1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 44 #include <drm/ttm/ttm_bo_api.h> 45 #include <drm/ttm/ttm_bo_driver.h> 46 #include <drm/ttm/ttm_placement.h> 47 #include <drm/ttm/ttm_module.h> 48 #include <drm/ttm/ttm_page_alloc.h> 49 50 #include <drm/drm_debugfs.h> 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "bif/bif_4_1_d.h" 60 61 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 62 struct ttm_mem_reg *mem, unsigned num_pages, 63 uint64_t offset, unsigned window, 64 struct amdgpu_ring *ring, 65 uint64_t *addr); 66 67 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 68 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 69 70 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 71 { 72 return 0; 73 } 74 75 /** 76 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 77 * memory request. 78 * 79 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 80 * @type: The type of memory requested 81 * @man: The memory type manager for each domain 82 * 83 * This is called by ttm_bo_init_mm() when a buffer object is being 84 * initialized. 85 */ 86 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 87 struct ttm_mem_type_manager *man) 88 { 89 struct amdgpu_device *adev; 90 91 adev = amdgpu_ttm_adev(bdev); 92 93 switch (type) { 94 case TTM_PL_SYSTEM: 95 /* System memory */ 96 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 97 man->available_caching = TTM_PL_MASK_CACHING; 98 man->default_caching = TTM_PL_FLAG_CACHED; 99 break; 100 case TTM_PL_TT: 101 /* GTT memory */ 102 man->func = &amdgpu_gtt_mgr_func; 103 man->gpu_offset = adev->gmc.gart_start; 104 man->available_caching = TTM_PL_MASK_CACHING; 105 man->default_caching = TTM_PL_FLAG_CACHED; 106 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 107 break; 108 case TTM_PL_VRAM: 109 /* "On-card" video ram */ 110 man->func = &amdgpu_vram_mgr_func; 111 man->gpu_offset = adev->gmc.vram_start; 112 man->flags = TTM_MEMTYPE_FLAG_FIXED | 113 TTM_MEMTYPE_FLAG_MAPPABLE; 114 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 115 man->default_caching = TTM_PL_FLAG_WC; 116 break; 117 case AMDGPU_PL_GDS: 118 case AMDGPU_PL_GWS: 119 case AMDGPU_PL_OA: 120 /* On-chip GDS memory*/ 121 man->func = &ttm_bo_manager_func; 122 man->gpu_offset = 0; 123 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 124 man->available_caching = TTM_PL_FLAG_UNCACHED; 125 man->default_caching = TTM_PL_FLAG_UNCACHED; 126 break; 127 default: 128 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 129 return -EINVAL; 130 } 131 return 0; 132 } 133 134 /** 135 * amdgpu_evict_flags - Compute placement flags 136 * 137 * @bo: The buffer object to evict 138 * @placement: Possible destination(s) for evicted BO 139 * 140 * Fill in placement data when ttm_bo_evict() is called 141 */ 142 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 143 struct ttm_placement *placement) 144 { 145 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 146 struct amdgpu_bo *abo; 147 static const struct ttm_place placements = { 148 .fpfn = 0, 149 .lpfn = 0, 150 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 151 }; 152 153 /* Don't handle scatter gather BOs */ 154 if (bo->type == ttm_bo_type_sg) { 155 placement->num_placement = 0; 156 placement->num_busy_placement = 0; 157 return; 158 } 159 160 /* Object isn't an AMDGPU object so ignore */ 161 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 162 placement->placement = &placements; 163 placement->busy_placement = &placements; 164 placement->num_placement = 1; 165 placement->num_busy_placement = 1; 166 return; 167 } 168 169 abo = ttm_to_amdgpu_bo(bo); 170 switch (bo->mem.mem_type) { 171 case AMDGPU_PL_GDS: 172 case AMDGPU_PL_GWS: 173 case AMDGPU_PL_OA: 174 placement->num_placement = 0; 175 placement->num_busy_placement = 0; 176 return; 177 178 case TTM_PL_VRAM: 179 if (!adev->mman.buffer_funcs_enabled) { 180 /* Move to system memory */ 181 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 182 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 183 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 184 amdgpu_bo_in_cpu_visible_vram(abo)) { 185 186 /* Try evicting to the CPU inaccessible part of VRAM 187 * first, but only set GTT as busy placement, so this 188 * BO will be evicted to GTT rather than causing other 189 * BOs to be evicted from VRAM 190 */ 191 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 192 AMDGPU_GEM_DOMAIN_GTT); 193 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 194 abo->placements[0].lpfn = 0; 195 abo->placement.busy_placement = &abo->placements[1]; 196 abo->placement.num_busy_placement = 1; 197 } else { 198 /* Move to GTT memory */ 199 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 200 } 201 break; 202 case TTM_PL_TT: 203 default: 204 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 205 break; 206 } 207 *placement = abo->placement; 208 } 209 210 /** 211 * amdgpu_verify_access - Verify access for a mmap call 212 * 213 * @bo: The buffer object to map 214 * @filp: The file pointer from the process performing the mmap 215 * 216 * This is called by ttm_bo_mmap() to verify whether a process 217 * has the right to mmap a BO to their process space. 218 */ 219 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 220 { 221 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 222 223 /* 224 * Don't verify access for KFD BOs. They don't have a GEM 225 * object associated with them. 226 */ 227 if (abo->kfd_bo) 228 return 0; 229 230 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 231 return -EPERM; 232 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 233 filp->private_data); 234 } 235 236 /** 237 * amdgpu_move_null - Register memory for a buffer object 238 * 239 * @bo: The bo to assign the memory to 240 * @new_mem: The memory to be assigned. 241 * 242 * Assign the memory from new_mem to the memory of the buffer object bo. 243 */ 244 static void amdgpu_move_null(struct ttm_buffer_object *bo, 245 struct ttm_mem_reg *new_mem) 246 { 247 struct ttm_mem_reg *old_mem = &bo->mem; 248 249 BUG_ON(old_mem->mm_node != NULL); 250 *old_mem = *new_mem; 251 new_mem->mm_node = NULL; 252 } 253 254 /** 255 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 256 * 257 * @bo: The bo to assign the memory to. 258 * @mm_node: Memory manager node for drm allocator. 259 * @mem: The region where the bo resides. 260 * 261 */ 262 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 263 struct drm_mm_node *mm_node, 264 struct ttm_mem_reg *mem) 265 { 266 uint64_t addr = 0; 267 268 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 269 addr = mm_node->start << PAGE_SHIFT; 270 addr += bo->bdev->man[mem->mem_type].gpu_offset; 271 } 272 return addr; 273 } 274 275 /** 276 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 277 * @offset. It also modifies the offset to be within the drm_mm_node returned 278 * 279 * @mem: The region where the bo resides. 280 * @offset: The offset that drm_mm_node is used for finding. 281 * 282 */ 283 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 284 unsigned long *offset) 285 { 286 struct drm_mm_node *mm_node = mem->mm_node; 287 288 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 289 *offset -= (mm_node->size << PAGE_SHIFT); 290 ++mm_node; 291 } 292 return mm_node; 293 } 294 295 /** 296 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 297 * 298 * The function copies @size bytes from {src->mem + src->offset} to 299 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 300 * move and different for a BO to BO copy. 301 * 302 * @f: Returns the last fence if multiple jobs are submitted. 303 */ 304 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 305 struct amdgpu_copy_mem *src, 306 struct amdgpu_copy_mem *dst, 307 uint64_t size, 308 struct dma_resv *resv, 309 struct dma_fence **f) 310 { 311 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 312 struct drm_mm_node *src_mm, *dst_mm; 313 uint64_t src_node_start, dst_node_start, src_node_size, 314 dst_node_size, src_page_offset, dst_page_offset; 315 struct dma_fence *fence = NULL; 316 int r = 0; 317 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 318 AMDGPU_GPU_PAGE_SIZE); 319 320 if (!adev->mman.buffer_funcs_enabled) { 321 DRM_ERROR("Trying to move memory with ring turned off.\n"); 322 return -EINVAL; 323 } 324 325 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 326 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 327 src->offset; 328 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 329 src_page_offset = src_node_start & (PAGE_SIZE - 1); 330 331 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 332 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 333 dst->offset; 334 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 335 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 336 337 mutex_lock(&adev->mman.gtt_window_lock); 338 339 while (size) { 340 unsigned long cur_size; 341 uint64_t from = src_node_start, to = dst_node_start; 342 struct dma_fence *next; 343 344 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 345 * begins at an offset, then adjust the size accordingly 346 */ 347 cur_size = min3(min(src_node_size, dst_node_size), size, 348 GTT_MAX_BYTES); 349 if (cur_size + src_page_offset > GTT_MAX_BYTES || 350 cur_size + dst_page_offset > GTT_MAX_BYTES) 351 cur_size -= max(src_page_offset, dst_page_offset); 352 353 /* Map only what needs to be accessed. Map src to window 0 and 354 * dst to window 1 355 */ 356 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 357 r = amdgpu_map_buffer(src->bo, src->mem, 358 PFN_UP(cur_size + src_page_offset), 359 src_node_start, 0, ring, 360 &from); 361 if (r) 362 goto error; 363 /* Adjust the offset because amdgpu_map_buffer returns 364 * start of mapped page 365 */ 366 from += src_page_offset; 367 } 368 369 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 370 r = amdgpu_map_buffer(dst->bo, dst->mem, 371 PFN_UP(cur_size + dst_page_offset), 372 dst_node_start, 1, ring, 373 &to); 374 if (r) 375 goto error; 376 to += dst_page_offset; 377 } 378 379 r = amdgpu_copy_buffer(ring, from, to, cur_size, 380 resv, &next, false, true); 381 if (r) 382 goto error; 383 384 dma_fence_put(fence); 385 fence = next; 386 387 size -= cur_size; 388 if (!size) 389 break; 390 391 src_node_size -= cur_size; 392 if (!src_node_size) { 393 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 394 src->mem); 395 src_node_size = (src_mm->size << PAGE_SHIFT); 396 src_page_offset = 0; 397 } else { 398 src_node_start += cur_size; 399 src_page_offset = src_node_start & (PAGE_SIZE - 1); 400 } 401 dst_node_size -= cur_size; 402 if (!dst_node_size) { 403 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 404 dst->mem); 405 dst_node_size = (dst_mm->size << PAGE_SHIFT); 406 dst_page_offset = 0; 407 } else { 408 dst_node_start += cur_size; 409 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 410 } 411 } 412 error: 413 mutex_unlock(&adev->mman.gtt_window_lock); 414 if (f) 415 *f = dma_fence_get(fence); 416 dma_fence_put(fence); 417 return r; 418 } 419 420 /** 421 * amdgpu_move_blit - Copy an entire buffer to another buffer 422 * 423 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 424 * help move buffers to and from VRAM. 425 */ 426 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 427 bool evict, bool no_wait_gpu, 428 struct ttm_mem_reg *new_mem, 429 struct ttm_mem_reg *old_mem) 430 { 431 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 432 struct amdgpu_copy_mem src, dst; 433 struct dma_fence *fence = NULL; 434 int r; 435 436 src.bo = bo; 437 dst.bo = bo; 438 src.mem = old_mem; 439 dst.mem = new_mem; 440 src.offset = 0; 441 dst.offset = 0; 442 443 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 444 new_mem->num_pages << PAGE_SHIFT, 445 bo->base.resv, &fence); 446 if (r) 447 goto error; 448 449 /* clear the space being freed */ 450 if (old_mem->mem_type == TTM_PL_VRAM && 451 (ttm_to_amdgpu_bo(bo)->flags & 452 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 453 struct dma_fence *wipe_fence = NULL; 454 455 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 456 NULL, &wipe_fence); 457 if (r) { 458 goto error; 459 } else if (wipe_fence) { 460 dma_fence_put(fence); 461 fence = wipe_fence; 462 } 463 } 464 465 /* Always block for VM page tables before committing the new location */ 466 if (bo->type == ttm_bo_type_kernel) 467 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 468 else 469 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 470 dma_fence_put(fence); 471 return r; 472 473 error: 474 if (fence) 475 dma_fence_wait(fence, false); 476 dma_fence_put(fence); 477 return r; 478 } 479 480 /** 481 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 482 * 483 * Called by amdgpu_bo_move(). 484 */ 485 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 486 struct ttm_operation_ctx *ctx, 487 struct ttm_mem_reg *new_mem) 488 { 489 struct ttm_mem_reg *old_mem = &bo->mem; 490 struct ttm_mem_reg tmp_mem; 491 struct ttm_place placements; 492 struct ttm_placement placement; 493 int r; 494 495 /* create space/pages for new_mem in GTT space */ 496 tmp_mem = *new_mem; 497 tmp_mem.mm_node = NULL; 498 placement.num_placement = 1; 499 placement.placement = &placements; 500 placement.num_busy_placement = 1; 501 placement.busy_placement = &placements; 502 placements.fpfn = 0; 503 placements.lpfn = 0; 504 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 505 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 506 if (unlikely(r)) { 507 pr_err("Failed to find GTT space for blit from VRAM\n"); 508 return r; 509 } 510 511 /* set caching flags */ 512 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 513 if (unlikely(r)) { 514 goto out_cleanup; 515 } 516 517 /* Bind the memory to the GTT space */ 518 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 519 if (unlikely(r)) { 520 goto out_cleanup; 521 } 522 523 /* blit VRAM to GTT */ 524 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 525 if (unlikely(r)) { 526 goto out_cleanup; 527 } 528 529 /* move BO (in tmp_mem) to new_mem */ 530 r = ttm_bo_move_ttm(bo, ctx, new_mem); 531 out_cleanup: 532 ttm_bo_mem_put(bo, &tmp_mem); 533 return r; 534 } 535 536 /** 537 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 538 * 539 * Called by amdgpu_bo_move(). 540 */ 541 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 542 struct ttm_operation_ctx *ctx, 543 struct ttm_mem_reg *new_mem) 544 { 545 struct ttm_mem_reg *old_mem = &bo->mem; 546 struct ttm_mem_reg tmp_mem; 547 struct ttm_placement placement; 548 struct ttm_place placements; 549 int r; 550 551 /* make space in GTT for old_mem buffer */ 552 tmp_mem = *new_mem; 553 tmp_mem.mm_node = NULL; 554 placement.num_placement = 1; 555 placement.placement = &placements; 556 placement.num_busy_placement = 1; 557 placement.busy_placement = &placements; 558 placements.fpfn = 0; 559 placements.lpfn = 0; 560 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 561 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 562 if (unlikely(r)) { 563 pr_err("Failed to find GTT space for blit to VRAM\n"); 564 return r; 565 } 566 567 /* move/bind old memory to GTT space */ 568 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 569 if (unlikely(r)) { 570 goto out_cleanup; 571 } 572 573 /* copy to VRAM */ 574 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 575 if (unlikely(r)) { 576 goto out_cleanup; 577 } 578 out_cleanup: 579 ttm_bo_mem_put(bo, &tmp_mem); 580 return r; 581 } 582 583 /** 584 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 585 * 586 * Called by amdgpu_bo_move() 587 */ 588 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 589 struct ttm_mem_reg *mem) 590 { 591 struct drm_mm_node *nodes = mem->mm_node; 592 593 if (mem->mem_type == TTM_PL_SYSTEM || 594 mem->mem_type == TTM_PL_TT) 595 return true; 596 if (mem->mem_type != TTM_PL_VRAM) 597 return false; 598 599 /* ttm_mem_reg_ioremap only supports contiguous memory */ 600 if (nodes->size != mem->num_pages) 601 return false; 602 603 return ((nodes->start + nodes->size) << PAGE_SHIFT) 604 <= adev->gmc.visible_vram_size; 605 } 606 607 /** 608 * amdgpu_bo_move - Move a buffer object to a new memory location 609 * 610 * Called by ttm_bo_handle_move_mem() 611 */ 612 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 613 struct ttm_operation_ctx *ctx, 614 struct ttm_mem_reg *new_mem) 615 { 616 struct amdgpu_device *adev; 617 struct amdgpu_bo *abo; 618 struct ttm_mem_reg *old_mem = &bo->mem; 619 int r; 620 621 /* Can't move a pinned BO */ 622 abo = ttm_to_amdgpu_bo(bo); 623 if (WARN_ON_ONCE(abo->pin_count > 0)) 624 return -EINVAL; 625 626 adev = amdgpu_ttm_adev(bo->bdev); 627 628 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 629 amdgpu_move_null(bo, new_mem); 630 return 0; 631 } 632 if ((old_mem->mem_type == TTM_PL_TT && 633 new_mem->mem_type == TTM_PL_SYSTEM) || 634 (old_mem->mem_type == TTM_PL_SYSTEM && 635 new_mem->mem_type == TTM_PL_TT)) { 636 /* bind is enough */ 637 amdgpu_move_null(bo, new_mem); 638 return 0; 639 } 640 if (old_mem->mem_type == AMDGPU_PL_GDS || 641 old_mem->mem_type == AMDGPU_PL_GWS || 642 old_mem->mem_type == AMDGPU_PL_OA || 643 new_mem->mem_type == AMDGPU_PL_GDS || 644 new_mem->mem_type == AMDGPU_PL_GWS || 645 new_mem->mem_type == AMDGPU_PL_OA) { 646 /* Nothing to save here */ 647 amdgpu_move_null(bo, new_mem); 648 return 0; 649 } 650 651 if (!adev->mman.buffer_funcs_enabled) { 652 r = -ENODEV; 653 goto memcpy; 654 } 655 656 if (old_mem->mem_type == TTM_PL_VRAM && 657 new_mem->mem_type == TTM_PL_SYSTEM) { 658 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 659 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 660 new_mem->mem_type == TTM_PL_VRAM) { 661 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 662 } else { 663 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 664 new_mem, old_mem); 665 } 666 667 if (r) { 668 memcpy: 669 /* Check that all memory is CPU accessible */ 670 if (!amdgpu_mem_visible(adev, old_mem) || 671 !amdgpu_mem_visible(adev, new_mem)) { 672 pr_err("Move buffer fallback to memcpy unavailable\n"); 673 return r; 674 } 675 676 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 677 if (r) 678 return r; 679 } 680 681 if (bo->type == ttm_bo_type_device && 682 new_mem->mem_type == TTM_PL_VRAM && 683 old_mem->mem_type != TTM_PL_VRAM) { 684 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 685 * accesses the BO after it's moved. 686 */ 687 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 688 } 689 690 /* update statistics */ 691 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 692 return 0; 693 } 694 695 /** 696 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 697 * 698 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 699 */ 700 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 701 { 702 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 703 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 704 struct drm_mm_node *mm_node = mem->mm_node; 705 706 mem->bus.addr = NULL; 707 mem->bus.offset = 0; 708 mem->bus.size = mem->num_pages << PAGE_SHIFT; 709 mem->bus.base = 0; 710 mem->bus.is_iomem = false; 711 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 712 return -EINVAL; 713 switch (mem->mem_type) { 714 case TTM_PL_SYSTEM: 715 /* system memory */ 716 return 0; 717 case TTM_PL_TT: 718 break; 719 case TTM_PL_VRAM: 720 mem->bus.offset = mem->start << PAGE_SHIFT; 721 /* check if it's visible */ 722 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 723 return -EINVAL; 724 /* Only physically contiguous buffers apply. In a contiguous 725 * buffer, size of the first mm_node would match the number of 726 * pages in ttm_mem_reg. 727 */ 728 if (adev->mman.aper_base_kaddr && 729 (mm_node->size == mem->num_pages)) 730 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 731 mem->bus.offset; 732 733 mem->bus.base = adev->gmc.aper_base; 734 mem->bus.is_iomem = true; 735 break; 736 default: 737 return -EINVAL; 738 } 739 return 0; 740 } 741 742 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 743 { 744 } 745 746 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 747 unsigned long page_offset) 748 { 749 struct drm_mm_node *mm; 750 unsigned long offset = (page_offset << PAGE_SHIFT); 751 752 mm = amdgpu_find_mm_node(&bo->mem, &offset); 753 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 754 (offset >> PAGE_SHIFT); 755 } 756 757 /* 758 * TTM backend functions. 759 */ 760 struct amdgpu_ttm_tt { 761 struct ttm_dma_tt ttm; 762 struct drm_gem_object *gobj; 763 u64 offset; 764 uint64_t userptr; 765 struct task_struct *usertask; 766 uint32_t userflags; 767 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 768 struct hmm_range *range; 769 #endif 770 }; 771 772 /** 773 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 774 * memory and start HMM tracking CPU page table update 775 * 776 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 777 * once afterwards to stop HMM tracking 778 */ 779 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 780 781 #define MAX_RETRY_HMM_RANGE_FAULT 16 782 783 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 784 { 785 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL; 786 struct ttm_tt *ttm = bo->tbo.ttm; 787 struct amdgpu_ttm_tt *gtt = (void *)ttm; 788 struct mm_struct *mm = gtt->usertask->mm; 789 unsigned long start = gtt->userptr; 790 struct vm_area_struct *vma; 791 struct hmm_range *range; 792 unsigned long i; 793 uint64_t *pfns; 794 int r = 0; 795 796 if (!mm) /* Happens during process shutdown */ 797 return -ESRCH; 798 799 if (unlikely(!mirror)) { 800 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n"); 801 r = -EFAULT; 802 goto out; 803 } 804 805 vma = find_vma(mm, start); 806 if (unlikely(!vma || start < vma->vm_start)) { 807 r = -EFAULT; 808 goto out; 809 } 810 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 811 vma->vm_file)) { 812 r = -EPERM; 813 goto out; 814 } 815 816 range = kzalloc(sizeof(*range), GFP_KERNEL); 817 if (unlikely(!range)) { 818 r = -ENOMEM; 819 goto out; 820 } 821 822 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL); 823 if (unlikely(!pfns)) { 824 r = -ENOMEM; 825 goto out_free_ranges; 826 } 827 828 amdgpu_hmm_init_range(range); 829 range->default_flags = range->flags[HMM_PFN_VALID]; 830 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ? 831 0 : range->flags[HMM_PFN_WRITE]; 832 range->pfn_flags_mask = 0; 833 range->pfns = pfns; 834 range->start = start; 835 range->end = start + ttm->num_pages * PAGE_SIZE; 836 837 hmm_range_register(range, mirror); 838 839 /* 840 * Just wait for range to be valid, safe to ignore return value as we 841 * will use the return value of hmm_range_fault() below under the 842 * mmap_sem to ascertain the validity of the range. 843 */ 844 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT); 845 846 down_read(&mm->mmap_sem); 847 r = hmm_range_fault(range, 0); 848 up_read(&mm->mmap_sem); 849 850 if (unlikely(r < 0)) 851 goto out_free_pfns; 852 853 for (i = 0; i < ttm->num_pages; i++) { 854 pages[i] = hmm_device_entry_to_page(range, pfns[i]); 855 if (unlikely(!pages[i])) { 856 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 857 i, pfns[i]); 858 r = -ENOMEM; 859 860 goto out_free_pfns; 861 } 862 } 863 864 gtt->range = range; 865 866 return 0; 867 868 out_free_pfns: 869 hmm_range_unregister(range); 870 kvfree(pfns); 871 out_free_ranges: 872 kfree(range); 873 out: 874 return r; 875 } 876 877 /** 878 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 879 * Check if the pages backing this ttm range have been invalidated 880 * 881 * Returns: true if pages are still valid 882 */ 883 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 884 { 885 struct amdgpu_ttm_tt *gtt = (void *)ttm; 886 bool r = false; 887 888 if (!gtt || !gtt->userptr) 889 return false; 890 891 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 892 gtt->userptr, ttm->num_pages); 893 894 WARN_ONCE(!gtt->range || !gtt->range->pfns, 895 "No user pages to check\n"); 896 897 if (gtt->range) { 898 r = hmm_range_valid(gtt->range); 899 hmm_range_unregister(gtt->range); 900 901 kvfree(gtt->range->pfns); 902 kfree(gtt->range); 903 gtt->range = NULL; 904 } 905 906 return r; 907 } 908 #endif 909 910 /** 911 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 912 * 913 * Called by amdgpu_cs_list_validate(). This creates the page list 914 * that backs user memory and will ultimately be mapped into the device 915 * address space. 916 */ 917 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 918 { 919 unsigned long i; 920 921 for (i = 0; i < ttm->num_pages; ++i) 922 ttm->pages[i] = pages ? pages[i] : NULL; 923 } 924 925 /** 926 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 927 * 928 * Called by amdgpu_ttm_backend_bind() 929 **/ 930 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 931 { 932 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 933 struct amdgpu_ttm_tt *gtt = (void *)ttm; 934 unsigned nents; 935 int r; 936 937 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 938 enum dma_data_direction direction = write ? 939 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 940 941 /* Allocate an SG array and squash pages into it */ 942 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 943 ttm->num_pages << PAGE_SHIFT, 944 GFP_KERNEL); 945 if (r) 946 goto release_sg; 947 948 /* Map SG to device */ 949 r = -ENOMEM; 950 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 951 if (nents != ttm->sg->nents) 952 goto release_sg; 953 954 /* convert SG to linear array of pages and dma addresses */ 955 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 956 gtt->ttm.dma_address, ttm->num_pages); 957 958 return 0; 959 960 release_sg: 961 kfree(ttm->sg); 962 return r; 963 } 964 965 /** 966 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 967 */ 968 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 969 { 970 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 971 struct amdgpu_ttm_tt *gtt = (void *)ttm; 972 973 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 974 enum dma_data_direction direction = write ? 975 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 976 977 /* double check that we don't free the table twice */ 978 if (!ttm->sg->sgl) 979 return; 980 981 /* unmap the pages mapped to the device */ 982 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 983 984 sg_free_table(ttm->sg); 985 986 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 987 if (gtt->range && 988 ttm->pages[0] == hmm_device_entry_to_page(gtt->range, 989 gtt->range->pfns[0])) 990 WARN_ONCE(1, "Missing get_user_page_done\n"); 991 #endif 992 } 993 994 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 995 struct ttm_buffer_object *tbo, 996 uint64_t flags) 997 { 998 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 999 struct ttm_tt *ttm = tbo->ttm; 1000 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1001 int r; 1002 1003 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1004 uint64_t page_idx = 1; 1005 1006 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1007 ttm->pages, gtt->ttm.dma_address, flags); 1008 if (r) 1009 goto gart_bind_fail; 1010 1011 /* Patch mtype of the second part BO */ 1012 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1013 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1014 1015 r = amdgpu_gart_bind(adev, 1016 gtt->offset + (page_idx << PAGE_SHIFT), 1017 ttm->num_pages - page_idx, 1018 &ttm->pages[page_idx], 1019 &(gtt->ttm.dma_address[page_idx]), flags); 1020 } else { 1021 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1022 ttm->pages, gtt->ttm.dma_address, flags); 1023 } 1024 1025 gart_bind_fail: 1026 if (r) 1027 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1028 ttm->num_pages, gtt->offset); 1029 1030 return r; 1031 } 1032 1033 /** 1034 * amdgpu_ttm_backend_bind - Bind GTT memory 1035 * 1036 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1037 * This handles binding GTT memory to the device address space. 1038 */ 1039 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1040 struct ttm_mem_reg *bo_mem) 1041 { 1042 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1043 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1044 uint64_t flags; 1045 int r = 0; 1046 1047 if (gtt->userptr) { 1048 r = amdgpu_ttm_tt_pin_userptr(ttm); 1049 if (r) { 1050 DRM_ERROR("failed to pin userptr\n"); 1051 return r; 1052 } 1053 } 1054 if (!ttm->num_pages) { 1055 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1056 ttm->num_pages, bo_mem, ttm); 1057 } 1058 1059 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1060 bo_mem->mem_type == AMDGPU_PL_GWS || 1061 bo_mem->mem_type == AMDGPU_PL_OA) 1062 return -EINVAL; 1063 1064 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1065 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1066 return 0; 1067 } 1068 1069 /* compute PTE flags relevant to this BO memory */ 1070 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1071 1072 /* bind pages into GART page tables */ 1073 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1074 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1075 ttm->pages, gtt->ttm.dma_address, flags); 1076 1077 if (r) 1078 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1079 ttm->num_pages, gtt->offset); 1080 return r; 1081 } 1082 1083 /** 1084 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1085 */ 1086 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1087 { 1088 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1089 struct ttm_operation_ctx ctx = { false, false }; 1090 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1091 struct ttm_mem_reg tmp; 1092 struct ttm_placement placement; 1093 struct ttm_place placements; 1094 uint64_t addr, flags; 1095 int r; 1096 1097 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1098 return 0; 1099 1100 addr = amdgpu_gmc_agp_addr(bo); 1101 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1102 bo->mem.start = addr >> PAGE_SHIFT; 1103 } else { 1104 1105 /* allocate GART space */ 1106 tmp = bo->mem; 1107 tmp.mm_node = NULL; 1108 placement.num_placement = 1; 1109 placement.placement = &placements; 1110 placement.num_busy_placement = 1; 1111 placement.busy_placement = &placements; 1112 placements.fpfn = 0; 1113 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1114 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1115 TTM_PL_FLAG_TT; 1116 1117 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1118 if (unlikely(r)) 1119 return r; 1120 1121 /* compute PTE flags for this buffer object */ 1122 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1123 1124 /* Bind pages */ 1125 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1126 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1127 if (unlikely(r)) { 1128 ttm_bo_mem_put(bo, &tmp); 1129 return r; 1130 } 1131 1132 ttm_bo_mem_put(bo, &bo->mem); 1133 bo->mem = tmp; 1134 } 1135 1136 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1137 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * amdgpu_ttm_recover_gart - Rebind GTT pages 1144 * 1145 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1146 * rebind GTT pages during a GPU reset. 1147 */ 1148 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1149 { 1150 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1151 uint64_t flags; 1152 int r; 1153 1154 if (!tbo->ttm) 1155 return 0; 1156 1157 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1158 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1159 1160 return r; 1161 } 1162 1163 /** 1164 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1165 * 1166 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1167 * ttm_tt_destroy(). 1168 */ 1169 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1170 { 1171 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1172 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1173 int r; 1174 1175 /* if the pages have userptr pinning then clear that first */ 1176 if (gtt->userptr) 1177 amdgpu_ttm_tt_unpin_userptr(ttm); 1178 1179 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1180 return 0; 1181 1182 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1183 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1184 if (r) 1185 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1186 gtt->ttm.ttm.num_pages, gtt->offset); 1187 return r; 1188 } 1189 1190 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1191 { 1192 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1193 1194 if (gtt->usertask) 1195 put_task_struct(gtt->usertask); 1196 1197 ttm_dma_tt_fini(>t->ttm); 1198 kfree(gtt); 1199 } 1200 1201 static struct ttm_backend_func amdgpu_backend_func = { 1202 .bind = &amdgpu_ttm_backend_bind, 1203 .unbind = &amdgpu_ttm_backend_unbind, 1204 .destroy = &amdgpu_ttm_backend_destroy, 1205 }; 1206 1207 /** 1208 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1209 * 1210 * @bo: The buffer object to create a GTT ttm_tt object around 1211 * 1212 * Called by ttm_tt_create(). 1213 */ 1214 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1215 uint32_t page_flags) 1216 { 1217 struct amdgpu_ttm_tt *gtt; 1218 1219 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1220 if (gtt == NULL) { 1221 return NULL; 1222 } 1223 gtt->ttm.ttm.func = &amdgpu_backend_func; 1224 gtt->gobj = &bo->base; 1225 1226 /* allocate space for the uninitialized page entries */ 1227 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1228 kfree(gtt); 1229 return NULL; 1230 } 1231 return >t->ttm.ttm; 1232 } 1233 1234 /** 1235 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1236 * 1237 * Map the pages of a ttm_tt object to an address space visible 1238 * to the underlying device. 1239 */ 1240 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1241 struct ttm_operation_ctx *ctx) 1242 { 1243 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1244 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1245 1246 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1247 if (gtt && gtt->userptr) { 1248 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1249 if (!ttm->sg) 1250 return -ENOMEM; 1251 1252 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1253 ttm->state = tt_unbound; 1254 return 0; 1255 } 1256 1257 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1258 if (!ttm->sg) { 1259 struct dma_buf_attachment *attach; 1260 struct sg_table *sgt; 1261 1262 attach = gtt->gobj->import_attach; 1263 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1264 if (IS_ERR(sgt)) 1265 return PTR_ERR(sgt); 1266 1267 ttm->sg = sgt; 1268 } 1269 1270 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1271 gtt->ttm.dma_address, 1272 ttm->num_pages); 1273 ttm->state = tt_unbound; 1274 return 0; 1275 } 1276 1277 #ifdef CONFIG_SWIOTLB 1278 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1279 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1280 } 1281 #endif 1282 1283 /* fall back to generic helper to populate the page array 1284 * and map them to the device */ 1285 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1286 } 1287 1288 /** 1289 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1290 * 1291 * Unmaps pages of a ttm_tt object from the device address space and 1292 * unpopulates the page array backing it. 1293 */ 1294 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1295 { 1296 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1297 struct amdgpu_device *adev; 1298 1299 if (gtt && gtt->userptr) { 1300 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1301 kfree(ttm->sg); 1302 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1303 return; 1304 } 1305 1306 if (ttm->sg && gtt->gobj->import_attach) { 1307 struct dma_buf_attachment *attach; 1308 1309 attach = gtt->gobj->import_attach; 1310 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1311 ttm->sg = NULL; 1312 return; 1313 } 1314 1315 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1316 return; 1317 1318 adev = amdgpu_ttm_adev(ttm->bdev); 1319 1320 #ifdef CONFIG_SWIOTLB 1321 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1322 ttm_dma_unpopulate(>t->ttm, adev->dev); 1323 return; 1324 } 1325 #endif 1326 1327 /* fall back to generic helper to unmap and unpopulate array */ 1328 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1329 } 1330 1331 /** 1332 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1333 * task 1334 * 1335 * @ttm: The ttm_tt object to bind this userptr object to 1336 * @addr: The address in the current tasks VM space to use 1337 * @flags: Requirements of userptr object. 1338 * 1339 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1340 * to current task 1341 */ 1342 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1343 uint32_t flags) 1344 { 1345 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1346 1347 if (gtt == NULL) 1348 return -EINVAL; 1349 1350 gtt->userptr = addr; 1351 gtt->userflags = flags; 1352 1353 if (gtt->usertask) 1354 put_task_struct(gtt->usertask); 1355 gtt->usertask = current->group_leader; 1356 get_task_struct(gtt->usertask); 1357 1358 return 0; 1359 } 1360 1361 /** 1362 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1363 */ 1364 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1365 { 1366 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1367 1368 if (gtt == NULL) 1369 return NULL; 1370 1371 if (gtt->usertask == NULL) 1372 return NULL; 1373 1374 return gtt->usertask->mm; 1375 } 1376 1377 /** 1378 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1379 * address range for the current task. 1380 * 1381 */ 1382 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1383 unsigned long end) 1384 { 1385 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1386 unsigned long size; 1387 1388 if (gtt == NULL || !gtt->userptr) 1389 return false; 1390 1391 /* Return false if no part of the ttm_tt object lies within 1392 * the range 1393 */ 1394 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1395 if (gtt->userptr > end || gtt->userptr + size <= start) 1396 return false; 1397 1398 return true; 1399 } 1400 1401 /** 1402 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1403 */ 1404 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1405 { 1406 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1407 1408 if (gtt == NULL || !gtt->userptr) 1409 return false; 1410 1411 return true; 1412 } 1413 1414 /** 1415 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1416 */ 1417 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1418 { 1419 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1420 1421 if (gtt == NULL) 1422 return false; 1423 1424 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1425 } 1426 1427 /** 1428 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1429 * 1430 * @ttm: The ttm_tt object to compute the flags for 1431 * @mem: The memory registry backing this ttm_tt object 1432 * 1433 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1434 */ 1435 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1436 { 1437 uint64_t flags = 0; 1438 1439 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1440 flags |= AMDGPU_PTE_VALID; 1441 1442 if (mem && mem->mem_type == TTM_PL_TT) { 1443 flags |= AMDGPU_PTE_SYSTEM; 1444 1445 if (ttm->caching_state == tt_cached) 1446 flags |= AMDGPU_PTE_SNOOPED; 1447 } 1448 1449 return flags; 1450 } 1451 1452 /** 1453 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1454 * 1455 * @ttm: The ttm_tt object to compute the flags for 1456 * @mem: The memory registry backing this ttm_tt object 1457 1458 * Figure out the flags to use for a VM PTE (Page Table Entry). 1459 */ 1460 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1461 struct ttm_mem_reg *mem) 1462 { 1463 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1464 1465 flags |= adev->gart.gart_pte_flags; 1466 flags |= AMDGPU_PTE_READABLE; 1467 1468 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1469 flags |= AMDGPU_PTE_WRITEABLE; 1470 1471 return flags; 1472 } 1473 1474 /** 1475 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1476 * object. 1477 * 1478 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1479 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1480 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1481 * used to clean out a memory space. 1482 */ 1483 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1484 const struct ttm_place *place) 1485 { 1486 unsigned long num_pages = bo->mem.num_pages; 1487 struct drm_mm_node *node = bo->mem.mm_node; 1488 struct dma_resv_list *flist; 1489 struct dma_fence *f; 1490 int i; 1491 1492 /* Don't evict VM page tables while they are busy, otherwise we can't 1493 * cleanly handle page faults. 1494 */ 1495 if (bo->type == ttm_bo_type_kernel && 1496 !dma_resv_test_signaled_rcu(bo->base.resv, true)) 1497 return false; 1498 1499 /* If bo is a KFD BO, check if the bo belongs to the current process. 1500 * If true, then return false as any KFD process needs all its BOs to 1501 * be resident to run successfully 1502 */ 1503 flist = dma_resv_get_list(bo->base.resv); 1504 if (flist) { 1505 for (i = 0; i < flist->shared_count; ++i) { 1506 f = rcu_dereference_protected(flist->shared[i], 1507 dma_resv_held(bo->base.resv)); 1508 if (amdkfd_fence_check_mm(f, current->mm)) 1509 return false; 1510 } 1511 } 1512 1513 switch (bo->mem.mem_type) { 1514 case TTM_PL_TT: 1515 return true; 1516 1517 case TTM_PL_VRAM: 1518 /* Check each drm MM node individually */ 1519 while (num_pages) { 1520 if (place->fpfn < (node->start + node->size) && 1521 !(place->lpfn && place->lpfn <= node->start)) 1522 return true; 1523 1524 num_pages -= node->size; 1525 ++node; 1526 } 1527 return false; 1528 1529 default: 1530 break; 1531 } 1532 1533 return ttm_bo_eviction_valuable(bo, place); 1534 } 1535 1536 /** 1537 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1538 * 1539 * @bo: The buffer object to read/write 1540 * @offset: Offset into buffer object 1541 * @buf: Secondary buffer to write/read from 1542 * @len: Length in bytes of access 1543 * @write: true if writing 1544 * 1545 * This is used to access VRAM that backs a buffer object via MMIO 1546 * access for debugging purposes. 1547 */ 1548 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1549 unsigned long offset, 1550 void *buf, int len, int write) 1551 { 1552 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1553 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1554 struct drm_mm_node *nodes; 1555 uint32_t value = 0; 1556 int ret = 0; 1557 uint64_t pos; 1558 unsigned long flags; 1559 1560 if (bo->mem.mem_type != TTM_PL_VRAM) 1561 return -EIO; 1562 1563 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1564 pos = (nodes->start << PAGE_SHIFT) + offset; 1565 1566 while (len && pos < adev->gmc.mc_vram_size) { 1567 uint64_t aligned_pos = pos & ~(uint64_t)3; 1568 uint32_t bytes = 4 - (pos & 3); 1569 uint32_t shift = (pos & 3) * 8; 1570 uint32_t mask = 0xffffffff << shift; 1571 1572 if (len < bytes) { 1573 mask &= 0xffffffff >> (bytes - len) * 8; 1574 bytes = len; 1575 } 1576 1577 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1578 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1579 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1580 if (!write || mask != 0xffffffff) 1581 value = RREG32_NO_KIQ(mmMM_DATA); 1582 if (write) { 1583 value &= ~mask; 1584 value |= (*(uint32_t *)buf << shift) & mask; 1585 WREG32_NO_KIQ(mmMM_DATA, value); 1586 } 1587 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1588 if (!write) { 1589 value = (value & mask) >> shift; 1590 memcpy(buf, &value, bytes); 1591 } 1592 1593 ret += bytes; 1594 buf = (uint8_t *)buf + bytes; 1595 pos += bytes; 1596 len -= bytes; 1597 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1598 ++nodes; 1599 pos = (nodes->start << PAGE_SHIFT); 1600 } 1601 } 1602 1603 return ret; 1604 } 1605 1606 static struct ttm_bo_driver amdgpu_bo_driver = { 1607 .ttm_tt_create = &amdgpu_ttm_tt_create, 1608 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1609 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1610 .invalidate_caches = &amdgpu_invalidate_caches, 1611 .init_mem_type = &amdgpu_init_mem_type, 1612 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1613 .evict_flags = &amdgpu_evict_flags, 1614 .move = &amdgpu_bo_move, 1615 .verify_access = &amdgpu_verify_access, 1616 .move_notify = &amdgpu_bo_move_notify, 1617 .release_notify = &amdgpu_bo_release_notify, 1618 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1619 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1620 .io_mem_free = &amdgpu_ttm_io_mem_free, 1621 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1622 .access_memory = &amdgpu_ttm_access_memory, 1623 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1624 }; 1625 1626 /* 1627 * Firmware Reservation functions 1628 */ 1629 /** 1630 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1631 * 1632 * @adev: amdgpu_device pointer 1633 * 1634 * free fw reserved vram if it has been reserved. 1635 */ 1636 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1637 { 1638 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1639 NULL, &adev->fw_vram_usage.va); 1640 } 1641 1642 /** 1643 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1644 * 1645 * @adev: amdgpu_device pointer 1646 * 1647 * create bo vram reservation from fw. 1648 */ 1649 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1650 { 1651 uint64_t vram_size = adev->gmc.visible_vram_size; 1652 1653 adev->fw_vram_usage.va = NULL; 1654 adev->fw_vram_usage.reserved_bo = NULL; 1655 1656 if (adev->fw_vram_usage.size == 0 || 1657 adev->fw_vram_usage.size > vram_size) 1658 return 0; 1659 1660 return amdgpu_bo_create_kernel_at(adev, 1661 adev->fw_vram_usage.start_offset, 1662 adev->fw_vram_usage.size, 1663 AMDGPU_GEM_DOMAIN_VRAM, 1664 &adev->fw_vram_usage.reserved_bo, 1665 &adev->fw_vram_usage.va); 1666 } 1667 1668 /* 1669 * Memoy training reservation functions 1670 */ 1671 1672 /** 1673 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1674 * 1675 * @adev: amdgpu_device pointer 1676 * 1677 * free memory training reserved vram if it has been reserved. 1678 */ 1679 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1680 { 1681 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1682 1683 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1684 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1685 ctx->c2p_bo = NULL; 1686 1687 amdgpu_bo_free_kernel(&ctx->p2c_bo, NULL, NULL); 1688 ctx->p2c_bo = NULL; 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training 1695 * 1696 * @adev: amdgpu_device pointer 1697 * 1698 * create bo vram reservation from memory training. 1699 */ 1700 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev) 1701 { 1702 int ret; 1703 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1704 1705 memset(ctx, 0, sizeof(*ctx)); 1706 if (!adev->fw_vram_usage.mem_train_support) { 1707 DRM_DEBUG("memory training does not support!\n"); 1708 return 0; 1709 } 1710 1711 ctx->c2p_train_data_offset = adev->fw_vram_usage.mem_train_fb_loc; 1712 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1713 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1714 1715 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1716 ctx->train_data_size, 1717 ctx->p2c_train_data_offset, 1718 ctx->c2p_train_data_offset); 1719 1720 ret = amdgpu_bo_create_kernel_at(adev, 1721 ctx->p2c_train_data_offset, 1722 ctx->train_data_size, 1723 AMDGPU_GEM_DOMAIN_VRAM, 1724 &ctx->p2c_bo, 1725 NULL); 1726 if (ret) { 1727 DRM_ERROR("alloc p2c_bo failed(%d)!\n", ret); 1728 goto Err_out; 1729 } 1730 1731 ret = amdgpu_bo_create_kernel_at(adev, 1732 ctx->c2p_train_data_offset, 1733 ctx->train_data_size, 1734 AMDGPU_GEM_DOMAIN_VRAM, 1735 &ctx->c2p_bo, 1736 NULL); 1737 if (ret) { 1738 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1739 goto Err_out; 1740 } 1741 1742 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1743 return 0; 1744 1745 Err_out: 1746 amdgpu_ttm_training_reserve_vram_fini(adev); 1747 return ret; 1748 } 1749 1750 /** 1751 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1752 * gtt/vram related fields. 1753 * 1754 * This initializes all of the memory space pools that the TTM layer 1755 * will need such as the GTT space (system memory mapped to the device), 1756 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1757 * can be mapped per VMID. 1758 */ 1759 int amdgpu_ttm_init(struct amdgpu_device *adev) 1760 { 1761 uint64_t gtt_size; 1762 int r; 1763 u64 vis_vram_limit; 1764 void *stolen_vga_buf; 1765 1766 mutex_init(&adev->mman.gtt_window_lock); 1767 1768 /* No others user of address space so set it to 0 */ 1769 r = ttm_bo_device_init(&adev->mman.bdev, 1770 &amdgpu_bo_driver, 1771 adev->ddev->anon_inode->i_mapping, 1772 adev->ddev->vma_offset_manager, 1773 dma_addressing_limited(adev->dev)); 1774 if (r) { 1775 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1776 return r; 1777 } 1778 adev->mman.initialized = true; 1779 1780 /* We opt to avoid OOM on system pages allocations */ 1781 adev->mman.bdev.no_retry = true; 1782 1783 /* Initialize VRAM pool with all of VRAM divided into pages */ 1784 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1785 adev->gmc.real_vram_size >> PAGE_SHIFT); 1786 if (r) { 1787 DRM_ERROR("Failed initializing VRAM heap.\n"); 1788 return r; 1789 } 1790 1791 /* Reduce size of CPU-visible VRAM if requested */ 1792 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1793 if (amdgpu_vis_vram_limit > 0 && 1794 vis_vram_limit <= adev->gmc.visible_vram_size) 1795 adev->gmc.visible_vram_size = vis_vram_limit; 1796 1797 /* Change the size here instead of the init above so only lpfn is affected */ 1798 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1799 #ifdef CONFIG_64BIT 1800 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1801 adev->gmc.visible_vram_size); 1802 #endif 1803 1804 /* 1805 *The reserved vram for firmware must be pinned to the specified 1806 *place on the VRAM, so reserve it early. 1807 */ 1808 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1809 if (r) { 1810 return r; 1811 } 1812 1813 /* 1814 *The reserved vram for memory training must be pinned to the specified 1815 *place on the VRAM, so reserve it early. 1816 */ 1817 r = amdgpu_ttm_training_reserve_vram_init(adev); 1818 if (r) 1819 return r; 1820 1821 /* allocate memory as required for VGA 1822 * This is used for VGA emulation and pre-OS scanout buffers to 1823 * avoid display artifacts while transitioning between pre-OS 1824 * and driver. */ 1825 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1826 AMDGPU_GEM_DOMAIN_VRAM, 1827 &adev->stolen_vga_memory, 1828 NULL, &stolen_vga_buf); 1829 if (r) 1830 return r; 1831 1832 /* 1833 * reserve one TMR (64K) memory at the top of VRAM which holds 1834 * IP Discovery data and is protected by PSP. 1835 */ 1836 r = amdgpu_bo_create_kernel_at(adev, 1837 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE, 1838 DISCOVERY_TMR_SIZE, 1839 AMDGPU_GEM_DOMAIN_VRAM, 1840 &adev->discovery_memory, 1841 NULL); 1842 if (r) 1843 return r; 1844 1845 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1846 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1847 1848 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1849 * or whatever the user passed on module init */ 1850 if (amdgpu_gtt_size == -1) { 1851 struct sysinfo si; 1852 1853 si_meminfo(&si); 1854 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1855 adev->gmc.mc_vram_size), 1856 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1857 } 1858 else 1859 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1860 1861 /* Initialize GTT memory pool */ 1862 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1863 if (r) { 1864 DRM_ERROR("Failed initializing GTT heap.\n"); 1865 return r; 1866 } 1867 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1868 (unsigned)(gtt_size / (1024 * 1024))); 1869 1870 /* Initialize various on-chip memory pools */ 1871 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1872 adev->gds.gds_size); 1873 if (r) { 1874 DRM_ERROR("Failed initializing GDS heap.\n"); 1875 return r; 1876 } 1877 1878 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1879 adev->gds.gws_size); 1880 if (r) { 1881 DRM_ERROR("Failed initializing gws heap.\n"); 1882 return r; 1883 } 1884 1885 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1886 adev->gds.oa_size); 1887 if (r) { 1888 DRM_ERROR("Failed initializing oa heap.\n"); 1889 return r; 1890 } 1891 1892 /* Register debugfs entries for amdgpu_ttm */ 1893 r = amdgpu_ttm_debugfs_init(adev); 1894 if (r) { 1895 DRM_ERROR("Failed to init debugfs\n"); 1896 return r; 1897 } 1898 return 0; 1899 } 1900 1901 /** 1902 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1903 */ 1904 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1905 { 1906 void *stolen_vga_buf; 1907 /* return the VGA stolen memory (if any) back to VRAM */ 1908 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); 1909 } 1910 1911 /** 1912 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1913 */ 1914 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1915 { 1916 if (!adev->mman.initialized) 1917 return; 1918 1919 amdgpu_ttm_debugfs_fini(adev); 1920 amdgpu_ttm_training_reserve_vram_fini(adev); 1921 /* return the IP Discovery TMR memory back to VRAM */ 1922 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); 1923 amdgpu_ttm_fw_reserve_vram_fini(adev); 1924 1925 if (adev->mman.aper_base_kaddr) 1926 iounmap(adev->mman.aper_base_kaddr); 1927 adev->mman.aper_base_kaddr = NULL; 1928 1929 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1930 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1931 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1932 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1933 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1934 ttm_bo_device_release(&adev->mman.bdev); 1935 adev->mman.initialized = false; 1936 DRM_INFO("amdgpu: ttm finalized\n"); 1937 } 1938 1939 /** 1940 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1941 * 1942 * @adev: amdgpu_device pointer 1943 * @enable: true when we can use buffer functions. 1944 * 1945 * Enable/disable use of buffer functions during suspend/resume. This should 1946 * only be called at bootup or when userspace isn't running. 1947 */ 1948 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1949 { 1950 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1951 uint64_t size; 1952 int r; 1953 1954 if (!adev->mman.initialized || adev->in_gpu_reset || 1955 adev->mman.buffer_funcs_enabled == enable) 1956 return; 1957 1958 if (enable) { 1959 struct amdgpu_ring *ring; 1960 struct drm_sched_rq *rq; 1961 1962 ring = adev->mman.buffer_funcs_ring; 1963 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1964 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1965 if (r) { 1966 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1967 r); 1968 return; 1969 } 1970 } else { 1971 drm_sched_entity_destroy(&adev->mman.entity); 1972 dma_fence_put(man->move); 1973 man->move = NULL; 1974 } 1975 1976 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1977 if (enable) 1978 size = adev->gmc.real_vram_size; 1979 else 1980 size = adev->gmc.visible_vram_size; 1981 man->size = size >> PAGE_SHIFT; 1982 adev->mman.buffer_funcs_enabled = enable; 1983 } 1984 1985 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1986 { 1987 struct drm_file *file_priv = filp->private_data; 1988 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 1989 1990 if (adev == NULL) 1991 return -EINVAL; 1992 1993 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1994 } 1995 1996 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1997 struct ttm_mem_reg *mem, unsigned num_pages, 1998 uint64_t offset, unsigned window, 1999 struct amdgpu_ring *ring, 2000 uint64_t *addr) 2001 { 2002 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 2003 struct amdgpu_device *adev = ring->adev; 2004 struct ttm_tt *ttm = bo->ttm; 2005 struct amdgpu_job *job; 2006 unsigned num_dw, num_bytes; 2007 dma_addr_t *dma_address; 2008 struct dma_fence *fence; 2009 uint64_t src_addr, dst_addr; 2010 uint64_t flags; 2011 int r; 2012 2013 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 2014 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 2015 2016 *addr = adev->gmc.gart_start; 2017 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 2018 AMDGPU_GPU_PAGE_SIZE; 2019 2020 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 2021 num_bytes = num_pages * 8; 2022 2023 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 2024 if (r) 2025 return r; 2026 2027 src_addr = num_dw * 4; 2028 src_addr += job->ibs[0].gpu_addr; 2029 2030 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 2031 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 2032 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 2033 dst_addr, num_bytes); 2034 2035 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2036 WARN_ON(job->ibs[0].length_dw > num_dw); 2037 2038 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2039 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2040 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2041 &job->ibs[0].ptr[num_dw]); 2042 if (r) 2043 goto error_free; 2044 2045 r = amdgpu_job_submit(job, &adev->mman.entity, 2046 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2047 if (r) 2048 goto error_free; 2049 2050 dma_fence_put(fence); 2051 2052 return r; 2053 2054 error_free: 2055 amdgpu_job_free(job); 2056 return r; 2057 } 2058 2059 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2060 uint64_t dst_offset, uint32_t byte_count, 2061 struct dma_resv *resv, 2062 struct dma_fence **fence, bool direct_submit, 2063 bool vm_needs_flush) 2064 { 2065 struct amdgpu_device *adev = ring->adev; 2066 struct amdgpu_job *job; 2067 2068 uint32_t max_bytes; 2069 unsigned num_loops, num_dw; 2070 unsigned i; 2071 int r; 2072 2073 if (direct_submit && !ring->sched.ready) { 2074 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2075 return -EINVAL; 2076 } 2077 2078 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2079 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2080 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2081 2082 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2083 if (r) 2084 return r; 2085 2086 if (vm_needs_flush) { 2087 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2088 job->vm_needs_flush = true; 2089 } 2090 if (resv) { 2091 r = amdgpu_sync_resv(adev, &job->sync, resv, 2092 AMDGPU_FENCE_OWNER_UNDEFINED, 2093 false); 2094 if (r) { 2095 DRM_ERROR("sync failed (%d).\n", r); 2096 goto error_free; 2097 } 2098 } 2099 2100 for (i = 0; i < num_loops; i++) { 2101 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2102 2103 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2104 dst_offset, cur_size_in_bytes); 2105 2106 src_offset += cur_size_in_bytes; 2107 dst_offset += cur_size_in_bytes; 2108 byte_count -= cur_size_in_bytes; 2109 } 2110 2111 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2112 WARN_ON(job->ibs[0].length_dw > num_dw); 2113 if (direct_submit) 2114 r = amdgpu_job_submit_direct(job, ring, fence); 2115 else 2116 r = amdgpu_job_submit(job, &adev->mman.entity, 2117 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2118 if (r) 2119 goto error_free; 2120 2121 return r; 2122 2123 error_free: 2124 amdgpu_job_free(job); 2125 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2126 return r; 2127 } 2128 2129 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2130 uint32_t src_data, 2131 struct dma_resv *resv, 2132 struct dma_fence **fence) 2133 { 2134 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2135 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2136 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2137 2138 struct drm_mm_node *mm_node; 2139 unsigned long num_pages; 2140 unsigned int num_loops, num_dw; 2141 2142 struct amdgpu_job *job; 2143 int r; 2144 2145 if (!adev->mman.buffer_funcs_enabled) { 2146 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2147 return -EINVAL; 2148 } 2149 2150 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2151 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2152 if (r) 2153 return r; 2154 } 2155 2156 num_pages = bo->tbo.num_pages; 2157 mm_node = bo->tbo.mem.mm_node; 2158 num_loops = 0; 2159 while (num_pages) { 2160 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2161 2162 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2163 num_pages -= mm_node->size; 2164 ++mm_node; 2165 } 2166 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2167 2168 /* for IB padding */ 2169 num_dw += 64; 2170 2171 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2172 if (r) 2173 return r; 2174 2175 if (resv) { 2176 r = amdgpu_sync_resv(adev, &job->sync, resv, 2177 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2178 if (r) { 2179 DRM_ERROR("sync failed (%d).\n", r); 2180 goto error_free; 2181 } 2182 } 2183 2184 num_pages = bo->tbo.num_pages; 2185 mm_node = bo->tbo.mem.mm_node; 2186 2187 while (num_pages) { 2188 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2189 uint64_t dst_addr; 2190 2191 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2192 while (byte_count) { 2193 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2194 max_bytes); 2195 2196 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2197 dst_addr, cur_size_in_bytes); 2198 2199 dst_addr += cur_size_in_bytes; 2200 byte_count -= cur_size_in_bytes; 2201 } 2202 2203 num_pages -= mm_node->size; 2204 ++mm_node; 2205 } 2206 2207 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2208 WARN_ON(job->ibs[0].length_dw > num_dw); 2209 r = amdgpu_job_submit(job, &adev->mman.entity, 2210 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2211 if (r) 2212 goto error_free; 2213 2214 return 0; 2215 2216 error_free: 2217 amdgpu_job_free(job); 2218 return r; 2219 } 2220 2221 #if defined(CONFIG_DEBUG_FS) 2222 2223 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2224 { 2225 struct drm_info_node *node = (struct drm_info_node *)m->private; 2226 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2227 struct drm_device *dev = node->minor->dev; 2228 struct amdgpu_device *adev = dev->dev_private; 2229 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2230 struct drm_printer p = drm_seq_file_printer(m); 2231 2232 man->func->debug(man, &p); 2233 return 0; 2234 } 2235 2236 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2237 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2238 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2239 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2240 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2241 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2242 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2243 #ifdef CONFIG_SWIOTLB 2244 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2245 #endif 2246 }; 2247 2248 /** 2249 * amdgpu_ttm_vram_read - Linear read access to VRAM 2250 * 2251 * Accesses VRAM via MMIO for debugging purposes. 2252 */ 2253 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2254 size_t size, loff_t *pos) 2255 { 2256 struct amdgpu_device *adev = file_inode(f)->i_private; 2257 ssize_t result = 0; 2258 int r; 2259 2260 if (size & 0x3 || *pos & 0x3) 2261 return -EINVAL; 2262 2263 if (*pos >= adev->gmc.mc_vram_size) 2264 return -ENXIO; 2265 2266 while (size) { 2267 unsigned long flags; 2268 uint32_t value; 2269 2270 if (*pos >= adev->gmc.mc_vram_size) 2271 return result; 2272 2273 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2274 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2275 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2276 value = RREG32_NO_KIQ(mmMM_DATA); 2277 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2278 2279 r = put_user(value, (uint32_t *)buf); 2280 if (r) 2281 return r; 2282 2283 result += 4; 2284 buf += 4; 2285 *pos += 4; 2286 size -= 4; 2287 } 2288 2289 return result; 2290 } 2291 2292 /** 2293 * amdgpu_ttm_vram_write - Linear write access to VRAM 2294 * 2295 * Accesses VRAM via MMIO for debugging purposes. 2296 */ 2297 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2298 size_t size, loff_t *pos) 2299 { 2300 struct amdgpu_device *adev = file_inode(f)->i_private; 2301 ssize_t result = 0; 2302 int r; 2303 2304 if (size & 0x3 || *pos & 0x3) 2305 return -EINVAL; 2306 2307 if (*pos >= adev->gmc.mc_vram_size) 2308 return -ENXIO; 2309 2310 while (size) { 2311 unsigned long flags; 2312 uint32_t value; 2313 2314 if (*pos >= adev->gmc.mc_vram_size) 2315 return result; 2316 2317 r = get_user(value, (uint32_t *)buf); 2318 if (r) 2319 return r; 2320 2321 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2322 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2323 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2324 WREG32_NO_KIQ(mmMM_DATA, value); 2325 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2326 2327 result += 4; 2328 buf += 4; 2329 *pos += 4; 2330 size -= 4; 2331 } 2332 2333 return result; 2334 } 2335 2336 static const struct file_operations amdgpu_ttm_vram_fops = { 2337 .owner = THIS_MODULE, 2338 .read = amdgpu_ttm_vram_read, 2339 .write = amdgpu_ttm_vram_write, 2340 .llseek = default_llseek, 2341 }; 2342 2343 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2344 2345 /** 2346 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2347 */ 2348 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2349 size_t size, loff_t *pos) 2350 { 2351 struct amdgpu_device *adev = file_inode(f)->i_private; 2352 ssize_t result = 0; 2353 int r; 2354 2355 while (size) { 2356 loff_t p = *pos / PAGE_SIZE; 2357 unsigned off = *pos & ~PAGE_MASK; 2358 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2359 struct page *page; 2360 void *ptr; 2361 2362 if (p >= adev->gart.num_cpu_pages) 2363 return result; 2364 2365 page = adev->gart.pages[p]; 2366 if (page) { 2367 ptr = kmap(page); 2368 ptr += off; 2369 2370 r = copy_to_user(buf, ptr, cur_size); 2371 kunmap(adev->gart.pages[p]); 2372 } else 2373 r = clear_user(buf, cur_size); 2374 2375 if (r) 2376 return -EFAULT; 2377 2378 result += cur_size; 2379 buf += cur_size; 2380 *pos += cur_size; 2381 size -= cur_size; 2382 } 2383 2384 return result; 2385 } 2386 2387 static const struct file_operations amdgpu_ttm_gtt_fops = { 2388 .owner = THIS_MODULE, 2389 .read = amdgpu_ttm_gtt_read, 2390 .llseek = default_llseek 2391 }; 2392 2393 #endif 2394 2395 /** 2396 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2397 * 2398 * This function is used to read memory that has been mapped to the 2399 * GPU and the known addresses are not physical addresses but instead 2400 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2401 */ 2402 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2403 size_t size, loff_t *pos) 2404 { 2405 struct amdgpu_device *adev = file_inode(f)->i_private; 2406 struct iommu_domain *dom; 2407 ssize_t result = 0; 2408 int r; 2409 2410 /* retrieve the IOMMU domain if any for this device */ 2411 dom = iommu_get_domain_for_dev(adev->dev); 2412 2413 while (size) { 2414 phys_addr_t addr = *pos & PAGE_MASK; 2415 loff_t off = *pos & ~PAGE_MASK; 2416 size_t bytes = PAGE_SIZE - off; 2417 unsigned long pfn; 2418 struct page *p; 2419 void *ptr; 2420 2421 bytes = bytes < size ? bytes : size; 2422 2423 /* Translate the bus address to a physical address. If 2424 * the domain is NULL it means there is no IOMMU active 2425 * and the address translation is the identity 2426 */ 2427 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2428 2429 pfn = addr >> PAGE_SHIFT; 2430 if (!pfn_valid(pfn)) 2431 return -EPERM; 2432 2433 p = pfn_to_page(pfn); 2434 if (p->mapping != adev->mman.bdev.dev_mapping) 2435 return -EPERM; 2436 2437 ptr = kmap(p); 2438 r = copy_to_user(buf, ptr + off, bytes); 2439 kunmap(p); 2440 if (r) 2441 return -EFAULT; 2442 2443 size -= bytes; 2444 *pos += bytes; 2445 result += bytes; 2446 } 2447 2448 return result; 2449 } 2450 2451 /** 2452 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2453 * 2454 * This function is used to write memory that has been mapped to the 2455 * GPU and the known addresses are not physical addresses but instead 2456 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2457 */ 2458 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2459 size_t size, loff_t *pos) 2460 { 2461 struct amdgpu_device *adev = file_inode(f)->i_private; 2462 struct iommu_domain *dom; 2463 ssize_t result = 0; 2464 int r; 2465 2466 dom = iommu_get_domain_for_dev(adev->dev); 2467 2468 while (size) { 2469 phys_addr_t addr = *pos & PAGE_MASK; 2470 loff_t off = *pos & ~PAGE_MASK; 2471 size_t bytes = PAGE_SIZE - off; 2472 unsigned long pfn; 2473 struct page *p; 2474 void *ptr; 2475 2476 bytes = bytes < size ? bytes : size; 2477 2478 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2479 2480 pfn = addr >> PAGE_SHIFT; 2481 if (!pfn_valid(pfn)) 2482 return -EPERM; 2483 2484 p = pfn_to_page(pfn); 2485 if (p->mapping != adev->mman.bdev.dev_mapping) 2486 return -EPERM; 2487 2488 ptr = kmap(p); 2489 r = copy_from_user(ptr + off, buf, bytes); 2490 kunmap(p); 2491 if (r) 2492 return -EFAULT; 2493 2494 size -= bytes; 2495 *pos += bytes; 2496 result += bytes; 2497 } 2498 2499 return result; 2500 } 2501 2502 static const struct file_operations amdgpu_ttm_iomem_fops = { 2503 .owner = THIS_MODULE, 2504 .read = amdgpu_iomem_read, 2505 .write = amdgpu_iomem_write, 2506 .llseek = default_llseek 2507 }; 2508 2509 static const struct { 2510 char *name; 2511 const struct file_operations *fops; 2512 int domain; 2513 } ttm_debugfs_entries[] = { 2514 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2515 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2516 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2517 #endif 2518 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2519 }; 2520 2521 #endif 2522 2523 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2524 { 2525 #if defined(CONFIG_DEBUG_FS) 2526 unsigned count; 2527 2528 struct drm_minor *minor = adev->ddev->primary; 2529 struct dentry *ent, *root = minor->debugfs_root; 2530 2531 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2532 ent = debugfs_create_file( 2533 ttm_debugfs_entries[count].name, 2534 S_IFREG | S_IRUGO, root, 2535 adev, 2536 ttm_debugfs_entries[count].fops); 2537 if (IS_ERR(ent)) 2538 return PTR_ERR(ent); 2539 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2540 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2541 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2542 i_size_write(ent->d_inode, adev->gmc.gart_size); 2543 adev->mman.debugfs_entries[count] = ent; 2544 } 2545 2546 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2547 2548 #ifdef CONFIG_SWIOTLB 2549 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2550 --count; 2551 #endif 2552 2553 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2554 #else 2555 return 0; 2556 #endif 2557 } 2558 2559 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2560 { 2561 #if defined(CONFIG_DEBUG_FS) 2562 unsigned i; 2563 2564 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2565 debugfs_remove(adev->mman.debugfs_entries[i]); 2566 #endif 2567 } 2568