xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision d819524d3144f4703f45f473fdc85ad7579ae94c)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51 
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64 
65 MODULE_IMPORT_NS(DMA_BUF);
66 
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
68 
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 				   struct ttm_tt *ttm,
71 				   struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73 				      struct ttm_tt *ttm);
74 
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 				    unsigned int type,
77 				    uint64_t size_in_page)
78 {
79 	return ttm_range_man_init(&adev->mman.bdev, type,
80 				  false, size_in_page);
81 }
82 
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 				struct ttm_placement *placement)
93 {
94 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 	struct amdgpu_bo *abo;
96 	static const struct ttm_place placements = {
97 		.fpfn = 0,
98 		.lpfn = 0,
99 		.mem_type = TTM_PL_SYSTEM,
100 		.flags = 0
101 	};
102 
103 	/* Don't handle scatter gather BOs */
104 	if (bo->type == ttm_bo_type_sg) {
105 		placement->num_placement = 0;
106 		placement->num_busy_placement = 0;
107 		return;
108 	}
109 
110 	/* Object isn't an AMDGPU object so ignore */
111 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 		placement->placement = &placements;
113 		placement->busy_placement = &placements;
114 		placement->num_placement = 1;
115 		placement->num_busy_placement = 1;
116 		return;
117 	}
118 
119 	abo = ttm_to_amdgpu_bo(bo);
120 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121 		placement->num_placement = 0;
122 		placement->num_busy_placement = 0;
123 		return;
124 	}
125 
126 	switch (bo->resource->mem_type) {
127 	case AMDGPU_PL_GDS:
128 	case AMDGPU_PL_GWS:
129 	case AMDGPU_PL_OA:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct dma_fence *fence;
193 	struct amdgpu_job *job;
194 	void *cpu_addr;
195 	uint64_t flags;
196 	unsigned int i;
197 	int r;
198 
199 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 
202 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 		return -EINVAL;
204 
205 	/* Map only what can't be accessed directly */
206 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 			mm_cur->start;
209 		return 0;
210 	}
211 
212 
213 	/*
214 	 * If start begins at an offset inside the page, then adjust the size
215 	 * and addr accordingly
216 	 */
217 	offset = mm_cur->start & ~PAGE_MASK;
218 
219 	num_pages = PFN_UP(*size + offset);
220 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 
222 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 
224 	*addr = adev->gmc.gart_start;
225 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 		AMDGPU_GPU_PAGE_SIZE;
227 	*addr += offset;
228 
229 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 
232 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233 				     AMDGPU_IB_POOL_DELAYED, &job);
234 	if (r)
235 		return r;
236 
237 	src_addr = num_dw * 4;
238 	src_addr += job->ibs[0].gpu_addr;
239 
240 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243 				dst_addr, num_bytes, false);
244 
245 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246 	WARN_ON(job->ibs[0].length_dw > num_dw);
247 
248 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249 	if (tmz)
250 		flags |= AMDGPU_PTE_TMZ;
251 
252 	cpu_addr = &job->ibs[0].ptr[num_dw];
253 
254 	if (mem->mem_type == TTM_PL_TT) {
255 		dma_addr_t *dma_addr;
256 
257 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259 	} else {
260 		dma_addr_t dma_address;
261 
262 		dma_address = mm_cur->start;
263 		dma_address += adev->vm_manager.vram_base_offset;
264 
265 		for (i = 0; i < num_pages; ++i) {
266 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267 					flags, cpu_addr);
268 			dma_address += PAGE_SIZE;
269 		}
270 	}
271 
272 	r = amdgpu_job_submit(job, &adev->mman.entity,
273 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 	if (r)
275 		goto error_free;
276 
277 	dma_fence_put(fence);
278 
279 	return r;
280 
281 error_free:
282 	amdgpu_job_free(job);
283 	return r;
284 }
285 
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 			       const struct amdgpu_copy_mem *src,
303 			       const struct amdgpu_copy_mem *dst,
304 			       uint64_t size, bool tmz,
305 			       struct dma_resv *resv,
306 			       struct dma_fence **f)
307 {
308 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 	struct amdgpu_res_cursor src_mm, dst_mm;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 
321 	mutex_lock(&adev->mman.gtt_window_lock);
322 	while (src_mm.remaining) {
323 		uint64_t from, to, cur_size;
324 		struct dma_fence *next;
325 
326 		/* Never copy more than 256MiB at once to avoid a timeout */
327 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328 
329 		/* Map src to window 0 and dst to window 1. */
330 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331 					  0, ring, tmz, &cur_size, &from);
332 		if (r)
333 			goto error;
334 
335 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336 					  1, ring, tmz, &cur_size, &to);
337 		if (r)
338 			goto error;
339 
340 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
341 				       resv, &next, false, true, tmz);
342 		if (r)
343 			goto error;
344 
345 		dma_fence_put(fence);
346 		fence = next;
347 
348 		amdgpu_res_next(&src_mm, cur_size);
349 		amdgpu_res_next(&dst_mm, cur_size);
350 	}
351 error:
352 	mutex_unlock(&adev->mman.gtt_window_lock);
353 	if (f)
354 		*f = dma_fence_get(fence);
355 	dma_fence_put(fence);
356 	return r;
357 }
358 
359 /*
360  * amdgpu_move_blit - Copy an entire buffer to another buffer
361  *
362  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363  * help move buffers to and from VRAM.
364  */
365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366 			    bool evict,
367 			    struct ttm_resource *new_mem,
368 			    struct ttm_resource *old_mem)
369 {
370 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372 	struct amdgpu_copy_mem src, dst;
373 	struct dma_fence *fence = NULL;
374 	int r;
375 
376 	src.bo = bo;
377 	dst.bo = bo;
378 	src.mem = old_mem;
379 	dst.mem = new_mem;
380 	src.offset = 0;
381 	dst.offset = 0;
382 
383 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384 				       new_mem->num_pages << PAGE_SHIFT,
385 				       amdgpu_bo_encrypted(abo),
386 				       bo->base.resv, &fence);
387 	if (r)
388 		goto error;
389 
390 	/* clear the space being freed */
391 	if (old_mem->mem_type == TTM_PL_VRAM &&
392 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393 		struct dma_fence *wipe_fence = NULL;
394 
395 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396 		if (r) {
397 			goto error;
398 		} else if (wipe_fence) {
399 			dma_fence_put(fence);
400 			fence = wipe_fence;
401 		}
402 	}
403 
404 	/* Always block for VM page tables before committing the new location */
405 	if (bo->type == ttm_bo_type_kernel)
406 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407 	else
408 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409 	dma_fence_put(fence);
410 	return r;
411 
412 error:
413 	if (fence)
414 		dma_fence_wait(fence, false);
415 	dma_fence_put(fence);
416 	return r;
417 }
418 
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425 			       struct ttm_resource *mem)
426 {
427 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428 	struct amdgpu_res_cursor cursor;
429 
430 	if (mem->mem_type == TTM_PL_SYSTEM ||
431 	    mem->mem_type == TTM_PL_TT)
432 		return true;
433 	if (mem->mem_type != TTM_PL_VRAM)
434 		return false;
435 
436 	amdgpu_res_first(mem, 0, mem_size, &cursor);
437 
438 	/* ttm_resource_ioremap only supports contiguous memory */
439 	if (cursor.size != mem_size)
440 		return false;
441 
442 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
443 }
444 
445 /*
446  * amdgpu_bo_move - Move a buffer object to a new memory location
447  *
448  * Called by ttm_bo_handle_move_mem()
449  */
450 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
451 			  struct ttm_operation_ctx *ctx,
452 			  struct ttm_resource *new_mem,
453 			  struct ttm_place *hop)
454 {
455 	struct amdgpu_device *adev;
456 	struct amdgpu_bo *abo;
457 	struct ttm_resource *old_mem = bo->resource;
458 	int r;
459 
460 	if (new_mem->mem_type == TTM_PL_TT ||
461 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
462 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
463 		if (r)
464 			return r;
465 	}
466 
467 	/* Can't move a pinned BO */
468 	abo = ttm_to_amdgpu_bo(bo);
469 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
470 		return -EINVAL;
471 
472 	adev = amdgpu_ttm_adev(bo->bdev);
473 
474 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
475 		ttm_bo_move_null(bo, new_mem);
476 		goto out;
477 	}
478 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
479 	    (new_mem->mem_type == TTM_PL_TT ||
480 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
481 		ttm_bo_move_null(bo, new_mem);
482 		goto out;
483 	}
484 	if ((old_mem->mem_type == TTM_PL_TT ||
485 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
486 	    new_mem->mem_type == TTM_PL_SYSTEM) {
487 		r = ttm_bo_wait_ctx(bo, ctx);
488 		if (r)
489 			return r;
490 
491 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
492 		ttm_resource_free(bo, &bo->resource);
493 		ttm_bo_assign_mem(bo, new_mem);
494 		goto out;
495 	}
496 
497 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
498 	    old_mem->mem_type == AMDGPU_PL_GWS ||
499 	    old_mem->mem_type == AMDGPU_PL_OA ||
500 	    new_mem->mem_type == AMDGPU_PL_GDS ||
501 	    new_mem->mem_type == AMDGPU_PL_GWS ||
502 	    new_mem->mem_type == AMDGPU_PL_OA) {
503 		/* Nothing to save here */
504 		ttm_bo_move_null(bo, new_mem);
505 		goto out;
506 	}
507 
508 	if (bo->type == ttm_bo_type_device &&
509 	    new_mem->mem_type == TTM_PL_VRAM &&
510 	    old_mem->mem_type != TTM_PL_VRAM) {
511 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
512 		 * accesses the BO after it's moved.
513 		 */
514 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
515 	}
516 
517 	if (adev->mman.buffer_funcs_enabled) {
518 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
519 		      new_mem->mem_type == TTM_PL_VRAM) ||
520 		     (old_mem->mem_type == TTM_PL_VRAM &&
521 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
522 			hop->fpfn = 0;
523 			hop->lpfn = 0;
524 			hop->mem_type = TTM_PL_TT;
525 			hop->flags = TTM_PL_FLAG_TEMPORARY;
526 			return -EMULTIHOP;
527 		}
528 
529 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
530 	} else {
531 		r = -ENODEV;
532 	}
533 
534 	if (r) {
535 		/* Check that all memory is CPU accessible */
536 		if (!amdgpu_mem_visible(adev, old_mem) ||
537 		    !amdgpu_mem_visible(adev, new_mem)) {
538 			pr_err("Move buffer fallback to memcpy unavailable\n");
539 			return r;
540 		}
541 
542 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
543 		if (r)
544 			return r;
545 	}
546 
547 out:
548 	/* update statistics */
549 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
550 	amdgpu_bo_move_notify(bo, evict, new_mem);
551 	return 0;
552 }
553 
554 /*
555  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
556  *
557  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
558  */
559 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
560 				     struct ttm_resource *mem)
561 {
562 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
563 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
564 
565 	switch (mem->mem_type) {
566 	case TTM_PL_SYSTEM:
567 		/* system memory */
568 		return 0;
569 	case TTM_PL_TT:
570 	case AMDGPU_PL_PREEMPT:
571 		break;
572 	case TTM_PL_VRAM:
573 		mem->bus.offset = mem->start << PAGE_SHIFT;
574 		/* check if it's visible */
575 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
576 			return -EINVAL;
577 
578 		if (adev->mman.aper_base_kaddr &&
579 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
580 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
581 					mem->bus.offset;
582 
583 		mem->bus.offset += adev->gmc.aper_base;
584 		mem->bus.is_iomem = true;
585 		break;
586 	default:
587 		return -EINVAL;
588 	}
589 	return 0;
590 }
591 
592 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
593 					   unsigned long page_offset)
594 {
595 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
596 	struct amdgpu_res_cursor cursor;
597 
598 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
599 			 &cursor);
600 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
601 }
602 
603 /**
604  * amdgpu_ttm_domain_start - Returns GPU start address
605  * @adev: amdgpu device object
606  * @type: type of the memory
607  *
608  * Returns:
609  * GPU start address of a memory domain
610  */
611 
612 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
613 {
614 	switch (type) {
615 	case TTM_PL_TT:
616 		return adev->gmc.gart_start;
617 	case TTM_PL_VRAM:
618 		return adev->gmc.vram_start;
619 	}
620 
621 	return 0;
622 }
623 
624 /*
625  * TTM backend functions.
626  */
627 struct amdgpu_ttm_tt {
628 	struct ttm_tt	ttm;
629 	struct drm_gem_object	*gobj;
630 	u64			offset;
631 	uint64_t		userptr;
632 	struct task_struct	*usertask;
633 	uint32_t		userflags;
634 	bool			bound;
635 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
636 	struct hmm_range	*range;
637 #endif
638 };
639 
640 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
641 
642 #ifdef CONFIG_DRM_AMDGPU_USERPTR
643 /*
644  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
645  * memory and start HMM tracking CPU page table update
646  *
647  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
648  * once afterwards to stop HMM tracking
649  */
650 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
651 {
652 	struct ttm_tt *ttm = bo->tbo.ttm;
653 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
654 	unsigned long start = gtt->userptr;
655 	struct vm_area_struct *vma;
656 	struct mm_struct *mm;
657 	bool readonly;
658 	int r = 0;
659 
660 	mm = bo->notifier.mm;
661 	if (unlikely(!mm)) {
662 		DRM_DEBUG_DRIVER("BO is not registered?\n");
663 		return -EFAULT;
664 	}
665 
666 	/* Another get_user_pages is running at the same time?? */
667 	if (WARN_ON(gtt->range))
668 		return -EFAULT;
669 
670 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
671 		return -ESRCH;
672 
673 	mmap_read_lock(mm);
674 	vma = vma_lookup(mm, start);
675 	if (unlikely(!vma)) {
676 		r = -EFAULT;
677 		goto out_unlock;
678 	}
679 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
680 		vma->vm_file)) {
681 		r = -EPERM;
682 		goto out_unlock;
683 	}
684 
685 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
686 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
687 				       ttm->num_pages, &gtt->range, readonly,
688 				       true, NULL);
689 out_unlock:
690 	mmap_read_unlock(mm);
691 	if (r)
692 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
693 
694 	mmput(mm);
695 
696 	return r;
697 }
698 
699 /*
700  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
701  * Check if the pages backing this ttm range have been invalidated
702  *
703  * Returns: true if pages are still valid
704  */
705 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
706 {
707 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
708 	bool r = false;
709 
710 	if (!gtt || !gtt->userptr)
711 		return false;
712 
713 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
714 		gtt->userptr, ttm->num_pages);
715 
716 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
717 		"No user pages to check\n");
718 
719 	if (gtt->range) {
720 		/*
721 		 * FIXME: Must always hold notifier_lock for this, and must
722 		 * not ignore the return code.
723 		 */
724 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
725 		gtt->range = NULL;
726 	}
727 
728 	return !r;
729 }
730 #endif
731 
732 /*
733  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
734  *
735  * Called by amdgpu_cs_list_validate(). This creates the page list
736  * that backs user memory and will ultimately be mapped into the device
737  * address space.
738  */
739 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
740 {
741 	unsigned long i;
742 
743 	for (i = 0; i < ttm->num_pages; ++i)
744 		ttm->pages[i] = pages ? pages[i] : NULL;
745 }
746 
747 /*
748  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
749  *
750  * Called by amdgpu_ttm_backend_bind()
751  **/
752 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
753 				     struct ttm_tt *ttm)
754 {
755 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
756 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
757 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
758 	enum dma_data_direction direction = write ?
759 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
760 	int r;
761 
762 	/* Allocate an SG array and squash pages into it */
763 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
764 				      (u64)ttm->num_pages << PAGE_SHIFT,
765 				      GFP_KERNEL);
766 	if (r)
767 		goto release_sg;
768 
769 	/* Map SG to device */
770 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
771 	if (r)
772 		goto release_sg;
773 
774 	/* convert SG to linear array of pages and dma addresses */
775 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
776 				       ttm->num_pages);
777 
778 	return 0;
779 
780 release_sg:
781 	kfree(ttm->sg);
782 	ttm->sg = NULL;
783 	return r;
784 }
785 
786 /*
787  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
788  */
789 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
790 					struct ttm_tt *ttm)
791 {
792 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
794 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
795 	enum dma_data_direction direction = write ?
796 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
797 
798 	/* double check that we don't free the table twice */
799 	if (!ttm->sg || !ttm->sg->sgl)
800 		return;
801 
802 	/* unmap the pages mapped to the device */
803 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
804 	sg_free_table(ttm->sg);
805 
806 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
807 	if (gtt->range) {
808 		unsigned long i;
809 
810 		for (i = 0; i < ttm->num_pages; i++) {
811 			if (ttm->pages[i] !=
812 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
813 				break;
814 		}
815 
816 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
817 	}
818 #endif
819 }
820 
821 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
822 				 struct ttm_buffer_object *tbo,
823 				 uint64_t flags)
824 {
825 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
826 	struct ttm_tt *ttm = tbo->ttm;
827 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
828 
829 	if (amdgpu_bo_encrypted(abo))
830 		flags |= AMDGPU_PTE_TMZ;
831 
832 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
833 		uint64_t page_idx = 1;
834 
835 		amdgpu_gart_bind(adev, gtt->offset, page_idx,
836 				 gtt->ttm.dma_address, flags);
837 
838 		/* The memory type of the first page defaults to UC. Now
839 		 * modify the memory type to NC from the second page of
840 		 * the BO onward.
841 		 */
842 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
843 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
844 
845 		amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
846 				 ttm->num_pages - page_idx,
847 				 &(gtt->ttm.dma_address[page_idx]), flags);
848 	} else {
849 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
850 				 gtt->ttm.dma_address, flags);
851 	}
852 }
853 
854 /*
855  * amdgpu_ttm_backend_bind - Bind GTT memory
856  *
857  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
858  * This handles binding GTT memory to the device address space.
859  */
860 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
861 				   struct ttm_tt *ttm,
862 				   struct ttm_resource *bo_mem)
863 {
864 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
865 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
866 	uint64_t flags;
867 	int r;
868 
869 	if (!bo_mem)
870 		return -EINVAL;
871 
872 	if (gtt->bound)
873 		return 0;
874 
875 	if (gtt->userptr) {
876 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
877 		if (r) {
878 			DRM_ERROR("failed to pin userptr\n");
879 			return r;
880 		}
881 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
882 		if (!ttm->sg) {
883 			struct dma_buf_attachment *attach;
884 			struct sg_table *sgt;
885 
886 			attach = gtt->gobj->import_attach;
887 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
888 			if (IS_ERR(sgt))
889 				return PTR_ERR(sgt);
890 
891 			ttm->sg = sgt;
892 		}
893 
894 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
895 					       ttm->num_pages);
896 	}
897 
898 	if (!ttm->num_pages) {
899 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
900 		     ttm->num_pages, bo_mem, ttm);
901 	}
902 
903 	if (bo_mem->mem_type != TTM_PL_TT ||
904 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
905 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
906 		return 0;
907 	}
908 
909 	/* compute PTE flags relevant to this BO memory */
910 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
911 
912 	/* bind pages into GART page tables */
913 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
914 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
915 			 gtt->ttm.dma_address, flags);
916 	gtt->bound = true;
917 	return 0;
918 }
919 
920 /*
921  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
922  * through AGP or GART aperture.
923  *
924  * If bo is accessible through AGP aperture, then use AGP aperture
925  * to access bo; otherwise allocate logical space in GART aperture
926  * and map bo to GART aperture.
927  */
928 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
929 {
930 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
931 	struct ttm_operation_ctx ctx = { false, false };
932 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
933 	struct ttm_placement placement;
934 	struct ttm_place placements;
935 	struct ttm_resource *tmp;
936 	uint64_t addr, flags;
937 	int r;
938 
939 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
940 		return 0;
941 
942 	addr = amdgpu_gmc_agp_addr(bo);
943 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
944 		bo->resource->start = addr >> PAGE_SHIFT;
945 		return 0;
946 	}
947 
948 	/* allocate GART space */
949 	placement.num_placement = 1;
950 	placement.placement = &placements;
951 	placement.num_busy_placement = 1;
952 	placement.busy_placement = &placements;
953 	placements.fpfn = 0;
954 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
955 	placements.mem_type = TTM_PL_TT;
956 	placements.flags = bo->resource->placement;
957 
958 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
959 	if (unlikely(r))
960 		return r;
961 
962 	/* compute PTE flags for this buffer object */
963 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
964 
965 	/* Bind pages */
966 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
967 	amdgpu_ttm_gart_bind(adev, bo, flags);
968 	amdgpu_gart_invalidate_tlb(adev);
969 	ttm_resource_free(bo, &bo->resource);
970 	ttm_bo_assign_mem(bo, tmp);
971 
972 	return 0;
973 }
974 
975 /*
976  * amdgpu_ttm_recover_gart - Rebind GTT pages
977  *
978  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
979  * rebind GTT pages during a GPU reset.
980  */
981 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
982 {
983 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
984 	uint64_t flags;
985 
986 	if (!tbo->ttm)
987 		return;
988 
989 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
990 	amdgpu_ttm_gart_bind(adev, tbo, flags);
991 }
992 
993 /*
994  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
995  *
996  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
997  * ttm_tt_destroy().
998  */
999 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1000 				      struct ttm_tt *ttm)
1001 {
1002 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1003 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1004 
1005 	/* if the pages have userptr pinning then clear that first */
1006 	if (gtt->userptr) {
1007 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1008 	} else if (ttm->sg && gtt->gobj->import_attach) {
1009 		struct dma_buf_attachment *attach;
1010 
1011 		attach = gtt->gobj->import_attach;
1012 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1013 		ttm->sg = NULL;
1014 	}
1015 
1016 	if (!gtt->bound)
1017 		return;
1018 
1019 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1020 		return;
1021 
1022 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1023 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1024 	gtt->bound = false;
1025 }
1026 
1027 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1028 				       struct ttm_tt *ttm)
1029 {
1030 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1031 
1032 	if (gtt->usertask)
1033 		put_task_struct(gtt->usertask);
1034 
1035 	ttm_tt_fini(&gtt->ttm);
1036 	kfree(gtt);
1037 }
1038 
1039 /**
1040  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1041  *
1042  * @bo: The buffer object to create a GTT ttm_tt object around
1043  * @page_flags: Page flags to be added to the ttm_tt object
1044  *
1045  * Called by ttm_tt_create().
1046  */
1047 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1048 					   uint32_t page_flags)
1049 {
1050 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1051 	struct amdgpu_ttm_tt *gtt;
1052 	enum ttm_caching caching;
1053 
1054 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1055 	if (gtt == NULL) {
1056 		return NULL;
1057 	}
1058 	gtt->gobj = &bo->base;
1059 
1060 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1061 		caching = ttm_write_combined;
1062 	else
1063 		caching = ttm_cached;
1064 
1065 	/* allocate space for the uninitialized page entries */
1066 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1067 		kfree(gtt);
1068 		return NULL;
1069 	}
1070 	return &gtt->ttm;
1071 }
1072 
1073 /*
1074  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1075  *
1076  * Map the pages of a ttm_tt object to an address space visible
1077  * to the underlying device.
1078  */
1079 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1080 				  struct ttm_tt *ttm,
1081 				  struct ttm_operation_ctx *ctx)
1082 {
1083 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1084 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1085 	pgoff_t i;
1086 	int ret;
1087 
1088 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1089 	if (gtt->userptr) {
1090 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1091 		if (!ttm->sg)
1092 			return -ENOMEM;
1093 		return 0;
1094 	}
1095 
1096 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1097 		return 0;
1098 
1099 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1100 	if (ret)
1101 		return ret;
1102 
1103 	for (i = 0; i < ttm->num_pages; ++i)
1104 		ttm->pages[i]->mapping = bdev->dev_mapping;
1105 
1106 	return 0;
1107 }
1108 
1109 /*
1110  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1111  *
1112  * Unmaps pages of a ttm_tt object from the device address space and
1113  * unpopulates the page array backing it.
1114  */
1115 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1116 				     struct ttm_tt *ttm)
1117 {
1118 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1119 	struct amdgpu_device *adev;
1120 	pgoff_t i;
1121 
1122 	amdgpu_ttm_backend_unbind(bdev, ttm);
1123 
1124 	if (gtt->userptr) {
1125 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1126 		kfree(ttm->sg);
1127 		ttm->sg = NULL;
1128 		return;
1129 	}
1130 
1131 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1132 		return;
1133 
1134 	for (i = 0; i < ttm->num_pages; ++i)
1135 		ttm->pages[i]->mapping = NULL;
1136 
1137 	adev = amdgpu_ttm_adev(bdev);
1138 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1139 }
1140 
1141 /**
1142  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1143  * task
1144  *
1145  * @tbo: The ttm_buffer_object that contains the userptr
1146  * @user_addr:  The returned value
1147  */
1148 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1149 			      uint64_t *user_addr)
1150 {
1151 	struct amdgpu_ttm_tt *gtt;
1152 
1153 	if (!tbo->ttm)
1154 		return -EINVAL;
1155 
1156 	gtt = (void *)tbo->ttm;
1157 	*user_addr = gtt->userptr;
1158 	return 0;
1159 }
1160 
1161 /**
1162  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1163  * task
1164  *
1165  * @bo: The ttm_buffer_object to bind this userptr to
1166  * @addr:  The address in the current tasks VM space to use
1167  * @flags: Requirements of userptr object.
1168  *
1169  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1170  * to current task
1171  */
1172 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1173 			      uint64_t addr, uint32_t flags)
1174 {
1175 	struct amdgpu_ttm_tt *gtt;
1176 
1177 	if (!bo->ttm) {
1178 		/* TODO: We want a separate TTM object type for userptrs */
1179 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1180 		if (bo->ttm == NULL)
1181 			return -ENOMEM;
1182 	}
1183 
1184 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1185 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1186 
1187 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1188 	gtt->userptr = addr;
1189 	gtt->userflags = flags;
1190 
1191 	if (gtt->usertask)
1192 		put_task_struct(gtt->usertask);
1193 	gtt->usertask = current->group_leader;
1194 	get_task_struct(gtt->usertask);
1195 
1196 	return 0;
1197 }
1198 
1199 /*
1200  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1201  */
1202 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1203 {
1204 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1205 
1206 	if (gtt == NULL)
1207 		return NULL;
1208 
1209 	if (gtt->usertask == NULL)
1210 		return NULL;
1211 
1212 	return gtt->usertask->mm;
1213 }
1214 
1215 /*
1216  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1217  * address range for the current task.
1218  *
1219  */
1220 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1221 				  unsigned long end, unsigned long *userptr)
1222 {
1223 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1224 	unsigned long size;
1225 
1226 	if (gtt == NULL || !gtt->userptr)
1227 		return false;
1228 
1229 	/* Return false if no part of the ttm_tt object lies within
1230 	 * the range
1231 	 */
1232 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1233 	if (gtt->userptr > end || gtt->userptr + size <= start)
1234 		return false;
1235 
1236 	if (userptr)
1237 		*userptr = gtt->userptr;
1238 	return true;
1239 }
1240 
1241 /*
1242  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1243  */
1244 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1245 {
1246 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1247 
1248 	if (gtt == NULL || !gtt->userptr)
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 /*
1255  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1256  */
1257 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1258 {
1259 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260 
1261 	if (gtt == NULL)
1262 		return false;
1263 
1264 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1265 }
1266 
1267 /**
1268  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1269  *
1270  * @ttm: The ttm_tt object to compute the flags for
1271  * @mem: The memory registry backing this ttm_tt object
1272  *
1273  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1274  */
1275 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1276 {
1277 	uint64_t flags = 0;
1278 
1279 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1280 		flags |= AMDGPU_PTE_VALID;
1281 
1282 	if (mem && (mem->mem_type == TTM_PL_TT ||
1283 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1284 		flags |= AMDGPU_PTE_SYSTEM;
1285 
1286 		if (ttm->caching == ttm_cached)
1287 			flags |= AMDGPU_PTE_SNOOPED;
1288 	}
1289 
1290 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1291 			mem->bus.caching == ttm_cached)
1292 		flags |= AMDGPU_PTE_SNOOPED;
1293 
1294 	return flags;
1295 }
1296 
1297 /**
1298  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1299  *
1300  * @adev: amdgpu_device pointer
1301  * @ttm: The ttm_tt object to compute the flags for
1302  * @mem: The memory registry backing this ttm_tt object
1303  *
1304  * Figure out the flags to use for a VM PTE (Page Table Entry).
1305  */
1306 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1307 				 struct ttm_resource *mem)
1308 {
1309 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1310 
1311 	flags |= adev->gart.gart_pte_flags;
1312 	flags |= AMDGPU_PTE_READABLE;
1313 
1314 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1315 		flags |= AMDGPU_PTE_WRITEABLE;
1316 
1317 	return flags;
1318 }
1319 
1320 /*
1321  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1322  * object.
1323  *
1324  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1325  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1326  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1327  * used to clean out a memory space.
1328  */
1329 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1330 					    const struct ttm_place *place)
1331 {
1332 	unsigned long num_pages = bo->resource->num_pages;
1333 	struct dma_resv_iter resv_cursor;
1334 	struct amdgpu_res_cursor cursor;
1335 	struct dma_fence *f;
1336 
1337 	/* Swapout? */
1338 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1339 		return true;
1340 
1341 	if (bo->type == ttm_bo_type_kernel &&
1342 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1343 		return false;
1344 
1345 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1346 	 * If true, then return false as any KFD process needs all its BOs to
1347 	 * be resident to run successfully
1348 	 */
1349 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1350 				DMA_RESV_USAGE_BOOKKEEP, f) {
1351 		if (amdkfd_fence_check_mm(f, current->mm))
1352 			return false;
1353 	}
1354 
1355 	switch (bo->resource->mem_type) {
1356 	case AMDGPU_PL_PREEMPT:
1357 		/* Preemptible BOs don't own system resources managed by the
1358 		 * driver (pages, VRAM, GART space). They point to resources
1359 		 * owned by someone else (e.g. pageable memory in user mode
1360 		 * or a DMABuf). They are used in a preemptible context so we
1361 		 * can guarantee no deadlocks and good QoS in case of MMU
1362 		 * notifiers or DMABuf move notifiers from the resource owner.
1363 		 */
1364 		return false;
1365 	case TTM_PL_TT:
1366 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1367 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1368 			return false;
1369 		return true;
1370 
1371 	case TTM_PL_VRAM:
1372 		/* Check each drm MM node individually */
1373 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1374 				 &cursor);
1375 		while (cursor.remaining) {
1376 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1377 			    && !(place->lpfn &&
1378 				 place->lpfn <= PFN_DOWN(cursor.start)))
1379 				return true;
1380 
1381 			amdgpu_res_next(&cursor, cursor.size);
1382 		}
1383 		return false;
1384 
1385 	default:
1386 		break;
1387 	}
1388 
1389 	return ttm_bo_eviction_valuable(bo, place);
1390 }
1391 
1392 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1393 				      void *buf, size_t size, bool write)
1394 {
1395 	while (size) {
1396 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1397 		uint64_t bytes = 4 - (pos & 0x3);
1398 		uint32_t shift = (pos & 0x3) * 8;
1399 		uint32_t mask = 0xffffffff << shift;
1400 		uint32_t value = 0;
1401 
1402 		if (size < bytes) {
1403 			mask &= 0xffffffff >> (bytes - size) * 8;
1404 			bytes = size;
1405 		}
1406 
1407 		if (mask != 0xffffffff) {
1408 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1409 			if (write) {
1410 				value &= ~mask;
1411 				value |= (*(uint32_t *)buf << shift) & mask;
1412 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1413 			} else {
1414 				value = (value & mask) >> shift;
1415 				memcpy(buf, &value, bytes);
1416 			}
1417 		} else {
1418 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1419 		}
1420 
1421 		pos += bytes;
1422 		buf += bytes;
1423 		size -= bytes;
1424 	}
1425 }
1426 
1427 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1428 					unsigned long offset, void *buf, int len, int write)
1429 {
1430 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1431 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1432 	struct amdgpu_res_cursor src_mm;
1433 	struct amdgpu_job *job;
1434 	struct dma_fence *fence;
1435 	uint64_t src_addr, dst_addr;
1436 	unsigned int num_dw;
1437 	int r, idx;
1438 
1439 	if (len != PAGE_SIZE)
1440 		return -EINVAL;
1441 
1442 	if (!adev->mman.sdma_access_ptr)
1443 		return -EACCES;
1444 
1445 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1446 		return -ENODEV;
1447 
1448 	if (write)
1449 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1450 
1451 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1452 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1453 	if (r)
1454 		goto out;
1455 
1456 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1457 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1458 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1459 	if (write)
1460 		swap(src_addr, dst_addr);
1461 
1462 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1463 
1464 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1465 	WARN_ON(job->ibs[0].length_dw > num_dw);
1466 
1467 	r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1468 	if (r) {
1469 		amdgpu_job_free(job);
1470 		goto out;
1471 	}
1472 
1473 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1474 		r = -ETIMEDOUT;
1475 	dma_fence_put(fence);
1476 
1477 	if (!(r || write))
1478 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1479 out:
1480 	drm_dev_exit(idx);
1481 	return r;
1482 }
1483 
1484 /**
1485  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1486  *
1487  * @bo:  The buffer object to read/write
1488  * @offset:  Offset into buffer object
1489  * @buf:  Secondary buffer to write/read from
1490  * @len: Length in bytes of access
1491  * @write:  true if writing
1492  *
1493  * This is used to access VRAM that backs a buffer object via MMIO
1494  * access for debugging purposes.
1495  */
1496 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1497 				    unsigned long offset, void *buf, int len,
1498 				    int write)
1499 {
1500 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1501 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1502 	struct amdgpu_res_cursor cursor;
1503 	int ret = 0;
1504 
1505 	if (bo->resource->mem_type != TTM_PL_VRAM)
1506 		return -EIO;
1507 
1508 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1509 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1510 		return len;
1511 
1512 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1513 	while (cursor.remaining) {
1514 		size_t count, size = cursor.size;
1515 		loff_t pos = cursor.start;
1516 
1517 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1518 		size -= count;
1519 		if (size) {
1520 			/* using MM to access rest vram and handle un-aligned address */
1521 			pos += count;
1522 			buf += count;
1523 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1524 		}
1525 
1526 		ret += cursor.size;
1527 		buf += cursor.size;
1528 		amdgpu_res_next(&cursor, cursor.size);
1529 	}
1530 
1531 	return ret;
1532 }
1533 
1534 static void
1535 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1536 {
1537 	amdgpu_bo_move_notify(bo, false, NULL);
1538 }
1539 
1540 static struct ttm_device_funcs amdgpu_bo_driver = {
1541 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1542 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1543 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1544 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1545 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1546 	.evict_flags = &amdgpu_evict_flags,
1547 	.move = &amdgpu_bo_move,
1548 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1549 	.release_notify = &amdgpu_bo_release_notify,
1550 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1551 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1552 	.access_memory = &amdgpu_ttm_access_memory,
1553 };
1554 
1555 /*
1556  * Firmware Reservation functions
1557  */
1558 /**
1559  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1560  *
1561  * @adev: amdgpu_device pointer
1562  *
1563  * free fw reserved vram if it has been reserved.
1564  */
1565 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1566 {
1567 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1568 		NULL, &adev->mman.fw_vram_usage_va);
1569 }
1570 
1571 /**
1572  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1573  *
1574  * @adev: amdgpu_device pointer
1575  *
1576  * create bo vram reservation from fw.
1577  */
1578 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1579 {
1580 	uint64_t vram_size = adev->gmc.visible_vram_size;
1581 
1582 	adev->mman.fw_vram_usage_va = NULL;
1583 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1584 
1585 	if (adev->mman.fw_vram_usage_size == 0 ||
1586 	    adev->mman.fw_vram_usage_size > vram_size)
1587 		return 0;
1588 
1589 	return amdgpu_bo_create_kernel_at(adev,
1590 					  adev->mman.fw_vram_usage_start_offset,
1591 					  adev->mman.fw_vram_usage_size,
1592 					  AMDGPU_GEM_DOMAIN_VRAM,
1593 					  &adev->mman.fw_vram_usage_reserved_bo,
1594 					  &adev->mman.fw_vram_usage_va);
1595 }
1596 
1597 /*
1598  * Memoy training reservation functions
1599  */
1600 
1601 /**
1602  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1603  *
1604  * @adev: amdgpu_device pointer
1605  *
1606  * free memory training reserved vram if it has been reserved.
1607  */
1608 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1609 {
1610 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1611 
1612 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1613 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1614 	ctx->c2p_bo = NULL;
1615 
1616 	return 0;
1617 }
1618 
1619 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1620 {
1621 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1622 
1623 	memset(ctx, 0, sizeof(*ctx));
1624 
1625 	ctx->c2p_train_data_offset =
1626 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1627 	ctx->p2c_train_data_offset =
1628 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1629 	ctx->train_data_size =
1630 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1631 
1632 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1633 			ctx->train_data_size,
1634 			ctx->p2c_train_data_offset,
1635 			ctx->c2p_train_data_offset);
1636 }
1637 
1638 /*
1639  * reserve TMR memory at the top of VRAM which holds
1640  * IP Discovery data and is protected by PSP.
1641  */
1642 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1643 {
1644 	int ret;
1645 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1646 	bool mem_train_support = false;
1647 
1648 	if (!amdgpu_sriov_vf(adev)) {
1649 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1650 			mem_train_support = true;
1651 		else
1652 			DRM_DEBUG("memory training does not support!\n");
1653 	}
1654 
1655 	/*
1656 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1657 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1658 	 *
1659 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1660 	 * discovery data and G6 memory training data respectively
1661 	 */
1662 	adev->mman.discovery_tmr_size =
1663 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1664 	if (!adev->mman.discovery_tmr_size)
1665 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1666 
1667 	if (mem_train_support) {
1668 		/* reserve vram for mem train according to TMR location */
1669 		amdgpu_ttm_training_data_block_init(adev);
1670 		ret = amdgpu_bo_create_kernel_at(adev,
1671 					 ctx->c2p_train_data_offset,
1672 					 ctx->train_data_size,
1673 					 AMDGPU_GEM_DOMAIN_VRAM,
1674 					 &ctx->c2p_bo,
1675 					 NULL);
1676 		if (ret) {
1677 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1678 			amdgpu_ttm_training_reserve_vram_fini(adev);
1679 			return ret;
1680 		}
1681 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1682 	}
1683 
1684 	ret = amdgpu_bo_create_kernel_at(adev,
1685 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1686 				adev->mman.discovery_tmr_size,
1687 				AMDGPU_GEM_DOMAIN_VRAM,
1688 				&adev->mman.discovery_memory,
1689 				NULL);
1690 	if (ret) {
1691 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1692 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1693 		return ret;
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 /*
1700  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1701  * gtt/vram related fields.
1702  *
1703  * This initializes all of the memory space pools that the TTM layer
1704  * will need such as the GTT space (system memory mapped to the device),
1705  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1706  * can be mapped per VMID.
1707  */
1708 int amdgpu_ttm_init(struct amdgpu_device *adev)
1709 {
1710 	uint64_t gtt_size;
1711 	int r;
1712 	u64 vis_vram_limit;
1713 
1714 	mutex_init(&adev->mman.gtt_window_lock);
1715 
1716 	/* No others user of address space so set it to 0 */
1717 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1718 			       adev_to_drm(adev)->anon_inode->i_mapping,
1719 			       adev_to_drm(adev)->vma_offset_manager,
1720 			       adev->need_swiotlb,
1721 			       dma_addressing_limited(adev->dev));
1722 	if (r) {
1723 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1724 		return r;
1725 	}
1726 	adev->mman.initialized = true;
1727 
1728 	/* Initialize VRAM pool with all of VRAM divided into pages */
1729 	r = amdgpu_vram_mgr_init(adev);
1730 	if (r) {
1731 		DRM_ERROR("Failed initializing VRAM heap.\n");
1732 		return r;
1733 	}
1734 
1735 	/* Reduce size of CPU-visible VRAM if requested */
1736 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1737 	if (amdgpu_vis_vram_limit > 0 &&
1738 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1739 		adev->gmc.visible_vram_size = vis_vram_limit;
1740 
1741 	/* Change the size here instead of the init above so only lpfn is affected */
1742 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1743 #ifdef CONFIG_64BIT
1744 #ifdef CONFIG_X86
1745 	if (adev->gmc.xgmi.connected_to_cpu)
1746 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1747 				adev->gmc.visible_vram_size);
1748 
1749 	else
1750 #endif
1751 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1752 				adev->gmc.visible_vram_size);
1753 #endif
1754 
1755 	/*
1756 	 *The reserved vram for firmware must be pinned to the specified
1757 	 *place on the VRAM, so reserve it early.
1758 	 */
1759 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1760 	if (r) {
1761 		return r;
1762 	}
1763 
1764 	/*
1765 	 * only NAVI10 and onwards ASIC support for IP discovery.
1766 	 * If IP discovery enabled, a block of memory should be
1767 	 * reserved for IP discovey.
1768 	 */
1769 	if (adev->mman.discovery_bin) {
1770 		r = amdgpu_ttm_reserve_tmr(adev);
1771 		if (r)
1772 			return r;
1773 	}
1774 
1775 	/* allocate memory as required for VGA
1776 	 * This is used for VGA emulation and pre-OS scanout buffers to
1777 	 * avoid display artifacts while transitioning between pre-OS
1778 	 * and driver.  */
1779 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1780 				       AMDGPU_GEM_DOMAIN_VRAM,
1781 				       &adev->mman.stolen_vga_memory,
1782 				       NULL);
1783 	if (r)
1784 		return r;
1785 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1786 				       adev->mman.stolen_extended_size,
1787 				       AMDGPU_GEM_DOMAIN_VRAM,
1788 				       &adev->mman.stolen_extended_memory,
1789 				       NULL);
1790 	if (r)
1791 		return r;
1792 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1793 				       adev->mman.stolen_reserved_size,
1794 				       AMDGPU_GEM_DOMAIN_VRAM,
1795 				       &adev->mman.stolen_reserved_memory,
1796 				       NULL);
1797 	if (r)
1798 		return r;
1799 
1800 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1801 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1802 
1803 	/* Compute GTT size, either based on 1/2 the size of RAM size
1804 	 * or whatever the user passed on module init */
1805 	if (amdgpu_gtt_size == -1) {
1806 		struct sysinfo si;
1807 
1808 		si_meminfo(&si);
1809 		/* Certain GL unit tests for large textures can cause problems
1810 		 * with the OOM killer since there is no way to link this memory
1811 		 * to a process.  This was originally mitigated (but not necessarily
1812 		 * eliminated) by limiting the GTT size.  The problem is this limit
1813 		 * is often too low for many modern games so just make the limit 1/2
1814 		 * of system memory which aligns with TTM. The OOM accounting needs
1815 		 * to be addressed, but we shouldn't prevent common 3D applications
1816 		 * from being usable just to potentially mitigate that corner case.
1817 		 */
1818 		gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1819 			       (u64)si.totalram * si.mem_unit / 2);
1820 	} else {
1821 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1822 	}
1823 
1824 	/* Initialize GTT memory pool */
1825 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1826 	if (r) {
1827 		DRM_ERROR("Failed initializing GTT heap.\n");
1828 		return r;
1829 	}
1830 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1831 		 (unsigned)(gtt_size / (1024 * 1024)));
1832 
1833 	/* Initialize preemptible memory pool */
1834 	r = amdgpu_preempt_mgr_init(adev);
1835 	if (r) {
1836 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1837 		return r;
1838 	}
1839 
1840 	/* Initialize various on-chip memory pools */
1841 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1842 	if (r) {
1843 		DRM_ERROR("Failed initializing GDS heap.\n");
1844 		return r;
1845 	}
1846 
1847 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1848 	if (r) {
1849 		DRM_ERROR("Failed initializing gws heap.\n");
1850 		return r;
1851 	}
1852 
1853 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1854 	if (r) {
1855 		DRM_ERROR("Failed initializing oa heap.\n");
1856 		return r;
1857 	}
1858 
1859 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1860 				AMDGPU_GEM_DOMAIN_GTT,
1861 				&adev->mman.sdma_access_bo, NULL,
1862 				&adev->mman.sdma_access_ptr))
1863 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1864 
1865 	return 0;
1866 }
1867 
1868 /*
1869  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1870  */
1871 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1872 {
1873 	int idx;
1874 	if (!adev->mman.initialized)
1875 		return;
1876 
1877 	amdgpu_ttm_training_reserve_vram_fini(adev);
1878 	/* return the stolen vga memory back to VRAM */
1879 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1880 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1881 	/* return the IP Discovery TMR memory back to VRAM */
1882 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1883 	if (adev->mman.stolen_reserved_size)
1884 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1885 				      NULL, NULL);
1886 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1887 					&adev->mman.sdma_access_ptr);
1888 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1889 
1890 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1891 
1892 		if (adev->mman.aper_base_kaddr)
1893 			iounmap(adev->mman.aper_base_kaddr);
1894 		adev->mman.aper_base_kaddr = NULL;
1895 
1896 		drm_dev_exit(idx);
1897 	}
1898 
1899 	amdgpu_vram_mgr_fini(adev);
1900 	amdgpu_gtt_mgr_fini(adev);
1901 	amdgpu_preempt_mgr_fini(adev);
1902 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1903 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1904 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1905 	ttm_device_fini(&adev->mman.bdev);
1906 	adev->mman.initialized = false;
1907 	DRM_INFO("amdgpu: ttm finalized\n");
1908 }
1909 
1910 /**
1911  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1912  *
1913  * @adev: amdgpu_device pointer
1914  * @enable: true when we can use buffer functions.
1915  *
1916  * Enable/disable use of buffer functions during suspend/resume. This should
1917  * only be called at bootup or when userspace isn't running.
1918  */
1919 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1920 {
1921 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1922 	uint64_t size;
1923 	int r;
1924 
1925 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1926 	    adev->mman.buffer_funcs_enabled == enable)
1927 		return;
1928 
1929 	if (enable) {
1930 		struct amdgpu_ring *ring;
1931 		struct drm_gpu_scheduler *sched;
1932 
1933 		ring = adev->mman.buffer_funcs_ring;
1934 		sched = &ring->sched;
1935 		r = drm_sched_entity_init(&adev->mman.entity,
1936 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1937 					  1, NULL);
1938 		if (r) {
1939 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1940 				  r);
1941 			return;
1942 		}
1943 	} else {
1944 		drm_sched_entity_destroy(&adev->mman.entity);
1945 		dma_fence_put(man->move);
1946 		man->move = NULL;
1947 	}
1948 
1949 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1950 	if (enable)
1951 		size = adev->gmc.real_vram_size;
1952 	else
1953 		size = adev->gmc.visible_vram_size;
1954 	man->size = size;
1955 	adev->mman.buffer_funcs_enabled = enable;
1956 }
1957 
1958 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1959 				  bool direct_submit,
1960 				  unsigned int num_dw,
1961 				  struct dma_resv *resv,
1962 				  bool vm_needs_flush,
1963 				  struct amdgpu_job **job)
1964 {
1965 	enum amdgpu_ib_pool_type pool = direct_submit ?
1966 		AMDGPU_IB_POOL_DIRECT :
1967 		AMDGPU_IB_POOL_DELAYED;
1968 	int r;
1969 
1970 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1971 	if (r)
1972 		return r;
1973 
1974 	if (vm_needs_flush) {
1975 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1976 							adev->gmc.pdb0_bo :
1977 							adev->gart.bo);
1978 		(*job)->vm_needs_flush = true;
1979 	}
1980 	if (resv) {
1981 		r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1982 				     AMDGPU_SYNC_ALWAYS,
1983 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1984 		if (r) {
1985 			DRM_ERROR("sync failed (%d).\n", r);
1986 			amdgpu_job_free(*job);
1987 			return r;
1988 		}
1989 	}
1990 	return 0;
1991 }
1992 
1993 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1994 		       uint64_t dst_offset, uint32_t byte_count,
1995 		       struct dma_resv *resv,
1996 		       struct dma_fence **fence, bool direct_submit,
1997 		       bool vm_needs_flush, bool tmz)
1998 {
1999 	struct amdgpu_device *adev = ring->adev;
2000 	unsigned num_loops, num_dw;
2001 	struct amdgpu_job *job;
2002 	uint32_t max_bytes;
2003 	unsigned i;
2004 	int r;
2005 
2006 	if (!direct_submit && !ring->sched.ready) {
2007 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2008 		return -EINVAL;
2009 	}
2010 
2011 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2012 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2013 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2014 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2015 				   resv, vm_needs_flush, &job);
2016 	if (r)
2017 		return r;
2018 
2019 	for (i = 0; i < num_loops; i++) {
2020 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2021 
2022 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2023 					dst_offset, cur_size_in_bytes, tmz);
2024 
2025 		src_offset += cur_size_in_bytes;
2026 		dst_offset += cur_size_in_bytes;
2027 		byte_count -= cur_size_in_bytes;
2028 	}
2029 
2030 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2031 	WARN_ON(job->ibs[0].length_dw > num_dw);
2032 	if (direct_submit)
2033 		r = amdgpu_job_submit_direct(job, ring, fence);
2034 	else
2035 		r = amdgpu_job_submit(job, &adev->mman.entity,
2036 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2037 	if (r)
2038 		goto error_free;
2039 
2040 	return r;
2041 
2042 error_free:
2043 	amdgpu_job_free(job);
2044 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2045 	return r;
2046 }
2047 
2048 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2049 			       uint64_t dst_addr, uint32_t byte_count,
2050 			       struct dma_resv *resv,
2051 			       struct dma_fence **fence,
2052 			       bool vm_needs_flush)
2053 {
2054 	struct amdgpu_device *adev = ring->adev;
2055 	unsigned int num_loops, num_dw;
2056 	struct amdgpu_job *job;
2057 	uint32_t max_bytes;
2058 	unsigned int i;
2059 	int r;
2060 
2061 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2062 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2063 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2064 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2065 				   &job);
2066 	if (r)
2067 		return r;
2068 
2069 	for (i = 0; i < num_loops; i++) {
2070 		uint32_t cur_size = min(byte_count, max_bytes);
2071 
2072 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2073 					cur_size);
2074 
2075 		dst_addr += cur_size;
2076 		byte_count -= cur_size;
2077 	}
2078 
2079 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2080 	WARN_ON(job->ibs[0].length_dw > num_dw);
2081 	r = amdgpu_job_submit(job, &adev->mman.entity,
2082 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2083 	if (r)
2084 		goto error_free;
2085 
2086 	return 0;
2087 
2088 error_free:
2089 	amdgpu_job_free(job);
2090 	return r;
2091 }
2092 
2093 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2094 			uint32_t src_data,
2095 			struct dma_resv *resv,
2096 			struct dma_fence **f)
2097 {
2098 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2099 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2100 	struct dma_fence *fence = NULL;
2101 	struct amdgpu_res_cursor dst;
2102 	int r;
2103 
2104 	if (!adev->mman.buffer_funcs_enabled) {
2105 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2106 		return -EINVAL;
2107 	}
2108 
2109 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2110 
2111 	mutex_lock(&adev->mman.gtt_window_lock);
2112 	while (dst.remaining) {
2113 		struct dma_fence *next;
2114 		uint64_t cur_size, to;
2115 
2116 		/* Never fill more than 256MiB at once to avoid timeouts */
2117 		cur_size = min(dst.size, 256ULL << 20);
2118 
2119 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2120 					  1, ring, false, &cur_size, &to);
2121 		if (r)
2122 			goto error;
2123 
2124 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2125 					&next, true);
2126 		if (r)
2127 			goto error;
2128 
2129 		dma_fence_put(fence);
2130 		fence = next;
2131 
2132 		amdgpu_res_next(&dst, cur_size);
2133 	}
2134 error:
2135 	mutex_unlock(&adev->mman.gtt_window_lock);
2136 	if (f)
2137 		*f = dma_fence_get(fence);
2138 	dma_fence_put(fence);
2139 	return r;
2140 }
2141 
2142 /**
2143  * amdgpu_ttm_evict_resources - evict memory buffers
2144  * @adev: amdgpu device object
2145  * @mem_type: evicted BO's memory type
2146  *
2147  * Evicts all @mem_type buffers on the lru list of the memory type.
2148  *
2149  * Returns:
2150  * 0 for success or a negative error code on failure.
2151  */
2152 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2153 {
2154 	struct ttm_resource_manager *man;
2155 
2156 	switch (mem_type) {
2157 	case TTM_PL_VRAM:
2158 	case TTM_PL_TT:
2159 	case AMDGPU_PL_GWS:
2160 	case AMDGPU_PL_GDS:
2161 	case AMDGPU_PL_OA:
2162 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2163 		break;
2164 	default:
2165 		DRM_ERROR("Trying to evict invalid memory type\n");
2166 		return -EINVAL;
2167 	}
2168 
2169 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2170 }
2171 
2172 #if defined(CONFIG_DEBUG_FS)
2173 
2174 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2175 {
2176 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2177 
2178 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2179 }
2180 
2181 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2182 
2183 /*
2184  * amdgpu_ttm_vram_read - Linear read access to VRAM
2185  *
2186  * Accesses VRAM via MMIO for debugging purposes.
2187  */
2188 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2189 				    size_t size, loff_t *pos)
2190 {
2191 	struct amdgpu_device *adev = file_inode(f)->i_private;
2192 	ssize_t result = 0;
2193 
2194 	if (size & 0x3 || *pos & 0x3)
2195 		return -EINVAL;
2196 
2197 	if (*pos >= adev->gmc.mc_vram_size)
2198 		return -ENXIO;
2199 
2200 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2201 	while (size) {
2202 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2203 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2204 
2205 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2206 		if (copy_to_user(buf, value, bytes))
2207 			return -EFAULT;
2208 
2209 		result += bytes;
2210 		buf += bytes;
2211 		*pos += bytes;
2212 		size -= bytes;
2213 	}
2214 
2215 	return result;
2216 }
2217 
2218 /*
2219  * amdgpu_ttm_vram_write - Linear write access to VRAM
2220  *
2221  * Accesses VRAM via MMIO for debugging purposes.
2222  */
2223 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2224 				    size_t size, loff_t *pos)
2225 {
2226 	struct amdgpu_device *adev = file_inode(f)->i_private;
2227 	ssize_t result = 0;
2228 	int r;
2229 
2230 	if (size & 0x3 || *pos & 0x3)
2231 		return -EINVAL;
2232 
2233 	if (*pos >= adev->gmc.mc_vram_size)
2234 		return -ENXIO;
2235 
2236 	while (size) {
2237 		uint32_t value;
2238 
2239 		if (*pos >= adev->gmc.mc_vram_size)
2240 			return result;
2241 
2242 		r = get_user(value, (uint32_t *)buf);
2243 		if (r)
2244 			return r;
2245 
2246 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2247 
2248 		result += 4;
2249 		buf += 4;
2250 		*pos += 4;
2251 		size -= 4;
2252 	}
2253 
2254 	return result;
2255 }
2256 
2257 static const struct file_operations amdgpu_ttm_vram_fops = {
2258 	.owner = THIS_MODULE,
2259 	.read = amdgpu_ttm_vram_read,
2260 	.write = amdgpu_ttm_vram_write,
2261 	.llseek = default_llseek,
2262 };
2263 
2264 /*
2265  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2266  *
2267  * This function is used to read memory that has been mapped to the
2268  * GPU and the known addresses are not physical addresses but instead
2269  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2270  */
2271 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2272 				 size_t size, loff_t *pos)
2273 {
2274 	struct amdgpu_device *adev = file_inode(f)->i_private;
2275 	struct iommu_domain *dom;
2276 	ssize_t result = 0;
2277 	int r;
2278 
2279 	/* retrieve the IOMMU domain if any for this device */
2280 	dom = iommu_get_domain_for_dev(adev->dev);
2281 
2282 	while (size) {
2283 		phys_addr_t addr = *pos & PAGE_MASK;
2284 		loff_t off = *pos & ~PAGE_MASK;
2285 		size_t bytes = PAGE_SIZE - off;
2286 		unsigned long pfn;
2287 		struct page *p;
2288 		void *ptr;
2289 
2290 		bytes = bytes < size ? bytes : size;
2291 
2292 		/* Translate the bus address to a physical address.  If
2293 		 * the domain is NULL it means there is no IOMMU active
2294 		 * and the address translation is the identity
2295 		 */
2296 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2297 
2298 		pfn = addr >> PAGE_SHIFT;
2299 		if (!pfn_valid(pfn))
2300 			return -EPERM;
2301 
2302 		p = pfn_to_page(pfn);
2303 		if (p->mapping != adev->mman.bdev.dev_mapping)
2304 			return -EPERM;
2305 
2306 		ptr = kmap(p);
2307 		r = copy_to_user(buf, ptr + off, bytes);
2308 		kunmap(p);
2309 		if (r)
2310 			return -EFAULT;
2311 
2312 		size -= bytes;
2313 		*pos += bytes;
2314 		result += bytes;
2315 	}
2316 
2317 	return result;
2318 }
2319 
2320 /*
2321  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2322  *
2323  * This function is used to write memory that has been mapped to the
2324  * GPU and the known addresses are not physical addresses but instead
2325  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2326  */
2327 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2328 				 size_t size, loff_t *pos)
2329 {
2330 	struct amdgpu_device *adev = file_inode(f)->i_private;
2331 	struct iommu_domain *dom;
2332 	ssize_t result = 0;
2333 	int r;
2334 
2335 	dom = iommu_get_domain_for_dev(adev->dev);
2336 
2337 	while (size) {
2338 		phys_addr_t addr = *pos & PAGE_MASK;
2339 		loff_t off = *pos & ~PAGE_MASK;
2340 		size_t bytes = PAGE_SIZE - off;
2341 		unsigned long pfn;
2342 		struct page *p;
2343 		void *ptr;
2344 
2345 		bytes = bytes < size ? bytes : size;
2346 
2347 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2348 
2349 		pfn = addr >> PAGE_SHIFT;
2350 		if (!pfn_valid(pfn))
2351 			return -EPERM;
2352 
2353 		p = pfn_to_page(pfn);
2354 		if (p->mapping != adev->mman.bdev.dev_mapping)
2355 			return -EPERM;
2356 
2357 		ptr = kmap(p);
2358 		r = copy_from_user(ptr + off, buf, bytes);
2359 		kunmap(p);
2360 		if (r)
2361 			return -EFAULT;
2362 
2363 		size -= bytes;
2364 		*pos += bytes;
2365 		result += bytes;
2366 	}
2367 
2368 	return result;
2369 }
2370 
2371 static const struct file_operations amdgpu_ttm_iomem_fops = {
2372 	.owner = THIS_MODULE,
2373 	.read = amdgpu_iomem_read,
2374 	.write = amdgpu_iomem_write,
2375 	.llseek = default_llseek
2376 };
2377 
2378 #endif
2379 
2380 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2381 {
2382 #if defined(CONFIG_DEBUG_FS)
2383 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2384 	struct dentry *root = minor->debugfs_root;
2385 
2386 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2387 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2388 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2389 			    &amdgpu_ttm_iomem_fops);
2390 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2391 			    &amdgpu_ttm_page_pool_fops);
2392 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2393 							     TTM_PL_VRAM),
2394 					    root, "amdgpu_vram_mm");
2395 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2396 							     TTM_PL_TT),
2397 					    root, "amdgpu_gtt_mm");
2398 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2399 							     AMDGPU_PL_GDS),
2400 					    root, "amdgpu_gds_mm");
2401 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2402 							     AMDGPU_PL_GWS),
2403 					    root, "amdgpu_gws_mm");
2404 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2405 							     AMDGPU_PL_OA),
2406 					    root, "amdgpu_oa_mm");
2407 
2408 #endif
2409 }
2410