xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision ffd89aa968d9046ab5fb9f7cdb7f8d3c383a15c1)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
61 
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
63 
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
65 				   struct ttm_tt *ttm,
66 				   struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
68 				      struct ttm_tt *ttm);
69 
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71 				    unsigned int type,
72 				    uint64_t size_in_page)
73 {
74 	return ttm_range_man_init(&adev->mman.bdev, type,
75 				  false, size_in_page);
76 }
77 
78 /**
79  * amdgpu_evict_flags - Compute placement flags
80  *
81  * @bo: The buffer object to evict
82  * @placement: Possible destination(s) for evicted BO
83  *
84  * Fill in placement data when ttm_bo_evict() is called
85  */
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 				struct ttm_placement *placement)
88 {
89 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 	struct amdgpu_bo *abo;
91 	static const struct ttm_place placements = {
92 		.fpfn = 0,
93 		.lpfn = 0,
94 		.mem_type = TTM_PL_SYSTEM,
95 		.flags = 0
96 	};
97 
98 	/* Don't handle scatter gather BOs */
99 	if (bo->type == ttm_bo_type_sg) {
100 		placement->num_placement = 0;
101 		placement->num_busy_placement = 0;
102 		return;
103 	}
104 
105 	/* Object isn't an AMDGPU object so ignore */
106 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 		placement->placement = &placements;
108 		placement->busy_placement = &placements;
109 		placement->num_placement = 1;
110 		placement->num_busy_placement = 1;
111 		return;
112 	}
113 
114 	abo = ttm_to_amdgpu_bo(bo);
115 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
116 		struct dma_fence *fence;
117 		struct dma_resv *resv = &bo->base._resv;
118 
119 		rcu_read_lock();
120 		fence = rcu_dereference(resv->fence_excl);
121 		if (fence && !fence->ops->signaled)
122 			dma_fence_enable_sw_signaling(fence);
123 
124 		placement->num_placement = 0;
125 		placement->num_busy_placement = 0;
126 		rcu_read_unlock();
127 		return;
128 	}
129 
130 	switch (bo->resource->mem_type) {
131 	case AMDGPU_PL_GDS:
132 	case AMDGPU_PL_GWS:
133 	case AMDGPU_PL_OA:
134 		placement->num_placement = 0;
135 		placement->num_busy_placement = 0;
136 		return;
137 
138 	case TTM_PL_VRAM:
139 		if (!adev->mman.buffer_funcs_enabled) {
140 			/* Move to system memory */
141 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
142 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
143 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
144 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
145 
146 			/* Try evicting to the CPU inaccessible part of VRAM
147 			 * first, but only set GTT as busy placement, so this
148 			 * BO will be evicted to GTT rather than causing other
149 			 * BOs to be evicted from VRAM
150 			 */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
152 							AMDGPU_GEM_DOMAIN_GTT |
153 							AMDGPU_GEM_DOMAIN_CPU);
154 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
155 			abo->placements[0].lpfn = 0;
156 			abo->placement.busy_placement = &abo->placements[1];
157 			abo->placement.num_busy_placement = 1;
158 		} else {
159 			/* Move to GTT memory */
160 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
161 							AMDGPU_GEM_DOMAIN_CPU);
162 		}
163 		break;
164 	case TTM_PL_TT:
165 	case AMDGPU_PL_PREEMPT:
166 	default:
167 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
168 		break;
169 	}
170 	*placement = abo->placement;
171 }
172 
173 /**
174  * amdgpu_ttm_map_buffer - Map memory into the GART windows
175  * @bo: buffer object to map
176  * @mem: memory object to map
177  * @mm_cur: range to map
178  * @num_pages: number of pages to map
179  * @window: which GART window to use
180  * @ring: DMA ring to use for the copy
181  * @tmz: if we should setup a TMZ enabled mapping
182  * @addr: resulting address inside the MC address space
183  *
184  * Setup one of the GART windows to access a specific piece of memory or return
185  * the physical address for local memory.
186  */
187 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
188 				 struct ttm_resource *mem,
189 				 struct amdgpu_res_cursor *mm_cur,
190 				 unsigned num_pages, unsigned window,
191 				 struct amdgpu_ring *ring, bool tmz,
192 				 uint64_t *addr)
193 {
194 	struct amdgpu_device *adev = ring->adev;
195 	struct amdgpu_job *job;
196 	unsigned num_dw, num_bytes;
197 	struct dma_fence *fence;
198 	uint64_t src_addr, dst_addr;
199 	void *cpu_addr;
200 	uint64_t flags;
201 	unsigned int i;
202 	int r;
203 
204 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
205 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
206 	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
207 
208 	/* Map only what can't be accessed directly */
209 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
210 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
211 			mm_cur->start;
212 		return 0;
213 	}
214 
215 	*addr = adev->gmc.gart_start;
216 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
217 		AMDGPU_GPU_PAGE_SIZE;
218 	*addr += mm_cur->start & ~PAGE_MASK;
219 
220 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
221 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
222 
223 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
224 				     AMDGPU_IB_POOL_DELAYED, &job);
225 	if (r)
226 		return r;
227 
228 	src_addr = num_dw * 4;
229 	src_addr += job->ibs[0].gpu_addr;
230 
231 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
232 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
233 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
234 				dst_addr, num_bytes, false);
235 
236 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
237 	WARN_ON(job->ibs[0].length_dw > num_dw);
238 
239 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
240 	if (tmz)
241 		flags |= AMDGPU_PTE_TMZ;
242 
243 	cpu_addr = &job->ibs[0].ptr[num_dw];
244 
245 	if (mem->mem_type == TTM_PL_TT) {
246 		dma_addr_t *dma_addr;
247 
248 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
249 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
250 				    cpu_addr);
251 		if (r)
252 			goto error_free;
253 	} else {
254 		dma_addr_t dma_address;
255 
256 		dma_address = mm_cur->start;
257 		dma_address += adev->vm_manager.vram_base_offset;
258 
259 		for (i = 0; i < num_pages; ++i) {
260 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
261 					    &dma_address, flags, cpu_addr);
262 			if (r)
263 				goto error_free;
264 
265 			dma_address += PAGE_SIZE;
266 		}
267 	}
268 
269 	r = amdgpu_job_submit(job, &adev->mman.entity,
270 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
271 	if (r)
272 		goto error_free;
273 
274 	dma_fence_put(fence);
275 
276 	return r;
277 
278 error_free:
279 	amdgpu_job_free(job);
280 	return r;
281 }
282 
283 /**
284  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
285  * @adev: amdgpu device
286  * @src: buffer/address where to read from
287  * @dst: buffer/address where to write to
288  * @size: number of bytes to copy
289  * @tmz: if a secure copy should be used
290  * @resv: resv object to sync to
291  * @f: Returns the last fence if multiple jobs are submitted.
292  *
293  * The function copies @size bytes from {src->mem + src->offset} to
294  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
295  * move and different for a BO to BO copy.
296  *
297  */
298 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
299 			       const struct amdgpu_copy_mem *src,
300 			       const struct amdgpu_copy_mem *dst,
301 			       uint64_t size, bool tmz,
302 			       struct dma_resv *resv,
303 			       struct dma_fence **f)
304 {
305 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
306 					AMDGPU_GPU_PAGE_SIZE);
307 
308 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 	struct amdgpu_res_cursor src_mm, dst_mm;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 
321 	mutex_lock(&adev->mman.gtt_window_lock);
322 	while (src_mm.remaining) {
323 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
324 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
325 		struct dma_fence *next;
326 		uint32_t cur_size;
327 		uint64_t from, to;
328 
329 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
330 		 * begins at an offset, then adjust the size accordingly
331 		 */
332 		cur_size = max(src_page_offset, dst_page_offset);
333 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
334 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
335 
336 		/* Map src to window 0 and dst to window 1. */
337 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
338 					  PFN_UP(cur_size + src_page_offset),
339 					  0, ring, tmz, &from);
340 		if (r)
341 			goto error;
342 
343 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
344 					  PFN_UP(cur_size + dst_page_offset),
345 					  1, ring, tmz, &to);
346 		if (r)
347 			goto error;
348 
349 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
350 				       resv, &next, false, true, tmz);
351 		if (r)
352 			goto error;
353 
354 		dma_fence_put(fence);
355 		fence = next;
356 
357 		amdgpu_res_next(&src_mm, cur_size);
358 		amdgpu_res_next(&dst_mm, cur_size);
359 	}
360 error:
361 	mutex_unlock(&adev->mman.gtt_window_lock);
362 	if (f)
363 		*f = dma_fence_get(fence);
364 	dma_fence_put(fence);
365 	return r;
366 }
367 
368 /*
369  * amdgpu_move_blit - Copy an entire buffer to another buffer
370  *
371  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
372  * help move buffers to and from VRAM.
373  */
374 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
375 			    bool evict,
376 			    struct ttm_resource *new_mem,
377 			    struct ttm_resource *old_mem)
378 {
379 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
380 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
381 	struct amdgpu_copy_mem src, dst;
382 	struct dma_fence *fence = NULL;
383 	int r;
384 
385 	src.bo = bo;
386 	dst.bo = bo;
387 	src.mem = old_mem;
388 	dst.mem = new_mem;
389 	src.offset = 0;
390 	dst.offset = 0;
391 
392 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
393 				       new_mem->num_pages << PAGE_SHIFT,
394 				       amdgpu_bo_encrypted(abo),
395 				       bo->base.resv, &fence);
396 	if (r)
397 		goto error;
398 
399 	/* clear the space being freed */
400 	if (old_mem->mem_type == TTM_PL_VRAM &&
401 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
402 		struct dma_fence *wipe_fence = NULL;
403 
404 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
405 				       NULL, &wipe_fence);
406 		if (r) {
407 			goto error;
408 		} else if (wipe_fence) {
409 			dma_fence_put(fence);
410 			fence = wipe_fence;
411 		}
412 	}
413 
414 	/* Always block for VM page tables before committing the new location */
415 	if (bo->type == ttm_bo_type_kernel)
416 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
417 	else
418 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
419 	dma_fence_put(fence);
420 	return r;
421 
422 error:
423 	if (fence)
424 		dma_fence_wait(fence, false);
425 	dma_fence_put(fence);
426 	return r;
427 }
428 
429 /*
430  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
431  *
432  * Called by amdgpu_bo_move()
433  */
434 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
435 			       struct ttm_resource *mem)
436 {
437 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
438 	struct amdgpu_res_cursor cursor;
439 
440 	if (mem->mem_type == TTM_PL_SYSTEM ||
441 	    mem->mem_type == TTM_PL_TT)
442 		return true;
443 	if (mem->mem_type != TTM_PL_VRAM)
444 		return false;
445 
446 	amdgpu_res_first(mem, 0, mem_size, &cursor);
447 
448 	/* ttm_resource_ioremap only supports contiguous memory */
449 	if (cursor.size != mem_size)
450 		return false;
451 
452 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
453 }
454 
455 /*
456  * amdgpu_bo_move - Move a buffer object to a new memory location
457  *
458  * Called by ttm_bo_handle_move_mem()
459  */
460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
461 			  struct ttm_operation_ctx *ctx,
462 			  struct ttm_resource *new_mem,
463 			  struct ttm_place *hop)
464 {
465 	struct amdgpu_device *adev;
466 	struct amdgpu_bo *abo;
467 	struct ttm_resource *old_mem = bo->resource;
468 	int r;
469 
470 	if (new_mem->mem_type == TTM_PL_TT ||
471 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
472 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
473 		if (r)
474 			return r;
475 	}
476 
477 	/* Can't move a pinned BO */
478 	abo = ttm_to_amdgpu_bo(bo);
479 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480 		return -EINVAL;
481 
482 	adev = amdgpu_ttm_adev(bo->bdev);
483 
484 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
485 		ttm_bo_move_null(bo, new_mem);
486 		goto out;
487 	}
488 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
489 	    (new_mem->mem_type == TTM_PL_TT ||
490 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491 		ttm_bo_move_null(bo, new_mem);
492 		goto out;
493 	}
494 	if ((old_mem->mem_type == TTM_PL_TT ||
495 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
496 	    new_mem->mem_type == TTM_PL_SYSTEM) {
497 		r = ttm_bo_wait_ctx(bo, ctx);
498 		if (r)
499 			return r;
500 
501 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
502 		ttm_resource_free(bo, &bo->resource);
503 		ttm_bo_assign_mem(bo, new_mem);
504 		goto out;
505 	}
506 
507 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
508 	    old_mem->mem_type == AMDGPU_PL_GWS ||
509 	    old_mem->mem_type == AMDGPU_PL_OA ||
510 	    new_mem->mem_type == AMDGPU_PL_GDS ||
511 	    new_mem->mem_type == AMDGPU_PL_GWS ||
512 	    new_mem->mem_type == AMDGPU_PL_OA) {
513 		/* Nothing to save here */
514 		ttm_bo_move_null(bo, new_mem);
515 		goto out;
516 	}
517 
518 	if (bo->type == ttm_bo_type_device &&
519 	    new_mem->mem_type == TTM_PL_VRAM &&
520 	    old_mem->mem_type != TTM_PL_VRAM) {
521 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
522 		 * accesses the BO after it's moved.
523 		 */
524 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
525 	}
526 
527 	if (adev->mman.buffer_funcs_enabled) {
528 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
529 		      new_mem->mem_type == TTM_PL_VRAM) ||
530 		     (old_mem->mem_type == TTM_PL_VRAM &&
531 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
532 			hop->fpfn = 0;
533 			hop->lpfn = 0;
534 			hop->mem_type = TTM_PL_TT;
535 			hop->flags = TTM_PL_FLAG_TEMPORARY;
536 			return -EMULTIHOP;
537 		}
538 
539 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
540 	} else {
541 		r = -ENODEV;
542 	}
543 
544 	if (r) {
545 		/* Check that all memory is CPU accessible */
546 		if (!amdgpu_mem_visible(adev, old_mem) ||
547 		    !amdgpu_mem_visible(adev, new_mem)) {
548 			pr_err("Move buffer fallback to memcpy unavailable\n");
549 			return r;
550 		}
551 
552 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
553 		if (r)
554 			return r;
555 	}
556 
557 out:
558 	/* update statistics */
559 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
560 	amdgpu_bo_move_notify(bo, evict, new_mem);
561 	return 0;
562 }
563 
564 /*
565  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
566  *
567  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
568  */
569 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
570 				     struct ttm_resource *mem)
571 {
572 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
573 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
574 
575 	switch (mem->mem_type) {
576 	case TTM_PL_SYSTEM:
577 		/* system memory */
578 		return 0;
579 	case TTM_PL_TT:
580 	case AMDGPU_PL_PREEMPT:
581 		break;
582 	case TTM_PL_VRAM:
583 		mem->bus.offset = mem->start << PAGE_SHIFT;
584 		/* check if it's visible */
585 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
586 			return -EINVAL;
587 
588 		if (adev->mman.aper_base_kaddr &&
589 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
590 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
591 					mem->bus.offset;
592 
593 		mem->bus.offset += adev->gmc.aper_base;
594 		mem->bus.is_iomem = true;
595 		break;
596 	default:
597 		return -EINVAL;
598 	}
599 	return 0;
600 }
601 
602 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
603 					   unsigned long page_offset)
604 {
605 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
606 	struct amdgpu_res_cursor cursor;
607 
608 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
609 			 &cursor);
610 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
611 }
612 
613 /**
614  * amdgpu_ttm_domain_start - Returns GPU start address
615  * @adev: amdgpu device object
616  * @type: type of the memory
617  *
618  * Returns:
619  * GPU start address of a memory domain
620  */
621 
622 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
623 {
624 	switch (type) {
625 	case TTM_PL_TT:
626 		return adev->gmc.gart_start;
627 	case TTM_PL_VRAM:
628 		return adev->gmc.vram_start;
629 	}
630 
631 	return 0;
632 }
633 
634 /*
635  * TTM backend functions.
636  */
637 struct amdgpu_ttm_tt {
638 	struct ttm_tt	ttm;
639 	struct drm_gem_object	*gobj;
640 	u64			offset;
641 	uint64_t		userptr;
642 	struct task_struct	*usertask;
643 	uint32_t		userflags;
644 	bool			bound;
645 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
646 	struct hmm_range	*range;
647 #endif
648 };
649 
650 #ifdef CONFIG_DRM_AMDGPU_USERPTR
651 /*
652  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
653  * memory and start HMM tracking CPU page table update
654  *
655  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
656  * once afterwards to stop HMM tracking
657  */
658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
659 {
660 	struct ttm_tt *ttm = bo->tbo.ttm;
661 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
662 	unsigned long start = gtt->userptr;
663 	struct vm_area_struct *vma;
664 	struct mm_struct *mm;
665 	bool readonly;
666 	int r = 0;
667 
668 	mm = bo->notifier.mm;
669 	if (unlikely(!mm)) {
670 		DRM_DEBUG_DRIVER("BO is not registered?\n");
671 		return -EFAULT;
672 	}
673 
674 	/* Another get_user_pages is running at the same time?? */
675 	if (WARN_ON(gtt->range))
676 		return -EFAULT;
677 
678 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
679 		return -ESRCH;
680 
681 	mmap_read_lock(mm);
682 	vma = vma_lookup(mm, start);
683 	if (unlikely(!vma)) {
684 		r = -EFAULT;
685 		goto out_unlock;
686 	}
687 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688 		vma->vm_file)) {
689 		r = -EPERM;
690 		goto out_unlock;
691 	}
692 
693 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
694 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695 				       ttm->num_pages, &gtt->range, readonly,
696 				       true, NULL);
697 out_unlock:
698 	mmap_read_unlock(mm);
699 	if (r)
700 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
701 
702 	mmput(mm);
703 
704 	return r;
705 }
706 
707 /*
708  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
709  * Check if the pages backing this ttm range have been invalidated
710  *
711  * Returns: true if pages are still valid
712  */
713 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
714 {
715 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
716 	bool r = false;
717 
718 	if (!gtt || !gtt->userptr)
719 		return false;
720 
721 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
722 		gtt->userptr, ttm->num_pages);
723 
724 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
725 		"No user pages to check\n");
726 
727 	if (gtt->range) {
728 		/*
729 		 * FIXME: Must always hold notifier_lock for this, and must
730 		 * not ignore the return code.
731 		 */
732 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
733 		gtt->range = NULL;
734 	}
735 
736 	return !r;
737 }
738 #endif
739 
740 /*
741  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
742  *
743  * Called by amdgpu_cs_list_validate(). This creates the page list
744  * that backs user memory and will ultimately be mapped into the device
745  * address space.
746  */
747 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
748 {
749 	unsigned long i;
750 
751 	for (i = 0; i < ttm->num_pages; ++i)
752 		ttm->pages[i] = pages ? pages[i] : NULL;
753 }
754 
755 /*
756  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
757  *
758  * Called by amdgpu_ttm_backend_bind()
759  **/
760 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
761 				     struct ttm_tt *ttm)
762 {
763 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
764 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
765 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
766 	enum dma_data_direction direction = write ?
767 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
768 	int r;
769 
770 	/* Allocate an SG array and squash pages into it */
771 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
772 				      (u64)ttm->num_pages << PAGE_SHIFT,
773 				      GFP_KERNEL);
774 	if (r)
775 		goto release_sg;
776 
777 	/* Map SG to device */
778 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
779 	if (r)
780 		goto release_sg;
781 
782 	/* convert SG to linear array of pages and dma addresses */
783 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
784 				       ttm->num_pages);
785 
786 	return 0;
787 
788 release_sg:
789 	kfree(ttm->sg);
790 	ttm->sg = NULL;
791 	return r;
792 }
793 
794 /*
795  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
796  */
797 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
798 					struct ttm_tt *ttm)
799 {
800 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
801 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
802 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
803 	enum dma_data_direction direction = write ?
804 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
805 
806 	/* double check that we don't free the table twice */
807 	if (!ttm->sg || !ttm->sg->sgl)
808 		return;
809 
810 	/* unmap the pages mapped to the device */
811 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
812 	sg_free_table(ttm->sg);
813 
814 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
815 	if (gtt->range) {
816 		unsigned long i;
817 
818 		for (i = 0; i < ttm->num_pages; i++) {
819 			if (ttm->pages[i] !=
820 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
821 				break;
822 		}
823 
824 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
825 	}
826 #endif
827 }
828 
829 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
830 				struct ttm_buffer_object *tbo,
831 				uint64_t flags)
832 {
833 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
834 	struct ttm_tt *ttm = tbo->ttm;
835 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
836 	int r;
837 
838 	if (amdgpu_bo_encrypted(abo))
839 		flags |= AMDGPU_PTE_TMZ;
840 
841 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
842 		uint64_t page_idx = 1;
843 
844 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
845 				gtt->ttm.dma_address, flags);
846 		if (r)
847 			goto gart_bind_fail;
848 
849 		/* The memory type of the first page defaults to UC. Now
850 		 * modify the memory type to NC from the second page of
851 		 * the BO onward.
852 		 */
853 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
854 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
855 
856 		r = amdgpu_gart_bind(adev,
857 				gtt->offset + (page_idx << PAGE_SHIFT),
858 				ttm->num_pages - page_idx,
859 				&(gtt->ttm.dma_address[page_idx]), flags);
860 	} else {
861 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
862 				     gtt->ttm.dma_address, flags);
863 	}
864 
865 gart_bind_fail:
866 	if (r)
867 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
868 			  ttm->num_pages, gtt->offset);
869 
870 	return r;
871 }
872 
873 /*
874  * amdgpu_ttm_backend_bind - Bind GTT memory
875  *
876  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
877  * This handles binding GTT memory to the device address space.
878  */
879 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
880 				   struct ttm_tt *ttm,
881 				   struct ttm_resource *bo_mem)
882 {
883 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
884 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
885 	uint64_t flags;
886 	int r = 0;
887 
888 	if (!bo_mem)
889 		return -EINVAL;
890 
891 	if (gtt->bound)
892 		return 0;
893 
894 	if (gtt->userptr) {
895 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
896 		if (r) {
897 			DRM_ERROR("failed to pin userptr\n");
898 			return r;
899 		}
900 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
901 		if (!ttm->sg) {
902 			struct dma_buf_attachment *attach;
903 			struct sg_table *sgt;
904 
905 			attach = gtt->gobj->import_attach;
906 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
907 			if (IS_ERR(sgt))
908 				return PTR_ERR(sgt);
909 
910 			ttm->sg = sgt;
911 		}
912 
913 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
914 					       ttm->num_pages);
915 	}
916 
917 	if (!ttm->num_pages) {
918 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
919 		     ttm->num_pages, bo_mem, ttm);
920 	}
921 
922 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
923 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
924 	    bo_mem->mem_type == AMDGPU_PL_OA)
925 		return -EINVAL;
926 
927 	if (bo_mem->mem_type != TTM_PL_TT ||
928 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
929 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
930 		return 0;
931 	}
932 
933 	/* compute PTE flags relevant to this BO memory */
934 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
935 
936 	/* bind pages into GART page tables */
937 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
938 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
939 		gtt->ttm.dma_address, flags);
940 
941 	if (r)
942 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
943 			  ttm->num_pages, gtt->offset);
944 	gtt->bound = true;
945 	return r;
946 }
947 
948 /*
949  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
950  * through AGP or GART aperture.
951  *
952  * If bo is accessible through AGP aperture, then use AGP aperture
953  * to access bo; otherwise allocate logical space in GART aperture
954  * and map bo to GART aperture.
955  */
956 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
957 {
958 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
959 	struct ttm_operation_ctx ctx = { false, false };
960 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
961 	struct ttm_placement placement;
962 	struct ttm_place placements;
963 	struct ttm_resource *tmp;
964 	uint64_t addr, flags;
965 	int r;
966 
967 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
968 		return 0;
969 
970 	addr = amdgpu_gmc_agp_addr(bo);
971 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
972 		bo->resource->start = addr >> PAGE_SHIFT;
973 		return 0;
974 	}
975 
976 	/* allocate GART space */
977 	placement.num_placement = 1;
978 	placement.placement = &placements;
979 	placement.num_busy_placement = 1;
980 	placement.busy_placement = &placements;
981 	placements.fpfn = 0;
982 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
983 	placements.mem_type = TTM_PL_TT;
984 	placements.flags = bo->resource->placement;
985 
986 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
987 	if (unlikely(r))
988 		return r;
989 
990 	/* compute PTE flags for this buffer object */
991 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
992 
993 	/* Bind pages */
994 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
995 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
996 	if (unlikely(r)) {
997 		ttm_resource_free(bo, &tmp);
998 		return r;
999 	}
1000 
1001 	amdgpu_gart_invalidate_tlb(adev);
1002 	ttm_resource_free(bo, &bo->resource);
1003 	ttm_bo_assign_mem(bo, tmp);
1004 
1005 	return 0;
1006 }
1007 
1008 /*
1009  * amdgpu_ttm_recover_gart - Rebind GTT pages
1010  *
1011  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1012  * rebind GTT pages during a GPU reset.
1013  */
1014 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1015 {
1016 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1017 	uint64_t flags;
1018 	int r;
1019 
1020 	if (!tbo->ttm)
1021 		return 0;
1022 
1023 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1024 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1025 
1026 	return r;
1027 }
1028 
1029 /*
1030  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1031  *
1032  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1033  * ttm_tt_destroy().
1034  */
1035 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1036 				      struct ttm_tt *ttm)
1037 {
1038 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1039 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1040 	int r;
1041 
1042 	/* if the pages have userptr pinning then clear that first */
1043 	if (gtt->userptr) {
1044 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1045 	} else if (ttm->sg && gtt->gobj->import_attach) {
1046 		struct dma_buf_attachment *attach;
1047 
1048 		attach = gtt->gobj->import_attach;
1049 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1050 		ttm->sg = NULL;
1051 	}
1052 
1053 	if (!gtt->bound)
1054 		return;
1055 
1056 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1057 		return;
1058 
1059 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1060 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1061 	if (r)
1062 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1063 			  gtt->ttm.num_pages, gtt->offset);
1064 	gtt->bound = false;
1065 }
1066 
1067 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1068 				       struct ttm_tt *ttm)
1069 {
1070 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1071 
1072 	if (gtt->usertask)
1073 		put_task_struct(gtt->usertask);
1074 
1075 	ttm_tt_fini(&gtt->ttm);
1076 	kfree(gtt);
1077 }
1078 
1079 /**
1080  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1081  *
1082  * @bo: The buffer object to create a GTT ttm_tt object around
1083  * @page_flags: Page flags to be added to the ttm_tt object
1084  *
1085  * Called by ttm_tt_create().
1086  */
1087 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1088 					   uint32_t page_flags)
1089 {
1090 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1091 	struct amdgpu_ttm_tt *gtt;
1092 	enum ttm_caching caching;
1093 
1094 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1095 	if (gtt == NULL) {
1096 		return NULL;
1097 	}
1098 	gtt->gobj = &bo->base;
1099 
1100 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1101 		caching = ttm_write_combined;
1102 	else
1103 		caching = ttm_cached;
1104 
1105 	/* allocate space for the uninitialized page entries */
1106 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1107 		kfree(gtt);
1108 		return NULL;
1109 	}
1110 	return &gtt->ttm;
1111 }
1112 
1113 /*
1114  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1115  *
1116  * Map the pages of a ttm_tt object to an address space visible
1117  * to the underlying device.
1118  */
1119 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1120 				  struct ttm_tt *ttm,
1121 				  struct ttm_operation_ctx *ctx)
1122 {
1123 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1124 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1125 	pgoff_t i;
1126 	int ret;
1127 
1128 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1129 	if (gtt->userptr) {
1130 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1131 		if (!ttm->sg)
1132 			return -ENOMEM;
1133 		return 0;
1134 	}
1135 
1136 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1137 		return 0;
1138 
1139 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1140 	if (ret)
1141 		return ret;
1142 
1143 	for (i = 0; i < ttm->num_pages; ++i)
1144 		ttm->pages[i]->mapping = bdev->dev_mapping;
1145 
1146 	return 0;
1147 }
1148 
1149 /*
1150  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1151  *
1152  * Unmaps pages of a ttm_tt object from the device address space and
1153  * unpopulates the page array backing it.
1154  */
1155 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1156 				     struct ttm_tt *ttm)
1157 {
1158 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1159 	struct amdgpu_device *adev;
1160 	pgoff_t i;
1161 
1162 	amdgpu_ttm_backend_unbind(bdev, ttm);
1163 
1164 	if (gtt->userptr) {
1165 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1166 		kfree(ttm->sg);
1167 		ttm->sg = NULL;
1168 		return;
1169 	}
1170 
1171 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1172 		return;
1173 
1174 	for (i = 0; i < ttm->num_pages; ++i)
1175 		ttm->pages[i]->mapping = NULL;
1176 
1177 	adev = amdgpu_ttm_adev(bdev);
1178 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1179 }
1180 
1181 /**
1182  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1183  * task
1184  *
1185  * @bo: The ttm_buffer_object to bind this userptr to
1186  * @addr:  The address in the current tasks VM space to use
1187  * @flags: Requirements of userptr object.
1188  *
1189  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1190  * to current task
1191  */
1192 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1193 			      uint64_t addr, uint32_t flags)
1194 {
1195 	struct amdgpu_ttm_tt *gtt;
1196 
1197 	if (!bo->ttm) {
1198 		/* TODO: We want a separate TTM object type for userptrs */
1199 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1200 		if (bo->ttm == NULL)
1201 			return -ENOMEM;
1202 	}
1203 
1204 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1205 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1206 
1207 	gtt = (void *)bo->ttm;
1208 	gtt->userptr = addr;
1209 	gtt->userflags = flags;
1210 
1211 	if (gtt->usertask)
1212 		put_task_struct(gtt->usertask);
1213 	gtt->usertask = current->group_leader;
1214 	get_task_struct(gtt->usertask);
1215 
1216 	return 0;
1217 }
1218 
1219 /*
1220  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1221  */
1222 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1223 {
1224 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1225 
1226 	if (gtt == NULL)
1227 		return NULL;
1228 
1229 	if (gtt->usertask == NULL)
1230 		return NULL;
1231 
1232 	return gtt->usertask->mm;
1233 }
1234 
1235 /*
1236  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1237  * address range for the current task.
1238  *
1239  */
1240 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1241 				  unsigned long end, unsigned long *userptr)
1242 {
1243 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1244 	unsigned long size;
1245 
1246 	if (gtt == NULL || !gtt->userptr)
1247 		return false;
1248 
1249 	/* Return false if no part of the ttm_tt object lies within
1250 	 * the range
1251 	 */
1252 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1253 	if (gtt->userptr > end || gtt->userptr + size <= start)
1254 		return false;
1255 
1256 	if (userptr)
1257 		*userptr = gtt->userptr;
1258 	return true;
1259 }
1260 
1261 /*
1262  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1263  */
1264 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1265 {
1266 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1267 
1268 	if (gtt == NULL || !gtt->userptr)
1269 		return false;
1270 
1271 	return true;
1272 }
1273 
1274 /*
1275  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1276  */
1277 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1278 {
1279 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1280 
1281 	if (gtt == NULL)
1282 		return false;
1283 
1284 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1285 }
1286 
1287 /**
1288  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1289  *
1290  * @ttm: The ttm_tt object to compute the flags for
1291  * @mem: The memory registry backing this ttm_tt object
1292  *
1293  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1294  */
1295 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1296 {
1297 	uint64_t flags = 0;
1298 
1299 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1300 		flags |= AMDGPU_PTE_VALID;
1301 
1302 	if (mem && (mem->mem_type == TTM_PL_TT ||
1303 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1304 		flags |= AMDGPU_PTE_SYSTEM;
1305 
1306 		if (ttm->caching == ttm_cached)
1307 			flags |= AMDGPU_PTE_SNOOPED;
1308 	}
1309 
1310 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1311 			mem->bus.caching == ttm_cached)
1312 		flags |= AMDGPU_PTE_SNOOPED;
1313 
1314 	return flags;
1315 }
1316 
1317 /**
1318  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1319  *
1320  * @adev: amdgpu_device pointer
1321  * @ttm: The ttm_tt object to compute the flags for
1322  * @mem: The memory registry backing this ttm_tt object
1323  *
1324  * Figure out the flags to use for a VM PTE (Page Table Entry).
1325  */
1326 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1327 				 struct ttm_resource *mem)
1328 {
1329 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1330 
1331 	flags |= adev->gart.gart_pte_flags;
1332 	flags |= AMDGPU_PTE_READABLE;
1333 
1334 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1335 		flags |= AMDGPU_PTE_WRITEABLE;
1336 
1337 	return flags;
1338 }
1339 
1340 /*
1341  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1342  * object.
1343  *
1344  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1345  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1346  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1347  * used to clean out a memory space.
1348  */
1349 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1350 					    const struct ttm_place *place)
1351 {
1352 	unsigned long num_pages = bo->resource->num_pages;
1353 	struct amdgpu_res_cursor cursor;
1354 	struct dma_resv_list *flist;
1355 	struct dma_fence *f;
1356 	int i;
1357 
1358 	/* Swapout? */
1359 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1360 		return true;
1361 
1362 	if (bo->type == ttm_bo_type_kernel &&
1363 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1364 		return false;
1365 
1366 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1367 	 * If true, then return false as any KFD process needs all its BOs to
1368 	 * be resident to run successfully
1369 	 */
1370 	flist = dma_resv_shared_list(bo->base.resv);
1371 	if (flist) {
1372 		for (i = 0; i < flist->shared_count; ++i) {
1373 			f = rcu_dereference_protected(flist->shared[i],
1374 				dma_resv_held(bo->base.resv));
1375 			if (amdkfd_fence_check_mm(f, current->mm))
1376 				return false;
1377 		}
1378 	}
1379 
1380 	switch (bo->resource->mem_type) {
1381 	case AMDGPU_PL_PREEMPT:
1382 		/* Preemptible BOs don't own system resources managed by the
1383 		 * driver (pages, VRAM, GART space). They point to resources
1384 		 * owned by someone else (e.g. pageable memory in user mode
1385 		 * or a DMABuf). They are used in a preemptible context so we
1386 		 * can guarantee no deadlocks and good QoS in case of MMU
1387 		 * notifiers or DMABuf move notifiers from the resource owner.
1388 		 */
1389 		return false;
1390 	case TTM_PL_TT:
1391 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1392 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1393 			return false;
1394 		return true;
1395 
1396 	case TTM_PL_VRAM:
1397 		/* Check each drm MM node individually */
1398 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1399 				 &cursor);
1400 		while (cursor.remaining) {
1401 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1402 			    && !(place->lpfn &&
1403 				 place->lpfn <= PFN_DOWN(cursor.start)))
1404 				return true;
1405 
1406 			amdgpu_res_next(&cursor, cursor.size);
1407 		}
1408 		return false;
1409 
1410 	default:
1411 		break;
1412 	}
1413 
1414 	return ttm_bo_eviction_valuable(bo, place);
1415 }
1416 
1417 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1418 				      void *buf, size_t size, bool write)
1419 {
1420 	while (size) {
1421 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1422 		uint64_t bytes = 4 - (pos & 0x3);
1423 		uint32_t shift = (pos & 0x3) * 8;
1424 		uint32_t mask = 0xffffffff << shift;
1425 		uint32_t value = 0;
1426 
1427 		if (size < bytes) {
1428 			mask &= 0xffffffff >> (bytes - size) * 8;
1429 			bytes = size;
1430 		}
1431 
1432 		if (mask != 0xffffffff) {
1433 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1434 			if (write) {
1435 				value &= ~mask;
1436 				value |= (*(uint32_t *)buf << shift) & mask;
1437 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1438 			} else {
1439 				value = (value & mask) >> shift;
1440 				memcpy(buf, &value, bytes);
1441 			}
1442 		} else {
1443 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1444 		}
1445 
1446 		pos += bytes;
1447 		buf += bytes;
1448 		size -= bytes;
1449 	}
1450 }
1451 
1452 /**
1453  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1454  *
1455  * @bo:  The buffer object to read/write
1456  * @offset:  Offset into buffer object
1457  * @buf:  Secondary buffer to write/read from
1458  * @len: Length in bytes of access
1459  * @write:  true if writing
1460  *
1461  * This is used to access VRAM that backs a buffer object via MMIO
1462  * access for debugging purposes.
1463  */
1464 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1465 				    unsigned long offset, void *buf, int len,
1466 				    int write)
1467 {
1468 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1469 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1470 	struct amdgpu_res_cursor cursor;
1471 	int ret = 0;
1472 
1473 	if (bo->resource->mem_type != TTM_PL_VRAM)
1474 		return -EIO;
1475 
1476 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1477 	while (cursor.remaining) {
1478 		size_t count, size = cursor.size;
1479 		loff_t pos = cursor.start;
1480 
1481 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1482 		size -= count;
1483 		if (size) {
1484 			/* using MM to access rest vram and handle un-aligned address */
1485 			pos += count;
1486 			buf += count;
1487 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1488 		}
1489 
1490 		ret += cursor.size;
1491 		buf += cursor.size;
1492 		amdgpu_res_next(&cursor, cursor.size);
1493 	}
1494 
1495 	return ret;
1496 }
1497 
1498 static void
1499 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1500 {
1501 	amdgpu_bo_move_notify(bo, false, NULL);
1502 }
1503 
1504 static struct ttm_device_funcs amdgpu_bo_driver = {
1505 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1506 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1507 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1508 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1509 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1510 	.evict_flags = &amdgpu_evict_flags,
1511 	.move = &amdgpu_bo_move,
1512 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1513 	.release_notify = &amdgpu_bo_release_notify,
1514 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1515 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1516 	.access_memory = &amdgpu_ttm_access_memory,
1517 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1518 };
1519 
1520 /*
1521  * Firmware Reservation functions
1522  */
1523 /**
1524  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1525  *
1526  * @adev: amdgpu_device pointer
1527  *
1528  * free fw reserved vram if it has been reserved.
1529  */
1530 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1531 {
1532 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1533 		NULL, &adev->mman.fw_vram_usage_va);
1534 }
1535 
1536 /**
1537  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1538  *
1539  * @adev: amdgpu_device pointer
1540  *
1541  * create bo vram reservation from fw.
1542  */
1543 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1544 {
1545 	uint64_t vram_size = adev->gmc.visible_vram_size;
1546 
1547 	adev->mman.fw_vram_usage_va = NULL;
1548 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1549 
1550 	if (adev->mman.fw_vram_usage_size == 0 ||
1551 	    adev->mman.fw_vram_usage_size > vram_size)
1552 		return 0;
1553 
1554 	return amdgpu_bo_create_kernel_at(adev,
1555 					  adev->mman.fw_vram_usage_start_offset,
1556 					  adev->mman.fw_vram_usage_size,
1557 					  AMDGPU_GEM_DOMAIN_VRAM,
1558 					  &adev->mman.fw_vram_usage_reserved_bo,
1559 					  &adev->mman.fw_vram_usage_va);
1560 }
1561 
1562 /*
1563  * Memoy training reservation functions
1564  */
1565 
1566 /**
1567  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1568  *
1569  * @adev: amdgpu_device pointer
1570  *
1571  * free memory training reserved vram if it has been reserved.
1572  */
1573 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1574 {
1575 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1576 
1577 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1578 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1579 	ctx->c2p_bo = NULL;
1580 
1581 	return 0;
1582 }
1583 
1584 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1585 {
1586 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1587 
1588 	memset(ctx, 0, sizeof(*ctx));
1589 
1590 	ctx->c2p_train_data_offset =
1591 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1592 	ctx->p2c_train_data_offset =
1593 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1594 	ctx->train_data_size =
1595 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1596 
1597 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1598 			ctx->train_data_size,
1599 			ctx->p2c_train_data_offset,
1600 			ctx->c2p_train_data_offset);
1601 }
1602 
1603 /*
1604  * reserve TMR memory at the top of VRAM which holds
1605  * IP Discovery data and is protected by PSP.
1606  */
1607 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1608 {
1609 	int ret;
1610 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1611 	bool mem_train_support = false;
1612 
1613 	if (!amdgpu_sriov_vf(adev)) {
1614 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1615 			mem_train_support = true;
1616 		else
1617 			DRM_DEBUG("memory training does not support!\n");
1618 	}
1619 
1620 	/*
1621 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1622 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1623 	 *
1624 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1625 	 * discovery data and G6 memory training data respectively
1626 	 */
1627 	adev->mman.discovery_tmr_size =
1628 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1629 	if (!adev->mman.discovery_tmr_size)
1630 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1631 
1632 	if (mem_train_support) {
1633 		/* reserve vram for mem train according to TMR location */
1634 		amdgpu_ttm_training_data_block_init(adev);
1635 		ret = amdgpu_bo_create_kernel_at(adev,
1636 					 ctx->c2p_train_data_offset,
1637 					 ctx->train_data_size,
1638 					 AMDGPU_GEM_DOMAIN_VRAM,
1639 					 &ctx->c2p_bo,
1640 					 NULL);
1641 		if (ret) {
1642 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1643 			amdgpu_ttm_training_reserve_vram_fini(adev);
1644 			return ret;
1645 		}
1646 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1647 	}
1648 
1649 	ret = amdgpu_bo_create_kernel_at(adev,
1650 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1651 				adev->mman.discovery_tmr_size,
1652 				AMDGPU_GEM_DOMAIN_VRAM,
1653 				&adev->mman.discovery_memory,
1654 				NULL);
1655 	if (ret) {
1656 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1657 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1658 		return ret;
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 /*
1665  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1666  * gtt/vram related fields.
1667  *
1668  * This initializes all of the memory space pools that the TTM layer
1669  * will need such as the GTT space (system memory mapped to the device),
1670  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1671  * can be mapped per VMID.
1672  */
1673 int amdgpu_ttm_init(struct amdgpu_device *adev)
1674 {
1675 	uint64_t gtt_size;
1676 	int r;
1677 	u64 vis_vram_limit;
1678 
1679 	mutex_init(&adev->mman.gtt_window_lock);
1680 
1681 	/* No others user of address space so set it to 0 */
1682 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1683 			       adev_to_drm(adev)->anon_inode->i_mapping,
1684 			       adev_to_drm(adev)->vma_offset_manager,
1685 			       adev->need_swiotlb,
1686 			       dma_addressing_limited(adev->dev));
1687 	if (r) {
1688 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1689 		return r;
1690 	}
1691 	adev->mman.initialized = true;
1692 
1693 	/* Initialize VRAM pool with all of VRAM divided into pages */
1694 	r = amdgpu_vram_mgr_init(adev);
1695 	if (r) {
1696 		DRM_ERROR("Failed initializing VRAM heap.\n");
1697 		return r;
1698 	}
1699 
1700 	/* Reduce size of CPU-visible VRAM if requested */
1701 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1702 	if (amdgpu_vis_vram_limit > 0 &&
1703 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1704 		adev->gmc.visible_vram_size = vis_vram_limit;
1705 
1706 	/* Change the size here instead of the init above so only lpfn is affected */
1707 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1708 #ifdef CONFIG_64BIT
1709 #ifdef CONFIG_X86
1710 	if (adev->gmc.xgmi.connected_to_cpu)
1711 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1712 				adev->gmc.visible_vram_size);
1713 
1714 	else
1715 #endif
1716 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1717 				adev->gmc.visible_vram_size);
1718 #endif
1719 
1720 	/*
1721 	 *The reserved vram for firmware must be pinned to the specified
1722 	 *place on the VRAM, so reserve it early.
1723 	 */
1724 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1725 	if (r) {
1726 		return r;
1727 	}
1728 
1729 	/*
1730 	 * only NAVI10 and onwards ASIC support for IP discovery.
1731 	 * If IP discovery enabled, a block of memory should be
1732 	 * reserved for IP discovey.
1733 	 */
1734 	if (adev->mman.discovery_bin) {
1735 		r = amdgpu_ttm_reserve_tmr(adev);
1736 		if (r)
1737 			return r;
1738 	}
1739 
1740 	/* allocate memory as required for VGA
1741 	 * This is used for VGA emulation and pre-OS scanout buffers to
1742 	 * avoid display artifacts while transitioning between pre-OS
1743 	 * and driver.  */
1744 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1745 				       AMDGPU_GEM_DOMAIN_VRAM,
1746 				       &adev->mman.stolen_vga_memory,
1747 				       NULL);
1748 	if (r)
1749 		return r;
1750 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1751 				       adev->mman.stolen_extended_size,
1752 				       AMDGPU_GEM_DOMAIN_VRAM,
1753 				       &adev->mman.stolen_extended_memory,
1754 				       NULL);
1755 	if (r)
1756 		return r;
1757 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1758 				       adev->mman.stolen_reserved_size,
1759 				       AMDGPU_GEM_DOMAIN_VRAM,
1760 				       &adev->mman.stolen_reserved_memory,
1761 				       NULL);
1762 	if (r)
1763 		return r;
1764 
1765 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1766 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1767 
1768 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1769 	 * or whatever the user passed on module init */
1770 	if (amdgpu_gtt_size == -1) {
1771 		struct sysinfo si;
1772 
1773 		si_meminfo(&si);
1774 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1775 			       adev->gmc.mc_vram_size),
1776 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1777 	}
1778 	else
1779 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1780 
1781 	/* Initialize GTT memory pool */
1782 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1783 	if (r) {
1784 		DRM_ERROR("Failed initializing GTT heap.\n");
1785 		return r;
1786 	}
1787 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1788 		 (unsigned)(gtt_size / (1024 * 1024)));
1789 
1790 	/* Initialize preemptible memory pool */
1791 	r = amdgpu_preempt_mgr_init(adev);
1792 	if (r) {
1793 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1794 		return r;
1795 	}
1796 
1797 	/* Initialize various on-chip memory pools */
1798 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1799 	if (r) {
1800 		DRM_ERROR("Failed initializing GDS heap.\n");
1801 		return r;
1802 	}
1803 
1804 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1805 	if (r) {
1806 		DRM_ERROR("Failed initializing gws heap.\n");
1807 		return r;
1808 	}
1809 
1810 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1811 	if (r) {
1812 		DRM_ERROR("Failed initializing oa heap.\n");
1813 		return r;
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 /*
1820  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1821  */
1822 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1823 {
1824 	if (!adev->mman.initialized)
1825 		return;
1826 
1827 	amdgpu_ttm_training_reserve_vram_fini(adev);
1828 	/* return the stolen vga memory back to VRAM */
1829 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1830 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1831 	/* return the IP Discovery TMR memory back to VRAM */
1832 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1833 	if (adev->mman.stolen_reserved_size)
1834 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1835 				      NULL, NULL);
1836 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1837 
1838 	amdgpu_vram_mgr_fini(adev);
1839 	amdgpu_gtt_mgr_fini(adev);
1840 	amdgpu_preempt_mgr_fini(adev);
1841 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1842 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1843 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1844 	ttm_device_fini(&adev->mman.bdev);
1845 	adev->mman.initialized = false;
1846 	DRM_INFO("amdgpu: ttm finalized\n");
1847 }
1848 
1849 /**
1850  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1851  *
1852  * @adev: amdgpu_device pointer
1853  * @enable: true when we can use buffer functions.
1854  *
1855  * Enable/disable use of buffer functions during suspend/resume. This should
1856  * only be called at bootup or when userspace isn't running.
1857  */
1858 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1859 {
1860 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1861 	uint64_t size;
1862 	int r;
1863 
1864 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1865 	    adev->mman.buffer_funcs_enabled == enable)
1866 		return;
1867 
1868 	if (enable) {
1869 		struct amdgpu_ring *ring;
1870 		struct drm_gpu_scheduler *sched;
1871 
1872 		ring = adev->mman.buffer_funcs_ring;
1873 		sched = &ring->sched;
1874 		r = drm_sched_entity_init(&adev->mman.entity,
1875 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1876 					  1, NULL);
1877 		if (r) {
1878 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1879 				  r);
1880 			return;
1881 		}
1882 	} else {
1883 		drm_sched_entity_destroy(&adev->mman.entity);
1884 		dma_fence_put(man->move);
1885 		man->move = NULL;
1886 	}
1887 
1888 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1889 	if (enable)
1890 		size = adev->gmc.real_vram_size;
1891 	else
1892 		size = adev->gmc.visible_vram_size;
1893 	man->size = size >> PAGE_SHIFT;
1894 	adev->mman.buffer_funcs_enabled = enable;
1895 }
1896 
1897 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1898 		       uint64_t dst_offset, uint32_t byte_count,
1899 		       struct dma_resv *resv,
1900 		       struct dma_fence **fence, bool direct_submit,
1901 		       bool vm_needs_flush, bool tmz)
1902 {
1903 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1904 		AMDGPU_IB_POOL_DELAYED;
1905 	struct amdgpu_device *adev = ring->adev;
1906 	struct amdgpu_job *job;
1907 
1908 	uint32_t max_bytes;
1909 	unsigned num_loops, num_dw;
1910 	unsigned i;
1911 	int r;
1912 
1913 	if (direct_submit && !ring->sched.ready) {
1914 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1915 		return -EINVAL;
1916 	}
1917 
1918 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1919 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1920 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1921 
1922 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1923 	if (r)
1924 		return r;
1925 
1926 	if (vm_needs_flush) {
1927 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1928 					adev->gmc.pdb0_bo : adev->gart.bo);
1929 		job->vm_needs_flush = true;
1930 	}
1931 	if (resv) {
1932 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1933 				     AMDGPU_SYNC_ALWAYS,
1934 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1935 		if (r) {
1936 			DRM_ERROR("sync failed (%d).\n", r);
1937 			goto error_free;
1938 		}
1939 	}
1940 
1941 	for (i = 0; i < num_loops; i++) {
1942 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1943 
1944 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1945 					dst_offset, cur_size_in_bytes, tmz);
1946 
1947 		src_offset += cur_size_in_bytes;
1948 		dst_offset += cur_size_in_bytes;
1949 		byte_count -= cur_size_in_bytes;
1950 	}
1951 
1952 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1953 	WARN_ON(job->ibs[0].length_dw > num_dw);
1954 	if (direct_submit)
1955 		r = amdgpu_job_submit_direct(job, ring, fence);
1956 	else
1957 		r = amdgpu_job_submit(job, &adev->mman.entity,
1958 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1959 	if (r)
1960 		goto error_free;
1961 
1962 	return r;
1963 
1964 error_free:
1965 	amdgpu_job_free(job);
1966 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1967 	return r;
1968 }
1969 
1970 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1971 		       uint32_t src_data,
1972 		       struct dma_resv *resv,
1973 		       struct dma_fence **fence)
1974 {
1975 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1976 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1977 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1978 
1979 	struct amdgpu_res_cursor cursor;
1980 	unsigned int num_loops, num_dw;
1981 	uint64_t num_bytes;
1982 
1983 	struct amdgpu_job *job;
1984 	int r;
1985 
1986 	if (!adev->mman.buffer_funcs_enabled) {
1987 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1988 		return -EINVAL;
1989 	}
1990 
1991 	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1992 		DRM_ERROR("Trying to clear preemptible memory.\n");
1993 		return -EINVAL;
1994 	}
1995 
1996 	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1997 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1998 		if (r)
1999 			return r;
2000 	}
2001 
2002 	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
2003 	num_loops = 0;
2004 
2005 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2006 	while (cursor.remaining) {
2007 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
2008 		amdgpu_res_next(&cursor, cursor.size);
2009 	}
2010 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2011 
2012 	/* for IB padding */
2013 	num_dw += 64;
2014 
2015 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2016 				     &job);
2017 	if (r)
2018 		return r;
2019 
2020 	if (resv) {
2021 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2022 				     AMDGPU_SYNC_ALWAYS,
2023 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2024 		if (r) {
2025 			DRM_ERROR("sync failed (%d).\n", r);
2026 			goto error_free;
2027 		}
2028 	}
2029 
2030 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2031 	while (cursor.remaining) {
2032 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2033 		uint64_t dst_addr = cursor.start;
2034 
2035 		dst_addr += amdgpu_ttm_domain_start(adev,
2036 						    bo->tbo.resource->mem_type);
2037 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2038 					cur_size);
2039 
2040 		amdgpu_res_next(&cursor, cur_size);
2041 	}
2042 
2043 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2044 	WARN_ON(job->ibs[0].length_dw > num_dw);
2045 	r = amdgpu_job_submit(job, &adev->mman.entity,
2046 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2047 	if (r)
2048 		goto error_free;
2049 
2050 	return 0;
2051 
2052 error_free:
2053 	amdgpu_job_free(job);
2054 	return r;
2055 }
2056 
2057 /**
2058  * amdgpu_ttm_evict_resources - evict memory buffers
2059  * @adev: amdgpu device object
2060  * @mem_type: evicted BO's memory type
2061  *
2062  * Evicts all @mem_type buffers on the lru list of the memory type.
2063  *
2064  * Returns:
2065  * 0 for success or a negative error code on failure.
2066  */
2067 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2068 {
2069 	struct ttm_resource_manager *man;
2070 
2071 	switch (mem_type) {
2072 	case TTM_PL_VRAM:
2073 	case TTM_PL_TT:
2074 	case AMDGPU_PL_GWS:
2075 	case AMDGPU_PL_GDS:
2076 	case AMDGPU_PL_OA:
2077 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2078 		break;
2079 	default:
2080 		DRM_ERROR("Trying to evict invalid memory type\n");
2081 		return -EINVAL;
2082 	}
2083 
2084 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2085 }
2086 
2087 #if defined(CONFIG_DEBUG_FS)
2088 
2089 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2090 {
2091 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2092 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2093 							    TTM_PL_VRAM);
2094 	struct drm_printer p = drm_seq_file_printer(m);
2095 
2096 	man->func->debug(man, &p);
2097 	return 0;
2098 }
2099 
2100 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2101 {
2102 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2103 
2104 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2105 }
2106 
2107 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2108 {
2109 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2110 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2111 							    TTM_PL_TT);
2112 	struct drm_printer p = drm_seq_file_printer(m);
2113 
2114 	man->func->debug(man, &p);
2115 	return 0;
2116 }
2117 
2118 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2119 {
2120 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2121 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2122 							    AMDGPU_PL_GDS);
2123 	struct drm_printer p = drm_seq_file_printer(m);
2124 
2125 	man->func->debug(man, &p);
2126 	return 0;
2127 }
2128 
2129 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2130 {
2131 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2132 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2133 							    AMDGPU_PL_GWS);
2134 	struct drm_printer p = drm_seq_file_printer(m);
2135 
2136 	man->func->debug(man, &p);
2137 	return 0;
2138 }
2139 
2140 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2141 {
2142 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2143 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2144 							    AMDGPU_PL_OA);
2145 	struct drm_printer p = drm_seq_file_printer(m);
2146 
2147 	man->func->debug(man, &p);
2148 	return 0;
2149 }
2150 
2151 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2152 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2153 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2154 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2155 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2156 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2157 
2158 /*
2159  * amdgpu_ttm_vram_read - Linear read access to VRAM
2160  *
2161  * Accesses VRAM via MMIO for debugging purposes.
2162  */
2163 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2164 				    size_t size, loff_t *pos)
2165 {
2166 	struct amdgpu_device *adev = file_inode(f)->i_private;
2167 	ssize_t result = 0;
2168 
2169 	if (size & 0x3 || *pos & 0x3)
2170 		return -EINVAL;
2171 
2172 	if (*pos >= adev->gmc.mc_vram_size)
2173 		return -ENXIO;
2174 
2175 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2176 	while (size) {
2177 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2178 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2179 
2180 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2181 		if (copy_to_user(buf, value, bytes))
2182 			return -EFAULT;
2183 
2184 		result += bytes;
2185 		buf += bytes;
2186 		*pos += bytes;
2187 		size -= bytes;
2188 	}
2189 
2190 	return result;
2191 }
2192 
2193 /*
2194  * amdgpu_ttm_vram_write - Linear write access to VRAM
2195  *
2196  * Accesses VRAM via MMIO for debugging purposes.
2197  */
2198 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2199 				    size_t size, loff_t *pos)
2200 {
2201 	struct amdgpu_device *adev = file_inode(f)->i_private;
2202 	ssize_t result = 0;
2203 	int r;
2204 
2205 	if (size & 0x3 || *pos & 0x3)
2206 		return -EINVAL;
2207 
2208 	if (*pos >= adev->gmc.mc_vram_size)
2209 		return -ENXIO;
2210 
2211 	while (size) {
2212 		uint32_t value;
2213 
2214 		if (*pos >= adev->gmc.mc_vram_size)
2215 			return result;
2216 
2217 		r = get_user(value, (uint32_t *)buf);
2218 		if (r)
2219 			return r;
2220 
2221 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2222 
2223 		result += 4;
2224 		buf += 4;
2225 		*pos += 4;
2226 		size -= 4;
2227 	}
2228 
2229 	return result;
2230 }
2231 
2232 static const struct file_operations amdgpu_ttm_vram_fops = {
2233 	.owner = THIS_MODULE,
2234 	.read = amdgpu_ttm_vram_read,
2235 	.write = amdgpu_ttm_vram_write,
2236 	.llseek = default_llseek,
2237 };
2238 
2239 /*
2240  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2241  *
2242  * This function is used to read memory that has been mapped to the
2243  * GPU and the known addresses are not physical addresses but instead
2244  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2245  */
2246 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2247 				 size_t size, loff_t *pos)
2248 {
2249 	struct amdgpu_device *adev = file_inode(f)->i_private;
2250 	struct iommu_domain *dom;
2251 	ssize_t result = 0;
2252 	int r;
2253 
2254 	/* retrieve the IOMMU domain if any for this device */
2255 	dom = iommu_get_domain_for_dev(adev->dev);
2256 
2257 	while (size) {
2258 		phys_addr_t addr = *pos & PAGE_MASK;
2259 		loff_t off = *pos & ~PAGE_MASK;
2260 		size_t bytes = PAGE_SIZE - off;
2261 		unsigned long pfn;
2262 		struct page *p;
2263 		void *ptr;
2264 
2265 		bytes = bytes < size ? bytes : size;
2266 
2267 		/* Translate the bus address to a physical address.  If
2268 		 * the domain is NULL it means there is no IOMMU active
2269 		 * and the address translation is the identity
2270 		 */
2271 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2272 
2273 		pfn = addr >> PAGE_SHIFT;
2274 		if (!pfn_valid(pfn))
2275 			return -EPERM;
2276 
2277 		p = pfn_to_page(pfn);
2278 		if (p->mapping != adev->mman.bdev.dev_mapping)
2279 			return -EPERM;
2280 
2281 		ptr = kmap(p);
2282 		r = copy_to_user(buf, ptr + off, bytes);
2283 		kunmap(p);
2284 		if (r)
2285 			return -EFAULT;
2286 
2287 		size -= bytes;
2288 		*pos += bytes;
2289 		result += bytes;
2290 	}
2291 
2292 	return result;
2293 }
2294 
2295 /*
2296  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2297  *
2298  * This function is used to write memory that has been mapped to the
2299  * GPU and the known addresses are not physical addresses but instead
2300  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2301  */
2302 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2303 				 size_t size, loff_t *pos)
2304 {
2305 	struct amdgpu_device *adev = file_inode(f)->i_private;
2306 	struct iommu_domain *dom;
2307 	ssize_t result = 0;
2308 	int r;
2309 
2310 	dom = iommu_get_domain_for_dev(adev->dev);
2311 
2312 	while (size) {
2313 		phys_addr_t addr = *pos & PAGE_MASK;
2314 		loff_t off = *pos & ~PAGE_MASK;
2315 		size_t bytes = PAGE_SIZE - off;
2316 		unsigned long pfn;
2317 		struct page *p;
2318 		void *ptr;
2319 
2320 		bytes = bytes < size ? bytes : size;
2321 
2322 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2323 
2324 		pfn = addr >> PAGE_SHIFT;
2325 		if (!pfn_valid(pfn))
2326 			return -EPERM;
2327 
2328 		p = pfn_to_page(pfn);
2329 		if (p->mapping != adev->mman.bdev.dev_mapping)
2330 			return -EPERM;
2331 
2332 		ptr = kmap(p);
2333 		r = copy_from_user(ptr + off, buf, bytes);
2334 		kunmap(p);
2335 		if (r)
2336 			return -EFAULT;
2337 
2338 		size -= bytes;
2339 		*pos += bytes;
2340 		result += bytes;
2341 	}
2342 
2343 	return result;
2344 }
2345 
2346 static const struct file_operations amdgpu_ttm_iomem_fops = {
2347 	.owner = THIS_MODULE,
2348 	.read = amdgpu_iomem_read,
2349 	.write = amdgpu_iomem_write,
2350 	.llseek = default_llseek
2351 };
2352 
2353 #endif
2354 
2355 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2356 {
2357 #if defined(CONFIG_DEBUG_FS)
2358 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2359 	struct dentry *root = minor->debugfs_root;
2360 
2361 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2362 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2363 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2364 			    &amdgpu_ttm_iomem_fops);
2365 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2366 			    &amdgpu_mm_vram_table_fops);
2367 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2368 			    &amdgpu_mm_tt_table_fops);
2369 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2370 			    &amdgpu_mm_gds_table_fops);
2371 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2372 			    &amdgpu_mm_gws_table_fops);
2373 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2374 			    &amdgpu_mm_oa_table_fops);
2375 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2376 			    &amdgpu_ttm_page_pool_fops);
2377 #endif
2378 }
2379