xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision d9a07577b8a3131c90c187fb2b89662bee535cfd)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 
44 #include <drm/ttm/ttm_bo_api.h>
45 #include <drm/ttm/ttm_bo_driver.h>
46 #include <drm/ttm/ttm_placement.h>
47 #include <drm/ttm/ttm_module.h>
48 #include <drm/ttm/ttm_page_alloc.h>
49 
50 #include <drm/drm_debugfs.h>
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "bif/bif_4_1_d.h"
60 
61 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
62 			     struct ttm_mem_reg *mem, unsigned num_pages,
63 			     uint64_t offset, unsigned window,
64 			     struct amdgpu_ring *ring,
65 			     uint64_t *addr);
66 
67 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
68 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
69 
70 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
71 {
72 	return 0;
73 }
74 
75 /**
76  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
77  * memory request.
78  *
79  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
80  * @type: The type of memory requested
81  * @man: The memory type manager for each domain
82  *
83  * This is called by ttm_bo_init_mm() when a buffer object is being
84  * initialized.
85  */
86 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
87 				struct ttm_mem_type_manager *man)
88 {
89 	struct amdgpu_device *adev;
90 
91 	adev = amdgpu_ttm_adev(bdev);
92 
93 	switch (type) {
94 	case TTM_PL_SYSTEM:
95 		/* System memory */
96 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
97 		man->available_caching = TTM_PL_MASK_CACHING;
98 		man->default_caching = TTM_PL_FLAG_CACHED;
99 		break;
100 	case TTM_PL_TT:
101 		/* GTT memory  */
102 		man->func = &amdgpu_gtt_mgr_func;
103 		man->gpu_offset = adev->gmc.gart_start;
104 		man->available_caching = TTM_PL_MASK_CACHING;
105 		man->default_caching = TTM_PL_FLAG_CACHED;
106 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
107 		break;
108 	case TTM_PL_VRAM:
109 		/* "On-card" video ram */
110 		man->func = &amdgpu_vram_mgr_func;
111 		man->gpu_offset = adev->gmc.vram_start;
112 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
113 			     TTM_MEMTYPE_FLAG_MAPPABLE;
114 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
115 		man->default_caching = TTM_PL_FLAG_WC;
116 		break;
117 	case AMDGPU_PL_GDS:
118 	case AMDGPU_PL_GWS:
119 	case AMDGPU_PL_OA:
120 		/* On-chip GDS memory*/
121 		man->func = &ttm_bo_manager_func;
122 		man->gpu_offset = 0;
123 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
124 		man->available_caching = TTM_PL_FLAG_UNCACHED;
125 		man->default_caching = TTM_PL_FLAG_UNCACHED;
126 		break;
127 	default:
128 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
129 		return -EINVAL;
130 	}
131 	return 0;
132 }
133 
134 /**
135  * amdgpu_evict_flags - Compute placement flags
136  *
137  * @bo: The buffer object to evict
138  * @placement: Possible destination(s) for evicted BO
139  *
140  * Fill in placement data when ttm_bo_evict() is called
141  */
142 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
143 				struct ttm_placement *placement)
144 {
145 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
146 	struct amdgpu_bo *abo;
147 	static const struct ttm_place placements = {
148 		.fpfn = 0,
149 		.lpfn = 0,
150 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
151 	};
152 
153 	/* Don't handle scatter gather BOs */
154 	if (bo->type == ttm_bo_type_sg) {
155 		placement->num_placement = 0;
156 		placement->num_busy_placement = 0;
157 		return;
158 	}
159 
160 	/* Object isn't an AMDGPU object so ignore */
161 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
162 		placement->placement = &placements;
163 		placement->busy_placement = &placements;
164 		placement->num_placement = 1;
165 		placement->num_busy_placement = 1;
166 		return;
167 	}
168 
169 	abo = ttm_to_amdgpu_bo(bo);
170 	switch (bo->mem.mem_type) {
171 	case AMDGPU_PL_GDS:
172 	case AMDGPU_PL_GWS:
173 	case AMDGPU_PL_OA:
174 		placement->num_placement = 0;
175 		placement->num_busy_placement = 0;
176 		return;
177 
178 	case TTM_PL_VRAM:
179 		if (!adev->mman.buffer_funcs_enabled) {
180 			/* Move to system memory */
181 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
182 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
183 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
184 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
185 
186 			/* Try evicting to the CPU inaccessible part of VRAM
187 			 * first, but only set GTT as busy placement, so this
188 			 * BO will be evicted to GTT rather than causing other
189 			 * BOs to be evicted from VRAM
190 			 */
191 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
192 							 AMDGPU_GEM_DOMAIN_GTT);
193 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
194 			abo->placements[0].lpfn = 0;
195 			abo->placement.busy_placement = &abo->placements[1];
196 			abo->placement.num_busy_placement = 1;
197 		} else {
198 			/* Move to GTT memory */
199 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
200 		}
201 		break;
202 	case TTM_PL_TT:
203 	default:
204 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
205 		break;
206 	}
207 	*placement = abo->placement;
208 }
209 
210 /**
211  * amdgpu_verify_access - Verify access for a mmap call
212  *
213  * @bo:	The buffer object to map
214  * @filp: The file pointer from the process performing the mmap
215  *
216  * This is called by ttm_bo_mmap() to verify whether a process
217  * has the right to mmap a BO to their process space.
218  */
219 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
220 {
221 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
222 
223 	/*
224 	 * Don't verify access for KFD BOs. They don't have a GEM
225 	 * object associated with them.
226 	 */
227 	if (abo->kfd_bo)
228 		return 0;
229 
230 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
231 		return -EPERM;
232 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
233 					  filp->private_data);
234 }
235 
236 /**
237  * amdgpu_move_null - Register memory for a buffer object
238  *
239  * @bo: The bo to assign the memory to
240  * @new_mem: The memory to be assigned.
241  *
242  * Assign the memory from new_mem to the memory of the buffer object bo.
243  */
244 static void amdgpu_move_null(struct ttm_buffer_object *bo,
245 			     struct ttm_mem_reg *new_mem)
246 {
247 	struct ttm_mem_reg *old_mem = &bo->mem;
248 
249 	BUG_ON(old_mem->mm_node != NULL);
250 	*old_mem = *new_mem;
251 	new_mem->mm_node = NULL;
252 }
253 
254 /**
255  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
256  *
257  * @bo: The bo to assign the memory to.
258  * @mm_node: Memory manager node for drm allocator.
259  * @mem: The region where the bo resides.
260  *
261  */
262 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
263 				    struct drm_mm_node *mm_node,
264 				    struct ttm_mem_reg *mem)
265 {
266 	uint64_t addr = 0;
267 
268 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
269 		addr = mm_node->start << PAGE_SHIFT;
270 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
271 	}
272 	return addr;
273 }
274 
275 /**
276  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
277  * @offset. It also modifies the offset to be within the drm_mm_node returned
278  *
279  * @mem: The region where the bo resides.
280  * @offset: The offset that drm_mm_node is used for finding.
281  *
282  */
283 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
284 					       unsigned long *offset)
285 {
286 	struct drm_mm_node *mm_node = mem->mm_node;
287 
288 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
289 		*offset -= (mm_node->size << PAGE_SHIFT);
290 		++mm_node;
291 	}
292 	return mm_node;
293 }
294 
295 /**
296  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
297  *
298  * The function copies @size bytes from {src->mem + src->offset} to
299  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
300  * move and different for a BO to BO copy.
301  *
302  * @f: Returns the last fence if multiple jobs are submitted.
303  */
304 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
305 			       struct amdgpu_copy_mem *src,
306 			       struct amdgpu_copy_mem *dst,
307 			       uint64_t size,
308 			       struct dma_resv *resv,
309 			       struct dma_fence **f)
310 {
311 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
312 	struct drm_mm_node *src_mm, *dst_mm;
313 	uint64_t src_node_start, dst_node_start, src_node_size,
314 		 dst_node_size, src_page_offset, dst_page_offset;
315 	struct dma_fence *fence = NULL;
316 	int r = 0;
317 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
318 					AMDGPU_GPU_PAGE_SIZE);
319 
320 	if (!adev->mman.buffer_funcs_enabled) {
321 		DRM_ERROR("Trying to move memory with ring turned off.\n");
322 		return -EINVAL;
323 	}
324 
325 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
326 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
327 					     src->offset;
328 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
329 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
330 
331 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
332 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
333 					     dst->offset;
334 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
335 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
336 
337 	mutex_lock(&adev->mman.gtt_window_lock);
338 
339 	while (size) {
340 		unsigned long cur_size;
341 		uint64_t from = src_node_start, to = dst_node_start;
342 		struct dma_fence *next;
343 
344 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
345 		 * begins at an offset, then adjust the size accordingly
346 		 */
347 		cur_size = min3(min(src_node_size, dst_node_size), size,
348 				GTT_MAX_BYTES);
349 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
350 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
351 			cur_size -= max(src_page_offset, dst_page_offset);
352 
353 		/* Map only what needs to be accessed. Map src to window 0 and
354 		 * dst to window 1
355 		 */
356 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
357 			r = amdgpu_map_buffer(src->bo, src->mem,
358 					PFN_UP(cur_size + src_page_offset),
359 					src_node_start, 0, ring,
360 					&from);
361 			if (r)
362 				goto error;
363 			/* Adjust the offset because amdgpu_map_buffer returns
364 			 * start of mapped page
365 			 */
366 			from += src_page_offset;
367 		}
368 
369 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
370 			r = amdgpu_map_buffer(dst->bo, dst->mem,
371 					PFN_UP(cur_size + dst_page_offset),
372 					dst_node_start, 1, ring,
373 					&to);
374 			if (r)
375 				goto error;
376 			to += dst_page_offset;
377 		}
378 
379 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
380 				       resv, &next, false, true);
381 		if (r)
382 			goto error;
383 
384 		dma_fence_put(fence);
385 		fence = next;
386 
387 		size -= cur_size;
388 		if (!size)
389 			break;
390 
391 		src_node_size -= cur_size;
392 		if (!src_node_size) {
393 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
394 							     src->mem);
395 			src_node_size = (src_mm->size << PAGE_SHIFT);
396 			src_page_offset = 0;
397 		} else {
398 			src_node_start += cur_size;
399 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
400 		}
401 		dst_node_size -= cur_size;
402 		if (!dst_node_size) {
403 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
404 							     dst->mem);
405 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
406 			dst_page_offset = 0;
407 		} else {
408 			dst_node_start += cur_size;
409 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
410 		}
411 	}
412 error:
413 	mutex_unlock(&adev->mman.gtt_window_lock);
414 	if (f)
415 		*f = dma_fence_get(fence);
416 	dma_fence_put(fence);
417 	return r;
418 }
419 
420 /**
421  * amdgpu_move_blit - Copy an entire buffer to another buffer
422  *
423  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
424  * help move buffers to and from VRAM.
425  */
426 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
427 			    bool evict, bool no_wait_gpu,
428 			    struct ttm_mem_reg *new_mem,
429 			    struct ttm_mem_reg *old_mem)
430 {
431 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
432 	struct amdgpu_copy_mem src, dst;
433 	struct dma_fence *fence = NULL;
434 	int r;
435 
436 	src.bo = bo;
437 	dst.bo = bo;
438 	src.mem = old_mem;
439 	dst.mem = new_mem;
440 	src.offset = 0;
441 	dst.offset = 0;
442 
443 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
444 				       new_mem->num_pages << PAGE_SHIFT,
445 				       bo->base.resv, &fence);
446 	if (r)
447 		goto error;
448 
449 	/* clear the space being freed */
450 	if (old_mem->mem_type == TTM_PL_VRAM &&
451 	    (ttm_to_amdgpu_bo(bo)->flags &
452 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
453 		struct dma_fence *wipe_fence = NULL;
454 
455 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
456 				       NULL, &wipe_fence);
457 		if (r) {
458 			goto error;
459 		} else if (wipe_fence) {
460 			dma_fence_put(fence);
461 			fence = wipe_fence;
462 		}
463 	}
464 
465 	/* Always block for VM page tables before committing the new location */
466 	if (bo->type == ttm_bo_type_kernel)
467 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
468 	else
469 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
470 	dma_fence_put(fence);
471 	return r;
472 
473 error:
474 	if (fence)
475 		dma_fence_wait(fence, false);
476 	dma_fence_put(fence);
477 	return r;
478 }
479 
480 /**
481  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
482  *
483  * Called by amdgpu_bo_move().
484  */
485 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
486 				struct ttm_operation_ctx *ctx,
487 				struct ttm_mem_reg *new_mem)
488 {
489 	struct ttm_mem_reg *old_mem = &bo->mem;
490 	struct ttm_mem_reg tmp_mem;
491 	struct ttm_place placements;
492 	struct ttm_placement placement;
493 	int r;
494 
495 	/* create space/pages for new_mem in GTT space */
496 	tmp_mem = *new_mem;
497 	tmp_mem.mm_node = NULL;
498 	placement.num_placement = 1;
499 	placement.placement = &placements;
500 	placement.num_busy_placement = 1;
501 	placement.busy_placement = &placements;
502 	placements.fpfn = 0;
503 	placements.lpfn = 0;
504 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
505 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
506 	if (unlikely(r)) {
507 		pr_err("Failed to find GTT space for blit from VRAM\n");
508 		return r;
509 	}
510 
511 	/* set caching flags */
512 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
513 	if (unlikely(r)) {
514 		goto out_cleanup;
515 	}
516 
517 	/* Bind the memory to the GTT space */
518 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
519 	if (unlikely(r)) {
520 		goto out_cleanup;
521 	}
522 
523 	/* blit VRAM to GTT */
524 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
525 	if (unlikely(r)) {
526 		goto out_cleanup;
527 	}
528 
529 	/* move BO (in tmp_mem) to new_mem */
530 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
531 out_cleanup:
532 	ttm_bo_mem_put(bo, &tmp_mem);
533 	return r;
534 }
535 
536 /**
537  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
538  *
539  * Called by amdgpu_bo_move().
540  */
541 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
542 				struct ttm_operation_ctx *ctx,
543 				struct ttm_mem_reg *new_mem)
544 {
545 	struct ttm_mem_reg *old_mem = &bo->mem;
546 	struct ttm_mem_reg tmp_mem;
547 	struct ttm_placement placement;
548 	struct ttm_place placements;
549 	int r;
550 
551 	/* make space in GTT for old_mem buffer */
552 	tmp_mem = *new_mem;
553 	tmp_mem.mm_node = NULL;
554 	placement.num_placement = 1;
555 	placement.placement = &placements;
556 	placement.num_busy_placement = 1;
557 	placement.busy_placement = &placements;
558 	placements.fpfn = 0;
559 	placements.lpfn = 0;
560 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
561 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
562 	if (unlikely(r)) {
563 		pr_err("Failed to find GTT space for blit to VRAM\n");
564 		return r;
565 	}
566 
567 	/* move/bind old memory to GTT space */
568 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
569 	if (unlikely(r)) {
570 		goto out_cleanup;
571 	}
572 
573 	/* copy to VRAM */
574 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
575 	if (unlikely(r)) {
576 		goto out_cleanup;
577 	}
578 out_cleanup:
579 	ttm_bo_mem_put(bo, &tmp_mem);
580 	return r;
581 }
582 
583 /**
584  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
585  *
586  * Called by amdgpu_bo_move()
587  */
588 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
589 			       struct ttm_mem_reg *mem)
590 {
591 	struct drm_mm_node *nodes = mem->mm_node;
592 
593 	if (mem->mem_type == TTM_PL_SYSTEM ||
594 	    mem->mem_type == TTM_PL_TT)
595 		return true;
596 	if (mem->mem_type != TTM_PL_VRAM)
597 		return false;
598 
599 	/* ttm_mem_reg_ioremap only supports contiguous memory */
600 	if (nodes->size != mem->num_pages)
601 		return false;
602 
603 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
604 		<= adev->gmc.visible_vram_size;
605 }
606 
607 /**
608  * amdgpu_bo_move - Move a buffer object to a new memory location
609  *
610  * Called by ttm_bo_handle_move_mem()
611  */
612 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
613 			  struct ttm_operation_ctx *ctx,
614 			  struct ttm_mem_reg *new_mem)
615 {
616 	struct amdgpu_device *adev;
617 	struct amdgpu_bo *abo;
618 	struct ttm_mem_reg *old_mem = &bo->mem;
619 	int r;
620 
621 	/* Can't move a pinned BO */
622 	abo = ttm_to_amdgpu_bo(bo);
623 	if (WARN_ON_ONCE(abo->pin_count > 0))
624 		return -EINVAL;
625 
626 	adev = amdgpu_ttm_adev(bo->bdev);
627 
628 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
629 		amdgpu_move_null(bo, new_mem);
630 		return 0;
631 	}
632 	if ((old_mem->mem_type == TTM_PL_TT &&
633 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
634 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
635 	     new_mem->mem_type == TTM_PL_TT)) {
636 		/* bind is enough */
637 		amdgpu_move_null(bo, new_mem);
638 		return 0;
639 	}
640 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
641 	    old_mem->mem_type == AMDGPU_PL_GWS ||
642 	    old_mem->mem_type == AMDGPU_PL_OA ||
643 	    new_mem->mem_type == AMDGPU_PL_GDS ||
644 	    new_mem->mem_type == AMDGPU_PL_GWS ||
645 	    new_mem->mem_type == AMDGPU_PL_OA) {
646 		/* Nothing to save here */
647 		amdgpu_move_null(bo, new_mem);
648 		return 0;
649 	}
650 
651 	if (!adev->mman.buffer_funcs_enabled) {
652 		r = -ENODEV;
653 		goto memcpy;
654 	}
655 
656 	if (old_mem->mem_type == TTM_PL_VRAM &&
657 	    new_mem->mem_type == TTM_PL_SYSTEM) {
658 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
659 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
660 		   new_mem->mem_type == TTM_PL_VRAM) {
661 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
662 	} else {
663 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
664 				     new_mem, old_mem);
665 	}
666 
667 	if (r) {
668 memcpy:
669 		/* Check that all memory is CPU accessible */
670 		if (!amdgpu_mem_visible(adev, old_mem) ||
671 		    !amdgpu_mem_visible(adev, new_mem)) {
672 			pr_err("Move buffer fallback to memcpy unavailable\n");
673 			return r;
674 		}
675 
676 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
677 		if (r)
678 			return r;
679 	}
680 
681 	if (bo->type == ttm_bo_type_device &&
682 	    new_mem->mem_type == TTM_PL_VRAM &&
683 	    old_mem->mem_type != TTM_PL_VRAM) {
684 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
685 		 * accesses the BO after it's moved.
686 		 */
687 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
688 	}
689 
690 	/* update statistics */
691 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
692 	return 0;
693 }
694 
695 /**
696  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
697  *
698  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
699  */
700 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
701 {
702 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
703 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
704 	struct drm_mm_node *mm_node = mem->mm_node;
705 
706 	mem->bus.addr = NULL;
707 	mem->bus.offset = 0;
708 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
709 	mem->bus.base = 0;
710 	mem->bus.is_iomem = false;
711 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
712 		return -EINVAL;
713 	switch (mem->mem_type) {
714 	case TTM_PL_SYSTEM:
715 		/* system memory */
716 		return 0;
717 	case TTM_PL_TT:
718 		break;
719 	case TTM_PL_VRAM:
720 		mem->bus.offset = mem->start << PAGE_SHIFT;
721 		/* check if it's visible */
722 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
723 			return -EINVAL;
724 		/* Only physically contiguous buffers apply. In a contiguous
725 		 * buffer, size of the first mm_node would match the number of
726 		 * pages in ttm_mem_reg.
727 		 */
728 		if (adev->mman.aper_base_kaddr &&
729 		    (mm_node->size == mem->num_pages))
730 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
731 					mem->bus.offset;
732 
733 		mem->bus.base = adev->gmc.aper_base;
734 		mem->bus.is_iomem = true;
735 		break;
736 	default:
737 		return -EINVAL;
738 	}
739 	return 0;
740 }
741 
742 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
743 {
744 }
745 
746 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
747 					   unsigned long page_offset)
748 {
749 	struct drm_mm_node *mm;
750 	unsigned long offset = (page_offset << PAGE_SHIFT);
751 
752 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
753 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
754 		(offset >> PAGE_SHIFT);
755 }
756 
757 /*
758  * TTM backend functions.
759  */
760 struct amdgpu_ttm_tt {
761 	struct ttm_dma_tt	ttm;
762 	struct drm_gem_object	*gobj;
763 	u64			offset;
764 	uint64_t		userptr;
765 	struct task_struct	*usertask;
766 	uint32_t		userflags;
767 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
768 	struct hmm_range	*range;
769 #endif
770 };
771 
772 /**
773  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
774  * memory and start HMM tracking CPU page table update
775  *
776  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
777  * once afterwards to stop HMM tracking
778  */
779 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
780 
781 #define MAX_RETRY_HMM_RANGE_FAULT	16
782 
783 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
784 {
785 	struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
786 	struct ttm_tt *ttm = bo->tbo.ttm;
787 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
788 	struct mm_struct *mm = gtt->usertask->mm;
789 	unsigned long start = gtt->userptr;
790 	struct vm_area_struct *vma;
791 	struct hmm_range *range;
792 	unsigned long i;
793 	uint64_t *pfns;
794 	int r = 0;
795 
796 	if (!mm) /* Happens during process shutdown */
797 		return -ESRCH;
798 
799 	if (unlikely(!mirror)) {
800 		DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
801 		r = -EFAULT;
802 		goto out;
803 	}
804 
805 	vma = find_vma(mm, start);
806 	if (unlikely(!vma || start < vma->vm_start)) {
807 		r = -EFAULT;
808 		goto out;
809 	}
810 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
811 		vma->vm_file)) {
812 		r = -EPERM;
813 		goto out;
814 	}
815 
816 	range = kzalloc(sizeof(*range), GFP_KERNEL);
817 	if (unlikely(!range)) {
818 		r = -ENOMEM;
819 		goto out;
820 	}
821 
822 	pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
823 	if (unlikely(!pfns)) {
824 		r = -ENOMEM;
825 		goto out_free_ranges;
826 	}
827 
828 	amdgpu_hmm_init_range(range);
829 	range->default_flags = range->flags[HMM_PFN_VALID];
830 	range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
831 				0 : range->flags[HMM_PFN_WRITE];
832 	range->pfn_flags_mask = 0;
833 	range->pfns = pfns;
834 	range->start = start;
835 	range->end = start + ttm->num_pages * PAGE_SIZE;
836 
837 	hmm_range_register(range, mirror);
838 
839 	/*
840 	 * Just wait for range to be valid, safe to ignore return value as we
841 	 * will use the return value of hmm_range_fault() below under the
842 	 * mmap_sem to ascertain the validity of the range.
843 	 */
844 	hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
845 
846 	down_read(&mm->mmap_sem);
847 	r = hmm_range_fault(range, 0);
848 	up_read(&mm->mmap_sem);
849 
850 	if (unlikely(r < 0))
851 		goto out_free_pfns;
852 
853 	for (i = 0; i < ttm->num_pages; i++) {
854 		pages[i] = hmm_device_entry_to_page(range, pfns[i]);
855 		if (unlikely(!pages[i])) {
856 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
857 			       i, pfns[i]);
858 			r = -ENOMEM;
859 
860 			goto out_free_pfns;
861 		}
862 	}
863 
864 	gtt->range = range;
865 
866 	return 0;
867 
868 out_free_pfns:
869 	hmm_range_unregister(range);
870 	kvfree(pfns);
871 out_free_ranges:
872 	kfree(range);
873 out:
874 	return r;
875 }
876 
877 /**
878  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
879  * Check if the pages backing this ttm range have been invalidated
880  *
881  * Returns: true if pages are still valid
882  */
883 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
884 {
885 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
886 	bool r = false;
887 
888 	if (!gtt || !gtt->userptr)
889 		return false;
890 
891 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
892 		gtt->userptr, ttm->num_pages);
893 
894 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
895 		"No user pages to check\n");
896 
897 	if (gtt->range) {
898 		r = hmm_range_valid(gtt->range);
899 		hmm_range_unregister(gtt->range);
900 
901 		kvfree(gtt->range->pfns);
902 		kfree(gtt->range);
903 		gtt->range = NULL;
904 	}
905 
906 	return r;
907 }
908 #endif
909 
910 /**
911  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
912  *
913  * Called by amdgpu_cs_list_validate(). This creates the page list
914  * that backs user memory and will ultimately be mapped into the device
915  * address space.
916  */
917 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
918 {
919 	unsigned long i;
920 
921 	for (i = 0; i < ttm->num_pages; ++i)
922 		ttm->pages[i] = pages ? pages[i] : NULL;
923 }
924 
925 /**
926  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
927  *
928  * Called by amdgpu_ttm_backend_bind()
929  **/
930 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
931 {
932 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
933 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
934 	unsigned nents;
935 	int r;
936 
937 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
938 	enum dma_data_direction direction = write ?
939 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
940 
941 	/* Allocate an SG array and squash pages into it */
942 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
943 				      ttm->num_pages << PAGE_SHIFT,
944 				      GFP_KERNEL);
945 	if (r)
946 		goto release_sg;
947 
948 	/* Map SG to device */
949 	r = -ENOMEM;
950 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
951 	if (nents != ttm->sg->nents)
952 		goto release_sg;
953 
954 	/* convert SG to linear array of pages and dma addresses */
955 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
956 					 gtt->ttm.dma_address, ttm->num_pages);
957 
958 	return 0;
959 
960 release_sg:
961 	kfree(ttm->sg);
962 	return r;
963 }
964 
965 /**
966  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
967  */
968 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
969 {
970 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
971 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
972 
973 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
974 	enum dma_data_direction direction = write ?
975 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
976 
977 	/* double check that we don't free the table twice */
978 	if (!ttm->sg->sgl)
979 		return;
980 
981 	/* unmap the pages mapped to the device */
982 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
983 
984 	sg_free_table(ttm->sg);
985 
986 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
987 	if (gtt->range &&
988 	    ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
989 						      gtt->range->pfns[0]))
990 		WARN_ONCE(1, "Missing get_user_page_done\n");
991 #endif
992 }
993 
994 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
995 				struct ttm_buffer_object *tbo,
996 				uint64_t flags)
997 {
998 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
999 	struct ttm_tt *ttm = tbo->ttm;
1000 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1001 	int r;
1002 
1003 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1004 		uint64_t page_idx = 1;
1005 
1006 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1007 				ttm->pages, gtt->ttm.dma_address, flags);
1008 		if (r)
1009 			goto gart_bind_fail;
1010 
1011 		/* Patch mtype of the second part BO */
1012 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1013 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1014 
1015 		r = amdgpu_gart_bind(adev,
1016 				gtt->offset + (page_idx << PAGE_SHIFT),
1017 				ttm->num_pages - page_idx,
1018 				&ttm->pages[page_idx],
1019 				&(gtt->ttm.dma_address[page_idx]), flags);
1020 	} else {
1021 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1022 				     ttm->pages, gtt->ttm.dma_address, flags);
1023 	}
1024 
1025 gart_bind_fail:
1026 	if (r)
1027 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1028 			  ttm->num_pages, gtt->offset);
1029 
1030 	return r;
1031 }
1032 
1033 /**
1034  * amdgpu_ttm_backend_bind - Bind GTT memory
1035  *
1036  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1037  * This handles binding GTT memory to the device address space.
1038  */
1039 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1040 				   struct ttm_mem_reg *bo_mem)
1041 {
1042 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1043 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1044 	uint64_t flags;
1045 	int r = 0;
1046 
1047 	if (gtt->userptr) {
1048 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1049 		if (r) {
1050 			DRM_ERROR("failed to pin userptr\n");
1051 			return r;
1052 		}
1053 	}
1054 	if (!ttm->num_pages) {
1055 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1056 		     ttm->num_pages, bo_mem, ttm);
1057 	}
1058 
1059 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1060 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1061 	    bo_mem->mem_type == AMDGPU_PL_OA)
1062 		return -EINVAL;
1063 
1064 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1065 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1066 		return 0;
1067 	}
1068 
1069 	/* compute PTE flags relevant to this BO memory */
1070 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1071 
1072 	/* bind pages into GART page tables */
1073 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1074 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1075 		ttm->pages, gtt->ttm.dma_address, flags);
1076 
1077 	if (r)
1078 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1079 			  ttm->num_pages, gtt->offset);
1080 	return r;
1081 }
1082 
1083 /**
1084  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1085  */
1086 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1087 {
1088 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1089 	struct ttm_operation_ctx ctx = { false, false };
1090 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1091 	struct ttm_mem_reg tmp;
1092 	struct ttm_placement placement;
1093 	struct ttm_place placements;
1094 	uint64_t addr, flags;
1095 	int r;
1096 
1097 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1098 		return 0;
1099 
1100 	addr = amdgpu_gmc_agp_addr(bo);
1101 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1102 		bo->mem.start = addr >> PAGE_SHIFT;
1103 	} else {
1104 
1105 		/* allocate GART space */
1106 		tmp = bo->mem;
1107 		tmp.mm_node = NULL;
1108 		placement.num_placement = 1;
1109 		placement.placement = &placements;
1110 		placement.num_busy_placement = 1;
1111 		placement.busy_placement = &placements;
1112 		placements.fpfn = 0;
1113 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1114 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1115 			TTM_PL_FLAG_TT;
1116 
1117 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1118 		if (unlikely(r))
1119 			return r;
1120 
1121 		/* compute PTE flags for this buffer object */
1122 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1123 
1124 		/* Bind pages */
1125 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1126 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1127 		if (unlikely(r)) {
1128 			ttm_bo_mem_put(bo, &tmp);
1129 			return r;
1130 		}
1131 
1132 		ttm_bo_mem_put(bo, &bo->mem);
1133 		bo->mem = tmp;
1134 	}
1135 
1136 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1137 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * amdgpu_ttm_recover_gart - Rebind GTT pages
1144  *
1145  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1146  * rebind GTT pages during a GPU reset.
1147  */
1148 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1149 {
1150 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1151 	uint64_t flags;
1152 	int r;
1153 
1154 	if (!tbo->ttm)
1155 		return 0;
1156 
1157 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1158 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1159 
1160 	return r;
1161 }
1162 
1163 /**
1164  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1165  *
1166  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1167  * ttm_tt_destroy().
1168  */
1169 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1170 {
1171 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1172 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1173 	int r;
1174 
1175 	/* if the pages have userptr pinning then clear that first */
1176 	if (gtt->userptr)
1177 		amdgpu_ttm_tt_unpin_userptr(ttm);
1178 
1179 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1180 		return 0;
1181 
1182 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1183 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1184 	if (r)
1185 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1186 			  gtt->ttm.ttm.num_pages, gtt->offset);
1187 	return r;
1188 }
1189 
1190 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1191 {
1192 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1193 
1194 	if (gtt->usertask)
1195 		put_task_struct(gtt->usertask);
1196 
1197 	ttm_dma_tt_fini(&gtt->ttm);
1198 	kfree(gtt);
1199 }
1200 
1201 static struct ttm_backend_func amdgpu_backend_func = {
1202 	.bind = &amdgpu_ttm_backend_bind,
1203 	.unbind = &amdgpu_ttm_backend_unbind,
1204 	.destroy = &amdgpu_ttm_backend_destroy,
1205 };
1206 
1207 /**
1208  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1209  *
1210  * @bo: The buffer object to create a GTT ttm_tt object around
1211  *
1212  * Called by ttm_tt_create().
1213  */
1214 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1215 					   uint32_t page_flags)
1216 {
1217 	struct amdgpu_ttm_tt *gtt;
1218 
1219 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1220 	if (gtt == NULL) {
1221 		return NULL;
1222 	}
1223 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1224 	gtt->gobj = &bo->base;
1225 
1226 	/* allocate space for the uninitialized page entries */
1227 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1228 		kfree(gtt);
1229 		return NULL;
1230 	}
1231 	return &gtt->ttm.ttm;
1232 }
1233 
1234 /**
1235  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1236  *
1237  * Map the pages of a ttm_tt object to an address space visible
1238  * to the underlying device.
1239  */
1240 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1241 			struct ttm_operation_ctx *ctx)
1242 {
1243 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1244 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1245 
1246 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1247 	if (gtt && gtt->userptr) {
1248 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1249 		if (!ttm->sg)
1250 			return -ENOMEM;
1251 
1252 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1253 		ttm->state = tt_unbound;
1254 		return 0;
1255 	}
1256 
1257 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1258 		if (!ttm->sg) {
1259 			struct dma_buf_attachment *attach;
1260 			struct sg_table *sgt;
1261 
1262 			attach = gtt->gobj->import_attach;
1263 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1264 			if (IS_ERR(sgt))
1265 				return PTR_ERR(sgt);
1266 
1267 			ttm->sg = sgt;
1268 		}
1269 
1270 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1271 						 gtt->ttm.dma_address,
1272 						 ttm->num_pages);
1273 		ttm->state = tt_unbound;
1274 		return 0;
1275 	}
1276 
1277 #ifdef CONFIG_SWIOTLB
1278 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1279 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1280 	}
1281 #endif
1282 
1283 	/* fall back to generic helper to populate the page array
1284 	 * and map them to the device */
1285 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1286 }
1287 
1288 /**
1289  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1290  *
1291  * Unmaps pages of a ttm_tt object from the device address space and
1292  * unpopulates the page array backing it.
1293  */
1294 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1295 {
1296 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1297 	struct amdgpu_device *adev;
1298 
1299 	if (gtt && gtt->userptr) {
1300 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1301 		kfree(ttm->sg);
1302 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1303 		return;
1304 	}
1305 
1306 	if (ttm->sg && gtt->gobj->import_attach) {
1307 		struct dma_buf_attachment *attach;
1308 
1309 		attach = gtt->gobj->import_attach;
1310 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1311 		ttm->sg = NULL;
1312 		return;
1313 	}
1314 
1315 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1316 		return;
1317 
1318 	adev = amdgpu_ttm_adev(ttm->bdev);
1319 
1320 #ifdef CONFIG_SWIOTLB
1321 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1322 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1323 		return;
1324 	}
1325 #endif
1326 
1327 	/* fall back to generic helper to unmap and unpopulate array */
1328 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1329 }
1330 
1331 /**
1332  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1333  * task
1334  *
1335  * @ttm: The ttm_tt object to bind this userptr object to
1336  * @addr:  The address in the current tasks VM space to use
1337  * @flags: Requirements of userptr object.
1338  *
1339  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1340  * to current task
1341  */
1342 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1343 			      uint32_t flags)
1344 {
1345 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1346 
1347 	if (gtt == NULL)
1348 		return -EINVAL;
1349 
1350 	gtt->userptr = addr;
1351 	gtt->userflags = flags;
1352 
1353 	if (gtt->usertask)
1354 		put_task_struct(gtt->usertask);
1355 	gtt->usertask = current->group_leader;
1356 	get_task_struct(gtt->usertask);
1357 
1358 	return 0;
1359 }
1360 
1361 /**
1362  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1363  */
1364 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1365 {
1366 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1367 
1368 	if (gtt == NULL)
1369 		return NULL;
1370 
1371 	if (gtt->usertask == NULL)
1372 		return NULL;
1373 
1374 	return gtt->usertask->mm;
1375 }
1376 
1377 /**
1378  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1379  * address range for the current task.
1380  *
1381  */
1382 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1383 				  unsigned long end)
1384 {
1385 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1386 	unsigned long size;
1387 
1388 	if (gtt == NULL || !gtt->userptr)
1389 		return false;
1390 
1391 	/* Return false if no part of the ttm_tt object lies within
1392 	 * the range
1393 	 */
1394 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1395 	if (gtt->userptr > end || gtt->userptr + size <= start)
1396 		return false;
1397 
1398 	return true;
1399 }
1400 
1401 /**
1402  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1403  */
1404 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1405 {
1406 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1407 
1408 	if (gtt == NULL || !gtt->userptr)
1409 		return false;
1410 
1411 	return true;
1412 }
1413 
1414 /**
1415  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1416  */
1417 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1418 {
1419 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1420 
1421 	if (gtt == NULL)
1422 		return false;
1423 
1424 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1425 }
1426 
1427 /**
1428  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1429  *
1430  * @ttm: The ttm_tt object to compute the flags for
1431  * @mem: The memory registry backing this ttm_tt object
1432  *
1433  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1434  */
1435 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1436 {
1437 	uint64_t flags = 0;
1438 
1439 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1440 		flags |= AMDGPU_PTE_VALID;
1441 
1442 	if (mem && mem->mem_type == TTM_PL_TT) {
1443 		flags |= AMDGPU_PTE_SYSTEM;
1444 
1445 		if (ttm->caching_state == tt_cached)
1446 			flags |= AMDGPU_PTE_SNOOPED;
1447 	}
1448 
1449 	return flags;
1450 }
1451 
1452 /**
1453  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1454  *
1455  * @ttm: The ttm_tt object to compute the flags for
1456  * @mem: The memory registry backing this ttm_tt object
1457 
1458  * Figure out the flags to use for a VM PTE (Page Table Entry).
1459  */
1460 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1461 				 struct ttm_mem_reg *mem)
1462 {
1463 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1464 
1465 	flags |= adev->gart.gart_pte_flags;
1466 	flags |= AMDGPU_PTE_READABLE;
1467 
1468 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1469 		flags |= AMDGPU_PTE_WRITEABLE;
1470 
1471 	return flags;
1472 }
1473 
1474 /**
1475  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1476  * object.
1477  *
1478  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1479  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1480  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1481  * used to clean out a memory space.
1482  */
1483 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1484 					    const struct ttm_place *place)
1485 {
1486 	unsigned long num_pages = bo->mem.num_pages;
1487 	struct drm_mm_node *node = bo->mem.mm_node;
1488 	struct dma_resv_list *flist;
1489 	struct dma_fence *f;
1490 	int i;
1491 
1492 	/* Don't evict VM page tables while they are busy, otherwise we can't
1493 	 * cleanly handle page faults.
1494 	 */
1495 	if (bo->type == ttm_bo_type_kernel &&
1496 	    !dma_resv_test_signaled_rcu(bo->base.resv, true))
1497 		return false;
1498 
1499 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1500 	 * If true, then return false as any KFD process needs all its BOs to
1501 	 * be resident to run successfully
1502 	 */
1503 	flist = dma_resv_get_list(bo->base.resv);
1504 	if (flist) {
1505 		for (i = 0; i < flist->shared_count; ++i) {
1506 			f = rcu_dereference_protected(flist->shared[i],
1507 				dma_resv_held(bo->base.resv));
1508 			if (amdkfd_fence_check_mm(f, current->mm))
1509 				return false;
1510 		}
1511 	}
1512 
1513 	switch (bo->mem.mem_type) {
1514 	case TTM_PL_TT:
1515 		return true;
1516 
1517 	case TTM_PL_VRAM:
1518 		/* Check each drm MM node individually */
1519 		while (num_pages) {
1520 			if (place->fpfn < (node->start + node->size) &&
1521 			    !(place->lpfn && place->lpfn <= node->start))
1522 				return true;
1523 
1524 			num_pages -= node->size;
1525 			++node;
1526 		}
1527 		return false;
1528 
1529 	default:
1530 		break;
1531 	}
1532 
1533 	return ttm_bo_eviction_valuable(bo, place);
1534 }
1535 
1536 /**
1537  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1538  *
1539  * @bo:  The buffer object to read/write
1540  * @offset:  Offset into buffer object
1541  * @buf:  Secondary buffer to write/read from
1542  * @len: Length in bytes of access
1543  * @write:  true if writing
1544  *
1545  * This is used to access VRAM that backs a buffer object via MMIO
1546  * access for debugging purposes.
1547  */
1548 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1549 				    unsigned long offset,
1550 				    void *buf, int len, int write)
1551 {
1552 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1553 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1554 	struct drm_mm_node *nodes;
1555 	uint32_t value = 0;
1556 	int ret = 0;
1557 	uint64_t pos;
1558 	unsigned long flags;
1559 
1560 	if (bo->mem.mem_type != TTM_PL_VRAM)
1561 		return -EIO;
1562 
1563 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1564 	pos = (nodes->start << PAGE_SHIFT) + offset;
1565 
1566 	while (len && pos < adev->gmc.mc_vram_size) {
1567 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1568 		uint32_t bytes = 4 - (pos & 3);
1569 		uint32_t shift = (pos & 3) * 8;
1570 		uint32_t mask = 0xffffffff << shift;
1571 
1572 		if (len < bytes) {
1573 			mask &= 0xffffffff >> (bytes - len) * 8;
1574 			bytes = len;
1575 		}
1576 
1577 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1578 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1579 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1580 		if (!write || mask != 0xffffffff)
1581 			value = RREG32_NO_KIQ(mmMM_DATA);
1582 		if (write) {
1583 			value &= ~mask;
1584 			value |= (*(uint32_t *)buf << shift) & mask;
1585 			WREG32_NO_KIQ(mmMM_DATA, value);
1586 		}
1587 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1588 		if (!write) {
1589 			value = (value & mask) >> shift;
1590 			memcpy(buf, &value, bytes);
1591 		}
1592 
1593 		ret += bytes;
1594 		buf = (uint8_t *)buf + bytes;
1595 		pos += bytes;
1596 		len -= bytes;
1597 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1598 			++nodes;
1599 			pos = (nodes->start << PAGE_SHIFT);
1600 		}
1601 	}
1602 
1603 	return ret;
1604 }
1605 
1606 static struct ttm_bo_driver amdgpu_bo_driver = {
1607 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1608 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1609 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1610 	.invalidate_caches = &amdgpu_invalidate_caches,
1611 	.init_mem_type = &amdgpu_init_mem_type,
1612 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1613 	.evict_flags = &amdgpu_evict_flags,
1614 	.move = &amdgpu_bo_move,
1615 	.verify_access = &amdgpu_verify_access,
1616 	.move_notify = &amdgpu_bo_move_notify,
1617 	.release_notify = &amdgpu_bo_release_notify,
1618 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1619 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1620 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1621 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1622 	.access_memory = &amdgpu_ttm_access_memory,
1623 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1624 };
1625 
1626 /*
1627  * Firmware Reservation functions
1628  */
1629 /**
1630  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1631  *
1632  * @adev: amdgpu_device pointer
1633  *
1634  * free fw reserved vram if it has been reserved.
1635  */
1636 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1637 {
1638 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1639 		NULL, &adev->fw_vram_usage.va);
1640 }
1641 
1642 /**
1643  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1644  *
1645  * @adev: amdgpu_device pointer
1646  *
1647  * create bo vram reservation from fw.
1648  */
1649 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1650 {
1651 	uint64_t vram_size = adev->gmc.visible_vram_size;
1652 
1653 	adev->fw_vram_usage.va = NULL;
1654 	adev->fw_vram_usage.reserved_bo = NULL;
1655 
1656 	if (adev->fw_vram_usage.size == 0 ||
1657 	    adev->fw_vram_usage.size > vram_size)
1658 		return 0;
1659 
1660 	return amdgpu_bo_create_kernel_at(adev,
1661 					  adev->fw_vram_usage.start_offset,
1662 					  adev->fw_vram_usage.size,
1663 					  AMDGPU_GEM_DOMAIN_VRAM,
1664 					  &adev->fw_vram_usage.reserved_bo,
1665 					  &adev->fw_vram_usage.va);
1666 }
1667 
1668 /*
1669  * Memoy training reservation functions
1670  */
1671 
1672 /**
1673  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1674  *
1675  * @adev: amdgpu_device pointer
1676  *
1677  * free memory training reserved vram if it has been reserved.
1678  */
1679 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1680 {
1681 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1682 
1683 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1684 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1685 	ctx->c2p_bo = NULL;
1686 
1687 	amdgpu_bo_free_kernel(&ctx->p2c_bo, NULL, NULL);
1688 	ctx->p2c_bo = NULL;
1689 
1690 	return 0;
1691 }
1692 
1693 /**
1694  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1695  *
1696  * @adev: amdgpu_device pointer
1697  *
1698  * create bo vram reservation from memory training.
1699  */
1700 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1701 {
1702 	int ret;
1703 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1704 
1705 	memset(ctx, 0, sizeof(*ctx));
1706 	if (!adev->fw_vram_usage.mem_train_support) {
1707 		DRM_DEBUG("memory training does not support!\n");
1708 		return 0;
1709 	}
1710 
1711 	ctx->c2p_train_data_offset = adev->fw_vram_usage.mem_train_fb_loc;
1712 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1713 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1714 
1715 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1716 		  ctx->train_data_size,
1717 		  ctx->p2c_train_data_offset,
1718 		  ctx->c2p_train_data_offset);
1719 
1720 	ret = amdgpu_bo_create_kernel_at(adev,
1721 					 ctx->p2c_train_data_offset,
1722 					 ctx->train_data_size,
1723 					 AMDGPU_GEM_DOMAIN_VRAM,
1724 					 &ctx->p2c_bo,
1725 					 NULL);
1726 	if (ret) {
1727 		DRM_ERROR("alloc p2c_bo failed(%d)!\n", ret);
1728 		goto Err_out;
1729 	}
1730 
1731 	ret = amdgpu_bo_create_kernel_at(adev,
1732 					 ctx->c2p_train_data_offset,
1733 					 ctx->train_data_size,
1734 					 AMDGPU_GEM_DOMAIN_VRAM,
1735 					 &ctx->c2p_bo,
1736 					 NULL);
1737 	if (ret) {
1738 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1739 		goto Err_out;
1740 	}
1741 
1742 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1743 	return 0;
1744 
1745 Err_out:
1746 	amdgpu_ttm_training_reserve_vram_fini(adev);
1747 	return ret;
1748 }
1749 
1750 /**
1751  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1752  * gtt/vram related fields.
1753  *
1754  * This initializes all of the memory space pools that the TTM layer
1755  * will need such as the GTT space (system memory mapped to the device),
1756  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1757  * can be mapped per VMID.
1758  */
1759 int amdgpu_ttm_init(struct amdgpu_device *adev)
1760 {
1761 	uint64_t gtt_size;
1762 	int r;
1763 	u64 vis_vram_limit;
1764 	void *stolen_vga_buf;
1765 
1766 	mutex_init(&adev->mman.gtt_window_lock);
1767 
1768 	/* No others user of address space so set it to 0 */
1769 	r = ttm_bo_device_init(&adev->mman.bdev,
1770 			       &amdgpu_bo_driver,
1771 			       adev->ddev->anon_inode->i_mapping,
1772 			       adev->ddev->vma_offset_manager,
1773 			       dma_addressing_limited(adev->dev));
1774 	if (r) {
1775 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1776 		return r;
1777 	}
1778 	adev->mman.initialized = true;
1779 
1780 	/* We opt to avoid OOM on system pages allocations */
1781 	adev->mman.bdev.no_retry = true;
1782 
1783 	/* Initialize VRAM pool with all of VRAM divided into pages */
1784 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1785 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1786 	if (r) {
1787 		DRM_ERROR("Failed initializing VRAM heap.\n");
1788 		return r;
1789 	}
1790 
1791 	/* Reduce size of CPU-visible VRAM if requested */
1792 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1793 	if (amdgpu_vis_vram_limit > 0 &&
1794 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1795 		adev->gmc.visible_vram_size = vis_vram_limit;
1796 
1797 	/* Change the size here instead of the init above so only lpfn is affected */
1798 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1799 #ifdef CONFIG_64BIT
1800 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1801 						adev->gmc.visible_vram_size);
1802 #endif
1803 
1804 	/*
1805 	 *The reserved vram for firmware must be pinned to the specified
1806 	 *place on the VRAM, so reserve it early.
1807 	 */
1808 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1809 	if (r) {
1810 		return r;
1811 	}
1812 
1813 	/*
1814 	 *The reserved vram for memory training must be pinned to the specified
1815 	 *place on the VRAM, so reserve it early.
1816 	 */
1817 	r = amdgpu_ttm_training_reserve_vram_init(adev);
1818 	if (r)
1819 		return r;
1820 
1821 	/* allocate memory as required for VGA
1822 	 * This is used for VGA emulation and pre-OS scanout buffers to
1823 	 * avoid display artifacts while transitioning between pre-OS
1824 	 * and driver.  */
1825 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1826 				    AMDGPU_GEM_DOMAIN_VRAM,
1827 				    &adev->stolen_vga_memory,
1828 				    NULL, &stolen_vga_buf);
1829 	if (r)
1830 		return r;
1831 
1832 	/*
1833 	 * reserve one TMR (64K) memory at the top of VRAM which holds
1834 	 * IP Discovery data and is protected by PSP.
1835 	 */
1836 	r = amdgpu_bo_create_kernel_at(adev,
1837 				       adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1838 				       DISCOVERY_TMR_SIZE,
1839 				       AMDGPU_GEM_DOMAIN_VRAM,
1840 				       &adev->discovery_memory,
1841 				       NULL);
1842 	if (r)
1843 		return r;
1844 
1845 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1846 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1847 
1848 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1849 	 * or whatever the user passed on module init */
1850 	if (amdgpu_gtt_size == -1) {
1851 		struct sysinfo si;
1852 
1853 		si_meminfo(&si);
1854 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1855 			       adev->gmc.mc_vram_size),
1856 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1857 	}
1858 	else
1859 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1860 
1861 	/* Initialize GTT memory pool */
1862 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1863 	if (r) {
1864 		DRM_ERROR("Failed initializing GTT heap.\n");
1865 		return r;
1866 	}
1867 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1868 		 (unsigned)(gtt_size / (1024 * 1024)));
1869 
1870 	/* Initialize various on-chip memory pools */
1871 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1872 			   adev->gds.gds_size);
1873 	if (r) {
1874 		DRM_ERROR("Failed initializing GDS heap.\n");
1875 		return r;
1876 	}
1877 
1878 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1879 			   adev->gds.gws_size);
1880 	if (r) {
1881 		DRM_ERROR("Failed initializing gws heap.\n");
1882 		return r;
1883 	}
1884 
1885 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1886 			   adev->gds.oa_size);
1887 	if (r) {
1888 		DRM_ERROR("Failed initializing oa heap.\n");
1889 		return r;
1890 	}
1891 
1892 	/* Register debugfs entries for amdgpu_ttm */
1893 	r = amdgpu_ttm_debugfs_init(adev);
1894 	if (r) {
1895 		DRM_ERROR("Failed to init debugfs\n");
1896 		return r;
1897 	}
1898 	return 0;
1899 }
1900 
1901 /**
1902  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1903  */
1904 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1905 {
1906 	void *stolen_vga_buf;
1907 	/* return the VGA stolen memory (if any) back to VRAM */
1908 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1909 }
1910 
1911 /**
1912  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1913  */
1914 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1915 {
1916 	if (!adev->mman.initialized)
1917 		return;
1918 
1919 	amdgpu_ttm_debugfs_fini(adev);
1920 	amdgpu_ttm_training_reserve_vram_fini(adev);
1921 	/* return the IP Discovery TMR memory back to VRAM */
1922 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1923 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1924 
1925 	if (adev->mman.aper_base_kaddr)
1926 		iounmap(adev->mman.aper_base_kaddr);
1927 	adev->mman.aper_base_kaddr = NULL;
1928 
1929 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1930 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1931 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1932 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1933 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1934 	ttm_bo_device_release(&adev->mman.bdev);
1935 	adev->mman.initialized = false;
1936 	DRM_INFO("amdgpu: ttm finalized\n");
1937 }
1938 
1939 /**
1940  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1941  *
1942  * @adev: amdgpu_device pointer
1943  * @enable: true when we can use buffer functions.
1944  *
1945  * Enable/disable use of buffer functions during suspend/resume. This should
1946  * only be called at bootup or when userspace isn't running.
1947  */
1948 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1949 {
1950 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1951 	uint64_t size;
1952 	int r;
1953 
1954 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1955 	    adev->mman.buffer_funcs_enabled == enable)
1956 		return;
1957 
1958 	if (enable) {
1959 		struct amdgpu_ring *ring;
1960 		struct drm_sched_rq *rq;
1961 
1962 		ring = adev->mman.buffer_funcs_ring;
1963 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1964 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1965 		if (r) {
1966 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1967 				  r);
1968 			return;
1969 		}
1970 	} else {
1971 		drm_sched_entity_destroy(&adev->mman.entity);
1972 		dma_fence_put(man->move);
1973 		man->move = NULL;
1974 	}
1975 
1976 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1977 	if (enable)
1978 		size = adev->gmc.real_vram_size;
1979 	else
1980 		size = adev->gmc.visible_vram_size;
1981 	man->size = size >> PAGE_SHIFT;
1982 	adev->mman.buffer_funcs_enabled = enable;
1983 }
1984 
1985 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1986 {
1987 	struct drm_file *file_priv = filp->private_data;
1988 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1989 
1990 	if (adev == NULL)
1991 		return -EINVAL;
1992 
1993 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1994 }
1995 
1996 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1997 			     struct ttm_mem_reg *mem, unsigned num_pages,
1998 			     uint64_t offset, unsigned window,
1999 			     struct amdgpu_ring *ring,
2000 			     uint64_t *addr)
2001 {
2002 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2003 	struct amdgpu_device *adev = ring->adev;
2004 	struct ttm_tt *ttm = bo->ttm;
2005 	struct amdgpu_job *job;
2006 	unsigned num_dw, num_bytes;
2007 	dma_addr_t *dma_address;
2008 	struct dma_fence *fence;
2009 	uint64_t src_addr, dst_addr;
2010 	uint64_t flags;
2011 	int r;
2012 
2013 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2014 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2015 
2016 	*addr = adev->gmc.gart_start;
2017 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2018 		AMDGPU_GPU_PAGE_SIZE;
2019 
2020 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2021 	num_bytes = num_pages * 8;
2022 
2023 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2024 	if (r)
2025 		return r;
2026 
2027 	src_addr = num_dw * 4;
2028 	src_addr += job->ibs[0].gpu_addr;
2029 
2030 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2031 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2032 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2033 				dst_addr, num_bytes);
2034 
2035 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2036 	WARN_ON(job->ibs[0].length_dw > num_dw);
2037 
2038 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2039 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2040 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2041 			    &job->ibs[0].ptr[num_dw]);
2042 	if (r)
2043 		goto error_free;
2044 
2045 	r = amdgpu_job_submit(job, &adev->mman.entity,
2046 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2047 	if (r)
2048 		goto error_free;
2049 
2050 	dma_fence_put(fence);
2051 
2052 	return r;
2053 
2054 error_free:
2055 	amdgpu_job_free(job);
2056 	return r;
2057 }
2058 
2059 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2060 		       uint64_t dst_offset, uint32_t byte_count,
2061 		       struct dma_resv *resv,
2062 		       struct dma_fence **fence, bool direct_submit,
2063 		       bool vm_needs_flush)
2064 {
2065 	struct amdgpu_device *adev = ring->adev;
2066 	struct amdgpu_job *job;
2067 
2068 	uint32_t max_bytes;
2069 	unsigned num_loops, num_dw;
2070 	unsigned i;
2071 	int r;
2072 
2073 	if (direct_submit && !ring->sched.ready) {
2074 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2075 		return -EINVAL;
2076 	}
2077 
2078 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2079 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2080 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2081 
2082 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2083 	if (r)
2084 		return r;
2085 
2086 	if (vm_needs_flush) {
2087 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2088 		job->vm_needs_flush = true;
2089 	}
2090 	if (resv) {
2091 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2092 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2093 				     false);
2094 		if (r) {
2095 			DRM_ERROR("sync failed (%d).\n", r);
2096 			goto error_free;
2097 		}
2098 	}
2099 
2100 	for (i = 0; i < num_loops; i++) {
2101 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2102 
2103 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2104 					dst_offset, cur_size_in_bytes);
2105 
2106 		src_offset += cur_size_in_bytes;
2107 		dst_offset += cur_size_in_bytes;
2108 		byte_count -= cur_size_in_bytes;
2109 	}
2110 
2111 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2112 	WARN_ON(job->ibs[0].length_dw > num_dw);
2113 	if (direct_submit)
2114 		r = amdgpu_job_submit_direct(job, ring, fence);
2115 	else
2116 		r = amdgpu_job_submit(job, &adev->mman.entity,
2117 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2118 	if (r)
2119 		goto error_free;
2120 
2121 	return r;
2122 
2123 error_free:
2124 	amdgpu_job_free(job);
2125 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2126 	return r;
2127 }
2128 
2129 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2130 		       uint32_t src_data,
2131 		       struct dma_resv *resv,
2132 		       struct dma_fence **fence)
2133 {
2134 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2135 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2136 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2137 
2138 	struct drm_mm_node *mm_node;
2139 	unsigned long num_pages;
2140 	unsigned int num_loops, num_dw;
2141 
2142 	struct amdgpu_job *job;
2143 	int r;
2144 
2145 	if (!adev->mman.buffer_funcs_enabled) {
2146 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2147 		return -EINVAL;
2148 	}
2149 
2150 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2151 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2152 		if (r)
2153 			return r;
2154 	}
2155 
2156 	num_pages = bo->tbo.num_pages;
2157 	mm_node = bo->tbo.mem.mm_node;
2158 	num_loops = 0;
2159 	while (num_pages) {
2160 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2161 
2162 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2163 		num_pages -= mm_node->size;
2164 		++mm_node;
2165 	}
2166 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2167 
2168 	/* for IB padding */
2169 	num_dw += 64;
2170 
2171 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2172 	if (r)
2173 		return r;
2174 
2175 	if (resv) {
2176 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2177 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2178 		if (r) {
2179 			DRM_ERROR("sync failed (%d).\n", r);
2180 			goto error_free;
2181 		}
2182 	}
2183 
2184 	num_pages = bo->tbo.num_pages;
2185 	mm_node = bo->tbo.mem.mm_node;
2186 
2187 	while (num_pages) {
2188 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2189 		uint64_t dst_addr;
2190 
2191 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2192 		while (byte_count) {
2193 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2194 							   max_bytes);
2195 
2196 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2197 						dst_addr, cur_size_in_bytes);
2198 
2199 			dst_addr += cur_size_in_bytes;
2200 			byte_count -= cur_size_in_bytes;
2201 		}
2202 
2203 		num_pages -= mm_node->size;
2204 		++mm_node;
2205 	}
2206 
2207 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2208 	WARN_ON(job->ibs[0].length_dw > num_dw);
2209 	r = amdgpu_job_submit(job, &adev->mman.entity,
2210 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2211 	if (r)
2212 		goto error_free;
2213 
2214 	return 0;
2215 
2216 error_free:
2217 	amdgpu_job_free(job);
2218 	return r;
2219 }
2220 
2221 #if defined(CONFIG_DEBUG_FS)
2222 
2223 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2224 {
2225 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2226 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2227 	struct drm_device *dev = node->minor->dev;
2228 	struct amdgpu_device *adev = dev->dev_private;
2229 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2230 	struct drm_printer p = drm_seq_file_printer(m);
2231 
2232 	man->func->debug(man, &p);
2233 	return 0;
2234 }
2235 
2236 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2237 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2238 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2239 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2240 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2241 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2242 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2243 #ifdef CONFIG_SWIOTLB
2244 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2245 #endif
2246 };
2247 
2248 /**
2249  * amdgpu_ttm_vram_read - Linear read access to VRAM
2250  *
2251  * Accesses VRAM via MMIO for debugging purposes.
2252  */
2253 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2254 				    size_t size, loff_t *pos)
2255 {
2256 	struct amdgpu_device *adev = file_inode(f)->i_private;
2257 	ssize_t result = 0;
2258 	int r;
2259 
2260 	if (size & 0x3 || *pos & 0x3)
2261 		return -EINVAL;
2262 
2263 	if (*pos >= adev->gmc.mc_vram_size)
2264 		return -ENXIO;
2265 
2266 	while (size) {
2267 		unsigned long flags;
2268 		uint32_t value;
2269 
2270 		if (*pos >= adev->gmc.mc_vram_size)
2271 			return result;
2272 
2273 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2274 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2275 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2276 		value = RREG32_NO_KIQ(mmMM_DATA);
2277 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2278 
2279 		r = put_user(value, (uint32_t *)buf);
2280 		if (r)
2281 			return r;
2282 
2283 		result += 4;
2284 		buf += 4;
2285 		*pos += 4;
2286 		size -= 4;
2287 	}
2288 
2289 	return result;
2290 }
2291 
2292 /**
2293  * amdgpu_ttm_vram_write - Linear write access to VRAM
2294  *
2295  * Accesses VRAM via MMIO for debugging purposes.
2296  */
2297 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2298 				    size_t size, loff_t *pos)
2299 {
2300 	struct amdgpu_device *adev = file_inode(f)->i_private;
2301 	ssize_t result = 0;
2302 	int r;
2303 
2304 	if (size & 0x3 || *pos & 0x3)
2305 		return -EINVAL;
2306 
2307 	if (*pos >= adev->gmc.mc_vram_size)
2308 		return -ENXIO;
2309 
2310 	while (size) {
2311 		unsigned long flags;
2312 		uint32_t value;
2313 
2314 		if (*pos >= adev->gmc.mc_vram_size)
2315 			return result;
2316 
2317 		r = get_user(value, (uint32_t *)buf);
2318 		if (r)
2319 			return r;
2320 
2321 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2322 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2323 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2324 		WREG32_NO_KIQ(mmMM_DATA, value);
2325 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2326 
2327 		result += 4;
2328 		buf += 4;
2329 		*pos += 4;
2330 		size -= 4;
2331 	}
2332 
2333 	return result;
2334 }
2335 
2336 static const struct file_operations amdgpu_ttm_vram_fops = {
2337 	.owner = THIS_MODULE,
2338 	.read = amdgpu_ttm_vram_read,
2339 	.write = amdgpu_ttm_vram_write,
2340 	.llseek = default_llseek,
2341 };
2342 
2343 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2344 
2345 /**
2346  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2347  */
2348 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2349 				   size_t size, loff_t *pos)
2350 {
2351 	struct amdgpu_device *adev = file_inode(f)->i_private;
2352 	ssize_t result = 0;
2353 	int r;
2354 
2355 	while (size) {
2356 		loff_t p = *pos / PAGE_SIZE;
2357 		unsigned off = *pos & ~PAGE_MASK;
2358 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2359 		struct page *page;
2360 		void *ptr;
2361 
2362 		if (p >= adev->gart.num_cpu_pages)
2363 			return result;
2364 
2365 		page = adev->gart.pages[p];
2366 		if (page) {
2367 			ptr = kmap(page);
2368 			ptr += off;
2369 
2370 			r = copy_to_user(buf, ptr, cur_size);
2371 			kunmap(adev->gart.pages[p]);
2372 		} else
2373 			r = clear_user(buf, cur_size);
2374 
2375 		if (r)
2376 			return -EFAULT;
2377 
2378 		result += cur_size;
2379 		buf += cur_size;
2380 		*pos += cur_size;
2381 		size -= cur_size;
2382 	}
2383 
2384 	return result;
2385 }
2386 
2387 static const struct file_operations amdgpu_ttm_gtt_fops = {
2388 	.owner = THIS_MODULE,
2389 	.read = amdgpu_ttm_gtt_read,
2390 	.llseek = default_llseek
2391 };
2392 
2393 #endif
2394 
2395 /**
2396  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2397  *
2398  * This function is used to read memory that has been mapped to the
2399  * GPU and the known addresses are not physical addresses but instead
2400  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2401  */
2402 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2403 				 size_t size, loff_t *pos)
2404 {
2405 	struct amdgpu_device *adev = file_inode(f)->i_private;
2406 	struct iommu_domain *dom;
2407 	ssize_t result = 0;
2408 	int r;
2409 
2410 	/* retrieve the IOMMU domain if any for this device */
2411 	dom = iommu_get_domain_for_dev(adev->dev);
2412 
2413 	while (size) {
2414 		phys_addr_t addr = *pos & PAGE_MASK;
2415 		loff_t off = *pos & ~PAGE_MASK;
2416 		size_t bytes = PAGE_SIZE - off;
2417 		unsigned long pfn;
2418 		struct page *p;
2419 		void *ptr;
2420 
2421 		bytes = bytes < size ? bytes : size;
2422 
2423 		/* Translate the bus address to a physical address.  If
2424 		 * the domain is NULL it means there is no IOMMU active
2425 		 * and the address translation is the identity
2426 		 */
2427 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2428 
2429 		pfn = addr >> PAGE_SHIFT;
2430 		if (!pfn_valid(pfn))
2431 			return -EPERM;
2432 
2433 		p = pfn_to_page(pfn);
2434 		if (p->mapping != adev->mman.bdev.dev_mapping)
2435 			return -EPERM;
2436 
2437 		ptr = kmap(p);
2438 		r = copy_to_user(buf, ptr + off, bytes);
2439 		kunmap(p);
2440 		if (r)
2441 			return -EFAULT;
2442 
2443 		size -= bytes;
2444 		*pos += bytes;
2445 		result += bytes;
2446 	}
2447 
2448 	return result;
2449 }
2450 
2451 /**
2452  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2453  *
2454  * This function is used to write memory that has been mapped to the
2455  * GPU and the known addresses are not physical addresses but instead
2456  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2457  */
2458 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2459 				 size_t size, loff_t *pos)
2460 {
2461 	struct amdgpu_device *adev = file_inode(f)->i_private;
2462 	struct iommu_domain *dom;
2463 	ssize_t result = 0;
2464 	int r;
2465 
2466 	dom = iommu_get_domain_for_dev(adev->dev);
2467 
2468 	while (size) {
2469 		phys_addr_t addr = *pos & PAGE_MASK;
2470 		loff_t off = *pos & ~PAGE_MASK;
2471 		size_t bytes = PAGE_SIZE - off;
2472 		unsigned long pfn;
2473 		struct page *p;
2474 		void *ptr;
2475 
2476 		bytes = bytes < size ? bytes : size;
2477 
2478 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2479 
2480 		pfn = addr >> PAGE_SHIFT;
2481 		if (!pfn_valid(pfn))
2482 			return -EPERM;
2483 
2484 		p = pfn_to_page(pfn);
2485 		if (p->mapping != adev->mman.bdev.dev_mapping)
2486 			return -EPERM;
2487 
2488 		ptr = kmap(p);
2489 		r = copy_from_user(ptr + off, buf, bytes);
2490 		kunmap(p);
2491 		if (r)
2492 			return -EFAULT;
2493 
2494 		size -= bytes;
2495 		*pos += bytes;
2496 		result += bytes;
2497 	}
2498 
2499 	return result;
2500 }
2501 
2502 static const struct file_operations amdgpu_ttm_iomem_fops = {
2503 	.owner = THIS_MODULE,
2504 	.read = amdgpu_iomem_read,
2505 	.write = amdgpu_iomem_write,
2506 	.llseek = default_llseek
2507 };
2508 
2509 static const struct {
2510 	char *name;
2511 	const struct file_operations *fops;
2512 	int domain;
2513 } ttm_debugfs_entries[] = {
2514 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2515 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2516 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2517 #endif
2518 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2519 };
2520 
2521 #endif
2522 
2523 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2524 {
2525 #if defined(CONFIG_DEBUG_FS)
2526 	unsigned count;
2527 
2528 	struct drm_minor *minor = adev->ddev->primary;
2529 	struct dentry *ent, *root = minor->debugfs_root;
2530 
2531 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2532 		ent = debugfs_create_file(
2533 				ttm_debugfs_entries[count].name,
2534 				S_IFREG | S_IRUGO, root,
2535 				adev,
2536 				ttm_debugfs_entries[count].fops);
2537 		if (IS_ERR(ent))
2538 			return PTR_ERR(ent);
2539 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2540 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2541 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2542 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2543 		adev->mman.debugfs_entries[count] = ent;
2544 	}
2545 
2546 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2547 
2548 #ifdef CONFIG_SWIOTLB
2549 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2550 		--count;
2551 #endif
2552 
2553 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2554 #else
2555 	return 0;
2556 #endif
2557 }
2558 
2559 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2560 {
2561 #if defined(CONFIG_DEBUG_FS)
2562 	unsigned i;
2563 
2564 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2565 		debugfs_remove(adev->mman.debugfs_entries[i]);
2566 #endif
2567 }
2568