failed %d to reserve fence slot\n", r); 3463 goto error_unlock; 3464 } 3465 3466 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3467 addr, flags, value, NULL, NULL, NULL, 3468 NULL); 3469 if (r) 3470 goto error_unlock; 3471 3472 r = amdgpu_vm_update_pdes(adev, vm, true); 3473 3474 error_unlock: 3475 amdgpu_bo_unreserve(root); 3476 if (r < 0) 3477 DRM_ERROR("Can't handle page fault (%d)\n", r); 3478 3479 error_unref: 3480 amdgpu_bo_unref(&root); 3481 3482 return false; 3483 } 3484 3485 #if defined(CONFIG_DEBUG_FS) 3486 /** 3487 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3488 * 3489 * @vm: Requested VM for printing BO info 3490 * @m: debugfs file 3491 * 3492 * Print BO information in debugfs file for the VM 3493 */ 3494 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3495 { 3496 struct amdgpu_bo_va *bo_va, *tmp; 3497 u64 total_idle = 0; 3498 u64 total_evicted = 0; 3499 u64 total_relocated = 0; 3500 u64 total_moved = 0; 3501 u64 total_invalidated = 0; 3502 u64 total_done = 0; 3503 unsigned int total_idle_objs = 0; 3504 unsigned int total_evicted_objs = 0; 3505 unsigned int total_relocated_objs = 0; 3506 unsigned int total_moved_objs = 0; 3507 unsigned int total_invalidated_objs = 0; 3508 unsigned int total_done_objs = 0; 3509 unsigned int id = 0; 3510 3511 seq_puts(m, "\tIdle BOs:\n"); 3512 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3513 if (!bo_va->base.bo) 3514 continue; 3515 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3516 } 3517 total_idle_objs = id; 3518 id = 0; 3519 3520 seq_puts(m, "\tEvicted BOs:\n"); 3521 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3522 if (!bo_va->base.bo) 3523 continue; 3524 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3525 } 3526 total_evicted_objs = id; 3527 id = 0; 3528 3529 seq_puts(m, "\tRelocated BOs:\n"); 3530 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3531 if (!bo_va->base.bo) 3532 continue; 3533 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3534 } 3535 total_relocated_objs = id; 3536 id = 0; 3537 3538 seq_puts(m, "\tMoved BOs:\n"); 3539 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3540 if (!bo_va->base.bo) 3541 continue; 3542 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3543 } 3544 total_moved_objs = id; 3545 id = 0; 3546 3547 seq_puts(m, "\tInvalidated BOs:\n"); 3548 spin_lock(&vm->invalidated_lock); 3549 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3550 if (!bo_va->base.bo) 3551 continue; 3552 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3553 } 3554 total_invalidated_objs = id; 3555 id = 0; 3556 3557 seq_puts(m, "\tDone BOs:\n"); 3558 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3559 if (!bo_va->base.bo) 3560 continue; 3561 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3562 } 3563 spin_unlock(&vm->invalidated_lock); 3564 total_done_objs = id; 3565 3566 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3567 total_idle_objs); 3568 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3569 total_evicted_objs); 3570 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3571 total_relocated_objs); 3572 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3573 total_moved_objs); 3574 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3575 total_invalidated_objs); 3576 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3577 total_done_objs); 3578 } 3579 #endif 3580