1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 #include <drm/ttm/ttm_bo_api.h> 33 #include <drm/ttm/ttm_bo_driver.h> 34 #include <drm/ttm/ttm_placement.h> 35 #include <drm/ttm/ttm_module.h> 36 #include <drm/ttm/ttm_page_alloc.h> 37 #include <drm/drmP.h> 38 #include <drm/amdgpu_drm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swiotlb.h> 42 #include <linux/swap.h> 43 #include <linux/pagemap.h> 44 #include <linux/debugfs.h> 45 #include <linux/iommu.h> 46 #include "amdgpu.h" 47 #include "amdgpu_object.h" 48 #include "amdgpu_trace.h" 49 #include "amdgpu_amdkfd.h" 50 #include "bif/bif_4_1_d.h" 51 52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT) 53 54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 55 struct ttm_mem_reg *mem, unsigned num_pages, 56 uint64_t offset, unsigned window, 57 struct amdgpu_ring *ring, 58 uint64_t *addr); 59 60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 62 63 /* 64 * Global memory. 65 */ 66 67 /** 68 * amdgpu_ttm_mem_global_init - Initialize and acquire reference to 69 * memory object 70 * 71 * @ref: Object for initialization. 72 * 73 * This is called by drm_global_item_ref() when an object is being 74 * initialized. 75 */ 76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref) 77 { 78 return ttm_mem_global_init(ref->object); 79 } 80 81 /** 82 * amdgpu_ttm_mem_global_release - Drop reference to a memory object 83 * 84 * @ref: Object being removed 85 * 86 * This is called by drm_global_item_unref() when an object is being 87 * released. 88 */ 89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref) 90 { 91 ttm_mem_global_release(ref->object); 92 } 93 94 /** 95 * amdgpu_ttm_global_init - Initialize global TTM memory reference structures. 96 * 97 * @adev: AMDGPU device for which the global structures need to be registered. 98 * 99 * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init() 100 * during bring up. 101 */ 102 static int amdgpu_ttm_global_init(struct amdgpu_device *adev) 103 { 104 struct drm_global_reference *global_ref; 105 int r; 106 107 /* ensure reference is false in case init fails */ 108 adev->mman.mem_global_referenced = false; 109 110 global_ref = &adev->mman.mem_global_ref; 111 global_ref->global_type = DRM_GLOBAL_TTM_MEM; 112 global_ref->size = sizeof(struct ttm_mem_global); 113 global_ref->init = &amdgpu_ttm_mem_global_init; 114 global_ref->release = &amdgpu_ttm_mem_global_release; 115 r = drm_global_item_ref(global_ref); 116 if (r) { 117 DRM_ERROR("Failed setting up TTM memory accounting " 118 "subsystem.\n"); 119 goto error_mem; 120 } 121 122 adev->mman.bo_global_ref.mem_glob = 123 adev->mman.mem_global_ref.object; 124 global_ref = &adev->mman.bo_global_ref.ref; 125 global_ref->global_type = DRM_GLOBAL_TTM_BO; 126 global_ref->size = sizeof(struct ttm_bo_global); 127 global_ref->init = &ttm_bo_global_init; 128 global_ref->release = &ttm_bo_global_release; 129 r = drm_global_item_ref(global_ref); 130 if (r) { 131 DRM_ERROR("Failed setting up TTM BO subsystem.\n"); 132 goto error_bo; 133 } 134 135 mutex_init(&adev->mman.gtt_window_lock); 136 137 adev->mman.mem_global_referenced = true; 138 139 return 0; 140 141 error_bo: 142 drm_global_item_unref(&adev->mman.mem_global_ref); 143 error_mem: 144 return r; 145 } 146 147 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev) 148 { 149 if (adev->mman.mem_global_referenced) { 150 mutex_destroy(&adev->mman.gtt_window_lock); 151 drm_global_item_unref(&adev->mman.bo_global_ref.ref); 152 drm_global_item_unref(&adev->mman.mem_global_ref); 153 adev->mman.mem_global_referenced = false; 154 } 155 } 156 157 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 158 { 159 return 0; 160 } 161 162 /** 163 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 164 * memory request. 165 * 166 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 167 * @type: The type of memory requested 168 * @man: The memory type manager for each domain 169 * 170 * This is called by ttm_bo_init_mm() when a buffer object is being 171 * initialized. 172 */ 173 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 174 struct ttm_mem_type_manager *man) 175 { 176 struct amdgpu_device *adev; 177 178 adev = amdgpu_ttm_adev(bdev); 179 180 switch (type) { 181 case TTM_PL_SYSTEM: 182 /* System memory */ 183 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 184 man->available_caching = TTM_PL_MASK_CACHING; 185 man->default_caching = TTM_PL_FLAG_CACHED; 186 break; 187 case TTM_PL_TT: 188 /* GTT memory */ 189 man->func = &amdgpu_gtt_mgr_func; 190 man->gpu_offset = adev->gmc.gart_start; 191 man->available_caching = TTM_PL_MASK_CACHING; 192 man->default_caching = TTM_PL_FLAG_CACHED; 193 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 194 break; 195 case TTM_PL_VRAM: 196 /* "On-card" video ram */ 197 man->func = &amdgpu_vram_mgr_func; 198 man->gpu_offset = adev->gmc.vram_start; 199 man->flags = TTM_MEMTYPE_FLAG_FIXED | 200 TTM_MEMTYPE_FLAG_MAPPABLE; 201 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 202 man->default_caching = TTM_PL_FLAG_WC; 203 break; 204 case AMDGPU_PL_GDS: 205 case AMDGPU_PL_GWS: 206 case AMDGPU_PL_OA: 207 /* On-chip GDS memory*/ 208 man->func = &ttm_bo_manager_func; 209 man->gpu_offset = 0; 210 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 211 man->available_caching = TTM_PL_FLAG_UNCACHED; 212 man->default_caching = TTM_PL_FLAG_UNCACHED; 213 break; 214 default: 215 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 216 return -EINVAL; 217 } 218 return 0; 219 } 220 221 /** 222 * amdgpu_evict_flags - Compute placement flags 223 * 224 * @bo: The buffer object to evict 225 * @placement: Possible destination(s) for evicted BO 226 * 227 * Fill in placement data when ttm_bo_evict() is called 228 */ 229 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 230 struct ttm_placement *placement) 231 { 232 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 233 struct amdgpu_bo *abo; 234 static const struct ttm_place placements = { 235 .fpfn = 0, 236 .lpfn = 0, 237 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 238 }; 239 240 /* Don't handle scatter gather BOs */ 241 if (bo->type == ttm_bo_type_sg) { 242 placement->num_placement = 0; 243 placement->num_busy_placement = 0; 244 return; 245 } 246 247 /* Object isn't an AMDGPU object so ignore */ 248 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 249 placement->placement = &placements; 250 placement->busy_placement = &placements; 251 placement->num_placement = 1; 252 placement->num_busy_placement = 1; 253 return; 254 } 255 256 abo = ttm_to_amdgpu_bo(bo); 257 switch (bo->mem.mem_type) { 258 case TTM_PL_VRAM: 259 if (!adev->mman.buffer_funcs_enabled) { 260 /* Move to system memory */ 261 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 262 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 263 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 264 amdgpu_bo_in_cpu_visible_vram(abo)) { 265 266 /* Try evicting to the CPU inaccessible part of VRAM 267 * first, but only set GTT as busy placement, so this 268 * BO will be evicted to GTT rather than causing other 269 * BOs to be evicted from VRAM 270 */ 271 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 272 AMDGPU_GEM_DOMAIN_GTT); 273 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 274 abo->placements[0].lpfn = 0; 275 abo->placement.busy_placement = &abo->placements[1]; 276 abo->placement.num_busy_placement = 1; 277 } else { 278 /* Move to GTT memory */ 279 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 280 } 281 break; 282 case TTM_PL_TT: 283 default: 284 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 285 } 286 *placement = abo->placement; 287 } 288 289 /** 290 * amdgpu_verify_access - Verify access for a mmap call 291 * 292 * @bo: The buffer object to map 293 * @filp: The file pointer from the process performing the mmap 294 * 295 * This is called by ttm_bo_mmap() to verify whether a process 296 * has the right to mmap a BO to their process space. 297 */ 298 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 299 { 300 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 301 302 /* 303 * Don't verify access for KFD BOs. They don't have a GEM 304 * object associated with them. 305 */ 306 if (abo->kfd_bo) 307 return 0; 308 309 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 310 return -EPERM; 311 return drm_vma_node_verify_access(&abo->gem_base.vma_node, 312 filp->private_data); 313 } 314 315 /** 316 * amdgpu_move_null - Register memory for a buffer object 317 * 318 * @bo: The bo to assign the memory to 319 * @new_mem: The memory to be assigned. 320 * 321 * Assign the memory from new_mem to the memory of the buffer object bo. 322 */ 323 static void amdgpu_move_null(struct ttm_buffer_object *bo, 324 struct ttm_mem_reg *new_mem) 325 { 326 struct ttm_mem_reg *old_mem = &bo->mem; 327 328 BUG_ON(old_mem->mm_node != NULL); 329 *old_mem = *new_mem; 330 new_mem->mm_node = NULL; 331 } 332 333 /** 334 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 335 * 336 * @bo: The bo to assign the memory to. 337 * @mm_node: Memory manager node for drm allocator. 338 * @mem: The region where the bo resides. 339 * 340 */ 341 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 342 struct drm_mm_node *mm_node, 343 struct ttm_mem_reg *mem) 344 { 345 uint64_t addr = 0; 346 347 if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) { 348 addr = mm_node->start << PAGE_SHIFT; 349 addr += bo->bdev->man[mem->mem_type].gpu_offset; 350 } 351 return addr; 352 } 353 354 /** 355 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 356 * @offset. It also modifies the offset to be within the drm_mm_node returned 357 * 358 * @mem: The region where the bo resides. 359 * @offset: The offset that drm_mm_node is used for finding. 360 * 361 */ 362 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 363 unsigned long *offset) 364 { 365 struct drm_mm_node *mm_node = mem->mm_node; 366 367 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 368 *offset -= (mm_node->size << PAGE_SHIFT); 369 ++mm_node; 370 } 371 return mm_node; 372 } 373 374 /** 375 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 376 * 377 * The function copies @size bytes from {src->mem + src->offset} to 378 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 379 * move and different for a BO to BO copy. 380 * 381 * @f: Returns the last fence if multiple jobs are submitted. 382 */ 383 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 384 struct amdgpu_copy_mem *src, 385 struct amdgpu_copy_mem *dst, 386 uint64_t size, 387 struct reservation_object *resv, 388 struct dma_fence **f) 389 { 390 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 391 struct drm_mm_node *src_mm, *dst_mm; 392 uint64_t src_node_start, dst_node_start, src_node_size, 393 dst_node_size, src_page_offset, dst_page_offset; 394 struct dma_fence *fence = NULL; 395 int r = 0; 396 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 397 AMDGPU_GPU_PAGE_SIZE); 398 399 if (!adev->mman.buffer_funcs_enabled) { 400 DRM_ERROR("Trying to move memory with ring turned off.\n"); 401 return -EINVAL; 402 } 403 404 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 405 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 406 src->offset; 407 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 408 src_page_offset = src_node_start & (PAGE_SIZE - 1); 409 410 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 411 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 412 dst->offset; 413 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 414 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 415 416 mutex_lock(&adev->mman.gtt_window_lock); 417 418 while (size) { 419 unsigned long cur_size; 420 uint64_t from = src_node_start, to = dst_node_start; 421 struct dma_fence *next; 422 423 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 424 * begins at an offset, then adjust the size accordingly 425 */ 426 cur_size = min3(min(src_node_size, dst_node_size), size, 427 GTT_MAX_BYTES); 428 if (cur_size + src_page_offset > GTT_MAX_BYTES || 429 cur_size + dst_page_offset > GTT_MAX_BYTES) 430 cur_size -= max(src_page_offset, dst_page_offset); 431 432 /* Map only what needs to be accessed. Map src to window 0 and 433 * dst to window 1 434 */ 435 if (src->mem->mem_type == TTM_PL_TT && 436 !amdgpu_gtt_mgr_has_gart_addr(src->mem)) { 437 r = amdgpu_map_buffer(src->bo, src->mem, 438 PFN_UP(cur_size + src_page_offset), 439 src_node_start, 0, ring, 440 &from); 441 if (r) 442 goto error; 443 /* Adjust the offset because amdgpu_map_buffer returns 444 * start of mapped page 445 */ 446 from += src_page_offset; 447 } 448 449 if (dst->mem->mem_type == TTM_PL_TT && 450 !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) { 451 r = amdgpu_map_buffer(dst->bo, dst->mem, 452 PFN_UP(cur_size + dst_page_offset), 453 dst_node_start, 1, ring, 454 &to); 455 if (r) 456 goto error; 457 to += dst_page_offset; 458 } 459 460 r = amdgpu_copy_buffer(ring, from, to, cur_size, 461 resv, &next, false, true); 462 if (r) 463 goto error; 464 465 dma_fence_put(fence); 466 fence = next; 467 468 size -= cur_size; 469 if (!size) 470 break; 471 472 src_node_size -= cur_size; 473 if (!src_node_size) { 474 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 475 src->mem); 476 src_node_size = (src_mm->size << PAGE_SHIFT); 477 } else { 478 src_node_start += cur_size; 479 src_page_offset = src_node_start & (PAGE_SIZE - 1); 480 } 481 dst_node_size -= cur_size; 482 if (!dst_node_size) { 483 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 484 dst->mem); 485 dst_node_size = (dst_mm->size << PAGE_SHIFT); 486 } else { 487 dst_node_start += cur_size; 488 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 489 } 490 } 491 error: 492 mutex_unlock(&adev->mman.gtt_window_lock); 493 if (f) 494 *f = dma_fence_get(fence); 495 dma_fence_put(fence); 496 return r; 497 } 498 499 /** 500 * amdgpu_move_blit - Copy an entire buffer to another buffer 501 * 502 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 503 * help move buffers to and from VRAM. 504 */ 505 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 506 bool evict, bool no_wait_gpu, 507 struct ttm_mem_reg *new_mem, 508 struct ttm_mem_reg *old_mem) 509 { 510 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 511 struct amdgpu_copy_mem src, dst; 512 struct dma_fence *fence = NULL; 513 int r; 514 515 src.bo = bo; 516 dst.bo = bo; 517 src.mem = old_mem; 518 dst.mem = new_mem; 519 src.offset = 0; 520 dst.offset = 0; 521 522 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 523 new_mem->num_pages << PAGE_SHIFT, 524 bo->resv, &fence); 525 if (r) 526 goto error; 527 528 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 529 dma_fence_put(fence); 530 return r; 531 532 error: 533 if (fence) 534 dma_fence_wait(fence, false); 535 dma_fence_put(fence); 536 return r; 537 } 538 539 /** 540 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 541 * 542 * Called by amdgpu_bo_move(). 543 */ 544 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 545 struct ttm_operation_ctx *ctx, 546 struct ttm_mem_reg *new_mem) 547 { 548 struct amdgpu_device *adev; 549 struct ttm_mem_reg *old_mem = &bo->mem; 550 struct ttm_mem_reg tmp_mem; 551 struct ttm_place placements; 552 struct ttm_placement placement; 553 int r; 554 555 adev = amdgpu_ttm_adev(bo->bdev); 556 557 /* create space/pages for new_mem in GTT space */ 558 tmp_mem = *new_mem; 559 tmp_mem.mm_node = NULL; 560 placement.num_placement = 1; 561 placement.placement = &placements; 562 placement.num_busy_placement = 1; 563 placement.busy_placement = &placements; 564 placements.fpfn = 0; 565 placements.lpfn = 0; 566 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 567 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 568 if (unlikely(r)) { 569 return r; 570 } 571 572 /* set caching flags */ 573 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 574 if (unlikely(r)) { 575 goto out_cleanup; 576 } 577 578 /* Bind the memory to the GTT space */ 579 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 580 if (unlikely(r)) { 581 goto out_cleanup; 582 } 583 584 /* blit VRAM to GTT */ 585 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 586 if (unlikely(r)) { 587 goto out_cleanup; 588 } 589 590 /* move BO (in tmp_mem) to new_mem */ 591 r = ttm_bo_move_ttm(bo, ctx, new_mem); 592 out_cleanup: 593 ttm_bo_mem_put(bo, &tmp_mem); 594 return r; 595 } 596 597 /** 598 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 599 * 600 * Called by amdgpu_bo_move(). 601 */ 602 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 603 struct ttm_operation_ctx *ctx, 604 struct ttm_mem_reg *new_mem) 605 { 606 struct amdgpu_device *adev; 607 struct ttm_mem_reg *old_mem = &bo->mem; 608 struct ttm_mem_reg tmp_mem; 609 struct ttm_placement placement; 610 struct ttm_place placements; 611 int r; 612 613 adev = amdgpu_ttm_adev(bo->bdev); 614 615 /* make space in GTT for old_mem buffer */ 616 tmp_mem = *new_mem; 617 tmp_mem.mm_node = NULL; 618 placement.num_placement = 1; 619 placement.placement = &placements; 620 placement.num_busy_placement = 1; 621 placement.busy_placement = &placements; 622 placements.fpfn = 0; 623 placements.lpfn = 0; 624 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 625 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 626 if (unlikely(r)) { 627 return r; 628 } 629 630 /* move/bind old memory to GTT space */ 631 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 632 if (unlikely(r)) { 633 goto out_cleanup; 634 } 635 636 /* copy to VRAM */ 637 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 638 if (unlikely(r)) { 639 goto out_cleanup; 640 } 641 out_cleanup: 642 ttm_bo_mem_put(bo, &tmp_mem); 643 return r; 644 } 645 646 /** 647 * amdgpu_bo_move - Move a buffer object to a new memory location 648 * 649 * Called by ttm_bo_handle_move_mem() 650 */ 651 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 652 struct ttm_operation_ctx *ctx, 653 struct ttm_mem_reg *new_mem) 654 { 655 struct amdgpu_device *adev; 656 struct amdgpu_bo *abo; 657 struct ttm_mem_reg *old_mem = &bo->mem; 658 int r; 659 660 /* Can't move a pinned BO */ 661 abo = ttm_to_amdgpu_bo(bo); 662 if (WARN_ON_ONCE(abo->pin_count > 0)) 663 return -EINVAL; 664 665 adev = amdgpu_ttm_adev(bo->bdev); 666 667 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 668 amdgpu_move_null(bo, new_mem); 669 return 0; 670 } 671 if ((old_mem->mem_type == TTM_PL_TT && 672 new_mem->mem_type == TTM_PL_SYSTEM) || 673 (old_mem->mem_type == TTM_PL_SYSTEM && 674 new_mem->mem_type == TTM_PL_TT)) { 675 /* bind is enough */ 676 amdgpu_move_null(bo, new_mem); 677 return 0; 678 } 679 680 if (!adev->mman.buffer_funcs_enabled) 681 goto memcpy; 682 683 if (old_mem->mem_type == TTM_PL_VRAM && 684 new_mem->mem_type == TTM_PL_SYSTEM) { 685 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 686 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 687 new_mem->mem_type == TTM_PL_VRAM) { 688 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 689 } else { 690 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 691 new_mem, old_mem); 692 } 693 694 if (r) { 695 memcpy: 696 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 697 if (r) { 698 return r; 699 } 700 } 701 702 if (bo->type == ttm_bo_type_device && 703 new_mem->mem_type == TTM_PL_VRAM && 704 old_mem->mem_type != TTM_PL_VRAM) { 705 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 706 * accesses the BO after it's moved. 707 */ 708 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 709 } 710 711 /* update statistics */ 712 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 713 return 0; 714 } 715 716 /** 717 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 718 * 719 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 720 */ 721 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 722 { 723 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 724 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 725 struct drm_mm_node *mm_node = mem->mm_node; 726 727 mem->bus.addr = NULL; 728 mem->bus.offset = 0; 729 mem->bus.size = mem->num_pages << PAGE_SHIFT; 730 mem->bus.base = 0; 731 mem->bus.is_iomem = false; 732 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 733 return -EINVAL; 734 switch (mem->mem_type) { 735 case TTM_PL_SYSTEM: 736 /* system memory */ 737 return 0; 738 case TTM_PL_TT: 739 break; 740 case TTM_PL_VRAM: 741 mem->bus.offset = mem->start << PAGE_SHIFT; 742 /* check if it's visible */ 743 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 744 return -EINVAL; 745 /* Only physically contiguous buffers apply. In a contiguous 746 * buffer, size of the first mm_node would match the number of 747 * pages in ttm_mem_reg. 748 */ 749 if (adev->mman.aper_base_kaddr && 750 (mm_node->size == mem->num_pages)) 751 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 752 mem->bus.offset; 753 754 mem->bus.base = adev->gmc.aper_base; 755 mem->bus.is_iomem = true; 756 break; 757 default: 758 return -EINVAL; 759 } 760 return 0; 761 } 762 763 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 764 { 765 } 766 767 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 768 unsigned long page_offset) 769 { 770 struct drm_mm_node *mm; 771 unsigned long offset = (page_offset << PAGE_SHIFT); 772 773 mm = amdgpu_find_mm_node(&bo->mem, &offset); 774 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 775 (offset >> PAGE_SHIFT); 776 } 777 778 /* 779 * TTM backend functions. 780 */ 781 struct amdgpu_ttm_gup_task_list { 782 struct list_head list; 783 struct task_struct *task; 784 }; 785 786 struct amdgpu_ttm_tt { 787 struct ttm_dma_tt ttm; 788 u64 offset; 789 uint64_t userptr; 790 struct task_struct *usertask; 791 uint32_t userflags; 792 spinlock_t guptasklock; 793 struct list_head guptasks; 794 atomic_t mmu_invalidations; 795 uint32_t last_set_pages; 796 }; 797 798 /** 799 * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR 800 * pointer to memory 801 * 802 * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos(). 803 * This provides a wrapper around the get_user_pages() call to provide 804 * device accessible pages that back user memory. 805 */ 806 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages) 807 { 808 struct amdgpu_ttm_tt *gtt = (void *)ttm; 809 struct mm_struct *mm = gtt->usertask->mm; 810 unsigned int flags = 0; 811 unsigned pinned = 0; 812 int r; 813 814 if (!mm) /* Happens during process shutdown */ 815 return -ESRCH; 816 817 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 818 flags |= FOLL_WRITE; 819 820 down_read(&mm->mmap_sem); 821 822 if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) { 823 /* 824 * check that we only use anonymous memory to prevent problems 825 * with writeback 826 */ 827 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE; 828 struct vm_area_struct *vma; 829 830 vma = find_vma(mm, gtt->userptr); 831 if (!vma || vma->vm_file || vma->vm_end < end) { 832 up_read(&mm->mmap_sem); 833 return -EPERM; 834 } 835 } 836 837 /* loop enough times using contiguous pages of memory */ 838 do { 839 unsigned num_pages = ttm->num_pages - pinned; 840 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE; 841 struct page **p = pages + pinned; 842 struct amdgpu_ttm_gup_task_list guptask; 843 844 guptask.task = current; 845 spin_lock(>t->guptasklock); 846 list_add(&guptask.list, >t->guptasks); 847 spin_unlock(>t->guptasklock); 848 849 if (mm == current->mm) 850 r = get_user_pages(userptr, num_pages, flags, p, NULL); 851 else 852 r = get_user_pages_remote(gtt->usertask, 853 mm, userptr, num_pages, 854 flags, p, NULL, NULL); 855 856 spin_lock(>t->guptasklock); 857 list_del(&guptask.list); 858 spin_unlock(>t->guptasklock); 859 860 if (r < 0) 861 goto release_pages; 862 863 pinned += r; 864 865 } while (pinned < ttm->num_pages); 866 867 up_read(&mm->mmap_sem); 868 return 0; 869 870 release_pages: 871 release_pages(pages, pinned); 872 up_read(&mm->mmap_sem); 873 return r; 874 } 875 876 /** 877 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 878 * 879 * Called by amdgpu_cs_list_validate(). This creates the page list 880 * that backs user memory and will ultimately be mapped into the device 881 * address space. 882 */ 883 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 884 { 885 struct amdgpu_ttm_tt *gtt = (void *)ttm; 886 unsigned i; 887 888 gtt->last_set_pages = atomic_read(>t->mmu_invalidations); 889 for (i = 0; i < ttm->num_pages; ++i) { 890 if (ttm->pages[i]) 891 put_page(ttm->pages[i]); 892 893 ttm->pages[i] = pages ? pages[i] : NULL; 894 } 895 } 896 897 /** 898 * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty 899 * 900 * Called while unpinning userptr pages 901 */ 902 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm) 903 { 904 struct amdgpu_ttm_tt *gtt = (void *)ttm; 905 unsigned i; 906 907 for (i = 0; i < ttm->num_pages; ++i) { 908 struct page *page = ttm->pages[i]; 909 910 if (!page) 911 continue; 912 913 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) 914 set_page_dirty(page); 915 916 mark_page_accessed(page); 917 } 918 } 919 920 /** 921 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 922 * 923 * Called by amdgpu_ttm_backend_bind() 924 **/ 925 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 926 { 927 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 928 struct amdgpu_ttm_tt *gtt = (void *)ttm; 929 unsigned nents; 930 int r; 931 932 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 933 enum dma_data_direction direction = write ? 934 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 935 936 /* Allocate an SG array and squash pages into it */ 937 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 938 ttm->num_pages << PAGE_SHIFT, 939 GFP_KERNEL); 940 if (r) 941 goto release_sg; 942 943 /* Map SG to device */ 944 r = -ENOMEM; 945 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 946 if (nents != ttm->sg->nents) 947 goto release_sg; 948 949 /* convert SG to linear array of pages and dma addresses */ 950 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 951 gtt->ttm.dma_address, ttm->num_pages); 952 953 return 0; 954 955 release_sg: 956 kfree(ttm->sg); 957 return r; 958 } 959 960 /** 961 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 962 */ 963 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 964 { 965 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 966 struct amdgpu_ttm_tt *gtt = (void *)ttm; 967 968 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 969 enum dma_data_direction direction = write ? 970 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 971 972 /* double check that we don't free the table twice */ 973 if (!ttm->sg->sgl) 974 return; 975 976 /* unmap the pages mapped to the device */ 977 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 978 979 /* mark the pages as dirty */ 980 amdgpu_ttm_tt_mark_user_pages(ttm); 981 982 sg_free_table(ttm->sg); 983 } 984 985 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 986 struct ttm_buffer_object *tbo, 987 uint64_t flags) 988 { 989 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 990 struct ttm_tt *ttm = tbo->ttm; 991 struct amdgpu_ttm_tt *gtt = (void *)ttm; 992 int r; 993 994 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 995 uint64_t page_idx = 1; 996 997 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 998 ttm->pages, gtt->ttm.dma_address, flags); 999 if (r) 1000 goto gart_bind_fail; 1001 1002 /* Patch mtype of the second part BO */ 1003 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1004 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC); 1005 1006 r = amdgpu_gart_bind(adev, 1007 gtt->offset + (page_idx << PAGE_SHIFT), 1008 ttm->num_pages - page_idx, 1009 &ttm->pages[page_idx], 1010 &(gtt->ttm.dma_address[page_idx]), flags); 1011 } else { 1012 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1013 ttm->pages, gtt->ttm.dma_address, flags); 1014 } 1015 1016 gart_bind_fail: 1017 if (r) 1018 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1019 ttm->num_pages, gtt->offset); 1020 1021 return r; 1022 } 1023 1024 /** 1025 * amdgpu_ttm_backend_bind - Bind GTT memory 1026 * 1027 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1028 * This handles binding GTT memory to the device address space. 1029 */ 1030 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1031 struct ttm_mem_reg *bo_mem) 1032 { 1033 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1034 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1035 uint64_t flags; 1036 int r = 0; 1037 1038 if (gtt->userptr) { 1039 r = amdgpu_ttm_tt_pin_userptr(ttm); 1040 if (r) { 1041 DRM_ERROR("failed to pin userptr\n"); 1042 return r; 1043 } 1044 } 1045 if (!ttm->num_pages) { 1046 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1047 ttm->num_pages, bo_mem, ttm); 1048 } 1049 1050 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1051 bo_mem->mem_type == AMDGPU_PL_GWS || 1052 bo_mem->mem_type == AMDGPU_PL_OA) 1053 return -EINVAL; 1054 1055 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1056 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1057 return 0; 1058 } 1059 1060 /* compute PTE flags relevant to this BO memory */ 1061 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1062 1063 /* bind pages into GART page tables */ 1064 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1065 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1066 ttm->pages, gtt->ttm.dma_address, flags); 1067 1068 if (r) 1069 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1070 ttm->num_pages, gtt->offset); 1071 return r; 1072 } 1073 1074 /** 1075 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1076 */ 1077 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1078 { 1079 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1080 struct ttm_operation_ctx ctx = { false, false }; 1081 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1082 struct ttm_mem_reg tmp; 1083 struct ttm_placement placement; 1084 struct ttm_place placements; 1085 uint64_t flags; 1086 int r; 1087 1088 if (bo->mem.mem_type != TTM_PL_TT || 1089 amdgpu_gtt_mgr_has_gart_addr(&bo->mem)) 1090 return 0; 1091 1092 /* allocate GTT space */ 1093 tmp = bo->mem; 1094 tmp.mm_node = NULL; 1095 placement.num_placement = 1; 1096 placement.placement = &placements; 1097 placement.num_busy_placement = 1; 1098 placement.busy_placement = &placements; 1099 placements.fpfn = 0; 1100 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1101 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1102 TTM_PL_FLAG_TT; 1103 1104 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1105 if (unlikely(r)) 1106 return r; 1107 1108 /* compute PTE flags for this buffer object */ 1109 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1110 1111 /* Bind pages */ 1112 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1113 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1114 if (unlikely(r)) { 1115 ttm_bo_mem_put(bo, &tmp); 1116 return r; 1117 } 1118 1119 ttm_bo_mem_put(bo, &bo->mem); 1120 bo->mem = tmp; 1121 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1122 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1123 1124 return 0; 1125 } 1126 1127 /** 1128 * amdgpu_ttm_recover_gart - Rebind GTT pages 1129 * 1130 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1131 * rebind GTT pages during a GPU reset. 1132 */ 1133 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1134 { 1135 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1136 uint64_t flags; 1137 int r; 1138 1139 if (!tbo->ttm) 1140 return 0; 1141 1142 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1143 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1144 1145 return r; 1146 } 1147 1148 /** 1149 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1150 * 1151 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1152 * ttm_tt_destroy(). 1153 */ 1154 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1155 { 1156 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1157 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1158 int r; 1159 1160 /* if the pages have userptr pinning then clear that first */ 1161 if (gtt->userptr) 1162 amdgpu_ttm_tt_unpin_userptr(ttm); 1163 1164 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1165 return 0; 1166 1167 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1168 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1169 if (r) 1170 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1171 gtt->ttm.ttm.num_pages, gtt->offset); 1172 return r; 1173 } 1174 1175 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1176 { 1177 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1178 1179 if (gtt->usertask) 1180 put_task_struct(gtt->usertask); 1181 1182 ttm_dma_tt_fini(>t->ttm); 1183 kfree(gtt); 1184 } 1185 1186 static struct ttm_backend_func amdgpu_backend_func = { 1187 .bind = &amdgpu_ttm_backend_bind, 1188 .unbind = &amdgpu_ttm_backend_unbind, 1189 .destroy = &amdgpu_ttm_backend_destroy, 1190 }; 1191 1192 /** 1193 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1194 * 1195 * @bo: The buffer object to create a GTT ttm_tt object around 1196 * 1197 * Called by ttm_tt_create(). 1198 */ 1199 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1200 uint32_t page_flags) 1201 { 1202 struct amdgpu_device *adev; 1203 struct amdgpu_ttm_tt *gtt; 1204 1205 adev = amdgpu_ttm_adev(bo->bdev); 1206 1207 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1208 if (gtt == NULL) { 1209 return NULL; 1210 } 1211 gtt->ttm.ttm.func = &amdgpu_backend_func; 1212 1213 /* allocate space for the uninitialized page entries */ 1214 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1215 kfree(gtt); 1216 return NULL; 1217 } 1218 return >t->ttm.ttm; 1219 } 1220 1221 /** 1222 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1223 * 1224 * Map the pages of a ttm_tt object to an address space visible 1225 * to the underlying device. 1226 */ 1227 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1228 struct ttm_operation_ctx *ctx) 1229 { 1230 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1231 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1232 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1233 1234 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1235 if (gtt && gtt->userptr) { 1236 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1237 if (!ttm->sg) 1238 return -ENOMEM; 1239 1240 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1241 ttm->state = tt_unbound; 1242 return 0; 1243 } 1244 1245 if (slave && ttm->sg) { 1246 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1247 gtt->ttm.dma_address, 1248 ttm->num_pages); 1249 ttm->state = tt_unbound; 1250 return 0; 1251 } 1252 1253 #ifdef CONFIG_SWIOTLB 1254 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1255 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1256 } 1257 #endif 1258 1259 /* fall back to generic helper to populate the page array 1260 * and map them to the device */ 1261 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1262 } 1263 1264 /** 1265 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1266 * 1267 * Unmaps pages of a ttm_tt object from the device address space and 1268 * unpopulates the page array backing it. 1269 */ 1270 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1271 { 1272 struct amdgpu_device *adev; 1273 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1274 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1275 1276 if (gtt && gtt->userptr) { 1277 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1278 kfree(ttm->sg); 1279 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1280 return; 1281 } 1282 1283 if (slave) 1284 return; 1285 1286 adev = amdgpu_ttm_adev(ttm->bdev); 1287 1288 #ifdef CONFIG_SWIOTLB 1289 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1290 ttm_dma_unpopulate(>t->ttm, adev->dev); 1291 return; 1292 } 1293 #endif 1294 1295 /* fall back to generic helper to unmap and unpopulate array */ 1296 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1297 } 1298 1299 /** 1300 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1301 * task 1302 * 1303 * @ttm: The ttm_tt object to bind this userptr object to 1304 * @addr: The address in the current tasks VM space to use 1305 * @flags: Requirements of userptr object. 1306 * 1307 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1308 * to current task 1309 */ 1310 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1311 uint32_t flags) 1312 { 1313 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1314 1315 if (gtt == NULL) 1316 return -EINVAL; 1317 1318 gtt->userptr = addr; 1319 gtt->userflags = flags; 1320 1321 if (gtt->usertask) 1322 put_task_struct(gtt->usertask); 1323 gtt->usertask = current->group_leader; 1324 get_task_struct(gtt->usertask); 1325 1326 spin_lock_init(>t->guptasklock); 1327 INIT_LIST_HEAD(>t->guptasks); 1328 atomic_set(>t->mmu_invalidations, 0); 1329 gtt->last_set_pages = 0; 1330 1331 return 0; 1332 } 1333 1334 /** 1335 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1336 */ 1337 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1338 { 1339 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1340 1341 if (gtt == NULL) 1342 return NULL; 1343 1344 if (gtt->usertask == NULL) 1345 return NULL; 1346 1347 return gtt->usertask->mm; 1348 } 1349 1350 /** 1351 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1352 * address range for the current task. 1353 * 1354 */ 1355 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1356 unsigned long end) 1357 { 1358 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1359 struct amdgpu_ttm_gup_task_list *entry; 1360 unsigned long size; 1361 1362 if (gtt == NULL || !gtt->userptr) 1363 return false; 1364 1365 /* Return false if no part of the ttm_tt object lies within 1366 * the range 1367 */ 1368 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1369 if (gtt->userptr > end || gtt->userptr + size <= start) 1370 return false; 1371 1372 /* Search the lists of tasks that hold this mapping and see 1373 * if current is one of them. If it is return false. 1374 */ 1375 spin_lock(>t->guptasklock); 1376 list_for_each_entry(entry, >t->guptasks, list) { 1377 if (entry->task == current) { 1378 spin_unlock(>t->guptasklock); 1379 return false; 1380 } 1381 } 1382 spin_unlock(>t->guptasklock); 1383 1384 atomic_inc(>t->mmu_invalidations); 1385 1386 return true; 1387 } 1388 1389 /** 1390 * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated? 1391 */ 1392 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm, 1393 int *last_invalidated) 1394 { 1395 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1396 int prev_invalidated = *last_invalidated; 1397 1398 *last_invalidated = atomic_read(>t->mmu_invalidations); 1399 return prev_invalidated != *last_invalidated; 1400 } 1401 1402 /** 1403 * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object 1404 * been invalidated since the last time they've been set? 1405 */ 1406 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm) 1407 { 1408 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1409 1410 if (gtt == NULL || !gtt->userptr) 1411 return false; 1412 1413 return atomic_read(>t->mmu_invalidations) != gtt->last_set_pages; 1414 } 1415 1416 /** 1417 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1418 */ 1419 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1420 { 1421 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1422 1423 if (gtt == NULL) 1424 return false; 1425 1426 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1427 } 1428 1429 /** 1430 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1431 * 1432 * @ttm: The ttm_tt object to compute the flags for 1433 * @mem: The memory registry backing this ttm_tt object 1434 */ 1435 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1436 struct ttm_mem_reg *mem) 1437 { 1438 uint64_t flags = 0; 1439 1440 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1441 flags |= AMDGPU_PTE_VALID; 1442 1443 if (mem && mem->mem_type == TTM_PL_TT) { 1444 flags |= AMDGPU_PTE_SYSTEM; 1445 1446 if (ttm->caching_state == tt_cached) 1447 flags |= AMDGPU_PTE_SNOOPED; 1448 } 1449 1450 flags |= adev->gart.gart_pte_flags; 1451 flags |= AMDGPU_PTE_READABLE; 1452 1453 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1454 flags |= AMDGPU_PTE_WRITEABLE; 1455 1456 return flags; 1457 } 1458 1459 /** 1460 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1461 * object. 1462 * 1463 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1464 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1465 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1466 * used to clean out a memory space. 1467 */ 1468 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1469 const struct ttm_place *place) 1470 { 1471 unsigned long num_pages = bo->mem.num_pages; 1472 struct drm_mm_node *node = bo->mem.mm_node; 1473 struct reservation_object_list *flist; 1474 struct dma_fence *f; 1475 int i; 1476 1477 /* If bo is a KFD BO, check if the bo belongs to the current process. 1478 * If true, then return false as any KFD process needs all its BOs to 1479 * be resident to run successfully 1480 */ 1481 flist = reservation_object_get_list(bo->resv); 1482 if (flist) { 1483 for (i = 0; i < flist->shared_count; ++i) { 1484 f = rcu_dereference_protected(flist->shared[i], 1485 reservation_object_held(bo->resv)); 1486 if (amdkfd_fence_check_mm(f, current->mm)) 1487 return false; 1488 } 1489 } 1490 1491 switch (bo->mem.mem_type) { 1492 case TTM_PL_TT: 1493 return true; 1494 1495 case TTM_PL_VRAM: 1496 /* Check each drm MM node individually */ 1497 while (num_pages) { 1498 if (place->fpfn < (node->start + node->size) && 1499 !(place->lpfn && place->lpfn <= node->start)) 1500 return true; 1501 1502 num_pages -= node->size; 1503 ++node; 1504 } 1505 return false; 1506 1507 default: 1508 break; 1509 } 1510 1511 return ttm_bo_eviction_valuable(bo, place); 1512 } 1513 1514 /** 1515 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1516 * 1517 * @bo: The buffer object to read/write 1518 * @offset: Offset into buffer object 1519 * @buf: Secondary buffer to write/read from 1520 * @len: Length in bytes of access 1521 * @write: true if writing 1522 * 1523 * This is used to access VRAM that backs a buffer object via MMIO 1524 * access for debugging purposes. 1525 */ 1526 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1527 unsigned long offset, 1528 void *buf, int len, int write) 1529 { 1530 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1531 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1532 struct drm_mm_node *nodes; 1533 uint32_t value = 0; 1534 int ret = 0; 1535 uint64_t pos; 1536 unsigned long flags; 1537 1538 if (bo->mem.mem_type != TTM_PL_VRAM) 1539 return -EIO; 1540 1541 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1542 pos = (nodes->start << PAGE_SHIFT) + offset; 1543 1544 while (len && pos < adev->gmc.mc_vram_size) { 1545 uint64_t aligned_pos = pos & ~(uint64_t)3; 1546 uint32_t bytes = 4 - (pos & 3); 1547 uint32_t shift = (pos & 3) * 8; 1548 uint32_t mask = 0xffffffff << shift; 1549 1550 if (len < bytes) { 1551 mask &= 0xffffffff >> (bytes - len) * 8; 1552 bytes = len; 1553 } 1554 1555 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1556 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1557 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1558 if (!write || mask != 0xffffffff) 1559 value = RREG32_NO_KIQ(mmMM_DATA); 1560 if (write) { 1561 value &= ~mask; 1562 value |= (*(uint32_t *)buf << shift) & mask; 1563 WREG32_NO_KIQ(mmMM_DATA, value); 1564 } 1565 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1566 if (!write) { 1567 value = (value & mask) >> shift; 1568 memcpy(buf, &value, bytes); 1569 } 1570 1571 ret += bytes; 1572 buf = (uint8_t *)buf + bytes; 1573 pos += bytes; 1574 len -= bytes; 1575 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1576 ++nodes; 1577 pos = (nodes->start << PAGE_SHIFT); 1578 } 1579 } 1580 1581 return ret; 1582 } 1583 1584 static struct ttm_bo_driver amdgpu_bo_driver = { 1585 .ttm_tt_create = &amdgpu_ttm_tt_create, 1586 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1587 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1588 .invalidate_caches = &amdgpu_invalidate_caches, 1589 .init_mem_type = &amdgpu_init_mem_type, 1590 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1591 .evict_flags = &amdgpu_evict_flags, 1592 .move = &amdgpu_bo_move, 1593 .verify_access = &amdgpu_verify_access, 1594 .move_notify = &amdgpu_bo_move_notify, 1595 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1596 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1597 .io_mem_free = &amdgpu_ttm_io_mem_free, 1598 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1599 .access_memory = &amdgpu_ttm_access_memory 1600 }; 1601 1602 /* 1603 * Firmware Reservation functions 1604 */ 1605 /** 1606 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1607 * 1608 * @adev: amdgpu_device pointer 1609 * 1610 * free fw reserved vram if it has been reserved. 1611 */ 1612 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1613 { 1614 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1615 NULL, &adev->fw_vram_usage.va); 1616 } 1617 1618 /** 1619 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1620 * 1621 * @adev: amdgpu_device pointer 1622 * 1623 * create bo vram reservation from fw. 1624 */ 1625 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1626 { 1627 struct ttm_operation_ctx ctx = { false, false }; 1628 struct amdgpu_bo_param bp; 1629 int r = 0; 1630 int i; 1631 u64 vram_size = adev->gmc.visible_vram_size; 1632 u64 offset = adev->fw_vram_usage.start_offset; 1633 u64 size = adev->fw_vram_usage.size; 1634 struct amdgpu_bo *bo; 1635 1636 memset(&bp, 0, sizeof(bp)); 1637 bp.size = adev->fw_vram_usage.size; 1638 bp.byte_align = PAGE_SIZE; 1639 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1640 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1641 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1642 bp.type = ttm_bo_type_kernel; 1643 bp.resv = NULL; 1644 adev->fw_vram_usage.va = NULL; 1645 adev->fw_vram_usage.reserved_bo = NULL; 1646 1647 if (adev->fw_vram_usage.size > 0 && 1648 adev->fw_vram_usage.size <= vram_size) { 1649 1650 r = amdgpu_bo_create(adev, &bp, 1651 &adev->fw_vram_usage.reserved_bo); 1652 if (r) 1653 goto error_create; 1654 1655 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1656 if (r) 1657 goto error_reserve; 1658 1659 /* remove the original mem node and create a new one at the 1660 * request position 1661 */ 1662 bo = adev->fw_vram_usage.reserved_bo; 1663 offset = ALIGN(offset, PAGE_SIZE); 1664 for (i = 0; i < bo->placement.num_placement; ++i) { 1665 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1666 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1667 } 1668 1669 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1670 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1671 &bo->tbo.mem, &ctx); 1672 if (r) 1673 goto error_pin; 1674 1675 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1676 AMDGPU_GEM_DOMAIN_VRAM, 1677 adev->fw_vram_usage.start_offset, 1678 (adev->fw_vram_usage.start_offset + 1679 adev->fw_vram_usage.size)); 1680 if (r) 1681 goto error_pin; 1682 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1683 &adev->fw_vram_usage.va); 1684 if (r) 1685 goto error_kmap; 1686 1687 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1688 } 1689 return r; 1690 1691 error_kmap: 1692 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1693 error_pin: 1694 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1695 error_reserve: 1696 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1697 error_create: 1698 adev->fw_vram_usage.va = NULL; 1699 adev->fw_vram_usage.reserved_bo = NULL; 1700 return r; 1701 } 1702 /** 1703 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1704 * gtt/vram related fields. 1705 * 1706 * This initializes all of the memory space pools that the TTM layer 1707 * will need such as the GTT space (system memory mapped to the device), 1708 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1709 * can be mapped per VMID. 1710 */ 1711 int amdgpu_ttm_init(struct amdgpu_device *adev) 1712 { 1713 uint64_t gtt_size; 1714 int r; 1715 u64 vis_vram_limit; 1716 1717 /* initialize global references for vram/gtt */ 1718 r = amdgpu_ttm_global_init(adev); 1719 if (r) { 1720 return r; 1721 } 1722 /* No others user of address space so set it to 0 */ 1723 r = ttm_bo_device_init(&adev->mman.bdev, 1724 adev->mman.bo_global_ref.ref.object, 1725 &amdgpu_bo_driver, 1726 adev->ddev->anon_inode->i_mapping, 1727 DRM_FILE_PAGE_OFFSET, 1728 adev->need_dma32); 1729 if (r) { 1730 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1731 return r; 1732 } 1733 adev->mman.initialized = true; 1734 1735 /* We opt to avoid OOM on system pages allocations */ 1736 adev->mman.bdev.no_retry = true; 1737 1738 /* Initialize VRAM pool with all of VRAM divided into pages */ 1739 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1740 adev->gmc.real_vram_size >> PAGE_SHIFT); 1741 if (r) { 1742 DRM_ERROR("Failed initializing VRAM heap.\n"); 1743 return r; 1744 } 1745 1746 /* Reduce size of CPU-visible VRAM if requested */ 1747 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1748 if (amdgpu_vis_vram_limit > 0 && 1749 vis_vram_limit <= adev->gmc.visible_vram_size) 1750 adev->gmc.visible_vram_size = vis_vram_limit; 1751 1752 /* Change the size here instead of the init above so only lpfn is affected */ 1753 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1754 #ifdef CONFIG_64BIT 1755 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1756 adev->gmc.visible_vram_size); 1757 #endif 1758 1759 /* 1760 *The reserved vram for firmware must be pinned to the specified 1761 *place on the VRAM, so reserve it early. 1762 */ 1763 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1764 if (r) { 1765 return r; 1766 } 1767 1768 /* allocate memory as required for VGA 1769 * This is used for VGA emulation and pre-OS scanout buffers to 1770 * avoid display artifacts while transitioning between pre-OS 1771 * and driver. */ 1772 if (adev->gmc.stolen_size) { 1773 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1774 AMDGPU_GEM_DOMAIN_VRAM, 1775 &adev->stolen_vga_memory, 1776 NULL, NULL); 1777 if (r) 1778 return r; 1779 } 1780 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1781 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1782 1783 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1784 * or whatever the user passed on module init */ 1785 if (amdgpu_gtt_size == -1) { 1786 struct sysinfo si; 1787 1788 si_meminfo(&si); 1789 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1790 adev->gmc.mc_vram_size), 1791 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1792 } 1793 else 1794 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1795 1796 /* Initialize GTT memory pool */ 1797 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1798 if (r) { 1799 DRM_ERROR("Failed initializing GTT heap.\n"); 1800 return r; 1801 } 1802 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1803 (unsigned)(gtt_size / (1024 * 1024))); 1804 1805 /* Initialize various on-chip memory pools */ 1806 adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT; 1807 adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT; 1808 adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT; 1809 adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT; 1810 adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT; 1811 adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT; 1812 adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT; 1813 adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT; 1814 adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT; 1815 /* GDS Memory */ 1816 if (adev->gds.mem.total_size) { 1817 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1818 adev->gds.mem.total_size >> PAGE_SHIFT); 1819 if (r) { 1820 DRM_ERROR("Failed initializing GDS heap.\n"); 1821 return r; 1822 } 1823 } 1824 1825 /* GWS */ 1826 if (adev->gds.gws.total_size) { 1827 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1828 adev->gds.gws.total_size >> PAGE_SHIFT); 1829 if (r) { 1830 DRM_ERROR("Failed initializing gws heap.\n"); 1831 return r; 1832 } 1833 } 1834 1835 /* OA */ 1836 if (adev->gds.oa.total_size) { 1837 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1838 adev->gds.oa.total_size >> PAGE_SHIFT); 1839 if (r) { 1840 DRM_ERROR("Failed initializing oa heap.\n"); 1841 return r; 1842 } 1843 } 1844 1845 /* Register debugfs entries for amdgpu_ttm */ 1846 r = amdgpu_ttm_debugfs_init(adev); 1847 if (r) { 1848 DRM_ERROR("Failed to init debugfs\n"); 1849 return r; 1850 } 1851 return 0; 1852 } 1853 1854 /** 1855 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1856 */ 1857 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1858 { 1859 /* return the VGA stolen memory (if any) back to VRAM */ 1860 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1861 } 1862 1863 /** 1864 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1865 */ 1866 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1867 { 1868 if (!adev->mman.initialized) 1869 return; 1870 1871 amdgpu_ttm_debugfs_fini(adev); 1872 amdgpu_ttm_fw_reserve_vram_fini(adev); 1873 if (adev->mman.aper_base_kaddr) 1874 iounmap(adev->mman.aper_base_kaddr); 1875 adev->mman.aper_base_kaddr = NULL; 1876 1877 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1878 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1879 if (adev->gds.mem.total_size) 1880 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1881 if (adev->gds.gws.total_size) 1882 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1883 if (adev->gds.oa.total_size) 1884 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1885 ttm_bo_device_release(&adev->mman.bdev); 1886 amdgpu_ttm_global_fini(adev); 1887 adev->mman.initialized = false; 1888 DRM_INFO("amdgpu: ttm finalized\n"); 1889 } 1890 1891 /** 1892 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1893 * 1894 * @adev: amdgpu_device pointer 1895 * @enable: true when we can use buffer functions. 1896 * 1897 * Enable/disable use of buffer functions during suspend/resume. This should 1898 * only be called at bootup or when userspace isn't running. 1899 */ 1900 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1901 { 1902 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1903 uint64_t size; 1904 int r; 1905 1906 if (!adev->mman.initialized || adev->in_gpu_reset || 1907 adev->mman.buffer_funcs_enabled == enable) 1908 return; 1909 1910 if (enable) { 1911 struct amdgpu_ring *ring; 1912 struct drm_sched_rq *rq; 1913 1914 ring = adev->mman.buffer_funcs_ring; 1915 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1916 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1917 if (r) { 1918 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1919 r); 1920 return; 1921 } 1922 } else { 1923 drm_sched_entity_destroy(&adev->mman.entity); 1924 dma_fence_put(man->move); 1925 man->move = NULL; 1926 } 1927 1928 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1929 if (enable) 1930 size = adev->gmc.real_vram_size; 1931 else 1932 size = adev->gmc.visible_vram_size; 1933 man->size = size >> PAGE_SHIFT; 1934 adev->mman.buffer_funcs_enabled = enable; 1935 } 1936 1937 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1938 { 1939 struct drm_file *file_priv; 1940 struct amdgpu_device *adev; 1941 1942 if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET)) 1943 return -EINVAL; 1944 1945 file_priv = filp->private_data; 1946 adev = file_priv->minor->dev->dev_private; 1947 if (adev == NULL) 1948 return -EINVAL; 1949 1950 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1951 } 1952 1953 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1954 struct ttm_mem_reg *mem, unsigned num_pages, 1955 uint64_t offset, unsigned window, 1956 struct amdgpu_ring *ring, 1957 uint64_t *addr) 1958 { 1959 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1960 struct amdgpu_device *adev = ring->adev; 1961 struct ttm_tt *ttm = bo->ttm; 1962 struct amdgpu_job *job; 1963 unsigned num_dw, num_bytes; 1964 dma_addr_t *dma_address; 1965 struct dma_fence *fence; 1966 uint64_t src_addr, dst_addr; 1967 uint64_t flags; 1968 int r; 1969 1970 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1971 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1972 1973 *addr = adev->gmc.gart_start; 1974 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1975 AMDGPU_GPU_PAGE_SIZE; 1976 1977 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1978 while (num_dw & 0x7) 1979 num_dw++; 1980 1981 num_bytes = num_pages * 8; 1982 1983 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1984 if (r) 1985 return r; 1986 1987 src_addr = num_dw * 4; 1988 src_addr += job->ibs[0].gpu_addr; 1989 1990 dst_addr = adev->gart.table_addr; 1991 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1992 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1993 dst_addr, num_bytes); 1994 1995 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1996 WARN_ON(job->ibs[0].length_dw > num_dw); 1997 1998 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 1999 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2000 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2001 &job->ibs[0].ptr[num_dw]); 2002 if (r) 2003 goto error_free; 2004 2005 r = amdgpu_job_submit(job, &adev->mman.entity, 2006 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2007 if (r) 2008 goto error_free; 2009 2010 dma_fence_put(fence); 2011 2012 return r; 2013 2014 error_free: 2015 amdgpu_job_free(job); 2016 return r; 2017 } 2018 2019 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2020 uint64_t dst_offset, uint32_t byte_count, 2021 struct reservation_object *resv, 2022 struct dma_fence **fence, bool direct_submit, 2023 bool vm_needs_flush) 2024 { 2025 struct amdgpu_device *adev = ring->adev; 2026 struct amdgpu_job *job; 2027 2028 uint32_t max_bytes; 2029 unsigned num_loops, num_dw; 2030 unsigned i; 2031 int r; 2032 2033 if (direct_submit && !ring->ready) { 2034 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2035 return -EINVAL; 2036 } 2037 2038 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2039 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2040 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 2041 2042 /* for IB padding */ 2043 while (num_dw & 0x7) 2044 num_dw++; 2045 2046 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2047 if (r) 2048 return r; 2049 2050 job->vm_needs_flush = vm_needs_flush; 2051 if (resv) { 2052 r = amdgpu_sync_resv(adev, &job->sync, resv, 2053 AMDGPU_FENCE_OWNER_UNDEFINED, 2054 false); 2055 if (r) { 2056 DRM_ERROR("sync failed (%d).\n", r); 2057 goto error_free; 2058 } 2059 } 2060 2061 for (i = 0; i < num_loops; i++) { 2062 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2063 2064 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2065 dst_offset, cur_size_in_bytes); 2066 2067 src_offset += cur_size_in_bytes; 2068 dst_offset += cur_size_in_bytes; 2069 byte_count -= cur_size_in_bytes; 2070 } 2071 2072 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2073 WARN_ON(job->ibs[0].length_dw > num_dw); 2074 if (direct_submit) 2075 r = amdgpu_job_submit_direct(job, ring, fence); 2076 else 2077 r = amdgpu_job_submit(job, &adev->mman.entity, 2078 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2079 if (r) 2080 goto error_free; 2081 2082 return r; 2083 2084 error_free: 2085 amdgpu_job_free(job); 2086 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2087 return r; 2088 } 2089 2090 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2091 uint32_t src_data, 2092 struct reservation_object *resv, 2093 struct dma_fence **fence) 2094 { 2095 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2096 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2097 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2098 2099 struct drm_mm_node *mm_node; 2100 unsigned long num_pages; 2101 unsigned int num_loops, num_dw; 2102 2103 struct amdgpu_job *job; 2104 int r; 2105 2106 if (!adev->mman.buffer_funcs_enabled) { 2107 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2108 return -EINVAL; 2109 } 2110 2111 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2112 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2113 if (r) 2114 return r; 2115 } 2116 2117 num_pages = bo->tbo.num_pages; 2118 mm_node = bo->tbo.mem.mm_node; 2119 num_loops = 0; 2120 while (num_pages) { 2121 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2122 2123 num_loops += DIV_ROUND_UP(byte_count, max_bytes); 2124 num_pages -= mm_node->size; 2125 ++mm_node; 2126 } 2127 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2128 2129 /* for IB padding */ 2130 num_dw += 64; 2131 2132 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2133 if (r) 2134 return r; 2135 2136 if (resv) { 2137 r = amdgpu_sync_resv(adev, &job->sync, resv, 2138 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2139 if (r) { 2140 DRM_ERROR("sync failed (%d).\n", r); 2141 goto error_free; 2142 } 2143 } 2144 2145 num_pages = bo->tbo.num_pages; 2146 mm_node = bo->tbo.mem.mm_node; 2147 2148 while (num_pages) { 2149 uint32_t byte_count = mm_node->size << PAGE_SHIFT; 2150 uint64_t dst_addr; 2151 2152 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2153 while (byte_count) { 2154 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2155 2156 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2157 dst_addr, cur_size_in_bytes); 2158 2159 dst_addr += cur_size_in_bytes; 2160 byte_count -= cur_size_in_bytes; 2161 } 2162 2163 num_pages -= mm_node->size; 2164 ++mm_node; 2165 } 2166 2167 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2168 WARN_ON(job->ibs[0].length_dw > num_dw); 2169 r = amdgpu_job_submit(job, &adev->mman.entity, 2170 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2171 if (r) 2172 goto error_free; 2173 2174 return 0; 2175 2176 error_free: 2177 amdgpu_job_free(job); 2178 return r; 2179 } 2180 2181 #if defined(CONFIG_DEBUG_FS) 2182 2183 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2184 { 2185 struct drm_info_node *node = (struct drm_info_node *)m->private; 2186 unsigned ttm_pl = *(int *)node->info_ent->data; 2187 struct drm_device *dev = node->minor->dev; 2188 struct amdgpu_device *adev = dev->dev_private; 2189 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2190 struct drm_printer p = drm_seq_file_printer(m); 2191 2192 man->func->debug(man, &p); 2193 return 0; 2194 } 2195 2196 static int ttm_pl_vram = TTM_PL_VRAM; 2197 static int ttm_pl_tt = TTM_PL_TT; 2198 2199 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2200 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram}, 2201 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt}, 2202 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2203 #ifdef CONFIG_SWIOTLB 2204 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2205 #endif 2206 }; 2207 2208 /** 2209 * amdgpu_ttm_vram_read - Linear read access to VRAM 2210 * 2211 * Accesses VRAM via MMIO for debugging purposes. 2212 */ 2213 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2214 size_t size, loff_t *pos) 2215 { 2216 struct amdgpu_device *adev = file_inode(f)->i_private; 2217 ssize_t result = 0; 2218 int r; 2219 2220 if (size & 0x3 || *pos & 0x3) 2221 return -EINVAL; 2222 2223 if (*pos >= adev->gmc.mc_vram_size) 2224 return -ENXIO; 2225 2226 while (size) { 2227 unsigned long flags; 2228 uint32_t value; 2229 2230 if (*pos >= adev->gmc.mc_vram_size) 2231 return result; 2232 2233 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2234 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2235 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2236 value = RREG32_NO_KIQ(mmMM_DATA); 2237 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2238 2239 r = put_user(value, (uint32_t *)buf); 2240 if (r) 2241 return r; 2242 2243 result += 4; 2244 buf += 4; 2245 *pos += 4; 2246 size -= 4; 2247 } 2248 2249 return result; 2250 } 2251 2252 /** 2253 * amdgpu_ttm_vram_write - Linear write access to VRAM 2254 * 2255 * Accesses VRAM via MMIO for debugging purposes. 2256 */ 2257 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2258 size_t size, loff_t *pos) 2259 { 2260 struct amdgpu_device *adev = file_inode(f)->i_private; 2261 ssize_t result = 0; 2262 int r; 2263 2264 if (size & 0x3 || *pos & 0x3) 2265 return -EINVAL; 2266 2267 if (*pos >= adev->gmc.mc_vram_size) 2268 return -ENXIO; 2269 2270 while (size) { 2271 unsigned long flags; 2272 uint32_t value; 2273 2274 if (*pos >= adev->gmc.mc_vram_size) 2275 return result; 2276 2277 r = get_user(value, (uint32_t *)buf); 2278 if (r) 2279 return r; 2280 2281 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2282 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2283 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2284 WREG32_NO_KIQ(mmMM_DATA, value); 2285 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2286 2287 result += 4; 2288 buf += 4; 2289 *pos += 4; 2290 size -= 4; 2291 } 2292 2293 return result; 2294 } 2295 2296 static const struct file_operations amdgpu_ttm_vram_fops = { 2297 .owner = THIS_MODULE, 2298 .read = amdgpu_ttm_vram_read, 2299 .write = amdgpu_ttm_vram_write, 2300 .llseek = default_llseek, 2301 }; 2302 2303 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2304 2305 /** 2306 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2307 */ 2308 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2309 size_t size, loff_t *pos) 2310 { 2311 struct amdgpu_device *adev = file_inode(f)->i_private; 2312 ssize_t result = 0; 2313 int r; 2314 2315 while (size) { 2316 loff_t p = *pos / PAGE_SIZE; 2317 unsigned off = *pos & ~PAGE_MASK; 2318 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2319 struct page *page; 2320 void *ptr; 2321 2322 if (p >= adev->gart.num_cpu_pages) 2323 return result; 2324 2325 page = adev->gart.pages[p]; 2326 if (page) { 2327 ptr = kmap(page); 2328 ptr += off; 2329 2330 r = copy_to_user(buf, ptr, cur_size); 2331 kunmap(adev->gart.pages[p]); 2332 } else 2333 r = clear_user(buf, cur_size); 2334 2335 if (r) 2336 return -EFAULT; 2337 2338 result += cur_size; 2339 buf += cur_size; 2340 *pos += cur_size; 2341 size -= cur_size; 2342 } 2343 2344 return result; 2345 } 2346 2347 static const struct file_operations amdgpu_ttm_gtt_fops = { 2348 .owner = THIS_MODULE, 2349 .read = amdgpu_ttm_gtt_read, 2350 .llseek = default_llseek 2351 }; 2352 2353 #endif 2354 2355 /** 2356 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2357 * 2358 * This function is used to read memory that has been mapped to the 2359 * GPU and the known addresses are not physical addresses but instead 2360 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2361 */ 2362 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2363 size_t size, loff_t *pos) 2364 { 2365 struct amdgpu_device *adev = file_inode(f)->i_private; 2366 struct iommu_domain *dom; 2367 ssize_t result = 0; 2368 int r; 2369 2370 /* retrieve the IOMMU domain if any for this device */ 2371 dom = iommu_get_domain_for_dev(adev->dev); 2372 2373 while (size) { 2374 phys_addr_t addr = *pos & PAGE_MASK; 2375 loff_t off = *pos & ~PAGE_MASK; 2376 size_t bytes = PAGE_SIZE - off; 2377 unsigned long pfn; 2378 struct page *p; 2379 void *ptr; 2380 2381 bytes = bytes < size ? bytes : size; 2382 2383 /* Translate the bus address to a physical address. If 2384 * the domain is NULL it means there is no IOMMU active 2385 * and the address translation is the identity 2386 */ 2387 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2388 2389 pfn = addr >> PAGE_SHIFT; 2390 if (!pfn_valid(pfn)) 2391 return -EPERM; 2392 2393 p = pfn_to_page(pfn); 2394 if (p->mapping != adev->mman.bdev.dev_mapping) 2395 return -EPERM; 2396 2397 ptr = kmap(p); 2398 r = copy_to_user(buf, ptr + off, bytes); 2399 kunmap(p); 2400 if (r) 2401 return -EFAULT; 2402 2403 size -= bytes; 2404 *pos += bytes; 2405 result += bytes; 2406 } 2407 2408 return result; 2409 } 2410 2411 /** 2412 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2413 * 2414 * This function is used to write memory that has been mapped to the 2415 * GPU and the known addresses are not physical addresses but instead 2416 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2417 */ 2418 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2419 size_t size, loff_t *pos) 2420 { 2421 struct amdgpu_device *adev = file_inode(f)->i_private; 2422 struct iommu_domain *dom; 2423 ssize_t result = 0; 2424 int r; 2425 2426 dom = iommu_get_domain_for_dev(adev->dev); 2427 2428 while (size) { 2429 phys_addr_t addr = *pos & PAGE_MASK; 2430 loff_t off = *pos & ~PAGE_MASK; 2431 size_t bytes = PAGE_SIZE - off; 2432 unsigned long pfn; 2433 struct page *p; 2434 void *ptr; 2435 2436 bytes = bytes < size ? bytes : size; 2437 2438 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2439 2440 pfn = addr >> PAGE_SHIFT; 2441 if (!pfn_valid(pfn)) 2442 return -EPERM; 2443 2444 p = pfn_to_page(pfn); 2445 if (p->mapping != adev->mman.bdev.dev_mapping) 2446 return -EPERM; 2447 2448 ptr = kmap(p); 2449 r = copy_from_user(ptr + off, buf, bytes); 2450 kunmap(p); 2451 if (r) 2452 return -EFAULT; 2453 2454 size -= bytes; 2455 *pos += bytes; 2456 result += bytes; 2457 } 2458 2459 return result; 2460 } 2461 2462 static const struct file_operations amdgpu_ttm_iomem_fops = { 2463 .owner = THIS_MODULE, 2464 .read = amdgpu_iomem_read, 2465 .write = amdgpu_iomem_write, 2466 .llseek = default_llseek 2467 }; 2468 2469 static const struct { 2470 char *name; 2471 const struct file_operations *fops; 2472 int domain; 2473 } ttm_debugfs_entries[] = { 2474 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2475 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2476 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2477 #endif 2478 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2479 }; 2480 2481 #endif 2482 2483 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2484 { 2485 #if defined(CONFIG_DEBUG_FS) 2486 unsigned count; 2487 2488 struct drm_minor *minor = adev->ddev->primary; 2489 struct dentry *ent, *root = minor->debugfs_root; 2490 2491 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2492 ent = debugfs_create_file( 2493 ttm_debugfs_entries[count].name, 2494 S_IFREG | S_IRUGO, root, 2495 adev, 2496 ttm_debugfs_entries[count].fops); 2497 if (IS_ERR(ent)) 2498 return PTR_ERR(ent); 2499 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2500 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2501 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2502 i_size_write(ent->d_inode, adev->gmc.gart_size); 2503 adev->mman.debugfs_entries[count] = ent; 2504 } 2505 2506 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2507 2508 #ifdef CONFIG_SWIOTLB 2509 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2510 --count; 2511 #endif 2512 2513 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2514 #else 2515 return 0; 2516 #endif 2517 } 2518 2519 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2520 { 2521 #if defined(CONFIG_DEBUG_FS) 2522 unsigned i; 2523 2524 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2525 debugfs_remove(adev->mman.debugfs_entries[i]); 2526 #endif 2527 } 2528