xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 		placement->num_placement = 0;
127 		return;
128 
129 	case TTM_PL_VRAM:
130 		if (!adev->mman.buffer_funcs_enabled) {
131 			/* Move to system memory */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133 
134 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
137 
138 			/* Try evicting to the CPU inaccessible part of VRAM
139 			 * first, but only set GTT as busy placement, so this
140 			 * BO will be evicted to GTT rather than causing other
141 			 * BOs to be evicted from VRAM
142 			 */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 							AMDGPU_GEM_DOMAIN_GTT |
145 							AMDGPU_GEM_DOMAIN_CPU);
146 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 			abo->placements[0].lpfn = 0;
148 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 		} else {
150 			/* Move to GTT memory */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 							AMDGPU_GEM_DOMAIN_CPU);
153 		}
154 		break;
155 	case TTM_PL_TT:
156 	case AMDGPU_PL_PREEMPT:
157 	default:
158 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 		break;
160 	}
161 	*placement = abo->placement;
162 }
163 
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 				 struct ttm_resource *mem,
180 				 struct amdgpu_res_cursor *mm_cur,
181 				 unsigned int window, struct amdgpu_ring *ring,
182 				 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 	struct amdgpu_device *adev = ring->adev;
185 	unsigned int offset, num_pages, num_dw, num_bytes;
186 	uint64_t src_addr, dst_addr;
187 	struct amdgpu_job *job;
188 	void *cpu_addr;
189 	uint64_t flags;
190 	unsigned int i;
191 	int r;
192 
193 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195 
196 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 		return -EINVAL;
198 
199 	/* Map only what can't be accessed directly */
200 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 			mm_cur->start;
203 		return 0;
204 	}
205 
206 
207 	/*
208 	 * If start begins at an offset inside the page, then adjust the size
209 	 * and addr accordingly
210 	 */
211 	offset = mm_cur->start & ~PAGE_MASK;
212 
213 	num_pages = PFN_UP(*size + offset);
214 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215 
216 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += offset;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 				     AMDGPU_FENCE_OWNER_UNDEFINED,
228 				     num_dw * 4 + num_bytes,
229 				     AMDGPU_IB_POOL_DELAYED, &job);
230 	if (r)
231 		return r;
232 
233 	src_addr = num_dw * 4;
234 	src_addr += job->ibs[0].gpu_addr;
235 
236 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 				dst_addr, num_bytes, 0);
240 
241 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 	WARN_ON(job->ibs[0].length_dw > num_dw);
243 
244 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 	if (tmz)
246 		flags |= AMDGPU_PTE_TMZ;
247 
248 	cpu_addr = &job->ibs[0].ptr[num_dw];
249 
250 	if (mem->mem_type == TTM_PL_TT) {
251 		dma_addr_t *dma_addr;
252 
253 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 	} else {
256 		dma_addr_t dma_address;
257 
258 		dma_address = mm_cur->start;
259 		dma_address += adev->vm_manager.vram_base_offset;
260 
261 		for (i = 0; i < num_pages; ++i) {
262 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 					flags, cpu_addr);
264 			dma_address += PAGE_SIZE;
265 		}
266 	}
267 
268 	dma_fence_put(amdgpu_job_submit(job));
269 	return 0;
270 }
271 
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 			       const struct amdgpu_copy_mem *src,
289 			       const struct amdgpu_copy_mem *dst,
290 			       uint64_t size, bool tmz,
291 			       struct dma_resv *resv,
292 			       struct dma_fence **f)
293 {
294 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 	struct amdgpu_res_cursor src_mm, dst_mm;
296 	struct dma_fence *fence = NULL;
297 	int r = 0;
298 	uint32_t copy_flags = 0;
299 	struct amdgpu_bo *abo_src, *abo_dst;
300 
301 	if (!adev->mman.buffer_funcs_enabled) {
302 		DRM_ERROR("Trying to move memory with ring turned off.\n");
303 		return -EINVAL;
304 	}
305 
306 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
308 
309 	mutex_lock(&adev->mman.gtt_window_lock);
310 	while (src_mm.remaining) {
311 		uint64_t from, to, cur_size, tiling_flags;
312 		uint32_t num_type, data_format, max_com;
313 		struct dma_fence *next;
314 
315 		/* Never copy more than 256MiB at once to avoid a timeout */
316 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
317 
318 		/* Map src to window 0 and dst to window 1. */
319 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
320 					  0, ring, tmz, &cur_size, &from);
321 		if (r)
322 			goto error;
323 
324 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
325 					  1, ring, tmz, &cur_size, &to);
326 		if (r)
327 			goto error;
328 
329 		abo_src = ttm_to_amdgpu_bo(src->bo);
330 		abo_dst = ttm_to_amdgpu_bo(dst->bo);
331 		if (tmz)
332 			copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
333 		if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
334 		    (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
335 			copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
336 		if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
337 		    (dst->mem->mem_type == TTM_PL_VRAM)) {
338 			copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
339 			amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
340 			max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
341 			num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
342 			data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
343 			copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
344 				       AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
345 				       AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format));
346 		}
347 
348 		r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
349 				       &next, false, true, copy_flags);
350 		if (r)
351 			goto error;
352 
353 		dma_fence_put(fence);
354 		fence = next;
355 
356 		amdgpu_res_next(&src_mm, cur_size);
357 		amdgpu_res_next(&dst_mm, cur_size);
358 	}
359 error:
360 	mutex_unlock(&adev->mman.gtt_window_lock);
361 	if (f)
362 		*f = dma_fence_get(fence);
363 	dma_fence_put(fence);
364 	return r;
365 }
366 
367 /*
368  * amdgpu_move_blit - Copy an entire buffer to another buffer
369  *
370  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
371  * help move buffers to and from VRAM.
372  */
373 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
374 			    bool evict,
375 			    struct ttm_resource *new_mem,
376 			    struct ttm_resource *old_mem)
377 {
378 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
379 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
380 	struct amdgpu_copy_mem src, dst;
381 	struct dma_fence *fence = NULL;
382 	int r;
383 
384 	src.bo = bo;
385 	dst.bo = bo;
386 	src.mem = old_mem;
387 	dst.mem = new_mem;
388 	src.offset = 0;
389 	dst.offset = 0;
390 
391 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
392 				       new_mem->size,
393 				       amdgpu_bo_encrypted(abo),
394 				       bo->base.resv, &fence);
395 	if (r)
396 		goto error;
397 
398 	/* clear the space being freed */
399 	if (old_mem->mem_type == TTM_PL_VRAM &&
400 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
401 		struct dma_fence *wipe_fence = NULL;
402 
403 		r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
404 				       false);
405 		if (r) {
406 			goto error;
407 		} else if (wipe_fence) {
408 			amdgpu_vram_mgr_set_cleared(bo->resource);
409 			dma_fence_put(fence);
410 			fence = wipe_fence;
411 		}
412 	}
413 
414 	/* Always block for VM page tables before committing the new location */
415 	if (bo->type == ttm_bo_type_kernel)
416 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
417 	else
418 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
419 	dma_fence_put(fence);
420 	return r;
421 
422 error:
423 	if (fence)
424 		dma_fence_wait(fence, false);
425 	dma_fence_put(fence);
426 	return r;
427 }
428 
429 /**
430  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
431  * @adev: amdgpu device
432  * @res: the resource to check
433  *
434  * Returns: true if the full resource is CPU visible, false otherwise.
435  */
436 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
437 			    struct ttm_resource *res)
438 {
439 	struct amdgpu_res_cursor cursor;
440 
441 	if (!res)
442 		return false;
443 
444 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
445 	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
446 		return true;
447 
448 	if (res->mem_type != TTM_PL_VRAM)
449 		return false;
450 
451 	amdgpu_res_first(res, 0, res->size, &cursor);
452 	while (cursor.remaining) {
453 		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
454 			return false;
455 		amdgpu_res_next(&cursor, cursor.size);
456 	}
457 
458 	return true;
459 }
460 
461 /*
462  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
463  *
464  * Called by amdgpu_bo_move()
465  */
466 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
467 				struct ttm_resource *mem)
468 {
469 	if (!amdgpu_res_cpu_visible(adev, mem))
470 		return false;
471 
472 	/* ttm_resource_ioremap only supports contiguous memory */
473 	if (mem->mem_type == TTM_PL_VRAM &&
474 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
475 		return false;
476 
477 	return true;
478 }
479 
480 /*
481  * amdgpu_bo_move - Move a buffer object to a new memory location
482  *
483  * Called by ttm_bo_handle_move_mem()
484  */
485 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
486 			  struct ttm_operation_ctx *ctx,
487 			  struct ttm_resource *new_mem,
488 			  struct ttm_place *hop)
489 {
490 	struct amdgpu_device *adev;
491 	struct amdgpu_bo *abo;
492 	struct ttm_resource *old_mem = bo->resource;
493 	int r;
494 
495 	if (new_mem->mem_type == TTM_PL_TT ||
496 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
497 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
498 		if (r)
499 			return r;
500 	}
501 
502 	abo = ttm_to_amdgpu_bo(bo);
503 	adev = amdgpu_ttm_adev(bo->bdev);
504 
505 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
506 			 bo->ttm == NULL)) {
507 		amdgpu_bo_move_notify(bo, evict, new_mem);
508 		ttm_bo_move_null(bo, new_mem);
509 		return 0;
510 	}
511 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
512 	    (new_mem->mem_type == TTM_PL_TT ||
513 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
514 		amdgpu_bo_move_notify(bo, evict, new_mem);
515 		ttm_bo_move_null(bo, new_mem);
516 		return 0;
517 	}
518 	if ((old_mem->mem_type == TTM_PL_TT ||
519 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
520 	    new_mem->mem_type == TTM_PL_SYSTEM) {
521 		r = ttm_bo_wait_ctx(bo, ctx);
522 		if (r)
523 			return r;
524 
525 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
526 		amdgpu_bo_move_notify(bo, evict, new_mem);
527 		ttm_resource_free(bo, &bo->resource);
528 		ttm_bo_assign_mem(bo, new_mem);
529 		return 0;
530 	}
531 
532 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
533 	    old_mem->mem_type == AMDGPU_PL_GWS ||
534 	    old_mem->mem_type == AMDGPU_PL_OA ||
535 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
536 	    new_mem->mem_type == AMDGPU_PL_GDS ||
537 	    new_mem->mem_type == AMDGPU_PL_GWS ||
538 	    new_mem->mem_type == AMDGPU_PL_OA ||
539 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
540 		/* Nothing to save here */
541 		amdgpu_bo_move_notify(bo, evict, new_mem);
542 		ttm_bo_move_null(bo, new_mem);
543 		return 0;
544 	}
545 
546 	if (bo->type == ttm_bo_type_device &&
547 	    new_mem->mem_type == TTM_PL_VRAM &&
548 	    old_mem->mem_type != TTM_PL_VRAM) {
549 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
550 		 * accesses the BO after it's moved.
551 		 */
552 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
553 	}
554 
555 	if (adev->mman.buffer_funcs_enabled &&
556 	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
557 	      new_mem->mem_type == TTM_PL_VRAM) ||
558 	     (old_mem->mem_type == TTM_PL_VRAM &&
559 	      new_mem->mem_type == TTM_PL_SYSTEM))) {
560 		hop->fpfn = 0;
561 		hop->lpfn = 0;
562 		hop->mem_type = TTM_PL_TT;
563 		hop->flags = TTM_PL_FLAG_TEMPORARY;
564 		return -EMULTIHOP;
565 	}
566 
567 	amdgpu_bo_move_notify(bo, evict, new_mem);
568 	if (adev->mman.buffer_funcs_enabled)
569 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
570 	else
571 		r = -ENODEV;
572 
573 	if (r) {
574 		/* Check that all memory is CPU accessible */
575 		if (!amdgpu_res_copyable(adev, old_mem) ||
576 		    !amdgpu_res_copyable(adev, new_mem)) {
577 			pr_err("Move buffer fallback to memcpy unavailable\n");
578 			return r;
579 		}
580 
581 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
582 		if (r)
583 			return r;
584 	}
585 
586 	/* update statistics after the move */
587 	if (evict)
588 		atomic64_inc(&adev->num_evictions);
589 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
590 	return 0;
591 }
592 
593 /*
594  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
595  *
596  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
597  */
598 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
599 				     struct ttm_resource *mem)
600 {
601 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
602 
603 	switch (mem->mem_type) {
604 	case TTM_PL_SYSTEM:
605 		/* system memory */
606 		return 0;
607 	case TTM_PL_TT:
608 	case AMDGPU_PL_PREEMPT:
609 		break;
610 	case TTM_PL_VRAM:
611 		mem->bus.offset = mem->start << PAGE_SHIFT;
612 
613 		if (adev->mman.aper_base_kaddr &&
614 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
615 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
616 					mem->bus.offset;
617 
618 		mem->bus.offset += adev->gmc.aper_base;
619 		mem->bus.is_iomem = true;
620 		break;
621 	case AMDGPU_PL_DOORBELL:
622 		mem->bus.offset = mem->start << PAGE_SHIFT;
623 		mem->bus.offset += adev->doorbell.base;
624 		mem->bus.is_iomem = true;
625 		mem->bus.caching = ttm_uncached;
626 		break;
627 	default:
628 		return -EINVAL;
629 	}
630 	return 0;
631 }
632 
633 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
634 					   unsigned long page_offset)
635 {
636 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
637 	struct amdgpu_res_cursor cursor;
638 
639 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
640 			 &cursor);
641 
642 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
643 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
644 
645 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
646 }
647 
648 /**
649  * amdgpu_ttm_domain_start - Returns GPU start address
650  * @adev: amdgpu device object
651  * @type: type of the memory
652  *
653  * Returns:
654  * GPU start address of a memory domain
655  */
656 
657 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
658 {
659 	switch (type) {
660 	case TTM_PL_TT:
661 		return adev->gmc.gart_start;
662 	case TTM_PL_VRAM:
663 		return adev->gmc.vram_start;
664 	}
665 
666 	return 0;
667 }
668 
669 /*
670  * TTM backend functions.
671  */
672 struct amdgpu_ttm_tt {
673 	struct ttm_tt	ttm;
674 	struct drm_gem_object	*gobj;
675 	u64			offset;
676 	uint64_t		userptr;
677 	struct task_struct	*usertask;
678 	uint32_t		userflags;
679 	bool			bound;
680 	int32_t			pool_id;
681 };
682 
683 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
684 
685 #ifdef CONFIG_DRM_AMDGPU_USERPTR
686 /*
687  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
688  * memory and start HMM tracking CPU page table update
689  *
690  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
691  * once afterwards to stop HMM tracking
692  */
693 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
694 				 struct hmm_range **range)
695 {
696 	struct ttm_tt *ttm = bo->tbo.ttm;
697 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
698 	unsigned long start = gtt->userptr;
699 	struct vm_area_struct *vma;
700 	struct mm_struct *mm;
701 	bool readonly;
702 	int r = 0;
703 
704 	/* Make sure get_user_pages_done() can cleanup gracefully */
705 	*range = NULL;
706 
707 	mm = bo->notifier.mm;
708 	if (unlikely(!mm)) {
709 		DRM_DEBUG_DRIVER("BO is not registered?\n");
710 		return -EFAULT;
711 	}
712 
713 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
714 		return -ESRCH;
715 
716 	mmap_read_lock(mm);
717 	vma = vma_lookup(mm, start);
718 	if (unlikely(!vma)) {
719 		r = -EFAULT;
720 		goto out_unlock;
721 	}
722 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
723 		vma->vm_file)) {
724 		r = -EPERM;
725 		goto out_unlock;
726 	}
727 
728 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
729 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
730 				       readonly, NULL, pages, range);
731 out_unlock:
732 	mmap_read_unlock(mm);
733 	if (r)
734 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
735 
736 	mmput(mm);
737 
738 	return r;
739 }
740 
741 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
742  */
743 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
744 				      struct hmm_range *range)
745 {
746 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
747 
748 	if (gtt && gtt->userptr && range)
749 		amdgpu_hmm_range_get_pages_done(range);
750 }
751 
752 /*
753  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
754  * Check if the pages backing this ttm range have been invalidated
755  *
756  * Returns: true if pages are still valid
757  */
758 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
759 				       struct hmm_range *range)
760 {
761 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
762 
763 	if (!gtt || !gtt->userptr || !range)
764 		return false;
765 
766 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
767 		gtt->userptr, ttm->num_pages);
768 
769 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
770 
771 	return !amdgpu_hmm_range_get_pages_done(range);
772 }
773 #endif
774 
775 /*
776  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
777  *
778  * Called by amdgpu_cs_list_validate(). This creates the page list
779  * that backs user memory and will ultimately be mapped into the device
780  * address space.
781  */
782 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
783 {
784 	unsigned long i;
785 
786 	for (i = 0; i < ttm->num_pages; ++i)
787 		ttm->pages[i] = pages ? pages[i] : NULL;
788 }
789 
790 /*
791  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
792  *
793  * Called by amdgpu_ttm_backend_bind()
794  **/
795 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
796 				     struct ttm_tt *ttm)
797 {
798 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
799 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
800 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
801 	enum dma_data_direction direction = write ?
802 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
803 	int r;
804 
805 	/* Allocate an SG array and squash pages into it */
806 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
807 				      (u64)ttm->num_pages << PAGE_SHIFT,
808 				      GFP_KERNEL);
809 	if (r)
810 		goto release_sg;
811 
812 	/* Map SG to device */
813 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
814 	if (r)
815 		goto release_sg;
816 
817 	/* convert SG to linear array of pages and dma addresses */
818 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
819 				       ttm->num_pages);
820 
821 	return 0;
822 
823 release_sg:
824 	kfree(ttm->sg);
825 	ttm->sg = NULL;
826 	return r;
827 }
828 
829 /*
830  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
831  */
832 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
833 					struct ttm_tt *ttm)
834 {
835 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
836 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
837 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
838 	enum dma_data_direction direction = write ?
839 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
840 
841 	/* double check that we don't free the table twice */
842 	if (!ttm->sg || !ttm->sg->sgl)
843 		return;
844 
845 	/* unmap the pages mapped to the device */
846 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
847 	sg_free_table(ttm->sg);
848 }
849 
850 /*
851  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
852  * MQDn+CtrlStackn where n is the number of XCCs per partition.
853  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
854  * and uses memory type default, UC. The rest of pages_per_xcc are
855  * Ctrl stack and modify their memory type to NC.
856  */
857 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
858 				struct ttm_tt *ttm, uint64_t flags)
859 {
860 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
861 	uint64_t total_pages = ttm->num_pages;
862 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
863 	uint64_t page_idx, pages_per_xcc;
864 	int i;
865 	uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
866 
867 	pages_per_xcc = total_pages;
868 	do_div(pages_per_xcc, num_xcc);
869 
870 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
871 		/* MQD page: use default flags */
872 		amdgpu_gart_bind(adev,
873 				gtt->offset + (page_idx << PAGE_SHIFT),
874 				1, &gtt->ttm.dma_address[page_idx], flags);
875 		/*
876 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
877 		 * the second page of the BO onward.
878 		 */
879 		amdgpu_gart_bind(adev,
880 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
881 				pages_per_xcc - 1,
882 				&gtt->ttm.dma_address[page_idx + 1],
883 				ctrl_flags);
884 	}
885 }
886 
887 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
888 				 struct ttm_buffer_object *tbo,
889 				 uint64_t flags)
890 {
891 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
892 	struct ttm_tt *ttm = tbo->ttm;
893 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
894 
895 	if (amdgpu_bo_encrypted(abo))
896 		flags |= AMDGPU_PTE_TMZ;
897 
898 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
899 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
900 	} else {
901 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
902 				 gtt->ttm.dma_address, flags);
903 	}
904 	gtt->bound = true;
905 }
906 
907 /*
908  * amdgpu_ttm_backend_bind - Bind GTT memory
909  *
910  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
911  * This handles binding GTT memory to the device address space.
912  */
913 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
914 				   struct ttm_tt *ttm,
915 				   struct ttm_resource *bo_mem)
916 {
917 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
918 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
919 	uint64_t flags;
920 	int r;
921 
922 	if (!bo_mem)
923 		return -EINVAL;
924 
925 	if (gtt->bound)
926 		return 0;
927 
928 	if (gtt->userptr) {
929 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
930 		if (r) {
931 			DRM_ERROR("failed to pin userptr\n");
932 			return r;
933 		}
934 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
935 		if (!ttm->sg) {
936 			struct dma_buf_attachment *attach;
937 			struct sg_table *sgt;
938 
939 			attach = gtt->gobj->import_attach;
940 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
941 			if (IS_ERR(sgt))
942 				return PTR_ERR(sgt);
943 
944 			ttm->sg = sgt;
945 		}
946 
947 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
948 					       ttm->num_pages);
949 	}
950 
951 	if (!ttm->num_pages) {
952 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
953 		     ttm->num_pages, bo_mem, ttm);
954 	}
955 
956 	if (bo_mem->mem_type != TTM_PL_TT ||
957 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
958 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
959 		return 0;
960 	}
961 
962 	/* compute PTE flags relevant to this BO memory */
963 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
964 
965 	/* bind pages into GART page tables */
966 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
967 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
968 			 gtt->ttm.dma_address, flags);
969 	gtt->bound = true;
970 	return 0;
971 }
972 
973 /*
974  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
975  * through AGP or GART aperture.
976  *
977  * If bo is accessible through AGP aperture, then use AGP aperture
978  * to access bo; otherwise allocate logical space in GART aperture
979  * and map bo to GART aperture.
980  */
981 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
982 {
983 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
984 	struct ttm_operation_ctx ctx = { false, false };
985 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
986 	struct ttm_placement placement;
987 	struct ttm_place placements;
988 	struct ttm_resource *tmp;
989 	uint64_t addr, flags;
990 	int r;
991 
992 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
993 		return 0;
994 
995 	addr = amdgpu_gmc_agp_addr(bo);
996 	if (addr != AMDGPU_BO_INVALID_OFFSET)
997 		return 0;
998 
999 	/* allocate GART space */
1000 	placement.num_placement = 1;
1001 	placement.placement = &placements;
1002 	placements.fpfn = 0;
1003 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1004 	placements.mem_type = TTM_PL_TT;
1005 	placements.flags = bo->resource->placement;
1006 
1007 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1008 	if (unlikely(r))
1009 		return r;
1010 
1011 	/* compute PTE flags for this buffer object */
1012 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1013 
1014 	/* Bind pages */
1015 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1016 	amdgpu_ttm_gart_bind(adev, bo, flags);
1017 	amdgpu_gart_invalidate_tlb(adev);
1018 	ttm_resource_free(bo, &bo->resource);
1019 	ttm_bo_assign_mem(bo, tmp);
1020 
1021 	return 0;
1022 }
1023 
1024 /*
1025  * amdgpu_ttm_recover_gart - Rebind GTT pages
1026  *
1027  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1028  * rebind GTT pages during a GPU reset.
1029  */
1030 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1031 {
1032 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1033 	uint64_t flags;
1034 
1035 	if (!tbo->ttm)
1036 		return;
1037 
1038 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1039 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1040 }
1041 
1042 /*
1043  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1044  *
1045  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1046  * ttm_tt_destroy().
1047  */
1048 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1049 				      struct ttm_tt *ttm)
1050 {
1051 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1052 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1053 
1054 	/* if the pages have userptr pinning then clear that first */
1055 	if (gtt->userptr) {
1056 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1057 	} else if (ttm->sg && gtt->gobj->import_attach) {
1058 		struct dma_buf_attachment *attach;
1059 
1060 		attach = gtt->gobj->import_attach;
1061 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1062 		ttm->sg = NULL;
1063 	}
1064 
1065 	if (!gtt->bound)
1066 		return;
1067 
1068 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1069 		return;
1070 
1071 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1072 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1073 	gtt->bound = false;
1074 }
1075 
1076 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1077 				       struct ttm_tt *ttm)
1078 {
1079 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1080 
1081 	if (gtt->usertask)
1082 		put_task_struct(gtt->usertask);
1083 
1084 	ttm_tt_fini(&gtt->ttm);
1085 	kfree(gtt);
1086 }
1087 
1088 /**
1089  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1090  *
1091  * @bo: The buffer object to create a GTT ttm_tt object around
1092  * @page_flags: Page flags to be added to the ttm_tt object
1093  *
1094  * Called by ttm_tt_create().
1095  */
1096 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1097 					   uint32_t page_flags)
1098 {
1099 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1100 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1101 	struct amdgpu_ttm_tt *gtt;
1102 	enum ttm_caching caching;
1103 
1104 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1105 	if (!gtt)
1106 		return NULL;
1107 
1108 	gtt->gobj = &bo->base;
1109 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1110 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1111 	else
1112 		gtt->pool_id = abo->xcp_id;
1113 
1114 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1115 		caching = ttm_write_combined;
1116 	else
1117 		caching = ttm_cached;
1118 
1119 	/* allocate space for the uninitialized page entries */
1120 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1121 		kfree(gtt);
1122 		return NULL;
1123 	}
1124 	return &gtt->ttm;
1125 }
1126 
1127 /*
1128  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1129  *
1130  * Map the pages of a ttm_tt object to an address space visible
1131  * to the underlying device.
1132  */
1133 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1134 				  struct ttm_tt *ttm,
1135 				  struct ttm_operation_ctx *ctx)
1136 {
1137 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1138 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1139 	struct ttm_pool *pool;
1140 	pgoff_t i;
1141 	int ret;
1142 
1143 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1144 	if (gtt->userptr) {
1145 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1146 		if (!ttm->sg)
1147 			return -ENOMEM;
1148 		return 0;
1149 	}
1150 
1151 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1152 		return 0;
1153 
1154 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1155 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1156 	else
1157 		pool = &adev->mman.bdev.pool;
1158 	ret = ttm_pool_alloc(pool, ttm, ctx);
1159 	if (ret)
1160 		return ret;
1161 
1162 	for (i = 0; i < ttm->num_pages; ++i)
1163 		ttm->pages[i]->mapping = bdev->dev_mapping;
1164 
1165 	return 0;
1166 }
1167 
1168 /*
1169  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1170  *
1171  * Unmaps pages of a ttm_tt object from the device address space and
1172  * unpopulates the page array backing it.
1173  */
1174 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1175 				     struct ttm_tt *ttm)
1176 {
1177 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1178 	struct amdgpu_device *adev;
1179 	struct ttm_pool *pool;
1180 	pgoff_t i;
1181 
1182 	amdgpu_ttm_backend_unbind(bdev, ttm);
1183 
1184 	if (gtt->userptr) {
1185 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1186 		kfree(ttm->sg);
1187 		ttm->sg = NULL;
1188 		return;
1189 	}
1190 
1191 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1192 		return;
1193 
1194 	for (i = 0; i < ttm->num_pages; ++i)
1195 		ttm->pages[i]->mapping = NULL;
1196 
1197 	adev = amdgpu_ttm_adev(bdev);
1198 
1199 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1200 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1201 	else
1202 		pool = &adev->mman.bdev.pool;
1203 
1204 	return ttm_pool_free(pool, ttm);
1205 }
1206 
1207 /**
1208  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1209  * task
1210  *
1211  * @tbo: The ttm_buffer_object that contains the userptr
1212  * @user_addr:  The returned value
1213  */
1214 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1215 			      uint64_t *user_addr)
1216 {
1217 	struct amdgpu_ttm_tt *gtt;
1218 
1219 	if (!tbo->ttm)
1220 		return -EINVAL;
1221 
1222 	gtt = (void *)tbo->ttm;
1223 	*user_addr = gtt->userptr;
1224 	return 0;
1225 }
1226 
1227 /**
1228  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1229  * task
1230  *
1231  * @bo: The ttm_buffer_object to bind this userptr to
1232  * @addr:  The address in the current tasks VM space to use
1233  * @flags: Requirements of userptr object.
1234  *
1235  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1236  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1237  * initialize GPU VM for a KFD process.
1238  */
1239 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1240 			      uint64_t addr, uint32_t flags)
1241 {
1242 	struct amdgpu_ttm_tt *gtt;
1243 
1244 	if (!bo->ttm) {
1245 		/* TODO: We want a separate TTM object type for userptrs */
1246 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1247 		if (bo->ttm == NULL)
1248 			return -ENOMEM;
1249 	}
1250 
1251 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1252 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1253 
1254 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1255 	gtt->userptr = addr;
1256 	gtt->userflags = flags;
1257 
1258 	if (gtt->usertask)
1259 		put_task_struct(gtt->usertask);
1260 	gtt->usertask = current->group_leader;
1261 	get_task_struct(gtt->usertask);
1262 
1263 	return 0;
1264 }
1265 
1266 /*
1267  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1268  */
1269 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1270 {
1271 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1272 
1273 	if (gtt == NULL)
1274 		return NULL;
1275 
1276 	if (gtt->usertask == NULL)
1277 		return NULL;
1278 
1279 	return gtt->usertask->mm;
1280 }
1281 
1282 /*
1283  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1284  * address range for the current task.
1285  *
1286  */
1287 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1288 				  unsigned long end, unsigned long *userptr)
1289 {
1290 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1291 	unsigned long size;
1292 
1293 	if (gtt == NULL || !gtt->userptr)
1294 		return false;
1295 
1296 	/* Return false if no part of the ttm_tt object lies within
1297 	 * the range
1298 	 */
1299 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1300 	if (gtt->userptr > end || gtt->userptr + size <= start)
1301 		return false;
1302 
1303 	if (userptr)
1304 		*userptr = gtt->userptr;
1305 	return true;
1306 }
1307 
1308 /*
1309  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1310  */
1311 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1312 {
1313 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1314 
1315 	if (gtt == NULL || !gtt->userptr)
1316 		return false;
1317 
1318 	return true;
1319 }
1320 
1321 /*
1322  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1323  */
1324 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1325 {
1326 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1327 
1328 	if (gtt == NULL)
1329 		return false;
1330 
1331 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1332 }
1333 
1334 /**
1335  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1336  *
1337  * @ttm: The ttm_tt object to compute the flags for
1338  * @mem: The memory registry backing this ttm_tt object
1339  *
1340  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1341  */
1342 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1343 {
1344 	uint64_t flags = 0;
1345 
1346 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1347 		flags |= AMDGPU_PTE_VALID;
1348 
1349 	if (mem && (mem->mem_type == TTM_PL_TT ||
1350 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1351 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1352 		flags |= AMDGPU_PTE_SYSTEM;
1353 
1354 		if (ttm->caching == ttm_cached)
1355 			flags |= AMDGPU_PTE_SNOOPED;
1356 	}
1357 
1358 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1359 			mem->bus.caching == ttm_cached)
1360 		flags |= AMDGPU_PTE_SNOOPED;
1361 
1362 	return flags;
1363 }
1364 
1365 /**
1366  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1367  *
1368  * @adev: amdgpu_device pointer
1369  * @ttm: The ttm_tt object to compute the flags for
1370  * @mem: The memory registry backing this ttm_tt object
1371  *
1372  * Figure out the flags to use for a VM PTE (Page Table Entry).
1373  */
1374 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1375 				 struct ttm_resource *mem)
1376 {
1377 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1378 
1379 	flags |= adev->gart.gart_pte_flags;
1380 	flags |= AMDGPU_PTE_READABLE;
1381 
1382 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1383 		flags |= AMDGPU_PTE_WRITEABLE;
1384 
1385 	return flags;
1386 }
1387 
1388 /*
1389  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1390  * object.
1391  *
1392  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1393  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1394  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1395  * used to clean out a memory space.
1396  */
1397 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1398 					    const struct ttm_place *place)
1399 {
1400 	struct dma_resv_iter resv_cursor;
1401 	struct dma_fence *f;
1402 
1403 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1404 		return ttm_bo_eviction_valuable(bo, place);
1405 
1406 	/* Swapout? */
1407 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1408 		return true;
1409 
1410 	if (bo->type == ttm_bo_type_kernel &&
1411 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1412 		return false;
1413 
1414 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1415 	 * If true, then return false as any KFD process needs all its BOs to
1416 	 * be resident to run successfully
1417 	 */
1418 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1419 				DMA_RESV_USAGE_BOOKKEEP, f) {
1420 		if (amdkfd_fence_check_mm(f, current->mm) &&
1421 		    !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1422 			return false;
1423 	}
1424 
1425 	/* Preemptible BOs don't own system resources managed by the
1426 	 * driver (pages, VRAM, GART space). They point to resources
1427 	 * owned by someone else (e.g. pageable memory in user mode
1428 	 * or a DMABuf). They are used in a preemptible context so we
1429 	 * can guarantee no deadlocks and good QoS in case of MMU
1430 	 * notifiers or DMABuf move notifiers from the resource owner.
1431 	 */
1432 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1433 		return false;
1434 
1435 	if (bo->resource->mem_type == TTM_PL_TT &&
1436 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1437 		return false;
1438 
1439 	return ttm_bo_eviction_valuable(bo, place);
1440 }
1441 
1442 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1443 				      void *buf, size_t size, bool write)
1444 {
1445 	while (size) {
1446 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1447 		uint64_t bytes = 4 - (pos & 0x3);
1448 		uint32_t shift = (pos & 0x3) * 8;
1449 		uint32_t mask = 0xffffffff << shift;
1450 		uint32_t value = 0;
1451 
1452 		if (size < bytes) {
1453 			mask &= 0xffffffff >> (bytes - size) * 8;
1454 			bytes = size;
1455 		}
1456 
1457 		if (mask != 0xffffffff) {
1458 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1459 			if (write) {
1460 				value &= ~mask;
1461 				value |= (*(uint32_t *)buf << shift) & mask;
1462 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1463 			} else {
1464 				value = (value & mask) >> shift;
1465 				memcpy(buf, &value, bytes);
1466 			}
1467 		} else {
1468 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1469 		}
1470 
1471 		pos += bytes;
1472 		buf += bytes;
1473 		size -= bytes;
1474 	}
1475 }
1476 
1477 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1478 					unsigned long offset, void *buf,
1479 					int len, int write)
1480 {
1481 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1482 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1483 	struct amdgpu_res_cursor src_mm;
1484 	struct amdgpu_job *job;
1485 	struct dma_fence *fence;
1486 	uint64_t src_addr, dst_addr;
1487 	unsigned int num_dw;
1488 	int r, idx;
1489 
1490 	if (len != PAGE_SIZE)
1491 		return -EINVAL;
1492 
1493 	if (!adev->mman.sdma_access_ptr)
1494 		return -EACCES;
1495 
1496 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1497 		return -ENODEV;
1498 
1499 	if (write)
1500 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1501 
1502 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1503 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1504 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1505 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1506 				     &job);
1507 	if (r)
1508 		goto out;
1509 
1510 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1511 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1512 		src_mm.start;
1513 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1514 	if (write)
1515 		swap(src_addr, dst_addr);
1516 
1517 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1518 				PAGE_SIZE, 0);
1519 
1520 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1521 	WARN_ON(job->ibs[0].length_dw > num_dw);
1522 
1523 	fence = amdgpu_job_submit(job);
1524 
1525 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1526 		r = -ETIMEDOUT;
1527 	dma_fence_put(fence);
1528 
1529 	if (!(r || write))
1530 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1531 out:
1532 	drm_dev_exit(idx);
1533 	return r;
1534 }
1535 
1536 /**
1537  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1538  *
1539  * @bo:  The buffer object to read/write
1540  * @offset:  Offset into buffer object
1541  * @buf:  Secondary buffer to write/read from
1542  * @len: Length in bytes of access
1543  * @write:  true if writing
1544  *
1545  * This is used to access VRAM that backs a buffer object via MMIO
1546  * access for debugging purposes.
1547  */
1548 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1549 				    unsigned long offset, void *buf, int len,
1550 				    int write)
1551 {
1552 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1553 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1554 	struct amdgpu_res_cursor cursor;
1555 	int ret = 0;
1556 
1557 	if (bo->resource->mem_type != TTM_PL_VRAM)
1558 		return -EIO;
1559 
1560 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1561 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1562 		return len;
1563 
1564 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1565 	while (cursor.remaining) {
1566 		size_t count, size = cursor.size;
1567 		loff_t pos = cursor.start;
1568 
1569 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1570 		size -= count;
1571 		if (size) {
1572 			/* using MM to access rest vram and handle un-aligned address */
1573 			pos += count;
1574 			buf += count;
1575 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1576 		}
1577 
1578 		ret += cursor.size;
1579 		buf += cursor.size;
1580 		amdgpu_res_next(&cursor, cursor.size);
1581 	}
1582 
1583 	return ret;
1584 }
1585 
1586 static void
1587 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1588 {
1589 	amdgpu_bo_move_notify(bo, false, NULL);
1590 }
1591 
1592 static struct ttm_device_funcs amdgpu_bo_driver = {
1593 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1594 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1595 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1596 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1597 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1598 	.evict_flags = &amdgpu_evict_flags,
1599 	.move = &amdgpu_bo_move,
1600 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1601 	.release_notify = &amdgpu_bo_release_notify,
1602 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1603 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1604 	.access_memory = &amdgpu_ttm_access_memory,
1605 };
1606 
1607 /*
1608  * Firmware Reservation functions
1609  */
1610 /**
1611  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1612  *
1613  * @adev: amdgpu_device pointer
1614  *
1615  * free fw reserved vram if it has been reserved.
1616  */
1617 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1618 {
1619 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1620 		NULL, &adev->mman.fw_vram_usage_va);
1621 }
1622 
1623 /*
1624  * Driver Reservation functions
1625  */
1626 /**
1627  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1628  *
1629  * @adev: amdgpu_device pointer
1630  *
1631  * free drv reserved vram if it has been reserved.
1632  */
1633 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1634 {
1635 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1636 						  NULL,
1637 						  &adev->mman.drv_vram_usage_va);
1638 }
1639 
1640 /**
1641  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1642  *
1643  * @adev: amdgpu_device pointer
1644  *
1645  * create bo vram reservation from fw.
1646  */
1647 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1648 {
1649 	uint64_t vram_size = adev->gmc.visible_vram_size;
1650 
1651 	adev->mman.fw_vram_usage_va = NULL;
1652 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1653 
1654 	if (adev->mman.fw_vram_usage_size == 0 ||
1655 	    adev->mman.fw_vram_usage_size > vram_size)
1656 		return 0;
1657 
1658 	return amdgpu_bo_create_kernel_at(adev,
1659 					  adev->mman.fw_vram_usage_start_offset,
1660 					  adev->mman.fw_vram_usage_size,
1661 					  &adev->mman.fw_vram_usage_reserved_bo,
1662 					  &adev->mman.fw_vram_usage_va);
1663 }
1664 
1665 /**
1666  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1667  *
1668  * @adev: amdgpu_device pointer
1669  *
1670  * create bo vram reservation from drv.
1671  */
1672 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1673 {
1674 	u64 vram_size = adev->gmc.visible_vram_size;
1675 
1676 	adev->mman.drv_vram_usage_va = NULL;
1677 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1678 
1679 	if (adev->mman.drv_vram_usage_size == 0 ||
1680 	    adev->mman.drv_vram_usage_size > vram_size)
1681 		return 0;
1682 
1683 	return amdgpu_bo_create_kernel_at(adev,
1684 					  adev->mman.drv_vram_usage_start_offset,
1685 					  adev->mman.drv_vram_usage_size,
1686 					  &adev->mman.drv_vram_usage_reserved_bo,
1687 					  &adev->mman.drv_vram_usage_va);
1688 }
1689 
1690 /*
1691  * Memoy training reservation functions
1692  */
1693 
1694 /**
1695  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1696  *
1697  * @adev: amdgpu_device pointer
1698  *
1699  * free memory training reserved vram if it has been reserved.
1700  */
1701 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1702 {
1703 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1704 
1705 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1706 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1707 	ctx->c2p_bo = NULL;
1708 
1709 	return 0;
1710 }
1711 
1712 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1713 						uint32_t reserve_size)
1714 {
1715 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1716 
1717 	memset(ctx, 0, sizeof(*ctx));
1718 
1719 	ctx->c2p_train_data_offset =
1720 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1721 	ctx->p2c_train_data_offset =
1722 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1723 	ctx->train_data_size =
1724 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1725 
1726 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1727 			ctx->train_data_size,
1728 			ctx->p2c_train_data_offset,
1729 			ctx->c2p_train_data_offset);
1730 }
1731 
1732 /*
1733  * reserve TMR memory at the top of VRAM which holds
1734  * IP Discovery data and is protected by PSP.
1735  */
1736 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1737 {
1738 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1739 	bool mem_train_support = false;
1740 	uint32_t reserve_size = 0;
1741 	int ret;
1742 
1743 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1744 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1745 			mem_train_support = true;
1746 		else
1747 			DRM_DEBUG("memory training does not support!\n");
1748 	}
1749 
1750 	/*
1751 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1752 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1753 	 *
1754 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1755 	 * discovery data and G6 memory training data respectively
1756 	 */
1757 	if (adev->bios)
1758 		reserve_size =
1759 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1760 
1761 	if (!adev->bios &&
1762 	    (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1763 	     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
1764 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1765 	else if (!reserve_size)
1766 		reserve_size = DISCOVERY_TMR_OFFSET;
1767 
1768 	if (mem_train_support) {
1769 		/* reserve vram for mem train according to TMR location */
1770 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1771 		ret = amdgpu_bo_create_kernel_at(adev,
1772 						 ctx->c2p_train_data_offset,
1773 						 ctx->train_data_size,
1774 						 &ctx->c2p_bo,
1775 						 NULL);
1776 		if (ret) {
1777 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1778 			amdgpu_ttm_training_reserve_vram_fini(adev);
1779 			return ret;
1780 		}
1781 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1782 	}
1783 
1784 	if (!adev->gmc.is_app_apu) {
1785 		ret = amdgpu_bo_create_kernel_at(
1786 			adev, adev->gmc.real_vram_size - reserve_size,
1787 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1788 		if (ret) {
1789 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1790 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1791 					      NULL, NULL);
1792 			return ret;
1793 		}
1794 	} else {
1795 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1802 {
1803 	int i;
1804 
1805 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1806 		return 0;
1807 
1808 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1809 				       sizeof(*adev->mman.ttm_pools),
1810 				       GFP_KERNEL);
1811 	if (!adev->mman.ttm_pools)
1812 		return -ENOMEM;
1813 
1814 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1815 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1816 			      adev->gmc.mem_partitions[i].numa.node,
1817 			      false, false);
1818 	}
1819 	return 0;
1820 }
1821 
1822 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1823 {
1824 	int i;
1825 
1826 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1827 		return;
1828 
1829 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1830 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1831 
1832 	kfree(adev->mman.ttm_pools);
1833 	adev->mman.ttm_pools = NULL;
1834 }
1835 
1836 /*
1837  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1838  * gtt/vram related fields.
1839  *
1840  * This initializes all of the memory space pools that the TTM layer
1841  * will need such as the GTT space (system memory mapped to the device),
1842  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1843  * can be mapped per VMID.
1844  */
1845 int amdgpu_ttm_init(struct amdgpu_device *adev)
1846 {
1847 	uint64_t gtt_size;
1848 	int r;
1849 
1850 	mutex_init(&adev->mman.gtt_window_lock);
1851 
1852 	/* No others user of address space so set it to 0 */
1853 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1854 			       adev_to_drm(adev)->anon_inode->i_mapping,
1855 			       adev_to_drm(adev)->vma_offset_manager,
1856 			       adev->need_swiotlb,
1857 			       dma_addressing_limited(adev->dev));
1858 	if (r) {
1859 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1860 		return r;
1861 	}
1862 
1863 	r = amdgpu_ttm_pools_init(adev);
1864 	if (r) {
1865 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1866 		return r;
1867 	}
1868 	adev->mman.initialized = true;
1869 
1870 	/* Initialize VRAM pool with all of VRAM divided into pages */
1871 	r = amdgpu_vram_mgr_init(adev);
1872 	if (r) {
1873 		DRM_ERROR("Failed initializing VRAM heap.\n");
1874 		return r;
1875 	}
1876 
1877 	/* Change the size here instead of the init above so only lpfn is affected */
1878 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1879 #ifdef CONFIG_64BIT
1880 #ifdef CONFIG_X86
1881 	if (adev->gmc.xgmi.connected_to_cpu)
1882 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1883 				adev->gmc.visible_vram_size);
1884 
1885 	else if (adev->gmc.is_app_apu)
1886 		DRM_DEBUG_DRIVER(
1887 			"No need to ioremap when real vram size is 0\n");
1888 	else
1889 #endif
1890 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1891 				adev->gmc.visible_vram_size);
1892 #endif
1893 
1894 	/*
1895 	 *The reserved vram for firmware must be pinned to the specified
1896 	 *place on the VRAM, so reserve it early.
1897 	 */
1898 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1899 	if (r)
1900 		return r;
1901 
1902 	/*
1903 	 *The reserved vram for driver must be pinned to the specified
1904 	 *place on the VRAM, so reserve it early.
1905 	 */
1906 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1907 	if (r)
1908 		return r;
1909 
1910 	/*
1911 	 * only NAVI10 and onwards ASIC support for IP discovery.
1912 	 * If IP discovery enabled, a block of memory should be
1913 	 * reserved for IP discovey.
1914 	 */
1915 	if (adev->mman.discovery_bin) {
1916 		r = amdgpu_ttm_reserve_tmr(adev);
1917 		if (r)
1918 			return r;
1919 	}
1920 
1921 	/* allocate memory as required for VGA
1922 	 * This is used for VGA emulation and pre-OS scanout buffers to
1923 	 * avoid display artifacts while transitioning between pre-OS
1924 	 * and driver.
1925 	 */
1926 	if (!adev->gmc.is_app_apu) {
1927 		r = amdgpu_bo_create_kernel_at(adev, 0,
1928 					       adev->mman.stolen_vga_size,
1929 					       &adev->mman.stolen_vga_memory,
1930 					       NULL);
1931 		if (r)
1932 			return r;
1933 
1934 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1935 					       adev->mman.stolen_extended_size,
1936 					       &adev->mman.stolen_extended_memory,
1937 					       NULL);
1938 
1939 		if (r)
1940 			return r;
1941 
1942 		r = amdgpu_bo_create_kernel_at(adev,
1943 					       adev->mman.stolen_reserved_offset,
1944 					       adev->mman.stolen_reserved_size,
1945 					       &adev->mman.stolen_reserved_memory,
1946 					       NULL);
1947 		if (r)
1948 			return r;
1949 	} else {
1950 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1951 	}
1952 
1953 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1954 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1955 
1956 	/* Compute GTT size, either based on TTM limit
1957 	 * or whatever the user passed on module init.
1958 	 */
1959 	if (amdgpu_gtt_size == -1)
1960 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1961 	else
1962 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1963 
1964 	/* Initialize GTT memory pool */
1965 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1966 	if (r) {
1967 		DRM_ERROR("Failed initializing GTT heap.\n");
1968 		return r;
1969 	}
1970 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1971 		 (unsigned int)(gtt_size / (1024 * 1024)));
1972 
1973 	/* Initiailize doorbell pool on PCI BAR */
1974 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1975 	if (r) {
1976 		DRM_ERROR("Failed initializing doorbell heap.\n");
1977 		return r;
1978 	}
1979 
1980 	/* Create a boorbell page for kernel usages */
1981 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1982 	if (r) {
1983 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1984 		return r;
1985 	}
1986 
1987 	/* Initialize preemptible memory pool */
1988 	r = amdgpu_preempt_mgr_init(adev);
1989 	if (r) {
1990 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1991 		return r;
1992 	}
1993 
1994 	/* Initialize various on-chip memory pools */
1995 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1996 	if (r) {
1997 		DRM_ERROR("Failed initializing GDS heap.\n");
1998 		return r;
1999 	}
2000 
2001 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2002 	if (r) {
2003 		DRM_ERROR("Failed initializing gws heap.\n");
2004 		return r;
2005 	}
2006 
2007 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2008 	if (r) {
2009 		DRM_ERROR("Failed initializing oa heap.\n");
2010 		return r;
2011 	}
2012 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2013 				AMDGPU_GEM_DOMAIN_GTT,
2014 				&adev->mman.sdma_access_bo, NULL,
2015 				&adev->mman.sdma_access_ptr))
2016 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2017 
2018 	return 0;
2019 }
2020 
2021 /*
2022  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2023  */
2024 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2025 {
2026 	int idx;
2027 
2028 	if (!adev->mman.initialized)
2029 		return;
2030 
2031 	amdgpu_ttm_pools_fini(adev);
2032 
2033 	amdgpu_ttm_training_reserve_vram_fini(adev);
2034 	/* return the stolen vga memory back to VRAM */
2035 	if (!adev->gmc.is_app_apu) {
2036 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2037 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2038 		/* return the FW reserved memory back to VRAM */
2039 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2040 				      NULL);
2041 		if (adev->mman.stolen_reserved_size)
2042 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2043 					      NULL, NULL);
2044 	}
2045 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2046 					&adev->mman.sdma_access_ptr);
2047 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2048 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2049 
2050 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2051 
2052 		if (adev->mman.aper_base_kaddr)
2053 			iounmap(adev->mman.aper_base_kaddr);
2054 		adev->mman.aper_base_kaddr = NULL;
2055 
2056 		drm_dev_exit(idx);
2057 	}
2058 
2059 	amdgpu_vram_mgr_fini(adev);
2060 	amdgpu_gtt_mgr_fini(adev);
2061 	amdgpu_preempt_mgr_fini(adev);
2062 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2063 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2064 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2065 	ttm_device_fini(&adev->mman.bdev);
2066 	adev->mman.initialized = false;
2067 	DRM_INFO("amdgpu: ttm finalized\n");
2068 }
2069 
2070 /**
2071  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2072  *
2073  * @adev: amdgpu_device pointer
2074  * @enable: true when we can use buffer functions.
2075  *
2076  * Enable/disable use of buffer functions during suspend/resume. This should
2077  * only be called at bootup or when userspace isn't running.
2078  */
2079 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2080 {
2081 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2082 	uint64_t size;
2083 	int r;
2084 
2085 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2086 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2087 		return;
2088 
2089 	if (enable) {
2090 		struct amdgpu_ring *ring;
2091 		struct drm_gpu_scheduler *sched;
2092 
2093 		ring = adev->mman.buffer_funcs_ring;
2094 		sched = &ring->sched;
2095 		r = drm_sched_entity_init(&adev->mman.high_pr,
2096 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2097 					  1, NULL);
2098 		if (r) {
2099 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2100 				  r);
2101 			return;
2102 		}
2103 
2104 		r = drm_sched_entity_init(&adev->mman.low_pr,
2105 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2106 					  1, NULL);
2107 		if (r) {
2108 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2109 				  r);
2110 			goto error_free_entity;
2111 		}
2112 	} else {
2113 		drm_sched_entity_destroy(&adev->mman.high_pr);
2114 		drm_sched_entity_destroy(&adev->mman.low_pr);
2115 		dma_fence_put(man->move);
2116 		man->move = NULL;
2117 	}
2118 
2119 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2120 	if (enable)
2121 		size = adev->gmc.real_vram_size;
2122 	else
2123 		size = adev->gmc.visible_vram_size;
2124 	man->size = size;
2125 	adev->mman.buffer_funcs_enabled = enable;
2126 
2127 	return;
2128 
2129 error_free_entity:
2130 	drm_sched_entity_destroy(&adev->mman.high_pr);
2131 }
2132 
2133 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2134 				  bool direct_submit,
2135 				  unsigned int num_dw,
2136 				  struct dma_resv *resv,
2137 				  bool vm_needs_flush,
2138 				  struct amdgpu_job **job,
2139 				  bool delayed)
2140 {
2141 	enum amdgpu_ib_pool_type pool = direct_submit ?
2142 		AMDGPU_IB_POOL_DIRECT :
2143 		AMDGPU_IB_POOL_DELAYED;
2144 	int r;
2145 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2146 						    &adev->mman.high_pr;
2147 	r = amdgpu_job_alloc_with_ib(adev, entity,
2148 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2149 				     num_dw * 4, pool, job);
2150 	if (r)
2151 		return r;
2152 
2153 	if (vm_needs_flush) {
2154 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2155 							adev->gmc.pdb0_bo :
2156 							adev->gart.bo);
2157 		(*job)->vm_needs_flush = true;
2158 	}
2159 	if (!resv)
2160 		return 0;
2161 
2162 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2163 						   DMA_RESV_USAGE_BOOKKEEP);
2164 }
2165 
2166 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2167 		       uint64_t dst_offset, uint32_t byte_count,
2168 		       struct dma_resv *resv,
2169 		       struct dma_fence **fence, bool direct_submit,
2170 		       bool vm_needs_flush, uint32_t copy_flags)
2171 {
2172 	struct amdgpu_device *adev = ring->adev;
2173 	unsigned int num_loops, num_dw;
2174 	struct amdgpu_job *job;
2175 	uint32_t max_bytes;
2176 	unsigned int i;
2177 	int r;
2178 
2179 	if (!direct_submit && !ring->sched.ready) {
2180 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2181 		return -EINVAL;
2182 	}
2183 
2184 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2185 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2186 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2187 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2188 				   resv, vm_needs_flush, &job, false);
2189 	if (r)
2190 		return r;
2191 
2192 	for (i = 0; i < num_loops; i++) {
2193 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2194 
2195 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2196 					dst_offset, cur_size_in_bytes, copy_flags);
2197 		src_offset += cur_size_in_bytes;
2198 		dst_offset += cur_size_in_bytes;
2199 		byte_count -= cur_size_in_bytes;
2200 	}
2201 
2202 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2203 	WARN_ON(job->ibs[0].length_dw > num_dw);
2204 	if (direct_submit)
2205 		r = amdgpu_job_submit_direct(job, ring, fence);
2206 	else
2207 		*fence = amdgpu_job_submit(job);
2208 	if (r)
2209 		goto error_free;
2210 
2211 	return r;
2212 
2213 error_free:
2214 	amdgpu_job_free(job);
2215 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2216 	return r;
2217 }
2218 
2219 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2220 			       uint64_t dst_addr, uint32_t byte_count,
2221 			       struct dma_resv *resv,
2222 			       struct dma_fence **fence,
2223 			       bool vm_needs_flush, bool delayed)
2224 {
2225 	struct amdgpu_device *adev = ring->adev;
2226 	unsigned int num_loops, num_dw;
2227 	struct amdgpu_job *job;
2228 	uint32_t max_bytes;
2229 	unsigned int i;
2230 	int r;
2231 
2232 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2233 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2234 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2235 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2236 				   &job, delayed);
2237 	if (r)
2238 		return r;
2239 
2240 	for (i = 0; i < num_loops; i++) {
2241 		uint32_t cur_size = min(byte_count, max_bytes);
2242 
2243 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2244 					cur_size);
2245 
2246 		dst_addr += cur_size;
2247 		byte_count -= cur_size;
2248 	}
2249 
2250 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2251 	WARN_ON(job->ibs[0].length_dw > num_dw);
2252 	*fence = amdgpu_job_submit(job);
2253 	return 0;
2254 }
2255 
2256 /**
2257  * amdgpu_ttm_clear_buffer - clear memory buffers
2258  * @bo: amdgpu buffer object
2259  * @resv: reservation object
2260  * @fence: dma_fence associated with the operation
2261  *
2262  * Clear the memory buffer resource.
2263  *
2264  * Returns:
2265  * 0 for success or a negative error code on failure.
2266  */
2267 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2268 			    struct dma_resv *resv,
2269 			    struct dma_fence **fence)
2270 {
2271 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2272 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2273 	struct amdgpu_res_cursor cursor;
2274 	u64 addr;
2275 	int r;
2276 
2277 	if (!adev->mman.buffer_funcs_enabled)
2278 		return -EINVAL;
2279 
2280 	if (!fence)
2281 		return -EINVAL;
2282 
2283 	*fence = dma_fence_get_stub();
2284 
2285 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2286 
2287 	mutex_lock(&adev->mman.gtt_window_lock);
2288 	while (cursor.remaining) {
2289 		struct dma_fence *next = NULL;
2290 		u64 size;
2291 
2292 		if (amdgpu_res_cleared(&cursor)) {
2293 			amdgpu_res_next(&cursor, cursor.size);
2294 			continue;
2295 		}
2296 
2297 		/* Never clear more than 256MiB at once to avoid timeouts */
2298 		size = min(cursor.size, 256ULL << 20);
2299 
2300 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2301 					  1, ring, false, &size, &addr);
2302 		if (r)
2303 			goto err;
2304 
2305 		r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2306 					&next, true, true);
2307 		if (r)
2308 			goto err;
2309 
2310 		dma_fence_put(*fence);
2311 		*fence = next;
2312 
2313 		amdgpu_res_next(&cursor, size);
2314 	}
2315 err:
2316 	mutex_unlock(&adev->mman.gtt_window_lock);
2317 
2318 	return r;
2319 }
2320 
2321 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2322 			uint32_t src_data,
2323 			struct dma_resv *resv,
2324 			struct dma_fence **f,
2325 			bool delayed)
2326 {
2327 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2328 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2329 	struct dma_fence *fence = NULL;
2330 	struct amdgpu_res_cursor dst;
2331 	int r;
2332 
2333 	if (!adev->mman.buffer_funcs_enabled) {
2334 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2335 		return -EINVAL;
2336 	}
2337 
2338 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2339 
2340 	mutex_lock(&adev->mman.gtt_window_lock);
2341 	while (dst.remaining) {
2342 		struct dma_fence *next;
2343 		uint64_t cur_size, to;
2344 
2345 		/* Never fill more than 256MiB at once to avoid timeouts */
2346 		cur_size = min(dst.size, 256ULL << 20);
2347 
2348 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2349 					  1, ring, false, &cur_size, &to);
2350 		if (r)
2351 			goto error;
2352 
2353 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2354 					&next, true, delayed);
2355 		if (r)
2356 			goto error;
2357 
2358 		dma_fence_put(fence);
2359 		fence = next;
2360 
2361 		amdgpu_res_next(&dst, cur_size);
2362 	}
2363 error:
2364 	mutex_unlock(&adev->mman.gtt_window_lock);
2365 	if (f)
2366 		*f = dma_fence_get(fence);
2367 	dma_fence_put(fence);
2368 	return r;
2369 }
2370 
2371 /**
2372  * amdgpu_ttm_evict_resources - evict memory buffers
2373  * @adev: amdgpu device object
2374  * @mem_type: evicted BO's memory type
2375  *
2376  * Evicts all @mem_type buffers on the lru list of the memory type.
2377  *
2378  * Returns:
2379  * 0 for success or a negative error code on failure.
2380  */
2381 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2382 {
2383 	struct ttm_resource_manager *man;
2384 
2385 	switch (mem_type) {
2386 	case TTM_PL_VRAM:
2387 	case TTM_PL_TT:
2388 	case AMDGPU_PL_GWS:
2389 	case AMDGPU_PL_GDS:
2390 	case AMDGPU_PL_OA:
2391 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2392 		break;
2393 	default:
2394 		DRM_ERROR("Trying to evict invalid memory type\n");
2395 		return -EINVAL;
2396 	}
2397 
2398 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2399 }
2400 
2401 #if defined(CONFIG_DEBUG_FS)
2402 
2403 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2404 {
2405 	struct amdgpu_device *adev = m->private;
2406 
2407 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2408 }
2409 
2410 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2411 
2412 /*
2413  * amdgpu_ttm_vram_read - Linear read access to VRAM
2414  *
2415  * Accesses VRAM via MMIO for debugging purposes.
2416  */
2417 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2418 				    size_t size, loff_t *pos)
2419 {
2420 	struct amdgpu_device *adev = file_inode(f)->i_private;
2421 	ssize_t result = 0;
2422 
2423 	if (size & 0x3 || *pos & 0x3)
2424 		return -EINVAL;
2425 
2426 	if (*pos >= adev->gmc.mc_vram_size)
2427 		return -ENXIO;
2428 
2429 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2430 	while (size) {
2431 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2432 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2433 
2434 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2435 		if (copy_to_user(buf, value, bytes))
2436 			return -EFAULT;
2437 
2438 		result += bytes;
2439 		buf += bytes;
2440 		*pos += bytes;
2441 		size -= bytes;
2442 	}
2443 
2444 	return result;
2445 }
2446 
2447 /*
2448  * amdgpu_ttm_vram_write - Linear write access to VRAM
2449  *
2450  * Accesses VRAM via MMIO for debugging purposes.
2451  */
2452 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2453 				    size_t size, loff_t *pos)
2454 {
2455 	struct amdgpu_device *adev = file_inode(f)->i_private;
2456 	ssize_t result = 0;
2457 	int r;
2458 
2459 	if (size & 0x3 || *pos & 0x3)
2460 		return -EINVAL;
2461 
2462 	if (*pos >= adev->gmc.mc_vram_size)
2463 		return -ENXIO;
2464 
2465 	while (size) {
2466 		uint32_t value;
2467 
2468 		if (*pos >= adev->gmc.mc_vram_size)
2469 			return result;
2470 
2471 		r = get_user(value, (uint32_t *)buf);
2472 		if (r)
2473 			return r;
2474 
2475 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2476 
2477 		result += 4;
2478 		buf += 4;
2479 		*pos += 4;
2480 		size -= 4;
2481 	}
2482 
2483 	return result;
2484 }
2485 
2486 static const struct file_operations amdgpu_ttm_vram_fops = {
2487 	.owner = THIS_MODULE,
2488 	.read = amdgpu_ttm_vram_read,
2489 	.write = amdgpu_ttm_vram_write,
2490 	.llseek = default_llseek,
2491 };
2492 
2493 /*
2494  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2495  *
2496  * This function is used to read memory that has been mapped to the
2497  * GPU and the known addresses are not physical addresses but instead
2498  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2499  */
2500 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2501 				 size_t size, loff_t *pos)
2502 {
2503 	struct amdgpu_device *adev = file_inode(f)->i_private;
2504 	struct iommu_domain *dom;
2505 	ssize_t result = 0;
2506 	int r;
2507 
2508 	/* retrieve the IOMMU domain if any for this device */
2509 	dom = iommu_get_domain_for_dev(adev->dev);
2510 
2511 	while (size) {
2512 		phys_addr_t addr = *pos & PAGE_MASK;
2513 		loff_t off = *pos & ~PAGE_MASK;
2514 		size_t bytes = PAGE_SIZE - off;
2515 		unsigned long pfn;
2516 		struct page *p;
2517 		void *ptr;
2518 
2519 		bytes = min(bytes, size);
2520 
2521 		/* Translate the bus address to a physical address.  If
2522 		 * the domain is NULL it means there is no IOMMU active
2523 		 * and the address translation is the identity
2524 		 */
2525 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2526 
2527 		pfn = addr >> PAGE_SHIFT;
2528 		if (!pfn_valid(pfn))
2529 			return -EPERM;
2530 
2531 		p = pfn_to_page(pfn);
2532 		if (p->mapping != adev->mman.bdev.dev_mapping)
2533 			return -EPERM;
2534 
2535 		ptr = kmap_local_page(p);
2536 		r = copy_to_user(buf, ptr + off, bytes);
2537 		kunmap_local(ptr);
2538 		if (r)
2539 			return -EFAULT;
2540 
2541 		size -= bytes;
2542 		*pos += bytes;
2543 		result += bytes;
2544 	}
2545 
2546 	return result;
2547 }
2548 
2549 /*
2550  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2551  *
2552  * This function is used to write memory that has been mapped to the
2553  * GPU and the known addresses are not physical addresses but instead
2554  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2555  */
2556 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2557 				 size_t size, loff_t *pos)
2558 {
2559 	struct amdgpu_device *adev = file_inode(f)->i_private;
2560 	struct iommu_domain *dom;
2561 	ssize_t result = 0;
2562 	int r;
2563 
2564 	dom = iommu_get_domain_for_dev(adev->dev);
2565 
2566 	while (size) {
2567 		phys_addr_t addr = *pos & PAGE_MASK;
2568 		loff_t off = *pos & ~PAGE_MASK;
2569 		size_t bytes = PAGE_SIZE - off;
2570 		unsigned long pfn;
2571 		struct page *p;
2572 		void *ptr;
2573 
2574 		bytes = min(bytes, size);
2575 
2576 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2577 
2578 		pfn = addr >> PAGE_SHIFT;
2579 		if (!pfn_valid(pfn))
2580 			return -EPERM;
2581 
2582 		p = pfn_to_page(pfn);
2583 		if (p->mapping != adev->mman.bdev.dev_mapping)
2584 			return -EPERM;
2585 
2586 		ptr = kmap_local_page(p);
2587 		r = copy_from_user(ptr + off, buf, bytes);
2588 		kunmap_local(ptr);
2589 		if (r)
2590 			return -EFAULT;
2591 
2592 		size -= bytes;
2593 		*pos += bytes;
2594 		result += bytes;
2595 	}
2596 
2597 	return result;
2598 }
2599 
2600 static const struct file_operations amdgpu_ttm_iomem_fops = {
2601 	.owner = THIS_MODULE,
2602 	.read = amdgpu_iomem_read,
2603 	.write = amdgpu_iomem_write,
2604 	.llseek = default_llseek
2605 };
2606 
2607 #endif
2608 
2609 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2610 {
2611 #if defined(CONFIG_DEBUG_FS)
2612 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2613 	struct dentry *root = minor->debugfs_root;
2614 
2615 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2616 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2617 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2618 			    &amdgpu_ttm_iomem_fops);
2619 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2620 			    &amdgpu_ttm_page_pool_fops);
2621 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2622 							     TTM_PL_VRAM),
2623 					    root, "amdgpu_vram_mm");
2624 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2625 							     TTM_PL_TT),
2626 					    root, "amdgpu_gtt_mm");
2627 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2628 							     AMDGPU_PL_GDS),
2629 					    root, "amdgpu_gds_mm");
2630 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2631 							     AMDGPU_PL_GWS),
2632 					    root, "amdgpu_gws_mm");
2633 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2634 							     AMDGPU_PL_OA),
2635 					    root, "amdgpu_oa_mm");
2636 
2637 #endif
2638 }
2639