xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When execting a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /*
92  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
93  * happens while holding this lock anywhere to prevent deadlocks when
94  * an MMU notifier runs in reclaim-FS context.
95  */
96 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
97 {
98 	mutex_lock(&vm->eviction_lock);
99 	vm->saved_flags = memalloc_noreclaim_save();
100 }
101 
102 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
103 {
104 	if (mutex_trylock(&vm->eviction_lock)) {
105 		vm->saved_flags = memalloc_noreclaim_save();
106 		return 1;
107 	}
108 	return 0;
109 }
110 
111 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
112 {
113 	memalloc_noreclaim_restore(vm->saved_flags);
114 	mutex_unlock(&vm->eviction_lock);
115 }
116 
117 /**
118  * amdgpu_vm_level_shift - return the addr shift for each level
119  *
120  * @adev: amdgpu_device pointer
121  * @level: VMPT level
122  *
123  * Returns:
124  * The number of bits the pfn needs to be right shifted for a level.
125  */
126 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
127 				      unsigned level)
128 {
129 	switch (level) {
130 	case AMDGPU_VM_PDB2:
131 	case AMDGPU_VM_PDB1:
132 	case AMDGPU_VM_PDB0:
133 		return 9 * (AMDGPU_VM_PDB0 - level) +
134 			adev->vm_manager.block_size;
135 	case AMDGPU_VM_PTB:
136 		return 0;
137 	default:
138 		return ~0;
139 	}
140 }
141 
142 /**
143  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
144  *
145  * @adev: amdgpu_device pointer
146  * @level: VMPT level
147  *
148  * Returns:
149  * The number of entries in a page directory or page table.
150  */
151 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
152 				      unsigned level)
153 {
154 	unsigned shift = amdgpu_vm_level_shift(adev,
155 					       adev->vm_manager.root_level);
156 
157 	if (level == adev->vm_manager.root_level)
158 		/* For the root directory */
159 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
160 			>> shift;
161 	else if (level != AMDGPU_VM_PTB)
162 		/* Everything in between */
163 		return 512;
164 	else
165 		/* For the page tables on the leaves */
166 		return AMDGPU_VM_PTE_COUNT(adev);
167 }
168 
169 /**
170  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
171  *
172  * @adev: amdgpu_device pointer
173  *
174  * Returns:
175  * The number of entries in the root page directory which needs the ATS setting.
176  */
177 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
178 {
179 	unsigned shift;
180 
181 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
182 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
183 }
184 
185 /**
186  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
187  *
188  * @adev: amdgpu_device pointer
189  * @level: VMPT level
190  *
191  * Returns:
192  * The mask to extract the entry number of a PD/PT from an address.
193  */
194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
195 				       unsigned int level)
196 {
197 	if (level <= adev->vm_manager.root_level)
198 		return 0xffffffff;
199 	else if (level != AMDGPU_VM_PTB)
200 		return 0x1ff;
201 	else
202 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
203 }
204 
205 /**
206  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
207  *
208  * @adev: amdgpu_device pointer
209  * @level: VMPT level
210  *
211  * Returns:
212  * The size of the BO for a page directory or page table in bytes.
213  */
214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
215 {
216 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
217 }
218 
219 /**
220  * amdgpu_vm_bo_evicted - vm_bo is evicted
221  *
222  * @vm_bo: vm_bo which is evicted
223  *
224  * State for PDs/PTs and per VM BOs which are not at the location they should
225  * be.
226  */
227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
228 {
229 	struct amdgpu_vm *vm = vm_bo->vm;
230 	struct amdgpu_bo *bo = vm_bo->bo;
231 
232 	vm_bo->moved = true;
233 	if (bo->tbo.type == ttm_bo_type_kernel)
234 		list_move(&vm_bo->vm_status, &vm->evicted);
235 	else
236 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
237 }
238 /**
239  * amdgpu_vm_bo_moved - vm_bo is moved
240  *
241  * @vm_bo: vm_bo which is moved
242  *
243  * State for per VM BOs which are moved, but that change is not yet reflected
244  * in the page tables.
245  */
246 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
247 {
248 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
249 }
250 
251 /**
252  * amdgpu_vm_bo_idle - vm_bo is idle
253  *
254  * @vm_bo: vm_bo which is now idle
255  *
256  * State for PDs/PTs and per VM BOs which have gone through the state machine
257  * and are now idle.
258  */
259 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
262 	vm_bo->moved = false;
263 }
264 
265 /**
266  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
267  *
268  * @vm_bo: vm_bo which is now invalidated
269  *
270  * State for normal BOs which are invalidated and that change not yet reflected
271  * in the PTs.
272  */
273 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
274 {
275 	spin_lock(&vm_bo->vm->invalidated_lock);
276 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
277 	spin_unlock(&vm_bo->vm->invalidated_lock);
278 }
279 
280 /**
281  * amdgpu_vm_bo_relocated - vm_bo is reloacted
282  *
283  * @vm_bo: vm_bo which is relocated
284  *
285  * State for PDs/PTs which needs to update their parent PD.
286  * For the root PD, just move to idle state.
287  */
288 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
289 {
290 	if (vm_bo->bo->parent)
291 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
292 	else
293 		amdgpu_vm_bo_idle(vm_bo);
294 }
295 
296 /**
297  * amdgpu_vm_bo_done - vm_bo is done
298  *
299  * @vm_bo: vm_bo which is now done
300  *
301  * State for normal BOs which are invalidated and that change has been updated
302  * in the PTs.
303  */
304 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
305 {
306 	spin_lock(&vm_bo->vm->invalidated_lock);
307 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
308 	spin_unlock(&vm_bo->vm->invalidated_lock);
309 }
310 
311 /**
312  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
313  *
314  * @base: base structure for tracking BO usage in a VM
315  * @vm: vm to which bo is to be added
316  * @bo: amdgpu buffer object
317  *
318  * Initialize a bo_va_base structure and add it to the appropriate lists
319  *
320  */
321 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
322 				   struct amdgpu_vm *vm,
323 				   struct amdgpu_bo *bo)
324 {
325 	base->vm = vm;
326 	base->bo = bo;
327 	base->next = NULL;
328 	INIT_LIST_HEAD(&base->vm_status);
329 
330 	if (!bo)
331 		return;
332 	base->next = bo->vm_bo;
333 	bo->vm_bo = base;
334 
335 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
336 		return;
337 
338 	vm->bulk_moveable = false;
339 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
340 		amdgpu_vm_bo_relocated(base);
341 	else
342 		amdgpu_vm_bo_idle(base);
343 
344 	if (bo->preferred_domains &
345 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
346 		return;
347 
348 	/*
349 	 * we checked all the prerequisites, but it looks like this per vm bo
350 	 * is currently evicted. add the bo to the evicted list to make sure it
351 	 * is validated on next vm use to avoid fault.
352 	 * */
353 	amdgpu_vm_bo_evicted(base);
354 }
355 
356 /**
357  * amdgpu_vm_pt_parent - get the parent page directory
358  *
359  * @pt: child page table
360  *
361  * Helper to get the parent entry for the child page table. NULL if we are at
362  * the root page directory.
363  */
364 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
365 {
366 	struct amdgpu_bo *parent = pt->base.bo->parent;
367 
368 	if (!parent)
369 		return NULL;
370 
371 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
372 }
373 
374 /*
375  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
376  */
377 struct amdgpu_vm_pt_cursor {
378 	uint64_t pfn;
379 	struct amdgpu_vm_pt *parent;
380 	struct amdgpu_vm_pt *entry;
381 	unsigned level;
382 };
383 
384 /**
385  * amdgpu_vm_pt_start - start PD/PT walk
386  *
387  * @adev: amdgpu_device pointer
388  * @vm: amdgpu_vm structure
389  * @start: start address of the walk
390  * @cursor: state to initialize
391  *
392  * Initialize a amdgpu_vm_pt_cursor to start a walk.
393  */
394 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
395 			       struct amdgpu_vm *vm, uint64_t start,
396 			       struct amdgpu_vm_pt_cursor *cursor)
397 {
398 	cursor->pfn = start;
399 	cursor->parent = NULL;
400 	cursor->entry = &vm->root;
401 	cursor->level = adev->vm_manager.root_level;
402 }
403 
404 /**
405  * amdgpu_vm_pt_descendant - go to child node
406  *
407  * @adev: amdgpu_device pointer
408  * @cursor: current state
409  *
410  * Walk to the child node of the current node.
411  * Returns:
412  * True if the walk was possible, false otherwise.
413  */
414 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
415 				    struct amdgpu_vm_pt_cursor *cursor)
416 {
417 	unsigned mask, shift, idx;
418 
419 	if (!cursor->entry->entries)
420 		return false;
421 
422 	BUG_ON(!cursor->entry->base.bo);
423 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
424 	shift = amdgpu_vm_level_shift(adev, cursor->level);
425 
426 	++cursor->level;
427 	idx = (cursor->pfn >> shift) & mask;
428 	cursor->parent = cursor->entry;
429 	cursor->entry = &cursor->entry->entries[idx];
430 	return true;
431 }
432 
433 /**
434  * amdgpu_vm_pt_sibling - go to sibling node
435  *
436  * @adev: amdgpu_device pointer
437  * @cursor: current state
438  *
439  * Walk to the sibling node of the current node.
440  * Returns:
441  * True if the walk was possible, false otherwise.
442  */
443 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
444 				 struct amdgpu_vm_pt_cursor *cursor)
445 {
446 	unsigned shift, num_entries;
447 
448 	/* Root doesn't have a sibling */
449 	if (!cursor->parent)
450 		return false;
451 
452 	/* Go to our parents and see if we got a sibling */
453 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
454 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
455 
456 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
457 		return false;
458 
459 	cursor->pfn += 1ULL << shift;
460 	cursor->pfn &= ~((1ULL << shift) - 1);
461 	++cursor->entry;
462 	return true;
463 }
464 
465 /**
466  * amdgpu_vm_pt_ancestor - go to parent node
467  *
468  * @cursor: current state
469  *
470  * Walk to the parent node of the current node.
471  * Returns:
472  * True if the walk was possible, false otherwise.
473  */
474 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
475 {
476 	if (!cursor->parent)
477 		return false;
478 
479 	--cursor->level;
480 	cursor->entry = cursor->parent;
481 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
482 	return true;
483 }
484 
485 /**
486  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
487  *
488  * @adev: amdgpu_device pointer
489  * @cursor: current state
490  *
491  * Walk the PD/PT tree to the next node.
492  */
493 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
494 			      struct amdgpu_vm_pt_cursor *cursor)
495 {
496 	/* First try a newborn child */
497 	if (amdgpu_vm_pt_descendant(adev, cursor))
498 		return;
499 
500 	/* If that didn't worked try to find a sibling */
501 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
502 		/* No sibling, go to our parents and grandparents */
503 		if (!amdgpu_vm_pt_ancestor(cursor)) {
504 			cursor->pfn = ~0ll;
505 			return;
506 		}
507 	}
508 }
509 
510 /**
511  * amdgpu_vm_pt_first_dfs - start a deep first search
512  *
513  * @adev: amdgpu_device structure
514  * @vm: amdgpu_vm structure
515  * @start: optional cursor to start with
516  * @cursor: state to initialize
517  *
518  * Starts a deep first traversal of the PD/PT tree.
519  */
520 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
521 				   struct amdgpu_vm *vm,
522 				   struct amdgpu_vm_pt_cursor *start,
523 				   struct amdgpu_vm_pt_cursor *cursor)
524 {
525 	if (start)
526 		*cursor = *start;
527 	else
528 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
529 	while (amdgpu_vm_pt_descendant(adev, cursor));
530 }
531 
532 /**
533  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
534  *
535  * @start: starting point for the search
536  * @entry: current entry
537  *
538  * Returns:
539  * True when the search should continue, false otherwise.
540  */
541 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
542 				      struct amdgpu_vm_pt *entry)
543 {
544 	return entry && (!start || entry != start->entry);
545 }
546 
547 /**
548  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
549  *
550  * @adev: amdgpu_device structure
551  * @cursor: current state
552  *
553  * Move the cursor to the next node in a deep first search.
554  */
555 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
556 				  struct amdgpu_vm_pt_cursor *cursor)
557 {
558 	if (!cursor->entry)
559 		return;
560 
561 	if (!cursor->parent)
562 		cursor->entry = NULL;
563 	else if (amdgpu_vm_pt_sibling(adev, cursor))
564 		while (amdgpu_vm_pt_descendant(adev, cursor));
565 	else
566 		amdgpu_vm_pt_ancestor(cursor);
567 }
568 
569 /*
570  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
571  */
572 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
573 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
574 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
575 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
576 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
577 
578 /**
579  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
580  *
581  * @vm: vm providing the BOs
582  * @validated: head of validation list
583  * @entry: entry to add
584  *
585  * Add the page directory to the list of BOs to
586  * validate for command submission.
587  */
588 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
589 			 struct list_head *validated,
590 			 struct amdgpu_bo_list_entry *entry)
591 {
592 	entry->priority = 0;
593 	entry->tv.bo = &vm->root.base.bo->tbo;
594 	/* Two for VM updates, one for TTM and one for the CS job */
595 	entry->tv.num_shared = 4;
596 	entry->user_pages = NULL;
597 	list_add(&entry->tv.head, validated);
598 }
599 
600 /**
601  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
602  *
603  * @bo: BO which was removed from the LRU
604  *
605  * Make sure the bulk_moveable flag is updated when a BO is removed from the
606  * LRU.
607  */
608 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
609 {
610 	struct amdgpu_bo *abo;
611 	struct amdgpu_vm_bo_base *bo_base;
612 
613 	if (!amdgpu_bo_is_amdgpu_bo(bo))
614 		return;
615 
616 	if (bo->pin_count)
617 		return;
618 
619 	abo = ttm_to_amdgpu_bo(bo);
620 	if (!abo->parent)
621 		return;
622 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
623 		struct amdgpu_vm *vm = bo_base->vm;
624 
625 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
626 			vm->bulk_moveable = false;
627 	}
628 
629 }
630 /**
631  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
632  *
633  * @adev: amdgpu device pointer
634  * @vm: vm providing the BOs
635  *
636  * Move all BOs to the end of LRU and remember their positions to put them
637  * together.
638  */
639 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
640 				struct amdgpu_vm *vm)
641 {
642 	struct amdgpu_vm_bo_base *bo_base;
643 
644 	if (vm->bulk_moveable) {
645 		spin_lock(&adev->mman.bdev.lru_lock);
646 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
647 		spin_unlock(&adev->mman.bdev.lru_lock);
648 		return;
649 	}
650 
651 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
652 
653 	spin_lock(&adev->mman.bdev.lru_lock);
654 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
655 		struct amdgpu_bo *bo = bo_base->bo;
656 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
657 
658 		if (!bo->parent)
659 			continue;
660 
661 		ttm_bo_move_to_lru_tail(&bo->tbo, &bo->tbo.mem,
662 					&vm->lru_bulk_move);
663 		if (shadow)
664 			ttm_bo_move_to_lru_tail(&shadow->tbo, &shadow->tbo.mem,
665 						&vm->lru_bulk_move);
666 	}
667 	spin_unlock(&adev->mman.bdev.lru_lock);
668 
669 	vm->bulk_moveable = true;
670 }
671 
672 /**
673  * amdgpu_vm_validate_pt_bos - validate the page table BOs
674  *
675  * @adev: amdgpu device pointer
676  * @vm: vm providing the BOs
677  * @validate: callback to do the validation
678  * @param: parameter for the validation callback
679  *
680  * Validate the page table BOs on command submission if neccessary.
681  *
682  * Returns:
683  * Validation result.
684  */
685 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
686 			      int (*validate)(void *p, struct amdgpu_bo *bo),
687 			      void *param)
688 {
689 	struct amdgpu_vm_bo_base *bo_base, *tmp;
690 	int r;
691 
692 	vm->bulk_moveable &= list_empty(&vm->evicted);
693 
694 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
695 		struct amdgpu_bo *bo = bo_base->bo;
696 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
697 
698 		r = validate(param, bo);
699 		if (r)
700 			return r;
701 		if (shadow) {
702 			r = validate(param, shadow);
703 			if (r)
704 				return r;
705 		}
706 
707 		if (bo->tbo.type != ttm_bo_type_kernel) {
708 			amdgpu_vm_bo_moved(bo_base);
709 		} else {
710 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
711 			amdgpu_vm_bo_relocated(bo_base);
712 		}
713 	}
714 
715 	amdgpu_vm_eviction_lock(vm);
716 	vm->evicting = false;
717 	amdgpu_vm_eviction_unlock(vm);
718 
719 	return 0;
720 }
721 
722 /**
723  * amdgpu_vm_ready - check VM is ready for updates
724  *
725  * @vm: VM to check
726  *
727  * Check if all VM PDs/PTs are ready for updates
728  *
729  * Returns:
730  * True if eviction list is empty.
731  */
732 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
733 {
734 	return list_empty(&vm->evicted);
735 }
736 
737 /**
738  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
739  *
740  * @adev: amdgpu_device pointer
741  * @vm: VM to clear BO from
742  * @vmbo: BO to clear
743  * @immediate: use an immediate update
744  *
745  * Root PD needs to be reserved when calling this.
746  *
747  * Returns:
748  * 0 on success, errno otherwise.
749  */
750 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
751 			      struct amdgpu_vm *vm,
752 			      struct amdgpu_bo_vm *vmbo,
753 			      bool immediate)
754 {
755 	struct ttm_operation_ctx ctx = { true, false };
756 	unsigned level = adev->vm_manager.root_level;
757 	struct amdgpu_vm_update_params params;
758 	struct amdgpu_bo *ancestor = &vmbo->bo;
759 	struct amdgpu_bo *bo = &vmbo->bo;
760 	unsigned entries, ats_entries;
761 	uint64_t addr;
762 	int r;
763 
764 	/* Figure out our place in the hierarchy */
765 	if (ancestor->parent) {
766 		++level;
767 		while (ancestor->parent->parent) {
768 			++level;
769 			ancestor = ancestor->parent;
770 		}
771 	}
772 
773 	entries = amdgpu_bo_size(bo) / 8;
774 	if (!vm->pte_support_ats) {
775 		ats_entries = 0;
776 
777 	} else if (!bo->parent) {
778 		ats_entries = amdgpu_vm_num_ats_entries(adev);
779 		ats_entries = min(ats_entries, entries);
780 		entries -= ats_entries;
781 
782 	} else {
783 		struct amdgpu_vm_pt *pt;
784 
785 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
786 		ats_entries = amdgpu_vm_num_ats_entries(adev);
787 		if ((pt - vm->root.entries) >= ats_entries) {
788 			ats_entries = 0;
789 		} else {
790 			ats_entries = entries;
791 			entries = 0;
792 		}
793 	}
794 
795 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
796 	if (r)
797 		return r;
798 
799 	if (vmbo->shadow) {
800 		struct amdgpu_bo *shadow = vmbo->shadow;
801 
802 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
803 		if (r)
804 			return r;
805 	}
806 
807 	r = vm->update_funcs->map_table(vmbo);
808 	if (r)
809 		return r;
810 
811 	memset(&params, 0, sizeof(params));
812 	params.adev = adev;
813 	params.vm = vm;
814 	params.immediate = immediate;
815 
816 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
817 	if (r)
818 		return r;
819 
820 	addr = 0;
821 	if (ats_entries) {
822 		uint64_t value = 0, flags;
823 
824 		flags = AMDGPU_PTE_DEFAULT_ATC;
825 		if (level != AMDGPU_VM_PTB) {
826 			/* Handle leaf PDEs as PTEs */
827 			flags |= AMDGPU_PDE_PTE;
828 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
829 		}
830 
831 		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
832 					     value, flags);
833 		if (r)
834 			return r;
835 
836 		addr += ats_entries * 8;
837 	}
838 
839 	if (entries) {
840 		uint64_t value = 0, flags = 0;
841 
842 		if (adev->asic_type >= CHIP_VEGA10) {
843 			if (level != AMDGPU_VM_PTB) {
844 				/* Handle leaf PDEs as PTEs */
845 				flags |= AMDGPU_PDE_PTE;
846 				amdgpu_gmc_get_vm_pde(adev, level,
847 						      &value, &flags);
848 			} else {
849 				/* Workaround for fault priority problem on GMC9 */
850 				flags = AMDGPU_PTE_EXECUTABLE;
851 			}
852 		}
853 
854 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
855 					     value, flags);
856 		if (r)
857 			return r;
858 	}
859 
860 	return vm->update_funcs->commit(&params, NULL);
861 }
862 
863 /**
864  * amdgpu_vm_pt_create - create bo for PD/PT
865  *
866  * @adev: amdgpu_device pointer
867  * @vm: requesting vm
868  * @level: the page table level
869  * @immediate: use a immediate update
870  * @vmbo: pointer to the buffer object pointer
871  */
872 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
873 			       struct amdgpu_vm *vm,
874 			       int level, bool immediate,
875 			       struct amdgpu_bo_vm **vmbo)
876 {
877 	struct amdgpu_bo_param bp;
878 	struct amdgpu_bo *bo;
879 	struct dma_resv *resv;
880 	unsigned int num_entries;
881 	int r;
882 
883 	memset(&bp, 0, sizeof(bp));
884 
885 	bp.size = amdgpu_vm_bo_size(adev, level);
886 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
887 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
888 	bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain);
889 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
890 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
891 
892 	if (level < AMDGPU_VM_PTB)
893 		num_entries = amdgpu_vm_num_entries(adev, level);
894 	else
895 		num_entries = 0;
896 
897 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
898 
899 	if (vm->use_cpu_for_update)
900 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
901 
902 	bp.type = ttm_bo_type_kernel;
903 	bp.no_wait_gpu = immediate;
904 	if (vm->root.base.bo)
905 		bp.resv = vm->root.base.bo->tbo.base.resv;
906 
907 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
908 	if (r)
909 		return r;
910 
911 	bo = &(*vmbo)->bo;
912 	if (vm->is_compute_context && (adev->flags & AMD_IS_APU)) {
913 		(*vmbo)->shadow = NULL;
914 		return 0;
915 	}
916 
917 	if (!bp.resv)
918 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
919 				      NULL));
920 	resv = bp.resv;
921 	memset(&bp, 0, sizeof(bp));
922 	bp.size = amdgpu_vm_bo_size(adev, level);
923 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
924 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
925 	bp.type = ttm_bo_type_kernel;
926 	bp.resv = bo->tbo.base.resv;
927 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
928 
929 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
930 
931 	if (!resv)
932 		dma_resv_unlock(bo->tbo.base.resv);
933 
934 	if (r) {
935 		amdgpu_bo_unref(&bo);
936 		return r;
937 	}
938 
939 	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
940 	amdgpu_bo_add_to_shadow_list((*vmbo)->shadow);
941 
942 	return 0;
943 }
944 
945 /**
946  * amdgpu_vm_alloc_pts - Allocate a specific page table
947  *
948  * @adev: amdgpu_device pointer
949  * @vm: VM to allocate page tables for
950  * @cursor: Which page table to allocate
951  * @immediate: use an immediate update
952  *
953  * Make sure a specific page table or directory is allocated.
954  *
955  * Returns:
956  * 1 if page table needed to be allocated, 0 if page table was already
957  * allocated, negative errno if an error occurred.
958  */
959 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
960 			       struct amdgpu_vm *vm,
961 			       struct amdgpu_vm_pt_cursor *cursor,
962 			       bool immediate)
963 {
964 	struct amdgpu_vm_pt *entry = cursor->entry;
965 	struct amdgpu_bo *pt_bo;
966 	struct amdgpu_bo_vm *pt;
967 	int r;
968 
969 	if (entry->base.bo) {
970 		if (cursor->level < AMDGPU_VM_PTB)
971 			entry->entries =
972 				to_amdgpu_bo_vm(entry->base.bo)->entries;
973 		else
974 			entry->entries = NULL;
975 		return 0;
976 	}
977 
978 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
979 	if (r)
980 		return r;
981 
982 	/* Keep a reference to the root directory to avoid
983 	 * freeing them up in the wrong order.
984 	 */
985 	pt_bo = &pt->bo;
986 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->base.bo);
987 	amdgpu_vm_bo_base_init(&entry->base, vm, pt_bo);
988 	if (cursor->level < AMDGPU_VM_PTB)
989 		entry->entries = pt->entries;
990 	else
991 		entry->entries = NULL;
992 
993 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
994 	if (r)
995 		goto error_free_pt;
996 
997 	return 0;
998 
999 error_free_pt:
1000 	amdgpu_bo_unref(&pt->shadow);
1001 	amdgpu_bo_unref(&pt_bo);
1002 	return r;
1003 }
1004 
1005 /**
1006  * amdgpu_vm_free_table - fre one PD/PT
1007  *
1008  * @entry: PDE to free
1009  */
1010 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
1011 {
1012 	struct amdgpu_bo *shadow;
1013 
1014 	if (entry->base.bo) {
1015 		shadow = amdgpu_bo_shadowed(entry->base.bo);
1016 		entry->base.bo->vm_bo = NULL;
1017 		list_del(&entry->base.vm_status);
1018 		amdgpu_bo_unref(&shadow);
1019 		amdgpu_bo_unref(&entry->base.bo);
1020 	}
1021 	entry->entries = NULL;
1022 }
1023 
1024 /**
1025  * amdgpu_vm_free_pts - free PD/PT levels
1026  *
1027  * @adev: amdgpu device structure
1028  * @vm: amdgpu vm structure
1029  * @start: optional cursor where to start freeing PDs/PTs
1030  *
1031  * Free the page directory or page table level and all sub levels.
1032  */
1033 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1034 			       struct amdgpu_vm *vm,
1035 			       struct amdgpu_vm_pt_cursor *start)
1036 {
1037 	struct amdgpu_vm_pt_cursor cursor;
1038 	struct amdgpu_vm_pt *entry;
1039 
1040 	vm->bulk_moveable = false;
1041 
1042 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1043 		amdgpu_vm_free_table(entry);
1044 
1045 	if (start)
1046 		amdgpu_vm_free_table(start->entry);
1047 }
1048 
1049 /**
1050  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1051  *
1052  * @adev: amdgpu_device pointer
1053  */
1054 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1055 {
1056 	const struct amdgpu_ip_block *ip_block;
1057 	bool has_compute_vm_bug;
1058 	struct amdgpu_ring *ring;
1059 	int i;
1060 
1061 	has_compute_vm_bug = false;
1062 
1063 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1064 	if (ip_block) {
1065 		/* Compute has a VM bug for GFX version < 7.
1066 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1067 		if (ip_block->version->major <= 7)
1068 			has_compute_vm_bug = true;
1069 		else if (ip_block->version->major == 8)
1070 			if (adev->gfx.mec_fw_version < 673)
1071 				has_compute_vm_bug = true;
1072 	}
1073 
1074 	for (i = 0; i < adev->num_rings; i++) {
1075 		ring = adev->rings[i];
1076 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1077 			/* only compute rings */
1078 			ring->has_compute_vm_bug = has_compute_vm_bug;
1079 		else
1080 			ring->has_compute_vm_bug = false;
1081 	}
1082 }
1083 
1084 /**
1085  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1086  *
1087  * @ring: ring on which the job will be submitted
1088  * @job: job to submit
1089  *
1090  * Returns:
1091  * True if sync is needed.
1092  */
1093 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1094 				  struct amdgpu_job *job)
1095 {
1096 	struct amdgpu_device *adev = ring->adev;
1097 	unsigned vmhub = ring->funcs->vmhub;
1098 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1099 	struct amdgpu_vmid *id;
1100 	bool gds_switch_needed;
1101 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1102 
1103 	if (job->vmid == 0)
1104 		return false;
1105 	id = &id_mgr->ids[job->vmid];
1106 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1107 		id->gds_base != job->gds_base ||
1108 		id->gds_size != job->gds_size ||
1109 		id->gws_base != job->gws_base ||
1110 		id->gws_size != job->gws_size ||
1111 		id->oa_base != job->oa_base ||
1112 		id->oa_size != job->oa_size);
1113 
1114 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1115 		return true;
1116 
1117 	return vm_flush_needed || gds_switch_needed;
1118 }
1119 
1120 /**
1121  * amdgpu_vm_flush - hardware flush the vm
1122  *
1123  * @ring: ring to use for flush
1124  * @job:  related job
1125  * @need_pipe_sync: is pipe sync needed
1126  *
1127  * Emit a VM flush when it is necessary.
1128  *
1129  * Returns:
1130  * 0 on success, errno otherwise.
1131  */
1132 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1133 		    bool need_pipe_sync)
1134 {
1135 	struct amdgpu_device *adev = ring->adev;
1136 	unsigned vmhub = ring->funcs->vmhub;
1137 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1138 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1139 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1140 		id->gds_base != job->gds_base ||
1141 		id->gds_size != job->gds_size ||
1142 		id->gws_base != job->gws_base ||
1143 		id->gws_size != job->gws_size ||
1144 		id->oa_base != job->oa_base ||
1145 		id->oa_size != job->oa_size);
1146 	bool vm_flush_needed = job->vm_needs_flush;
1147 	struct dma_fence *fence = NULL;
1148 	bool pasid_mapping_needed = false;
1149 	unsigned patch_offset = 0;
1150 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1151 	int r;
1152 
1153 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1154 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1155 
1156 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1157 		gds_switch_needed = true;
1158 		vm_flush_needed = true;
1159 		pasid_mapping_needed = true;
1160 	}
1161 
1162 	mutex_lock(&id_mgr->lock);
1163 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1164 	    !dma_fence_is_signaled(id->pasid_mapping))
1165 		pasid_mapping_needed = true;
1166 	mutex_unlock(&id_mgr->lock);
1167 
1168 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1169 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1170 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1171 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1172 		ring->funcs->emit_wreg;
1173 
1174 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1175 		return 0;
1176 
1177 	if (ring->funcs->init_cond_exec)
1178 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1179 
1180 	if (need_pipe_sync)
1181 		amdgpu_ring_emit_pipeline_sync(ring);
1182 
1183 	if (vm_flush_needed) {
1184 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1185 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1186 	}
1187 
1188 	if (pasid_mapping_needed)
1189 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1190 
1191 	if (vm_flush_needed || pasid_mapping_needed) {
1192 		r = amdgpu_fence_emit(ring, &fence, 0);
1193 		if (r)
1194 			return r;
1195 	}
1196 
1197 	if (vm_flush_needed) {
1198 		mutex_lock(&id_mgr->lock);
1199 		dma_fence_put(id->last_flush);
1200 		id->last_flush = dma_fence_get(fence);
1201 		id->current_gpu_reset_count =
1202 			atomic_read(&adev->gpu_reset_counter);
1203 		mutex_unlock(&id_mgr->lock);
1204 	}
1205 
1206 	if (pasid_mapping_needed) {
1207 		mutex_lock(&id_mgr->lock);
1208 		id->pasid = job->pasid;
1209 		dma_fence_put(id->pasid_mapping);
1210 		id->pasid_mapping = dma_fence_get(fence);
1211 		mutex_unlock(&id_mgr->lock);
1212 	}
1213 	dma_fence_put(fence);
1214 
1215 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1216 		id->gds_base = job->gds_base;
1217 		id->gds_size = job->gds_size;
1218 		id->gws_base = job->gws_base;
1219 		id->gws_size = job->gws_size;
1220 		id->oa_base = job->oa_base;
1221 		id->oa_size = job->oa_size;
1222 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1223 					    job->gds_size, job->gws_base,
1224 					    job->gws_size, job->oa_base,
1225 					    job->oa_size);
1226 	}
1227 
1228 	if (ring->funcs->patch_cond_exec)
1229 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1230 
1231 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1232 	if (ring->funcs->emit_switch_buffer) {
1233 		amdgpu_ring_emit_switch_buffer(ring);
1234 		amdgpu_ring_emit_switch_buffer(ring);
1235 	}
1236 	return 0;
1237 }
1238 
1239 /**
1240  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1241  *
1242  * @vm: requested vm
1243  * @bo: requested buffer object
1244  *
1245  * Find @bo inside the requested vm.
1246  * Search inside the @bos vm list for the requested vm
1247  * Returns the found bo_va or NULL if none is found
1248  *
1249  * Object has to be reserved!
1250  *
1251  * Returns:
1252  * Found bo_va or NULL.
1253  */
1254 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1255 				       struct amdgpu_bo *bo)
1256 {
1257 	struct amdgpu_vm_bo_base *base;
1258 
1259 	for (base = bo->vm_bo; base; base = base->next) {
1260 		if (base->vm != vm)
1261 			continue;
1262 
1263 		return container_of(base, struct amdgpu_bo_va, base);
1264 	}
1265 	return NULL;
1266 }
1267 
1268 /**
1269  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1270  *
1271  * @pages_addr: optional DMA address to use for lookup
1272  * @addr: the unmapped addr
1273  *
1274  * Look up the physical address of the page that the pte resolves
1275  * to.
1276  *
1277  * Returns:
1278  * The pointer for the page table entry.
1279  */
1280 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1281 {
1282 	uint64_t result;
1283 
1284 	/* page table offset */
1285 	result = pages_addr[addr >> PAGE_SHIFT];
1286 
1287 	/* in case cpu page size != gpu page size*/
1288 	result |= addr & (~PAGE_MASK);
1289 
1290 	result &= 0xFFFFFFFFFFFFF000ULL;
1291 
1292 	return result;
1293 }
1294 
1295 /**
1296  * amdgpu_vm_update_pde - update a single level in the hierarchy
1297  *
1298  * @params: parameters for the update
1299  * @vm: requested vm
1300  * @entry: entry to update
1301  *
1302  * Makes sure the requested entry in parent is up to date.
1303  */
1304 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1305 				struct amdgpu_vm *vm,
1306 				struct amdgpu_vm_pt *entry)
1307 {
1308 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1309 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1310 	uint64_t pde, pt, flags;
1311 	unsigned level;
1312 
1313 	for (level = 0, pbo = bo->parent; pbo; ++level)
1314 		pbo = pbo->parent;
1315 
1316 	level += params->adev->vm_manager.root_level;
1317 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1318 	pde = (entry - parent->entries) * 8;
1319 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1320 					1, 0, flags);
1321 }
1322 
1323 /**
1324  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1325  *
1326  * @adev: amdgpu_device pointer
1327  * @vm: related vm
1328  *
1329  * Mark all PD level as invalid after an error.
1330  */
1331 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1332 				     struct amdgpu_vm *vm)
1333 {
1334 	struct amdgpu_vm_pt_cursor cursor;
1335 	struct amdgpu_vm_pt *entry;
1336 
1337 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1338 		if (entry->base.bo && !entry->base.moved)
1339 			amdgpu_vm_bo_relocated(&entry->base);
1340 }
1341 
1342 /**
1343  * amdgpu_vm_update_pdes - make sure that all directories are valid
1344  *
1345  * @adev: amdgpu_device pointer
1346  * @vm: requested vm
1347  * @immediate: submit immediately to the paging queue
1348  *
1349  * Makes sure all directories are up to date.
1350  *
1351  * Returns:
1352  * 0 for success, error for failure.
1353  */
1354 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1355 			  struct amdgpu_vm *vm, bool immediate)
1356 {
1357 	struct amdgpu_vm_update_params params;
1358 	int r;
1359 
1360 	if (list_empty(&vm->relocated))
1361 		return 0;
1362 
1363 	memset(&params, 0, sizeof(params));
1364 	params.adev = adev;
1365 	params.vm = vm;
1366 	params.immediate = immediate;
1367 
1368 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1369 	if (r)
1370 		return r;
1371 
1372 	while (!list_empty(&vm->relocated)) {
1373 		struct amdgpu_vm_pt *entry;
1374 
1375 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1376 					 base.vm_status);
1377 		amdgpu_vm_bo_idle(&entry->base);
1378 
1379 		r = amdgpu_vm_update_pde(&params, vm, entry);
1380 		if (r)
1381 			goto error;
1382 	}
1383 
1384 	r = vm->update_funcs->commit(&params, &vm->last_update);
1385 	if (r)
1386 		goto error;
1387 	return 0;
1388 
1389 error:
1390 	amdgpu_vm_invalidate_pds(adev, vm);
1391 	return r;
1392 }
1393 
1394 /*
1395  * amdgpu_vm_update_flags - figure out flags for PTE updates
1396  *
1397  * Make sure to set the right flags for the PTEs at the desired level.
1398  */
1399 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1400 				   struct amdgpu_bo_vm *pt, unsigned int level,
1401 				   uint64_t pe, uint64_t addr,
1402 				   unsigned int count, uint32_t incr,
1403 				   uint64_t flags)
1404 
1405 {
1406 	if (level != AMDGPU_VM_PTB) {
1407 		flags |= AMDGPU_PDE_PTE;
1408 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1409 
1410 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1411 		   !(flags & AMDGPU_PTE_VALID) &&
1412 		   !(flags & AMDGPU_PTE_PRT)) {
1413 
1414 		/* Workaround for fault priority problem on GMC9 */
1415 		flags |= AMDGPU_PTE_EXECUTABLE;
1416 	}
1417 
1418 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1419 					 flags);
1420 }
1421 
1422 /**
1423  * amdgpu_vm_fragment - get fragment for PTEs
1424  *
1425  * @params: see amdgpu_vm_update_params definition
1426  * @start: first PTE to handle
1427  * @end: last PTE to handle
1428  * @flags: hw mapping flags
1429  * @frag: resulting fragment size
1430  * @frag_end: end of this fragment
1431  *
1432  * Returns the first possible fragment for the start and end address.
1433  */
1434 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1435 			       uint64_t start, uint64_t end, uint64_t flags,
1436 			       unsigned int *frag, uint64_t *frag_end)
1437 {
1438 	/**
1439 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1440 	 * field in the PTE. When this field is set to a non-zero value, page
1441 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1442 	 * flags are considered valid for all PTEs within the fragment range
1443 	 * and corresponding mappings are assumed to be physically contiguous.
1444 	 *
1445 	 * The L1 TLB can store a single PTE for the whole fragment,
1446 	 * significantly increasing the space available for translation
1447 	 * caching. This leads to large improvements in throughput when the
1448 	 * TLB is under pressure.
1449 	 *
1450 	 * The L2 TLB distributes small and large fragments into two
1451 	 * asymmetric partitions. The large fragment cache is significantly
1452 	 * larger. Thus, we try to use large fragments wherever possible.
1453 	 * Userspace can support this by aligning virtual base address and
1454 	 * allocation size to the fragment size.
1455 	 *
1456 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1457 	 * is now directly feed with small/huge/giant pages from the walker.
1458 	 */
1459 	unsigned max_frag;
1460 
1461 	if (params->adev->asic_type < CHIP_VEGA10)
1462 		max_frag = params->adev->vm_manager.fragment_size;
1463 	else
1464 		max_frag = 31;
1465 
1466 	/* system pages are non continuously */
1467 	if (params->pages_addr) {
1468 		*frag = 0;
1469 		*frag_end = end;
1470 		return;
1471 	}
1472 
1473 	/* This intentionally wraps around if no bit is set */
1474 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1475 	if (*frag >= max_frag) {
1476 		*frag = max_frag;
1477 		*frag_end = end & ~((1ULL << max_frag) - 1);
1478 	} else {
1479 		*frag_end = start + (1 << *frag);
1480 	}
1481 }
1482 
1483 /**
1484  * amdgpu_vm_update_ptes - make sure that page tables are valid
1485  *
1486  * @params: see amdgpu_vm_update_params definition
1487  * @start: start of GPU address range
1488  * @end: end of GPU address range
1489  * @dst: destination address to map to, the next dst inside the function
1490  * @flags: mapping flags
1491  *
1492  * Update the page tables in the range @start - @end.
1493  *
1494  * Returns:
1495  * 0 for success, -EINVAL for failure.
1496  */
1497 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1498 				 uint64_t start, uint64_t end,
1499 				 uint64_t dst, uint64_t flags)
1500 {
1501 	struct amdgpu_device *adev = params->adev;
1502 	struct amdgpu_vm_pt_cursor cursor;
1503 	uint64_t frag_start = start, frag_end;
1504 	unsigned int frag;
1505 	int r;
1506 
1507 	/* figure out the initial fragment */
1508 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1509 
1510 	/* walk over the address space and update the PTs */
1511 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1512 	while (cursor.pfn < end) {
1513 		unsigned shift, parent_shift, mask;
1514 		uint64_t incr, entry_end, pe_start;
1515 		struct amdgpu_bo *pt;
1516 
1517 		if (!params->unlocked) {
1518 			/* make sure that the page tables covering the
1519 			 * address range are actually allocated
1520 			 */
1521 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1522 						&cursor, params->immediate);
1523 			if (r)
1524 				return r;
1525 		}
1526 
1527 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1528 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1529 		if (params->unlocked) {
1530 			/* Unlocked updates are only allowed on the leaves */
1531 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1532 				continue;
1533 		} else if (adev->asic_type < CHIP_VEGA10 &&
1534 			   (flags & AMDGPU_PTE_VALID)) {
1535 			/* No huge page support before GMC v9 */
1536 			if (cursor.level != AMDGPU_VM_PTB) {
1537 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1538 					return -ENOENT;
1539 				continue;
1540 			}
1541 		} else if (frag < shift) {
1542 			/* We can't use this level when the fragment size is
1543 			 * smaller than the address shift. Go to the next
1544 			 * child entry and try again.
1545 			 */
1546 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1547 				continue;
1548 		} else if (frag >= parent_shift) {
1549 			/* If the fragment size is even larger than the parent
1550 			 * shift we should go up one level and check it again.
1551 			 */
1552 			if (!amdgpu_vm_pt_ancestor(&cursor))
1553 				return -EINVAL;
1554 			continue;
1555 		}
1556 
1557 		pt = cursor.entry->base.bo;
1558 		if (!pt) {
1559 			/* We need all PDs and PTs for mapping something, */
1560 			if (flags & AMDGPU_PTE_VALID)
1561 				return -ENOENT;
1562 
1563 			/* but unmapping something can happen at a higher
1564 			 * level.
1565 			 */
1566 			if (!amdgpu_vm_pt_ancestor(&cursor))
1567 				return -EINVAL;
1568 
1569 			pt = cursor.entry->base.bo;
1570 			shift = parent_shift;
1571 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1572 				   1ULL << shift));
1573 		}
1574 
1575 		/* Looks good so far, calculate parameters for the update */
1576 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1577 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1578 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1579 		entry_end = ((uint64_t)mask + 1) << shift;
1580 		entry_end += cursor.pfn & ~(entry_end - 1);
1581 		entry_end = min(entry_end, end);
1582 
1583 		do {
1584 			struct amdgpu_vm *vm = params->vm;
1585 			uint64_t upd_end = min(entry_end, frag_end);
1586 			unsigned nptes = (upd_end - frag_start) >> shift;
1587 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1588 
1589 			/* This can happen when we set higher level PDs to
1590 			 * silent to stop fault floods.
1591 			 */
1592 			nptes = max(nptes, 1u);
1593 
1594 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1595 						    nptes, dst, incr, upd_flags,
1596 						    vm->task_info.pid,
1597 						    vm->immediate.fence_context);
1598 			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1599 					       cursor.level, pe_start, dst,
1600 					       nptes, incr, upd_flags);
1601 
1602 			pe_start += nptes * 8;
1603 			dst += nptes * incr;
1604 
1605 			frag_start = upd_end;
1606 			if (frag_start >= frag_end) {
1607 				/* figure out the next fragment */
1608 				amdgpu_vm_fragment(params, frag_start, end,
1609 						   flags, &frag, &frag_end);
1610 				if (frag < shift)
1611 					break;
1612 			}
1613 		} while (frag_start < entry_end);
1614 
1615 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1616 			/* Free all child entries.
1617 			 * Update the tables with the flags and addresses and free up subsequent
1618 			 * tables in the case of huge pages or freed up areas.
1619 			 * This is the maximum you can free, because all other page tables are not
1620 			 * completely covered by the range and so potentially still in use.
1621 			 */
1622 			while (cursor.pfn < frag_start) {
1623 				/* Make sure previous mapping is freed */
1624 				if (cursor.entry->base.bo) {
1625 					params->table_freed = true;
1626 					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1627 				}
1628 				amdgpu_vm_pt_next(adev, &cursor);
1629 			}
1630 
1631 		} else if (frag >= shift) {
1632 			/* or just move on to the next on the same level. */
1633 			amdgpu_vm_pt_next(adev, &cursor);
1634 		}
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 /**
1641  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1642  *
1643  * @adev: amdgpu_device pointer of the VM
1644  * @bo_adev: amdgpu_device pointer of the mapped BO
1645  * @vm: requested vm
1646  * @immediate: immediate submission in a page fault
1647  * @unlocked: unlocked invalidation during MM callback
1648  * @resv: fences we need to sync to
1649  * @start: start of mapped range
1650  * @last: last mapped entry
1651  * @flags: flags for the entries
1652  * @offset: offset into nodes and pages_addr
1653  * @res: ttm_resource to map
1654  * @pages_addr: DMA addresses to use for mapping
1655  * @fence: optional resulting fence
1656  * @table_freed: return true if page table is freed
1657  *
1658  * Fill in the page table entries between @start and @last.
1659  *
1660  * Returns:
1661  * 0 for success, -EINVAL for failure.
1662  */
1663 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1664 				struct amdgpu_device *bo_adev,
1665 				struct amdgpu_vm *vm, bool immediate,
1666 				bool unlocked, struct dma_resv *resv,
1667 				uint64_t start, uint64_t last,
1668 				uint64_t flags, uint64_t offset,
1669 				struct ttm_resource *res,
1670 				dma_addr_t *pages_addr,
1671 				struct dma_fence **fence,
1672 				bool *table_freed)
1673 {
1674 	struct amdgpu_vm_update_params params;
1675 	struct amdgpu_res_cursor cursor;
1676 	enum amdgpu_sync_mode sync_mode;
1677 	int r, idx;
1678 
1679 	if (!drm_dev_enter(&adev->ddev, &idx))
1680 		return -ENODEV;
1681 
1682 	memset(&params, 0, sizeof(params));
1683 	params.adev = adev;
1684 	params.vm = vm;
1685 	params.immediate = immediate;
1686 	params.pages_addr = pages_addr;
1687 	params.unlocked = unlocked;
1688 
1689 	/* Implicitly sync to command submissions in the same VM before
1690 	 * unmapping. Sync to moving fences before mapping.
1691 	 */
1692 	if (!(flags & AMDGPU_PTE_VALID))
1693 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1694 	else
1695 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1696 
1697 	amdgpu_vm_eviction_lock(vm);
1698 	if (vm->evicting) {
1699 		r = -EBUSY;
1700 		goto error_unlock;
1701 	}
1702 
1703 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1704 		struct dma_fence *tmp = dma_fence_get_stub();
1705 
1706 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1707 		swap(vm->last_unlocked, tmp);
1708 		dma_fence_put(tmp);
1709 	}
1710 
1711 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1712 	if (r)
1713 		goto error_unlock;
1714 
1715 	amdgpu_res_first(res, offset, (last - start + 1) * AMDGPU_GPU_PAGE_SIZE,
1716 			 &cursor);
1717 	while (cursor.remaining) {
1718 		uint64_t tmp, num_entries, addr;
1719 
1720 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1721 		if (pages_addr) {
1722 			bool contiguous = true;
1723 
1724 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1725 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1726 				uint64_t count;
1727 
1728 				contiguous = pages_addr[pfn + 1] ==
1729 					pages_addr[pfn] + PAGE_SIZE;
1730 
1731 				tmp = num_entries /
1732 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1733 				for (count = 2; count < tmp; ++count) {
1734 					uint64_t idx = pfn + count;
1735 
1736 					if (contiguous != (pages_addr[idx] ==
1737 					    pages_addr[idx - 1] + PAGE_SIZE))
1738 						break;
1739 				}
1740 				num_entries = count *
1741 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1742 			}
1743 
1744 			if (!contiguous) {
1745 				addr = cursor.start;
1746 				params.pages_addr = pages_addr;
1747 			} else {
1748 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1749 				params.pages_addr = NULL;
1750 			}
1751 
1752 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1753 			addr = bo_adev->vm_manager.vram_base_offset +
1754 				cursor.start;
1755 		} else {
1756 			addr = 0;
1757 		}
1758 
1759 		tmp = start + num_entries;
1760 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1761 		if (r)
1762 			goto error_unlock;
1763 
1764 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1765 		start = tmp;
1766 	}
1767 
1768 	r = vm->update_funcs->commit(&params, fence);
1769 
1770 	if (table_freed)
1771 		*table_freed = *table_freed || params.table_freed;
1772 
1773 error_unlock:
1774 	amdgpu_vm_eviction_unlock(vm);
1775 	drm_dev_exit(idx);
1776 	return r;
1777 }
1778 
1779 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1780 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1781 {
1782 	struct amdgpu_bo_va *bo_va, *tmp;
1783 
1784 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1785 		if (!bo_va->base.bo)
1786 			continue;
1787 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1788 				gtt_mem, cpu_mem);
1789 	}
1790 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1791 		if (!bo_va->base.bo)
1792 			continue;
1793 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1794 				gtt_mem, cpu_mem);
1795 	}
1796 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1797 		if (!bo_va->base.bo)
1798 			continue;
1799 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1800 				gtt_mem, cpu_mem);
1801 	}
1802 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1803 		if (!bo_va->base.bo)
1804 			continue;
1805 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1806 				gtt_mem, cpu_mem);
1807 	}
1808 	spin_lock(&vm->invalidated_lock);
1809 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1810 		if (!bo_va->base.bo)
1811 			continue;
1812 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1813 				gtt_mem, cpu_mem);
1814 	}
1815 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1816 		if (!bo_va->base.bo)
1817 			continue;
1818 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1819 				gtt_mem, cpu_mem);
1820 	}
1821 	spin_unlock(&vm->invalidated_lock);
1822 }
1823 /**
1824  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1825  *
1826  * @adev: amdgpu_device pointer
1827  * @bo_va: requested BO and VM object
1828  * @clear: if true clear the entries
1829  *
1830  * Fill in the page table entries for @bo_va.
1831  *
1832  * Returns:
1833  * 0 for success, -EINVAL for failure.
1834  */
1835 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1836 			bool clear, bool *table_freed)
1837 {
1838 	struct amdgpu_bo *bo = bo_va->base.bo;
1839 	struct amdgpu_vm *vm = bo_va->base.vm;
1840 	struct amdgpu_bo_va_mapping *mapping;
1841 	dma_addr_t *pages_addr = NULL;
1842 	struct ttm_resource *mem;
1843 	struct dma_fence **last_update;
1844 	struct dma_resv *resv;
1845 	uint64_t flags;
1846 	struct amdgpu_device *bo_adev = adev;
1847 	int r;
1848 
1849 	if (clear || !bo) {
1850 		mem = NULL;
1851 		resv = vm->root.base.bo->tbo.base.resv;
1852 	} else {
1853 		struct drm_gem_object *obj = &bo->tbo.base;
1854 
1855 		resv = bo->tbo.base.resv;
1856 		if (obj->import_attach && bo_va->is_xgmi) {
1857 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1858 			struct drm_gem_object *gobj = dma_buf->priv;
1859 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1860 
1861 			if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1862 				bo = gem_to_amdgpu_bo(gobj);
1863 		}
1864 		mem = &bo->tbo.mem;
1865 		if (mem->mem_type == TTM_PL_TT ||
1866 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1867 			pages_addr = bo->tbo.ttm->dma_address;
1868 	}
1869 
1870 	if (bo) {
1871 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1872 
1873 		if (amdgpu_bo_encrypted(bo))
1874 			flags |= AMDGPU_PTE_TMZ;
1875 
1876 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1877 	} else {
1878 		flags = 0x0;
1879 	}
1880 
1881 	if (clear || (bo && bo->tbo.base.resv ==
1882 		      vm->root.base.bo->tbo.base.resv))
1883 		last_update = &vm->last_update;
1884 	else
1885 		last_update = &bo_va->last_pt_update;
1886 
1887 	if (!clear && bo_va->base.moved) {
1888 		bo_va->base.moved = false;
1889 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1890 
1891 	} else if (bo_va->cleared != clear) {
1892 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1893 	}
1894 
1895 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1896 		uint64_t update_flags = flags;
1897 
1898 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1899 		 * but in case of something, we filter the flags in first place
1900 		 */
1901 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1902 			update_flags &= ~AMDGPU_PTE_READABLE;
1903 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1904 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1905 
1906 		/* Apply ASIC specific mapping flags */
1907 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1908 
1909 		trace_amdgpu_vm_bo_update(mapping);
1910 
1911 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1912 						resv, mapping->start,
1913 						mapping->last, update_flags,
1914 						mapping->offset, mem,
1915 						pages_addr, last_update, table_freed);
1916 		if (r)
1917 			return r;
1918 	}
1919 
1920 	/* If the BO is not in its preferred location add it back to
1921 	 * the evicted list so that it gets validated again on the
1922 	 * next command submission.
1923 	 */
1924 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1925 		uint32_t mem_type = bo->tbo.mem.mem_type;
1926 
1927 		if (!(bo->preferred_domains &
1928 		      amdgpu_mem_type_to_domain(mem_type)))
1929 			amdgpu_vm_bo_evicted(&bo_va->base);
1930 		else
1931 			amdgpu_vm_bo_idle(&bo_va->base);
1932 	} else {
1933 		amdgpu_vm_bo_done(&bo_va->base);
1934 	}
1935 
1936 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1937 	bo_va->cleared = clear;
1938 
1939 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1940 		list_for_each_entry(mapping, &bo_va->valids, list)
1941 			trace_amdgpu_vm_bo_mapping(mapping);
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 /**
1948  * amdgpu_vm_update_prt_state - update the global PRT state
1949  *
1950  * @adev: amdgpu_device pointer
1951  */
1952 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1953 {
1954 	unsigned long flags;
1955 	bool enable;
1956 
1957 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1958 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1959 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1960 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1961 }
1962 
1963 /**
1964  * amdgpu_vm_prt_get - add a PRT user
1965  *
1966  * @adev: amdgpu_device pointer
1967  */
1968 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1969 {
1970 	if (!adev->gmc.gmc_funcs->set_prt)
1971 		return;
1972 
1973 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1974 		amdgpu_vm_update_prt_state(adev);
1975 }
1976 
1977 /**
1978  * amdgpu_vm_prt_put - drop a PRT user
1979  *
1980  * @adev: amdgpu_device pointer
1981  */
1982 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1983 {
1984 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1985 		amdgpu_vm_update_prt_state(adev);
1986 }
1987 
1988 /**
1989  * amdgpu_vm_prt_cb - callback for updating the PRT status
1990  *
1991  * @fence: fence for the callback
1992  * @_cb: the callback function
1993  */
1994 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1995 {
1996 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1997 
1998 	amdgpu_vm_prt_put(cb->adev);
1999 	kfree(cb);
2000 }
2001 
2002 /**
2003  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2004  *
2005  * @adev: amdgpu_device pointer
2006  * @fence: fence for the callback
2007  */
2008 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2009 				 struct dma_fence *fence)
2010 {
2011 	struct amdgpu_prt_cb *cb;
2012 
2013 	if (!adev->gmc.gmc_funcs->set_prt)
2014 		return;
2015 
2016 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2017 	if (!cb) {
2018 		/* Last resort when we are OOM */
2019 		if (fence)
2020 			dma_fence_wait(fence, false);
2021 
2022 		amdgpu_vm_prt_put(adev);
2023 	} else {
2024 		cb->adev = adev;
2025 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2026 						     amdgpu_vm_prt_cb))
2027 			amdgpu_vm_prt_cb(fence, &cb->cb);
2028 	}
2029 }
2030 
2031 /**
2032  * amdgpu_vm_free_mapping - free a mapping
2033  *
2034  * @adev: amdgpu_device pointer
2035  * @vm: requested vm
2036  * @mapping: mapping to be freed
2037  * @fence: fence of the unmap operation
2038  *
2039  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2040  */
2041 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2042 				   struct amdgpu_vm *vm,
2043 				   struct amdgpu_bo_va_mapping *mapping,
2044 				   struct dma_fence *fence)
2045 {
2046 	if (mapping->flags & AMDGPU_PTE_PRT)
2047 		amdgpu_vm_add_prt_cb(adev, fence);
2048 	kfree(mapping);
2049 }
2050 
2051 /**
2052  * amdgpu_vm_prt_fini - finish all prt mappings
2053  *
2054  * @adev: amdgpu_device pointer
2055  * @vm: requested vm
2056  *
2057  * Register a cleanup callback to disable PRT support after VM dies.
2058  */
2059 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2060 {
2061 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2062 	struct dma_fence *excl, **shared;
2063 	unsigned i, shared_count;
2064 	int r;
2065 
2066 	r = dma_resv_get_fences_rcu(resv, &excl,
2067 					      &shared_count, &shared);
2068 	if (r) {
2069 		/* Not enough memory to grab the fence list, as last resort
2070 		 * block for all the fences to complete.
2071 		 */
2072 		dma_resv_wait_timeout_rcu(resv, true, false,
2073 						    MAX_SCHEDULE_TIMEOUT);
2074 		return;
2075 	}
2076 
2077 	/* Add a callback for each fence in the reservation object */
2078 	amdgpu_vm_prt_get(adev);
2079 	amdgpu_vm_add_prt_cb(adev, excl);
2080 
2081 	for (i = 0; i < shared_count; ++i) {
2082 		amdgpu_vm_prt_get(adev);
2083 		amdgpu_vm_add_prt_cb(adev, shared[i]);
2084 	}
2085 
2086 	kfree(shared);
2087 }
2088 
2089 /**
2090  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2091  *
2092  * @adev: amdgpu_device pointer
2093  * @vm: requested vm
2094  * @fence: optional resulting fence (unchanged if no work needed to be done
2095  * or if an error occurred)
2096  *
2097  * Make sure all freed BOs are cleared in the PT.
2098  * PTs have to be reserved and mutex must be locked!
2099  *
2100  * Returns:
2101  * 0 for success.
2102  *
2103  */
2104 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2105 			  struct amdgpu_vm *vm,
2106 			  struct dma_fence **fence)
2107 {
2108 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2109 	struct amdgpu_bo_va_mapping *mapping;
2110 	uint64_t init_pte_value = 0;
2111 	struct dma_fence *f = NULL;
2112 	int r;
2113 
2114 	while (!list_empty(&vm->freed)) {
2115 		mapping = list_first_entry(&vm->freed,
2116 			struct amdgpu_bo_va_mapping, list);
2117 		list_del(&mapping->list);
2118 
2119 		if (vm->pte_support_ats &&
2120 		    mapping->start < AMDGPU_GMC_HOLE_START)
2121 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2122 
2123 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2124 						resv, mapping->start,
2125 						mapping->last, init_pte_value,
2126 						0, NULL, NULL, &f, NULL);
2127 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2128 		if (r) {
2129 			dma_fence_put(f);
2130 			return r;
2131 		}
2132 	}
2133 
2134 	if (fence && f) {
2135 		dma_fence_put(*fence);
2136 		*fence = f;
2137 	} else {
2138 		dma_fence_put(f);
2139 	}
2140 
2141 	return 0;
2142 
2143 }
2144 
2145 /**
2146  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2147  *
2148  * @adev: amdgpu_device pointer
2149  * @vm: requested vm
2150  *
2151  * Make sure all BOs which are moved are updated in the PTs.
2152  *
2153  * Returns:
2154  * 0 for success.
2155  *
2156  * PTs have to be reserved!
2157  */
2158 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2159 			   struct amdgpu_vm *vm)
2160 {
2161 	struct amdgpu_bo_va *bo_va, *tmp;
2162 	struct dma_resv *resv;
2163 	bool clear;
2164 	int r;
2165 
2166 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2167 		/* Per VM BOs never need to bo cleared in the page tables */
2168 		r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2169 		if (r)
2170 			return r;
2171 	}
2172 
2173 	spin_lock(&vm->invalidated_lock);
2174 	while (!list_empty(&vm->invalidated)) {
2175 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2176 					 base.vm_status);
2177 		resv = bo_va->base.bo->tbo.base.resv;
2178 		spin_unlock(&vm->invalidated_lock);
2179 
2180 		/* Try to reserve the BO to avoid clearing its ptes */
2181 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2182 			clear = false;
2183 		/* Somebody else is using the BO right now */
2184 		else
2185 			clear = true;
2186 
2187 		r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2188 		if (r)
2189 			return r;
2190 
2191 		if (!clear)
2192 			dma_resv_unlock(resv);
2193 		spin_lock(&vm->invalidated_lock);
2194 	}
2195 	spin_unlock(&vm->invalidated_lock);
2196 
2197 	return 0;
2198 }
2199 
2200 /**
2201  * amdgpu_vm_bo_add - add a bo to a specific vm
2202  *
2203  * @adev: amdgpu_device pointer
2204  * @vm: requested vm
2205  * @bo: amdgpu buffer object
2206  *
2207  * Add @bo into the requested vm.
2208  * Add @bo to the list of bos associated with the vm
2209  *
2210  * Returns:
2211  * Newly added bo_va or NULL for failure
2212  *
2213  * Object has to be reserved!
2214  */
2215 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2216 				      struct amdgpu_vm *vm,
2217 				      struct amdgpu_bo *bo)
2218 {
2219 	struct amdgpu_bo_va *bo_va;
2220 
2221 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2222 	if (bo_va == NULL) {
2223 		return NULL;
2224 	}
2225 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2226 
2227 	bo_va->ref_count = 1;
2228 	INIT_LIST_HEAD(&bo_va->valids);
2229 	INIT_LIST_HEAD(&bo_va->invalids);
2230 
2231 	if (!bo)
2232 		return bo_va;
2233 
2234 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2235 		bo_va->is_xgmi = true;
2236 		/* Power up XGMI if it can be potentially used */
2237 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2238 	}
2239 
2240 	return bo_va;
2241 }
2242 
2243 
2244 /**
2245  * amdgpu_vm_bo_insert_map - insert a new mapping
2246  *
2247  * @adev: amdgpu_device pointer
2248  * @bo_va: bo_va to store the address
2249  * @mapping: the mapping to insert
2250  *
2251  * Insert a new mapping into all structures.
2252  */
2253 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2254 				    struct amdgpu_bo_va *bo_va,
2255 				    struct amdgpu_bo_va_mapping *mapping)
2256 {
2257 	struct amdgpu_vm *vm = bo_va->base.vm;
2258 	struct amdgpu_bo *bo = bo_va->base.bo;
2259 
2260 	mapping->bo_va = bo_va;
2261 	list_add(&mapping->list, &bo_va->invalids);
2262 	amdgpu_vm_it_insert(mapping, &vm->va);
2263 
2264 	if (mapping->flags & AMDGPU_PTE_PRT)
2265 		amdgpu_vm_prt_get(adev);
2266 
2267 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2268 	    !bo_va->base.moved) {
2269 		list_move(&bo_va->base.vm_status, &vm->moved);
2270 	}
2271 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2272 }
2273 
2274 /**
2275  * amdgpu_vm_bo_map - map bo inside a vm
2276  *
2277  * @adev: amdgpu_device pointer
2278  * @bo_va: bo_va to store the address
2279  * @saddr: where to map the BO
2280  * @offset: requested offset in the BO
2281  * @size: BO size in bytes
2282  * @flags: attributes of pages (read/write/valid/etc.)
2283  *
2284  * Add a mapping of the BO at the specefied addr into the VM.
2285  *
2286  * Returns:
2287  * 0 for success, error for failure.
2288  *
2289  * Object has to be reserved and unreserved outside!
2290  */
2291 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2292 		     struct amdgpu_bo_va *bo_va,
2293 		     uint64_t saddr, uint64_t offset,
2294 		     uint64_t size, uint64_t flags)
2295 {
2296 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2297 	struct amdgpu_bo *bo = bo_va->base.bo;
2298 	struct amdgpu_vm *vm = bo_va->base.vm;
2299 	uint64_t eaddr;
2300 
2301 	/* validate the parameters */
2302 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2303 	    size == 0 || size & ~PAGE_MASK)
2304 		return -EINVAL;
2305 
2306 	/* make sure object fit at this offset */
2307 	eaddr = saddr + size - 1;
2308 	if (saddr >= eaddr ||
2309 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2310 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2311 		return -EINVAL;
2312 
2313 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2314 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2315 
2316 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2317 	if (tmp) {
2318 		/* bo and tmp overlap, invalid addr */
2319 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2320 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2321 			tmp->start, tmp->last + 1);
2322 		return -EINVAL;
2323 	}
2324 
2325 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2326 	if (!mapping)
2327 		return -ENOMEM;
2328 
2329 	mapping->start = saddr;
2330 	mapping->last = eaddr;
2331 	mapping->offset = offset;
2332 	mapping->flags = flags;
2333 
2334 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2335 
2336 	return 0;
2337 }
2338 
2339 /**
2340  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2341  *
2342  * @adev: amdgpu_device pointer
2343  * @bo_va: bo_va to store the address
2344  * @saddr: where to map the BO
2345  * @offset: requested offset in the BO
2346  * @size: BO size in bytes
2347  * @flags: attributes of pages (read/write/valid/etc.)
2348  *
2349  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2350  * mappings as we do so.
2351  *
2352  * Returns:
2353  * 0 for success, error for failure.
2354  *
2355  * Object has to be reserved and unreserved outside!
2356  */
2357 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2358 			     struct amdgpu_bo_va *bo_va,
2359 			     uint64_t saddr, uint64_t offset,
2360 			     uint64_t size, uint64_t flags)
2361 {
2362 	struct amdgpu_bo_va_mapping *mapping;
2363 	struct amdgpu_bo *bo = bo_va->base.bo;
2364 	uint64_t eaddr;
2365 	int r;
2366 
2367 	/* validate the parameters */
2368 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2369 	    size == 0 || size & ~PAGE_MASK)
2370 		return -EINVAL;
2371 
2372 	/* make sure object fit at this offset */
2373 	eaddr = saddr + size - 1;
2374 	if (saddr >= eaddr ||
2375 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2376 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2377 		return -EINVAL;
2378 
2379 	/* Allocate all the needed memory */
2380 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2381 	if (!mapping)
2382 		return -ENOMEM;
2383 
2384 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2385 	if (r) {
2386 		kfree(mapping);
2387 		return r;
2388 	}
2389 
2390 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2391 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2392 
2393 	mapping->start = saddr;
2394 	mapping->last = eaddr;
2395 	mapping->offset = offset;
2396 	mapping->flags = flags;
2397 
2398 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2399 
2400 	return 0;
2401 }
2402 
2403 /**
2404  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2405  *
2406  * @adev: amdgpu_device pointer
2407  * @bo_va: bo_va to remove the address from
2408  * @saddr: where to the BO is mapped
2409  *
2410  * Remove a mapping of the BO at the specefied addr from the VM.
2411  *
2412  * Returns:
2413  * 0 for success, error for failure.
2414  *
2415  * Object has to be reserved and unreserved outside!
2416  */
2417 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2418 		       struct amdgpu_bo_va *bo_va,
2419 		       uint64_t saddr)
2420 {
2421 	struct amdgpu_bo_va_mapping *mapping;
2422 	struct amdgpu_vm *vm = bo_va->base.vm;
2423 	bool valid = true;
2424 
2425 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2426 
2427 	list_for_each_entry(mapping, &bo_va->valids, list) {
2428 		if (mapping->start == saddr)
2429 			break;
2430 	}
2431 
2432 	if (&mapping->list == &bo_va->valids) {
2433 		valid = false;
2434 
2435 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2436 			if (mapping->start == saddr)
2437 				break;
2438 		}
2439 
2440 		if (&mapping->list == &bo_va->invalids)
2441 			return -ENOENT;
2442 	}
2443 
2444 	list_del(&mapping->list);
2445 	amdgpu_vm_it_remove(mapping, &vm->va);
2446 	mapping->bo_va = NULL;
2447 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2448 
2449 	if (valid)
2450 		list_add(&mapping->list, &vm->freed);
2451 	else
2452 		amdgpu_vm_free_mapping(adev, vm, mapping,
2453 				       bo_va->last_pt_update);
2454 
2455 	return 0;
2456 }
2457 
2458 /**
2459  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2460  *
2461  * @adev: amdgpu_device pointer
2462  * @vm: VM structure to use
2463  * @saddr: start of the range
2464  * @size: size of the range
2465  *
2466  * Remove all mappings in a range, split them as appropriate.
2467  *
2468  * Returns:
2469  * 0 for success, error for failure.
2470  */
2471 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2472 				struct amdgpu_vm *vm,
2473 				uint64_t saddr, uint64_t size)
2474 {
2475 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2476 	LIST_HEAD(removed);
2477 	uint64_t eaddr;
2478 
2479 	eaddr = saddr + size - 1;
2480 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2481 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2482 
2483 	/* Allocate all the needed memory */
2484 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2485 	if (!before)
2486 		return -ENOMEM;
2487 	INIT_LIST_HEAD(&before->list);
2488 
2489 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2490 	if (!after) {
2491 		kfree(before);
2492 		return -ENOMEM;
2493 	}
2494 	INIT_LIST_HEAD(&after->list);
2495 
2496 	/* Now gather all removed mappings */
2497 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2498 	while (tmp) {
2499 		/* Remember mapping split at the start */
2500 		if (tmp->start < saddr) {
2501 			before->start = tmp->start;
2502 			before->last = saddr - 1;
2503 			before->offset = tmp->offset;
2504 			before->flags = tmp->flags;
2505 			before->bo_va = tmp->bo_va;
2506 			list_add(&before->list, &tmp->bo_va->invalids);
2507 		}
2508 
2509 		/* Remember mapping split at the end */
2510 		if (tmp->last > eaddr) {
2511 			after->start = eaddr + 1;
2512 			after->last = tmp->last;
2513 			after->offset = tmp->offset;
2514 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2515 			after->flags = tmp->flags;
2516 			after->bo_va = tmp->bo_va;
2517 			list_add(&after->list, &tmp->bo_va->invalids);
2518 		}
2519 
2520 		list_del(&tmp->list);
2521 		list_add(&tmp->list, &removed);
2522 
2523 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2524 	}
2525 
2526 	/* And free them up */
2527 	list_for_each_entry_safe(tmp, next, &removed, list) {
2528 		amdgpu_vm_it_remove(tmp, &vm->va);
2529 		list_del(&tmp->list);
2530 
2531 		if (tmp->start < saddr)
2532 		    tmp->start = saddr;
2533 		if (tmp->last > eaddr)
2534 		    tmp->last = eaddr;
2535 
2536 		tmp->bo_va = NULL;
2537 		list_add(&tmp->list, &vm->freed);
2538 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2539 	}
2540 
2541 	/* Insert partial mapping before the range */
2542 	if (!list_empty(&before->list)) {
2543 		amdgpu_vm_it_insert(before, &vm->va);
2544 		if (before->flags & AMDGPU_PTE_PRT)
2545 			amdgpu_vm_prt_get(adev);
2546 	} else {
2547 		kfree(before);
2548 	}
2549 
2550 	/* Insert partial mapping after the range */
2551 	if (!list_empty(&after->list)) {
2552 		amdgpu_vm_it_insert(after, &vm->va);
2553 		if (after->flags & AMDGPU_PTE_PRT)
2554 			amdgpu_vm_prt_get(adev);
2555 	} else {
2556 		kfree(after);
2557 	}
2558 
2559 	return 0;
2560 }
2561 
2562 /**
2563  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2564  *
2565  * @vm: the requested VM
2566  * @addr: the address
2567  *
2568  * Find a mapping by it's address.
2569  *
2570  * Returns:
2571  * The amdgpu_bo_va_mapping matching for addr or NULL
2572  *
2573  */
2574 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2575 							 uint64_t addr)
2576 {
2577 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2578 }
2579 
2580 /**
2581  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2582  *
2583  * @vm: the requested vm
2584  * @ticket: CS ticket
2585  *
2586  * Trace all mappings of BOs reserved during a command submission.
2587  */
2588 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2589 {
2590 	struct amdgpu_bo_va_mapping *mapping;
2591 
2592 	if (!trace_amdgpu_vm_bo_cs_enabled())
2593 		return;
2594 
2595 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2596 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2597 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2598 			struct amdgpu_bo *bo;
2599 
2600 			bo = mapping->bo_va->base.bo;
2601 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2602 			    ticket)
2603 				continue;
2604 		}
2605 
2606 		trace_amdgpu_vm_bo_cs(mapping);
2607 	}
2608 }
2609 
2610 /**
2611  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2612  *
2613  * @adev: amdgpu_device pointer
2614  * @bo_va: requested bo_va
2615  *
2616  * Remove @bo_va->bo from the requested vm.
2617  *
2618  * Object have to be reserved!
2619  */
2620 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2621 		      struct amdgpu_bo_va *bo_va)
2622 {
2623 	struct amdgpu_bo_va_mapping *mapping, *next;
2624 	struct amdgpu_bo *bo = bo_va->base.bo;
2625 	struct amdgpu_vm *vm = bo_va->base.vm;
2626 	struct amdgpu_vm_bo_base **base;
2627 
2628 	if (bo) {
2629 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2630 			vm->bulk_moveable = false;
2631 
2632 		for (base = &bo_va->base.bo->vm_bo; *base;
2633 		     base = &(*base)->next) {
2634 			if (*base != &bo_va->base)
2635 				continue;
2636 
2637 			*base = bo_va->base.next;
2638 			break;
2639 		}
2640 	}
2641 
2642 	spin_lock(&vm->invalidated_lock);
2643 	list_del(&bo_va->base.vm_status);
2644 	spin_unlock(&vm->invalidated_lock);
2645 
2646 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2647 		list_del(&mapping->list);
2648 		amdgpu_vm_it_remove(mapping, &vm->va);
2649 		mapping->bo_va = NULL;
2650 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2651 		list_add(&mapping->list, &vm->freed);
2652 	}
2653 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2654 		list_del(&mapping->list);
2655 		amdgpu_vm_it_remove(mapping, &vm->va);
2656 		amdgpu_vm_free_mapping(adev, vm, mapping,
2657 				       bo_va->last_pt_update);
2658 	}
2659 
2660 	dma_fence_put(bo_va->last_pt_update);
2661 
2662 	if (bo && bo_va->is_xgmi)
2663 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2664 
2665 	kfree(bo_va);
2666 }
2667 
2668 /**
2669  * amdgpu_vm_evictable - check if we can evict a VM
2670  *
2671  * @bo: A page table of the VM.
2672  *
2673  * Check if it is possible to evict a VM.
2674  */
2675 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2676 {
2677 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2678 
2679 	/* Page tables of a destroyed VM can go away immediately */
2680 	if (!bo_base || !bo_base->vm)
2681 		return true;
2682 
2683 	/* Don't evict VM page tables while they are busy */
2684 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2685 		return false;
2686 
2687 	/* Try to block ongoing updates */
2688 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2689 		return false;
2690 
2691 	/* Don't evict VM page tables while they are updated */
2692 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2693 		amdgpu_vm_eviction_unlock(bo_base->vm);
2694 		return false;
2695 	}
2696 
2697 	bo_base->vm->evicting = true;
2698 	amdgpu_vm_eviction_unlock(bo_base->vm);
2699 	return true;
2700 }
2701 
2702 /**
2703  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2704  *
2705  * @adev: amdgpu_device pointer
2706  * @bo: amdgpu buffer object
2707  * @evicted: is the BO evicted
2708  *
2709  * Mark @bo as invalid.
2710  */
2711 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2712 			     struct amdgpu_bo *bo, bool evicted)
2713 {
2714 	struct amdgpu_vm_bo_base *bo_base;
2715 
2716 	/* shadow bo doesn't have bo base, its validation needs its parent */
2717 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2718 		bo = bo->parent;
2719 
2720 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2721 		struct amdgpu_vm *vm = bo_base->vm;
2722 
2723 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2724 			amdgpu_vm_bo_evicted(bo_base);
2725 			continue;
2726 		}
2727 
2728 		if (bo_base->moved)
2729 			continue;
2730 		bo_base->moved = true;
2731 
2732 		if (bo->tbo.type == ttm_bo_type_kernel)
2733 			amdgpu_vm_bo_relocated(bo_base);
2734 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2735 			amdgpu_vm_bo_moved(bo_base);
2736 		else
2737 			amdgpu_vm_bo_invalidated(bo_base);
2738 	}
2739 }
2740 
2741 /**
2742  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2743  *
2744  * @vm_size: VM size
2745  *
2746  * Returns:
2747  * VM page table as power of two
2748  */
2749 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2750 {
2751 	/* Total bits covered by PD + PTs */
2752 	unsigned bits = ilog2(vm_size) + 18;
2753 
2754 	/* Make sure the PD is 4K in size up to 8GB address space.
2755 	   Above that split equal between PD and PTs */
2756 	if (vm_size <= 8)
2757 		return (bits - 9);
2758 	else
2759 		return ((bits + 3) / 2);
2760 }
2761 
2762 /**
2763  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2764  *
2765  * @adev: amdgpu_device pointer
2766  * @min_vm_size: the minimum vm size in GB if it's set auto
2767  * @fragment_size_default: Default PTE fragment size
2768  * @max_level: max VMPT level
2769  * @max_bits: max address space size in bits
2770  *
2771  */
2772 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2773 			   uint32_t fragment_size_default, unsigned max_level,
2774 			   unsigned max_bits)
2775 {
2776 	unsigned int max_size = 1 << (max_bits - 30);
2777 	unsigned int vm_size;
2778 	uint64_t tmp;
2779 
2780 	/* adjust vm size first */
2781 	if (amdgpu_vm_size != -1) {
2782 		vm_size = amdgpu_vm_size;
2783 		if (vm_size > max_size) {
2784 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2785 				 amdgpu_vm_size, max_size);
2786 			vm_size = max_size;
2787 		}
2788 	} else {
2789 		struct sysinfo si;
2790 		unsigned int phys_ram_gb;
2791 
2792 		/* Optimal VM size depends on the amount of physical
2793 		 * RAM available. Underlying requirements and
2794 		 * assumptions:
2795 		 *
2796 		 *  - Need to map system memory and VRAM from all GPUs
2797 		 *     - VRAM from other GPUs not known here
2798 		 *     - Assume VRAM <= system memory
2799 		 *  - On GFX8 and older, VM space can be segmented for
2800 		 *    different MTYPEs
2801 		 *  - Need to allow room for fragmentation, guard pages etc.
2802 		 *
2803 		 * This adds up to a rough guess of system memory x3.
2804 		 * Round up to power of two to maximize the available
2805 		 * VM size with the given page table size.
2806 		 */
2807 		si_meminfo(&si);
2808 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2809 			       (1 << 30) - 1) >> 30;
2810 		vm_size = roundup_pow_of_two(
2811 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2812 	}
2813 
2814 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2815 
2816 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2817 	if (amdgpu_vm_block_size != -1)
2818 		tmp >>= amdgpu_vm_block_size - 9;
2819 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2820 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2821 	switch (adev->vm_manager.num_level) {
2822 	case 3:
2823 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2824 		break;
2825 	case 2:
2826 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2827 		break;
2828 	case 1:
2829 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2830 		break;
2831 	default:
2832 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2833 	}
2834 	/* block size depends on vm size and hw setup*/
2835 	if (amdgpu_vm_block_size != -1)
2836 		adev->vm_manager.block_size =
2837 			min((unsigned)amdgpu_vm_block_size, max_bits
2838 			    - AMDGPU_GPU_PAGE_SHIFT
2839 			    - 9 * adev->vm_manager.num_level);
2840 	else if (adev->vm_manager.num_level > 1)
2841 		adev->vm_manager.block_size = 9;
2842 	else
2843 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2844 
2845 	if (amdgpu_vm_fragment_size == -1)
2846 		adev->vm_manager.fragment_size = fragment_size_default;
2847 	else
2848 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2849 
2850 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2851 		 vm_size, adev->vm_manager.num_level + 1,
2852 		 adev->vm_manager.block_size,
2853 		 adev->vm_manager.fragment_size);
2854 }
2855 
2856 /**
2857  * amdgpu_vm_wait_idle - wait for the VM to become idle
2858  *
2859  * @vm: VM object to wait for
2860  * @timeout: timeout to wait for VM to become idle
2861  */
2862 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2863 {
2864 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2865 					    true, true, timeout);
2866 	if (timeout <= 0)
2867 		return timeout;
2868 
2869 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2870 }
2871 
2872 /**
2873  * amdgpu_vm_init - initialize a vm instance
2874  *
2875  * @adev: amdgpu_device pointer
2876  * @vm: requested vm
2877  * @pasid: Process address space identifier
2878  *
2879  * Init @vm fields.
2880  *
2881  * Returns:
2882  * 0 for success, error for failure.
2883  */
2884 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid)
2885 {
2886 	struct amdgpu_bo *root_bo;
2887 	struct amdgpu_bo_vm *root;
2888 	int r, i;
2889 
2890 	vm->va = RB_ROOT_CACHED;
2891 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2892 		vm->reserved_vmid[i] = NULL;
2893 	INIT_LIST_HEAD(&vm->evicted);
2894 	INIT_LIST_HEAD(&vm->relocated);
2895 	INIT_LIST_HEAD(&vm->moved);
2896 	INIT_LIST_HEAD(&vm->idle);
2897 	INIT_LIST_HEAD(&vm->invalidated);
2898 	spin_lock_init(&vm->invalidated_lock);
2899 	INIT_LIST_HEAD(&vm->freed);
2900 	INIT_LIST_HEAD(&vm->done);
2901 
2902 	/* create scheduler entities for page table updates */
2903 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2904 				  adev->vm_manager.vm_pte_scheds,
2905 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2906 	if (r)
2907 		return r;
2908 
2909 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2910 				  adev->vm_manager.vm_pte_scheds,
2911 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2912 	if (r)
2913 		goto error_free_immediate;
2914 
2915 	vm->pte_support_ats = false;
2916 	vm->is_compute_context = false;
2917 
2918 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2919 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2920 
2921 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2922 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2923 	WARN_ONCE((vm->use_cpu_for_update &&
2924 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2925 		  "CPU update of VM recommended only for large BAR system\n");
2926 
2927 	if (vm->use_cpu_for_update)
2928 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2929 	else
2930 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2931 	vm->last_update = NULL;
2932 	vm->last_unlocked = dma_fence_get_stub();
2933 
2934 	mutex_init(&vm->eviction_lock);
2935 	vm->evicting = false;
2936 
2937 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2938 				false, &root);
2939 	if (r)
2940 		goto error_free_delayed;
2941 	root_bo = &root->bo;
2942 	r = amdgpu_bo_reserve(root_bo, true);
2943 	if (r)
2944 		goto error_free_root;
2945 
2946 	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2947 	if (r)
2948 		goto error_unreserve;
2949 
2950 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root_bo);
2951 
2952 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2953 	if (r)
2954 		goto error_unreserve;
2955 
2956 	amdgpu_bo_unreserve(vm->root.base.bo);
2957 
2958 	if (pasid) {
2959 		unsigned long flags;
2960 
2961 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2962 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2963 			      GFP_ATOMIC);
2964 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2965 		if (r < 0)
2966 			goto error_free_root;
2967 
2968 		vm->pasid = pasid;
2969 	}
2970 
2971 	INIT_KFIFO(vm->faults);
2972 
2973 	return 0;
2974 
2975 error_unreserve:
2976 	amdgpu_bo_unreserve(vm->root.base.bo);
2977 
2978 error_free_root:
2979 	amdgpu_bo_unref(&root->shadow);
2980 	amdgpu_bo_unref(&root_bo);
2981 	vm->root.base.bo = NULL;
2982 
2983 error_free_delayed:
2984 	dma_fence_put(vm->last_unlocked);
2985 	drm_sched_entity_destroy(&vm->delayed);
2986 
2987 error_free_immediate:
2988 	drm_sched_entity_destroy(&vm->immediate);
2989 
2990 	return r;
2991 }
2992 
2993 /**
2994  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2995  *
2996  * @adev: amdgpu_device pointer
2997  * @vm: the VM to check
2998  *
2999  * check all entries of the root PD, if any subsequent PDs are allocated,
3000  * it means there are page table creating and filling, and is no a clean
3001  * VM
3002  *
3003  * Returns:
3004  *	0 if this VM is clean
3005  */
3006 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3007 	struct amdgpu_vm *vm)
3008 {
3009 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
3010 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
3011 	unsigned int i = 0;
3012 
3013 	if (!(vm->root.entries))
3014 		return 0;
3015 
3016 	for (i = 0; i < entries; i++) {
3017 		if (vm->root.entries[i].base.bo)
3018 			return -EINVAL;
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 /**
3025  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3026  *
3027  * @adev: amdgpu_device pointer
3028  * @vm: requested vm
3029  * @pasid: pasid to use
3030  *
3031  * This only works on GFX VMs that don't have any BOs added and no
3032  * page tables allocated yet.
3033  *
3034  * Changes the following VM parameters:
3035  * - use_cpu_for_update
3036  * - pte_supports_ats
3037  * - pasid (old PASID is released, because compute manages its own PASIDs)
3038  *
3039  * Reinitializes the page directory to reflect the changed ATS
3040  * setting.
3041  *
3042  * Returns:
3043  * 0 for success, -errno for errors.
3044  */
3045 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
3046 			   u32 pasid)
3047 {
3048 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3049 	int r;
3050 
3051 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
3052 	if (r)
3053 		return r;
3054 
3055 	/* Sanity checks */
3056 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3057 	if (r)
3058 		goto unreserve_bo;
3059 
3060 	if (pasid) {
3061 		unsigned long flags;
3062 
3063 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3064 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3065 			      GFP_ATOMIC);
3066 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3067 
3068 		if (r == -ENOSPC)
3069 			goto unreserve_bo;
3070 		r = 0;
3071 	}
3072 
3073 	/* Check if PD needs to be reinitialized and do it before
3074 	 * changing any other state, in case it fails.
3075 	 */
3076 	if (pte_support_ats != vm->pte_support_ats) {
3077 		vm->pte_support_ats = pte_support_ats;
3078 		r = amdgpu_vm_clear_bo(adev, vm,
3079 				       to_amdgpu_bo_vm(vm->root.base.bo),
3080 				       false);
3081 		if (r)
3082 			goto free_idr;
3083 	}
3084 
3085 	/* Update VM state */
3086 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3087 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3088 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3089 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3090 	WARN_ONCE((vm->use_cpu_for_update &&
3091 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3092 		  "CPU update of VM recommended only for large BAR system\n");
3093 
3094 	if (vm->use_cpu_for_update) {
3095 		/* Sync with last SDMA update/clear before switching to CPU */
3096 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3097 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3098 		if (r)
3099 			goto free_idr;
3100 
3101 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3102 	} else {
3103 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3104 	}
3105 	dma_fence_put(vm->last_update);
3106 	vm->last_update = NULL;
3107 	vm->is_compute_context = true;
3108 
3109 	if (vm->pasid) {
3110 		unsigned long flags;
3111 
3112 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3113 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3114 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3115 
3116 		/* Free the original amdgpu allocated pasid
3117 		 * Will be replaced with kfd allocated pasid
3118 		 */
3119 		amdgpu_pasid_free(vm->pasid);
3120 		vm->pasid = 0;
3121 	}
3122 
3123 	/* Free the shadow bo for compute VM */
3124 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.base.bo)->shadow);
3125 
3126 	if (pasid)
3127 		vm->pasid = pasid;
3128 
3129 	goto unreserve_bo;
3130 
3131 free_idr:
3132 	if (pasid) {
3133 		unsigned long flags;
3134 
3135 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3136 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3137 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3138 	}
3139 unreserve_bo:
3140 	amdgpu_bo_unreserve(vm->root.base.bo);
3141 	return r;
3142 }
3143 
3144 /**
3145  * amdgpu_vm_release_compute - release a compute vm
3146  * @adev: amdgpu_device pointer
3147  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3148  *
3149  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3150  * pasid from vm. Compute should stop use of vm after this call.
3151  */
3152 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3153 {
3154 	if (vm->pasid) {
3155 		unsigned long flags;
3156 
3157 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3158 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3159 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3160 	}
3161 	vm->pasid = 0;
3162 	vm->is_compute_context = false;
3163 }
3164 
3165 /**
3166  * amdgpu_vm_fini - tear down a vm instance
3167  *
3168  * @adev: amdgpu_device pointer
3169  * @vm: requested vm
3170  *
3171  * Tear down @vm.
3172  * Unbind the VM and remove all bos from the vm bo list
3173  */
3174 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3175 {
3176 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3177 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3178 	struct amdgpu_bo *root;
3179 	int i;
3180 
3181 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3182 
3183 	root = amdgpu_bo_ref(vm->root.base.bo);
3184 	amdgpu_bo_reserve(root, true);
3185 	if (vm->pasid) {
3186 		unsigned long flags;
3187 
3188 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3189 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3190 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3191 		vm->pasid = 0;
3192 	}
3193 
3194 	dma_fence_wait(vm->last_unlocked, false);
3195 	dma_fence_put(vm->last_unlocked);
3196 
3197 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3198 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3199 			amdgpu_vm_prt_fini(adev, vm);
3200 			prt_fini_needed = false;
3201 		}
3202 
3203 		list_del(&mapping->list);
3204 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3205 	}
3206 
3207 	amdgpu_vm_free_pts(adev, vm, NULL);
3208 	amdgpu_bo_unreserve(root);
3209 	amdgpu_bo_unref(&root);
3210 	WARN_ON(vm->root.base.bo);
3211 
3212 	drm_sched_entity_destroy(&vm->immediate);
3213 	drm_sched_entity_destroy(&vm->delayed);
3214 
3215 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3216 		dev_err(adev->dev, "still active bo inside vm\n");
3217 	}
3218 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3219 					     &vm->va.rb_root, rb) {
3220 		/* Don't remove the mapping here, we don't want to trigger a
3221 		 * rebalance and the tree is about to be destroyed anyway.
3222 		 */
3223 		list_del(&mapping->list);
3224 		kfree(mapping);
3225 	}
3226 
3227 	dma_fence_put(vm->last_update);
3228 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3229 		amdgpu_vmid_free_reserved(adev, vm, i);
3230 }
3231 
3232 /**
3233  * amdgpu_vm_manager_init - init the VM manager
3234  *
3235  * @adev: amdgpu_device pointer
3236  *
3237  * Initialize the VM manager structures
3238  */
3239 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3240 {
3241 	unsigned i;
3242 
3243 	/* Concurrent flushes are only possible starting with Vega10 and
3244 	 * are broken on Navi10 and Navi14.
3245 	 */
3246 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3247 					      adev->asic_type == CHIP_NAVI10 ||
3248 					      adev->asic_type == CHIP_NAVI14);
3249 	amdgpu_vmid_mgr_init(adev);
3250 
3251 	adev->vm_manager.fence_context =
3252 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3253 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3254 		adev->vm_manager.seqno[i] = 0;
3255 
3256 	spin_lock_init(&adev->vm_manager.prt_lock);
3257 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3258 
3259 	/* If not overridden by the user, by default, only in large BAR systems
3260 	 * Compute VM tables will be updated by CPU
3261 	 */
3262 #ifdef CONFIG_X86_64
3263 	if (amdgpu_vm_update_mode == -1) {
3264 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3265 			adev->vm_manager.vm_update_mode =
3266 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3267 		else
3268 			adev->vm_manager.vm_update_mode = 0;
3269 	} else
3270 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3271 #else
3272 	adev->vm_manager.vm_update_mode = 0;
3273 #endif
3274 
3275 	idr_init(&adev->vm_manager.pasid_idr);
3276 	spin_lock_init(&adev->vm_manager.pasid_lock);
3277 }
3278 
3279 /**
3280  * amdgpu_vm_manager_fini - cleanup VM manager
3281  *
3282  * @adev: amdgpu_device pointer
3283  *
3284  * Cleanup the VM manager and free resources.
3285  */
3286 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3287 {
3288 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3289 	idr_destroy(&adev->vm_manager.pasid_idr);
3290 
3291 	amdgpu_vmid_mgr_fini(adev);
3292 }
3293 
3294 /**
3295  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3296  *
3297  * @dev: drm device pointer
3298  * @data: drm_amdgpu_vm
3299  * @filp: drm file pointer
3300  *
3301  * Returns:
3302  * 0 for success, -errno for errors.
3303  */
3304 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3305 {
3306 	union drm_amdgpu_vm *args = data;
3307 	struct amdgpu_device *adev = drm_to_adev(dev);
3308 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3309 	long timeout = msecs_to_jiffies(2000);
3310 	int r;
3311 
3312 	switch (args->in.op) {
3313 	case AMDGPU_VM_OP_RESERVE_VMID:
3314 		/* We only have requirement to reserve vmid from gfxhub */
3315 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3316 					       AMDGPU_GFXHUB_0);
3317 		if (r)
3318 			return r;
3319 		break;
3320 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3321 		if (amdgpu_sriov_runtime(adev))
3322 			timeout = 8 * timeout;
3323 
3324 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3325 		 * not referenced anymore.
3326 		 */
3327 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3328 		if (r)
3329 			return r;
3330 
3331 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3332 		if (r < 0)
3333 			return r;
3334 
3335 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3336 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3337 		break;
3338 	default:
3339 		return -EINVAL;
3340 	}
3341 
3342 	return 0;
3343 }
3344 
3345 /**
3346  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3347  *
3348  * @adev: drm device pointer
3349  * @pasid: PASID identifier for VM
3350  * @task_info: task_info to fill.
3351  */
3352 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3353 			 struct amdgpu_task_info *task_info)
3354 {
3355 	struct amdgpu_vm *vm;
3356 	unsigned long flags;
3357 
3358 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3359 
3360 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3361 	if (vm)
3362 		*task_info = vm->task_info;
3363 
3364 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3365 }
3366 
3367 /**
3368  * amdgpu_vm_set_task_info - Sets VMs task info.
3369  *
3370  * @vm: vm for which to set the info
3371  */
3372 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3373 {
3374 	if (vm->task_info.pid)
3375 		return;
3376 
3377 	vm->task_info.pid = current->pid;
3378 	get_task_comm(vm->task_info.task_name, current);
3379 
3380 	if (current->group_leader->mm != current->mm)
3381 		return;
3382 
3383 	vm->task_info.tgid = current->group_leader->pid;
3384 	get_task_comm(vm->task_info.process_name, current->group_leader);
3385 }
3386 
3387 /**
3388  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3389  * @adev: amdgpu device pointer
3390  * @pasid: PASID of the VM
3391  * @addr: Address of the fault
3392  *
3393  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3394  * shouldn't be reported any more.
3395  */
3396 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3397 			    uint64_t addr)
3398 {
3399 	bool is_compute_context = false;
3400 	struct amdgpu_bo *root;
3401 	uint64_t value, flags;
3402 	struct amdgpu_vm *vm;
3403 	int r;
3404 
3405 	spin_lock(&adev->vm_manager.pasid_lock);
3406 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3407 	if (vm) {
3408 		root = amdgpu_bo_ref(vm->root.base.bo);
3409 		is_compute_context = vm->is_compute_context;
3410 	} else {
3411 		root = NULL;
3412 	}
3413 	spin_unlock(&adev->vm_manager.pasid_lock);
3414 
3415 	if (!root)
3416 		return false;
3417 
3418 	addr /= AMDGPU_GPU_PAGE_SIZE;
3419 
3420 	if (is_compute_context &&
3421 	    !svm_range_restore_pages(adev, pasid, addr)) {
3422 		amdgpu_bo_unref(&root);
3423 		return true;
3424 	}
3425 
3426 	r = amdgpu_bo_reserve(root, true);
3427 	if (r)
3428 		goto error_unref;
3429 
3430 	/* Double check that the VM still exists */
3431 	spin_lock(&adev->vm_manager.pasid_lock);
3432 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3433 	if (vm && vm->root.base.bo != root)
3434 		vm = NULL;
3435 	spin_unlock(&adev->vm_manager.pasid_lock);
3436 	if (!vm)
3437 		goto error_unlock;
3438 
3439 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3440 		AMDGPU_PTE_SYSTEM;
3441 
3442 	if (is_compute_context) {
3443 		/* Intentionally setting invalid PTE flag
3444 		 * combination to force a no-retry-fault
3445 		 */
3446 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3447 			AMDGPU_PTE_TF;
3448 		value = 0;
3449 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3450 		/* Redirect the access to the dummy page */
3451 		value = adev->dummy_page_addr;
3452 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3453 			AMDGPU_PTE_WRITEABLE;
3454 
3455 	} else {
3456 		/* Let the hw retry silently on the PTE */
3457 		value = 0;
3458 	}
3459 
3460 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3461 	if (r) {
3462 		pr_debug("failed %d to reserve fence slot\n", r);
3463 		goto error_unlock;
3464 	}
3465 
3466 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3467 					addr, flags, value, NULL, NULL, NULL,
3468 					NULL);
3469 	if (r)
3470 		goto error_unlock;
3471 
3472 	r = amdgpu_vm_update_pdes(adev, vm, true);
3473 
3474 error_unlock:
3475 	amdgpu_bo_unreserve(root);
3476 	if (r < 0)
3477 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3478 
3479 error_unref:
3480 	amdgpu_bo_unref(&root);
3481 
3482 	return false;
3483 }
3484 
3485 #if defined(CONFIG_DEBUG_FS)
3486 /**
3487  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3488  *
3489  * @vm: Requested VM for printing BO info
3490  * @m: debugfs file
3491  *
3492  * Print BO information in debugfs file for the VM
3493  */
3494 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3495 {
3496 	struct amdgpu_bo_va *bo_va, *tmp;
3497 	u64 total_idle = 0;
3498 	u64 total_evicted = 0;
3499 	u64 total_relocated = 0;
3500 	u64 total_moved = 0;
3501 	u64 total_invalidated = 0;
3502 	u64 total_done = 0;
3503 	unsigned int total_idle_objs = 0;
3504 	unsigned int total_evicted_objs = 0;
3505 	unsigned int total_relocated_objs = 0;
3506 	unsigned int total_moved_objs = 0;
3507 	unsigned int total_invalidated_objs = 0;
3508 	unsigned int total_done_objs = 0;
3509 	unsigned int id = 0;
3510 
3511 	seq_puts(m, "\tIdle BOs:\n");
3512 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3513 		if (!bo_va->base.bo)
3514 			continue;
3515 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3516 	}
3517 	total_idle_objs = id;
3518 	id = 0;
3519 
3520 	seq_puts(m, "\tEvicted BOs:\n");
3521 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3522 		if (!bo_va->base.bo)
3523 			continue;
3524 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3525 	}
3526 	total_evicted_objs = id;
3527 	id = 0;
3528 
3529 	seq_puts(m, "\tRelocated BOs:\n");
3530 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3531 		if (!bo_va->base.bo)
3532 			continue;
3533 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3534 	}
3535 	total_relocated_objs = id;
3536 	id = 0;
3537 
3538 	seq_puts(m, "\tMoved BOs:\n");
3539 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3540 		if (!bo_va->base.bo)
3541 			continue;
3542 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3543 	}
3544 	total_moved_objs = id;
3545 	id = 0;
3546 
3547 	seq_puts(m, "\tInvalidated BOs:\n");
3548 	spin_lock(&vm->invalidated_lock);
3549 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3550 		if (!bo_va->base.bo)
3551 			continue;
3552 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3553 	}
3554 	total_invalidated_objs = id;
3555 	id = 0;
3556 
3557 	seq_puts(m, "\tDone BOs:\n");
3558 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3559 		if (!bo_va->base.bo)
3560 			continue;
3561 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3562 	}
3563 	spin_unlock(&vm->invalidated_lock);
3564 	total_done_objs = id;
3565 
3566 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3567 		   total_idle_objs);
3568 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3569 		   total_evicted_objs);
3570 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3571 		   total_relocated_objs);
3572 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3573 		   total_moved_objs);
3574 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3575 		   total_invalidated_objs);
3576 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3577 		   total_done_objs);
3578 }
3579 #endif
3580