1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, 0); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 uint32_t copy_flags = 0; 299 struct amdgpu_bo *abo_src, *abo_dst; 300 301 if (!adev->mman.buffer_funcs_enabled) { 302 DRM_ERROR("Trying to move memory with ring turned off.\n"); 303 return -EINVAL; 304 } 305 306 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 308 309 mutex_lock(&adev->mman.gtt_window_lock); 310 while (src_mm.remaining) { 311 uint64_t from, to, cur_size, tiling_flags; 312 uint32_t num_type, data_format, max_com; 313 struct dma_fence *next; 314 315 /* Never copy more than 256MiB at once to avoid a timeout */ 316 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 317 318 /* Map src to window 0 and dst to window 1. */ 319 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 320 0, ring, tmz, &cur_size, &from); 321 if (r) 322 goto error; 323 324 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 325 1, ring, tmz, &cur_size, &to); 326 if (r) 327 goto error; 328 329 abo_src = ttm_to_amdgpu_bo(src->bo); 330 abo_dst = ttm_to_amdgpu_bo(dst->bo); 331 if (tmz) 332 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 333 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 334 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM)) 335 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED; 336 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 337 (dst->mem->mem_type == TTM_PL_VRAM)) { 338 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED; 339 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags); 340 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK); 341 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE); 342 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT); 343 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) | 344 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) | 345 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format)); 346 } 347 348 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 349 &next, false, true, copy_flags); 350 if (r) 351 goto error; 352 353 dma_fence_put(fence); 354 fence = next; 355 356 amdgpu_res_next(&src_mm, cur_size); 357 amdgpu_res_next(&dst_mm, cur_size); 358 } 359 error: 360 mutex_unlock(&adev->mman.gtt_window_lock); 361 if (f) 362 *f = dma_fence_get(fence); 363 dma_fence_put(fence); 364 return r; 365 } 366 367 /* 368 * amdgpu_move_blit - Copy an entire buffer to another buffer 369 * 370 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 371 * help move buffers to and from VRAM. 372 */ 373 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 374 bool evict, 375 struct ttm_resource *new_mem, 376 struct ttm_resource *old_mem) 377 { 378 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 379 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 380 struct amdgpu_copy_mem src, dst; 381 struct dma_fence *fence = NULL; 382 int r; 383 384 src.bo = bo; 385 dst.bo = bo; 386 src.mem = old_mem; 387 dst.mem = new_mem; 388 src.offset = 0; 389 dst.offset = 0; 390 391 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 392 new_mem->size, 393 amdgpu_bo_encrypted(abo), 394 bo->base.resv, &fence); 395 if (r) 396 goto error; 397 398 /* clear the space being freed */ 399 if (old_mem->mem_type == TTM_PL_VRAM && 400 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 401 struct dma_fence *wipe_fence = NULL; 402 403 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 404 false); 405 if (r) { 406 goto error; 407 } else if (wipe_fence) { 408 amdgpu_vram_mgr_set_cleared(bo->resource); 409 dma_fence_put(fence); 410 fence = wipe_fence; 411 } 412 } 413 414 /* Always block for VM page tables before committing the new location */ 415 if (bo->type == ttm_bo_type_kernel) 416 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 417 else 418 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 419 dma_fence_put(fence); 420 return r; 421 422 error: 423 if (fence) 424 dma_fence_wait(fence, false); 425 dma_fence_put(fence); 426 return r; 427 } 428 429 /** 430 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 431 * @adev: amdgpu device 432 * @res: the resource to check 433 * 434 * Returns: true if the full resource is CPU visible, false otherwise. 435 */ 436 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 437 struct ttm_resource *res) 438 { 439 struct amdgpu_res_cursor cursor; 440 441 if (!res) 442 return false; 443 444 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 445 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 446 return true; 447 448 if (res->mem_type != TTM_PL_VRAM) 449 return false; 450 451 amdgpu_res_first(res, 0, res->size, &cursor); 452 while (cursor.remaining) { 453 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 454 return false; 455 amdgpu_res_next(&cursor, cursor.size); 456 } 457 458 return true; 459 } 460 461 /* 462 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 463 * 464 * Called by amdgpu_bo_move() 465 */ 466 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 467 struct ttm_resource *mem) 468 { 469 if (!amdgpu_res_cpu_visible(adev, mem)) 470 return false; 471 472 /* ttm_resource_ioremap only supports contiguous memory */ 473 if (mem->mem_type == TTM_PL_VRAM && 474 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 475 return false; 476 477 return true; 478 } 479 480 /* 481 * amdgpu_bo_move - Move a buffer object to a new memory location 482 * 483 * Called by ttm_bo_handle_move_mem() 484 */ 485 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 486 struct ttm_operation_ctx *ctx, 487 struct ttm_resource *new_mem, 488 struct ttm_place *hop) 489 { 490 struct amdgpu_device *adev; 491 struct amdgpu_bo *abo; 492 struct ttm_resource *old_mem = bo->resource; 493 int r; 494 495 if (new_mem->mem_type == TTM_PL_TT || 496 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 497 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 498 if (r) 499 return r; 500 } 501 502 abo = ttm_to_amdgpu_bo(bo); 503 adev = amdgpu_ttm_adev(bo->bdev); 504 505 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 506 bo->ttm == NULL)) { 507 amdgpu_bo_move_notify(bo, evict, new_mem); 508 ttm_bo_move_null(bo, new_mem); 509 return 0; 510 } 511 if (old_mem->mem_type == TTM_PL_SYSTEM && 512 (new_mem->mem_type == TTM_PL_TT || 513 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 514 amdgpu_bo_move_notify(bo, evict, new_mem); 515 ttm_bo_move_null(bo, new_mem); 516 return 0; 517 } 518 if ((old_mem->mem_type == TTM_PL_TT || 519 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 520 new_mem->mem_type == TTM_PL_SYSTEM) { 521 r = ttm_bo_wait_ctx(bo, ctx); 522 if (r) 523 return r; 524 525 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 526 amdgpu_bo_move_notify(bo, evict, new_mem); 527 ttm_resource_free(bo, &bo->resource); 528 ttm_bo_assign_mem(bo, new_mem); 529 return 0; 530 } 531 532 if (old_mem->mem_type == AMDGPU_PL_GDS || 533 old_mem->mem_type == AMDGPU_PL_GWS || 534 old_mem->mem_type == AMDGPU_PL_OA || 535 old_mem->mem_type == AMDGPU_PL_DOORBELL || 536 new_mem->mem_type == AMDGPU_PL_GDS || 537 new_mem->mem_type == AMDGPU_PL_GWS || 538 new_mem->mem_type == AMDGPU_PL_OA || 539 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 540 /* Nothing to save here */ 541 amdgpu_bo_move_notify(bo, evict, new_mem); 542 ttm_bo_move_null(bo, new_mem); 543 return 0; 544 } 545 546 if (bo->type == ttm_bo_type_device && 547 new_mem->mem_type == TTM_PL_VRAM && 548 old_mem->mem_type != TTM_PL_VRAM) { 549 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 550 * accesses the BO after it's moved. 551 */ 552 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 553 } 554 555 if (adev->mman.buffer_funcs_enabled && 556 ((old_mem->mem_type == TTM_PL_SYSTEM && 557 new_mem->mem_type == TTM_PL_VRAM) || 558 (old_mem->mem_type == TTM_PL_VRAM && 559 new_mem->mem_type == TTM_PL_SYSTEM))) { 560 hop->fpfn = 0; 561 hop->lpfn = 0; 562 hop->mem_type = TTM_PL_TT; 563 hop->flags = TTM_PL_FLAG_TEMPORARY; 564 return -EMULTIHOP; 565 } 566 567 amdgpu_bo_move_notify(bo, evict, new_mem); 568 if (adev->mman.buffer_funcs_enabled) 569 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 570 else 571 r = -ENODEV; 572 573 if (r) { 574 /* Check that all memory is CPU accessible */ 575 if (!amdgpu_res_copyable(adev, old_mem) || 576 !amdgpu_res_copyable(adev, new_mem)) { 577 pr_err("Move buffer fallback to memcpy unavailable\n"); 578 return r; 579 } 580 581 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 582 if (r) 583 return r; 584 } 585 586 /* update statistics after the move */ 587 if (evict) 588 atomic64_inc(&adev->num_evictions); 589 atomic64_add(bo->base.size, &adev->num_bytes_moved); 590 return 0; 591 } 592 593 /* 594 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 595 * 596 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 597 */ 598 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 599 struct ttm_resource *mem) 600 { 601 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 602 603 switch (mem->mem_type) { 604 case TTM_PL_SYSTEM: 605 /* system memory */ 606 return 0; 607 case TTM_PL_TT: 608 case AMDGPU_PL_PREEMPT: 609 break; 610 case TTM_PL_VRAM: 611 mem->bus.offset = mem->start << PAGE_SHIFT; 612 613 if (adev->mman.aper_base_kaddr && 614 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 615 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 616 mem->bus.offset; 617 618 mem->bus.offset += adev->gmc.aper_base; 619 mem->bus.is_iomem = true; 620 break; 621 case AMDGPU_PL_DOORBELL: 622 mem->bus.offset = mem->start << PAGE_SHIFT; 623 mem->bus.offset += adev->doorbell.base; 624 mem->bus.is_iomem = true; 625 mem->bus.caching = ttm_uncached; 626 break; 627 default: 628 return -EINVAL; 629 } 630 return 0; 631 } 632 633 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 634 unsigned long page_offset) 635 { 636 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 637 struct amdgpu_res_cursor cursor; 638 639 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 640 &cursor); 641 642 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 643 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 644 645 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 646 } 647 648 /** 649 * amdgpu_ttm_domain_start - Returns GPU start address 650 * @adev: amdgpu device object 651 * @type: type of the memory 652 * 653 * Returns: 654 * GPU start address of a memory domain 655 */ 656 657 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 658 { 659 switch (type) { 660 case TTM_PL_TT: 661 return adev->gmc.gart_start; 662 case TTM_PL_VRAM: 663 return adev->gmc.vram_start; 664 } 665 666 return 0; 667 } 668 669 /* 670 * TTM backend functions. 671 */ 672 struct amdgpu_ttm_tt { 673 struct ttm_tt ttm; 674 struct drm_gem_object *gobj; 675 u64 offset; 676 uint64_t userptr; 677 struct task_struct *usertask; 678 uint32_t userflags; 679 bool bound; 680 int32_t pool_id; 681 }; 682 683 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 684 685 #ifdef CONFIG_DRM_AMDGPU_USERPTR 686 /* 687 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 688 * memory and start HMM tracking CPU page table update 689 * 690 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 691 * once afterwards to stop HMM tracking 692 */ 693 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 694 struct hmm_range **range) 695 { 696 struct ttm_tt *ttm = bo->tbo.ttm; 697 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 698 unsigned long start = gtt->userptr; 699 struct vm_area_struct *vma; 700 struct mm_struct *mm; 701 bool readonly; 702 int r = 0; 703 704 /* Make sure get_user_pages_done() can cleanup gracefully */ 705 *range = NULL; 706 707 mm = bo->notifier.mm; 708 if (unlikely(!mm)) { 709 DRM_DEBUG_DRIVER("BO is not registered?\n"); 710 return -EFAULT; 711 } 712 713 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 714 return -ESRCH; 715 716 mmap_read_lock(mm); 717 vma = vma_lookup(mm, start); 718 if (unlikely(!vma)) { 719 r = -EFAULT; 720 goto out_unlock; 721 } 722 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 723 vma->vm_file)) { 724 r = -EPERM; 725 goto out_unlock; 726 } 727 728 readonly = amdgpu_ttm_tt_is_readonly(ttm); 729 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 730 readonly, NULL, pages, range); 731 out_unlock: 732 mmap_read_unlock(mm); 733 if (r) 734 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 735 736 mmput(mm); 737 738 return r; 739 } 740 741 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 742 */ 743 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 744 struct hmm_range *range) 745 { 746 struct amdgpu_ttm_tt *gtt = (void *)ttm; 747 748 if (gtt && gtt->userptr && range) 749 amdgpu_hmm_range_get_pages_done(range); 750 } 751 752 /* 753 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 754 * Check if the pages backing this ttm range have been invalidated 755 * 756 * Returns: true if pages are still valid 757 */ 758 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 759 struct hmm_range *range) 760 { 761 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 762 763 if (!gtt || !gtt->userptr || !range) 764 return false; 765 766 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 767 gtt->userptr, ttm->num_pages); 768 769 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 770 771 return !amdgpu_hmm_range_get_pages_done(range); 772 } 773 #endif 774 775 /* 776 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 777 * 778 * Called by amdgpu_cs_list_validate(). This creates the page list 779 * that backs user memory and will ultimately be mapped into the device 780 * address space. 781 */ 782 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 783 { 784 unsigned long i; 785 786 for (i = 0; i < ttm->num_pages; ++i) 787 ttm->pages[i] = pages ? pages[i] : NULL; 788 } 789 790 /* 791 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 792 * 793 * Called by amdgpu_ttm_backend_bind() 794 **/ 795 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 796 struct ttm_tt *ttm) 797 { 798 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 799 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 800 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 801 enum dma_data_direction direction = write ? 802 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 803 int r; 804 805 /* Allocate an SG array and squash pages into it */ 806 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 807 (u64)ttm->num_pages << PAGE_SHIFT, 808 GFP_KERNEL); 809 if (r) 810 goto release_sg; 811 812 /* Map SG to device */ 813 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 814 if (r) 815 goto release_sg_table; 816 817 /* convert SG to linear array of pages and dma addresses */ 818 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 819 ttm->num_pages); 820 821 return 0; 822 823 release_sg_table: 824 sg_free_table(ttm->sg); 825 release_sg: 826 kfree(ttm->sg); 827 ttm->sg = NULL; 828 return r; 829 } 830 831 /* 832 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 833 */ 834 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 835 struct ttm_tt *ttm) 836 { 837 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 838 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 839 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 840 enum dma_data_direction direction = write ? 841 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 842 843 /* double check that we don't free the table twice */ 844 if (!ttm->sg || !ttm->sg->sgl) 845 return; 846 847 /* unmap the pages mapped to the device */ 848 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 849 sg_free_table(ttm->sg); 850 } 851 852 /* 853 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 854 * MQDn+CtrlStackn where n is the number of XCCs per partition. 855 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 856 * and uses memory type default, UC. The rest of pages_per_xcc are 857 * Ctrl stack and modify their memory type to NC. 858 */ 859 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 860 struct ttm_tt *ttm, uint64_t flags) 861 { 862 struct amdgpu_ttm_tt *gtt = (void *)ttm; 863 uint64_t total_pages = ttm->num_pages; 864 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 865 uint64_t page_idx, pages_per_xcc; 866 int i; 867 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC); 868 869 pages_per_xcc = total_pages; 870 do_div(pages_per_xcc, num_xcc); 871 872 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 873 /* MQD page: use default flags */ 874 amdgpu_gart_bind(adev, 875 gtt->offset + (page_idx << PAGE_SHIFT), 876 1, >t->ttm.dma_address[page_idx], flags); 877 /* 878 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 879 * the second page of the BO onward. 880 */ 881 amdgpu_gart_bind(adev, 882 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 883 pages_per_xcc - 1, 884 >t->ttm.dma_address[page_idx + 1], 885 ctrl_flags); 886 } 887 } 888 889 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 890 struct ttm_buffer_object *tbo, 891 uint64_t flags) 892 { 893 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 894 struct ttm_tt *ttm = tbo->ttm; 895 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 896 897 if (amdgpu_bo_encrypted(abo)) 898 flags |= AMDGPU_PTE_TMZ; 899 900 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 901 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 902 } else { 903 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 904 gtt->ttm.dma_address, flags); 905 } 906 gtt->bound = true; 907 } 908 909 /* 910 * amdgpu_ttm_backend_bind - Bind GTT memory 911 * 912 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 913 * This handles binding GTT memory to the device address space. 914 */ 915 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 916 struct ttm_tt *ttm, 917 struct ttm_resource *bo_mem) 918 { 919 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 920 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 921 uint64_t flags; 922 int r; 923 924 if (!bo_mem) 925 return -EINVAL; 926 927 if (gtt->bound) 928 return 0; 929 930 if (gtt->userptr) { 931 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 932 if (r) { 933 DRM_ERROR("failed to pin userptr\n"); 934 return r; 935 } 936 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 937 if (!ttm->sg) { 938 struct dma_buf_attachment *attach; 939 struct sg_table *sgt; 940 941 attach = gtt->gobj->import_attach; 942 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 943 if (IS_ERR(sgt)) 944 return PTR_ERR(sgt); 945 946 ttm->sg = sgt; 947 } 948 949 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 950 ttm->num_pages); 951 } 952 953 if (!ttm->num_pages) { 954 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 955 ttm->num_pages, bo_mem, ttm); 956 } 957 958 if (bo_mem->mem_type != TTM_PL_TT || 959 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 960 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 961 return 0; 962 } 963 964 /* compute PTE flags relevant to this BO memory */ 965 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 966 967 /* bind pages into GART page tables */ 968 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 969 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 970 gtt->ttm.dma_address, flags); 971 gtt->bound = true; 972 return 0; 973 } 974 975 /* 976 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 977 * through AGP or GART aperture. 978 * 979 * If bo is accessible through AGP aperture, then use AGP aperture 980 * to access bo; otherwise allocate logical space in GART aperture 981 * and map bo to GART aperture. 982 */ 983 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 984 { 985 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 986 struct ttm_operation_ctx ctx = { false, false }; 987 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 988 struct ttm_placement placement; 989 struct ttm_place placements; 990 struct ttm_resource *tmp; 991 uint64_t addr, flags; 992 int r; 993 994 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 995 return 0; 996 997 addr = amdgpu_gmc_agp_addr(bo); 998 if (addr != AMDGPU_BO_INVALID_OFFSET) 999 return 0; 1000 1001 /* allocate GART space */ 1002 placement.num_placement = 1; 1003 placement.placement = &placements; 1004 placements.fpfn = 0; 1005 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1006 placements.mem_type = TTM_PL_TT; 1007 placements.flags = bo->resource->placement; 1008 1009 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1010 if (unlikely(r)) 1011 return r; 1012 1013 /* compute PTE flags for this buffer object */ 1014 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 1015 1016 /* Bind pages */ 1017 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1018 amdgpu_ttm_gart_bind(adev, bo, flags); 1019 amdgpu_gart_invalidate_tlb(adev); 1020 ttm_resource_free(bo, &bo->resource); 1021 ttm_bo_assign_mem(bo, tmp); 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * amdgpu_ttm_recover_gart - Rebind GTT pages 1028 * 1029 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1030 * rebind GTT pages during a GPU reset. 1031 */ 1032 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1033 { 1034 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1035 uint64_t flags; 1036 1037 if (!tbo->ttm) 1038 return; 1039 1040 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1041 amdgpu_ttm_gart_bind(adev, tbo, flags); 1042 } 1043 1044 /* 1045 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1046 * 1047 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1048 * ttm_tt_destroy(). 1049 */ 1050 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1051 struct ttm_tt *ttm) 1052 { 1053 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1054 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1055 1056 /* if the pages have userptr pinning then clear that first */ 1057 if (gtt->userptr) { 1058 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1059 } else if (ttm->sg && gtt->gobj->import_attach) { 1060 struct dma_buf_attachment *attach; 1061 1062 attach = gtt->gobj->import_attach; 1063 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1064 ttm->sg = NULL; 1065 } 1066 1067 if (!gtt->bound) 1068 return; 1069 1070 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1071 return; 1072 1073 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1074 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1075 gtt->bound = false; 1076 } 1077 1078 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1079 struct ttm_tt *ttm) 1080 { 1081 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1082 1083 if (gtt->usertask) 1084 put_task_struct(gtt->usertask); 1085 1086 ttm_tt_fini(>t->ttm); 1087 kfree(gtt); 1088 } 1089 1090 /** 1091 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1092 * 1093 * @bo: The buffer object to create a GTT ttm_tt object around 1094 * @page_flags: Page flags to be added to the ttm_tt object 1095 * 1096 * Called by ttm_tt_create(). 1097 */ 1098 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1099 uint32_t page_flags) 1100 { 1101 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1102 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1103 struct amdgpu_ttm_tt *gtt; 1104 enum ttm_caching caching; 1105 1106 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1107 if (!gtt) 1108 return NULL; 1109 1110 gtt->gobj = &bo->base; 1111 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1112 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1113 else 1114 gtt->pool_id = abo->xcp_id; 1115 1116 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1117 caching = ttm_write_combined; 1118 else 1119 caching = ttm_cached; 1120 1121 /* allocate space for the uninitialized page entries */ 1122 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1123 kfree(gtt); 1124 return NULL; 1125 } 1126 return >t->ttm; 1127 } 1128 1129 /* 1130 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1131 * 1132 * Map the pages of a ttm_tt object to an address space visible 1133 * to the underlying device. 1134 */ 1135 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1136 struct ttm_tt *ttm, 1137 struct ttm_operation_ctx *ctx) 1138 { 1139 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1140 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1141 struct ttm_pool *pool; 1142 pgoff_t i; 1143 int ret; 1144 1145 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1146 if (gtt->userptr) { 1147 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1148 if (!ttm->sg) 1149 return -ENOMEM; 1150 return 0; 1151 } 1152 1153 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1154 return 0; 1155 1156 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1157 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1158 else 1159 pool = &adev->mman.bdev.pool; 1160 ret = ttm_pool_alloc(pool, ttm, ctx); 1161 if (ret) 1162 return ret; 1163 1164 for (i = 0; i < ttm->num_pages; ++i) 1165 ttm->pages[i]->mapping = bdev->dev_mapping; 1166 1167 return 0; 1168 } 1169 1170 /* 1171 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1172 * 1173 * Unmaps pages of a ttm_tt object from the device address space and 1174 * unpopulates the page array backing it. 1175 */ 1176 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1177 struct ttm_tt *ttm) 1178 { 1179 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1180 struct amdgpu_device *adev; 1181 struct ttm_pool *pool; 1182 pgoff_t i; 1183 1184 amdgpu_ttm_backend_unbind(bdev, ttm); 1185 1186 if (gtt->userptr) { 1187 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1188 kfree(ttm->sg); 1189 ttm->sg = NULL; 1190 return; 1191 } 1192 1193 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1194 return; 1195 1196 for (i = 0; i < ttm->num_pages; ++i) 1197 ttm->pages[i]->mapping = NULL; 1198 1199 adev = amdgpu_ttm_adev(bdev); 1200 1201 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1202 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1203 else 1204 pool = &adev->mman.bdev.pool; 1205 1206 return ttm_pool_free(pool, ttm); 1207 } 1208 1209 /** 1210 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1211 * task 1212 * 1213 * @tbo: The ttm_buffer_object that contains the userptr 1214 * @user_addr: The returned value 1215 */ 1216 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1217 uint64_t *user_addr) 1218 { 1219 struct amdgpu_ttm_tt *gtt; 1220 1221 if (!tbo->ttm) 1222 return -EINVAL; 1223 1224 gtt = (void *)tbo->ttm; 1225 *user_addr = gtt->userptr; 1226 return 0; 1227 } 1228 1229 /** 1230 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1231 * task 1232 * 1233 * @bo: The ttm_buffer_object to bind this userptr to 1234 * @addr: The address in the current tasks VM space to use 1235 * @flags: Requirements of userptr object. 1236 * 1237 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1238 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1239 * initialize GPU VM for a KFD process. 1240 */ 1241 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1242 uint64_t addr, uint32_t flags) 1243 { 1244 struct amdgpu_ttm_tt *gtt; 1245 1246 if (!bo->ttm) { 1247 /* TODO: We want a separate TTM object type for userptrs */ 1248 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1249 if (bo->ttm == NULL) 1250 return -ENOMEM; 1251 } 1252 1253 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1254 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1255 1256 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1257 gtt->userptr = addr; 1258 gtt->userflags = flags; 1259 1260 if (gtt->usertask) 1261 put_task_struct(gtt->usertask); 1262 gtt->usertask = current->group_leader; 1263 get_task_struct(gtt->usertask); 1264 1265 return 0; 1266 } 1267 1268 /* 1269 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1270 */ 1271 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1272 { 1273 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1274 1275 if (gtt == NULL) 1276 return NULL; 1277 1278 if (gtt->usertask == NULL) 1279 return NULL; 1280 1281 return gtt->usertask->mm; 1282 } 1283 1284 /* 1285 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1286 * address range for the current task. 1287 * 1288 */ 1289 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1290 unsigned long end, unsigned long *userptr) 1291 { 1292 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1293 unsigned long size; 1294 1295 if (gtt == NULL || !gtt->userptr) 1296 return false; 1297 1298 /* Return false if no part of the ttm_tt object lies within 1299 * the range 1300 */ 1301 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1302 if (gtt->userptr > end || gtt->userptr + size <= start) 1303 return false; 1304 1305 if (userptr) 1306 *userptr = gtt->userptr; 1307 return true; 1308 } 1309 1310 /* 1311 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1312 */ 1313 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1314 { 1315 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1316 1317 if (gtt == NULL || !gtt->userptr) 1318 return false; 1319 1320 return true; 1321 } 1322 1323 /* 1324 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1325 */ 1326 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1327 { 1328 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1329 1330 if (gtt == NULL) 1331 return false; 1332 1333 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1334 } 1335 1336 /** 1337 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1338 * 1339 * @ttm: The ttm_tt object to compute the flags for 1340 * @mem: The memory registry backing this ttm_tt object 1341 * 1342 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1343 */ 1344 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1345 { 1346 uint64_t flags = 0; 1347 1348 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1349 flags |= AMDGPU_PTE_VALID; 1350 1351 if (mem && (mem->mem_type == TTM_PL_TT || 1352 mem->mem_type == AMDGPU_PL_DOORBELL || 1353 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1354 flags |= AMDGPU_PTE_SYSTEM; 1355 1356 if (ttm->caching == ttm_cached) 1357 flags |= AMDGPU_PTE_SNOOPED; 1358 } 1359 1360 if (mem && mem->mem_type == TTM_PL_VRAM && 1361 mem->bus.caching == ttm_cached) 1362 flags |= AMDGPU_PTE_SNOOPED; 1363 1364 return flags; 1365 } 1366 1367 /** 1368 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1369 * 1370 * @adev: amdgpu_device pointer 1371 * @ttm: The ttm_tt object to compute the flags for 1372 * @mem: The memory registry backing this ttm_tt object 1373 * 1374 * Figure out the flags to use for a VM PTE (Page Table Entry). 1375 */ 1376 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1377 struct ttm_resource *mem) 1378 { 1379 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1380 1381 flags |= adev->gart.gart_pte_flags; 1382 flags |= AMDGPU_PTE_READABLE; 1383 1384 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1385 flags |= AMDGPU_PTE_WRITEABLE; 1386 1387 return flags; 1388 } 1389 1390 /* 1391 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1392 * object. 1393 * 1394 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1395 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1396 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1397 * used to clean out a memory space. 1398 */ 1399 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1400 const struct ttm_place *place) 1401 { 1402 struct dma_resv_iter resv_cursor; 1403 struct dma_fence *f; 1404 1405 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1406 return ttm_bo_eviction_valuable(bo, place); 1407 1408 /* Swapout? */ 1409 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1410 return true; 1411 1412 if (bo->type == ttm_bo_type_kernel && 1413 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1414 return false; 1415 1416 /* If bo is a KFD BO, check if the bo belongs to the current process. 1417 * If true, then return false as any KFD process needs all its BOs to 1418 * be resident to run successfully 1419 */ 1420 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1421 DMA_RESV_USAGE_BOOKKEEP, f) { 1422 if (amdkfd_fence_check_mm(f, current->mm) && 1423 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1424 return false; 1425 } 1426 1427 /* Preemptible BOs don't own system resources managed by the 1428 * driver (pages, VRAM, GART space). They point to resources 1429 * owned by someone else (e.g. pageable memory in user mode 1430 * or a DMABuf). They are used in a preemptible context so we 1431 * can guarantee no deadlocks and good QoS in case of MMU 1432 * notifiers or DMABuf move notifiers from the resource owner. 1433 */ 1434 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1435 return false; 1436 1437 if (bo->resource->mem_type == TTM_PL_TT && 1438 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1439 return false; 1440 1441 return ttm_bo_eviction_valuable(bo, place); 1442 } 1443 1444 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1445 void *buf, size_t size, bool write) 1446 { 1447 while (size) { 1448 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1449 uint64_t bytes = 4 - (pos & 0x3); 1450 uint32_t shift = (pos & 0x3) * 8; 1451 uint32_t mask = 0xffffffff << shift; 1452 uint32_t value = 0; 1453 1454 if (size < bytes) { 1455 mask &= 0xffffffff >> (bytes - size) * 8; 1456 bytes = size; 1457 } 1458 1459 if (mask != 0xffffffff) { 1460 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1461 if (write) { 1462 value &= ~mask; 1463 value |= (*(uint32_t *)buf << shift) & mask; 1464 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1465 } else { 1466 value = (value & mask) >> shift; 1467 memcpy(buf, &value, bytes); 1468 } 1469 } else { 1470 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1471 } 1472 1473 pos += bytes; 1474 buf += bytes; 1475 size -= bytes; 1476 } 1477 } 1478 1479 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1480 unsigned long offset, void *buf, 1481 int len, int write) 1482 { 1483 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1484 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1485 struct amdgpu_res_cursor src_mm; 1486 struct amdgpu_job *job; 1487 struct dma_fence *fence; 1488 uint64_t src_addr, dst_addr; 1489 unsigned int num_dw; 1490 int r, idx; 1491 1492 if (len != PAGE_SIZE) 1493 return -EINVAL; 1494 1495 if (!adev->mman.sdma_access_ptr) 1496 return -EACCES; 1497 1498 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1499 return -ENODEV; 1500 1501 if (write) 1502 memcpy(adev->mman.sdma_access_ptr, buf, len); 1503 1504 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1505 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1506 AMDGPU_FENCE_OWNER_UNDEFINED, 1507 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1508 &job); 1509 if (r) 1510 goto out; 1511 1512 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1513 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1514 src_mm.start; 1515 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1516 if (write) 1517 swap(src_addr, dst_addr); 1518 1519 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1520 PAGE_SIZE, 0); 1521 1522 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1523 WARN_ON(job->ibs[0].length_dw > num_dw); 1524 1525 fence = amdgpu_job_submit(job); 1526 1527 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1528 r = -ETIMEDOUT; 1529 dma_fence_put(fence); 1530 1531 if (!(r || write)) 1532 memcpy(buf, adev->mman.sdma_access_ptr, len); 1533 out: 1534 drm_dev_exit(idx); 1535 return r; 1536 } 1537 1538 /** 1539 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1540 * 1541 * @bo: The buffer object to read/write 1542 * @offset: Offset into buffer object 1543 * @buf: Secondary buffer to write/read from 1544 * @len: Length in bytes of access 1545 * @write: true if writing 1546 * 1547 * This is used to access VRAM that backs a buffer object via MMIO 1548 * access for debugging purposes. 1549 */ 1550 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1551 unsigned long offset, void *buf, int len, 1552 int write) 1553 { 1554 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1555 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1556 struct amdgpu_res_cursor cursor; 1557 int ret = 0; 1558 1559 if (bo->resource->mem_type != TTM_PL_VRAM) 1560 return -EIO; 1561 1562 if (amdgpu_device_has_timeouts_enabled(adev) && 1563 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1564 return len; 1565 1566 amdgpu_res_first(bo->resource, offset, len, &cursor); 1567 while (cursor.remaining) { 1568 size_t count, size = cursor.size; 1569 loff_t pos = cursor.start; 1570 1571 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1572 size -= count; 1573 if (size) { 1574 /* using MM to access rest vram and handle un-aligned address */ 1575 pos += count; 1576 buf += count; 1577 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1578 } 1579 1580 ret += cursor.size; 1581 buf += cursor.size; 1582 amdgpu_res_next(&cursor, cursor.size); 1583 } 1584 1585 return ret; 1586 } 1587 1588 static void 1589 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1590 { 1591 amdgpu_bo_move_notify(bo, false, NULL); 1592 } 1593 1594 static struct ttm_device_funcs amdgpu_bo_driver = { 1595 .ttm_tt_create = &amdgpu_ttm_tt_create, 1596 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1597 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1598 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1599 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1600 .evict_flags = &amdgpu_evict_flags, 1601 .move = &amdgpu_bo_move, 1602 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1603 .release_notify = &amdgpu_bo_release_notify, 1604 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1605 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1606 .access_memory = &amdgpu_ttm_access_memory, 1607 }; 1608 1609 /* 1610 * Firmware Reservation functions 1611 */ 1612 /** 1613 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1614 * 1615 * @adev: amdgpu_device pointer 1616 * 1617 * free fw reserved vram if it has been reserved. 1618 */ 1619 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1620 { 1621 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1622 NULL, &adev->mman.fw_vram_usage_va); 1623 } 1624 1625 /* 1626 * Driver Reservation functions 1627 */ 1628 /** 1629 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1630 * 1631 * @adev: amdgpu_device pointer 1632 * 1633 * free drv reserved vram if it has been reserved. 1634 */ 1635 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1636 { 1637 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1638 NULL, 1639 &adev->mman.drv_vram_usage_va); 1640 } 1641 1642 /** 1643 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1644 * 1645 * @adev: amdgpu_device pointer 1646 * 1647 * create bo vram reservation from fw. 1648 */ 1649 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1650 { 1651 uint64_t vram_size = adev->gmc.visible_vram_size; 1652 1653 adev->mman.fw_vram_usage_va = NULL; 1654 adev->mman.fw_vram_usage_reserved_bo = NULL; 1655 1656 if (adev->mman.fw_vram_usage_size == 0 || 1657 adev->mman.fw_vram_usage_size > vram_size) 1658 return 0; 1659 1660 return amdgpu_bo_create_kernel_at(adev, 1661 adev->mman.fw_vram_usage_start_offset, 1662 adev->mman.fw_vram_usage_size, 1663 &adev->mman.fw_vram_usage_reserved_bo, 1664 &adev->mman.fw_vram_usage_va); 1665 } 1666 1667 /** 1668 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1669 * 1670 * @adev: amdgpu_device pointer 1671 * 1672 * create bo vram reservation from drv. 1673 */ 1674 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1675 { 1676 u64 vram_size = adev->gmc.visible_vram_size; 1677 1678 adev->mman.drv_vram_usage_va = NULL; 1679 adev->mman.drv_vram_usage_reserved_bo = NULL; 1680 1681 if (adev->mman.drv_vram_usage_size == 0 || 1682 adev->mman.drv_vram_usage_size > vram_size) 1683 return 0; 1684 1685 return amdgpu_bo_create_kernel_at(adev, 1686 adev->mman.drv_vram_usage_start_offset, 1687 adev->mman.drv_vram_usage_size, 1688 &adev->mman.drv_vram_usage_reserved_bo, 1689 &adev->mman.drv_vram_usage_va); 1690 } 1691 1692 /* 1693 * Memoy training reservation functions 1694 */ 1695 1696 /** 1697 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1698 * 1699 * @adev: amdgpu_device pointer 1700 * 1701 * free memory training reserved vram if it has been reserved. 1702 */ 1703 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1704 { 1705 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1706 1707 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1708 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1709 ctx->c2p_bo = NULL; 1710 1711 return 0; 1712 } 1713 1714 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1715 uint32_t reserve_size) 1716 { 1717 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1718 1719 memset(ctx, 0, sizeof(*ctx)); 1720 1721 ctx->c2p_train_data_offset = 1722 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1723 ctx->p2c_train_data_offset = 1724 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1725 ctx->train_data_size = 1726 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1727 1728 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1729 ctx->train_data_size, 1730 ctx->p2c_train_data_offset, 1731 ctx->c2p_train_data_offset); 1732 } 1733 1734 /* 1735 * reserve TMR memory at the top of VRAM which holds 1736 * IP Discovery data and is protected by PSP. 1737 */ 1738 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1739 { 1740 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1741 bool mem_train_support = false; 1742 uint32_t reserve_size = 0; 1743 int ret; 1744 1745 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1746 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1747 mem_train_support = true; 1748 else 1749 DRM_DEBUG("memory training does not support!\n"); 1750 } 1751 1752 /* 1753 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1754 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1755 * 1756 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1757 * discovery data and G6 memory training data respectively 1758 */ 1759 if (adev->bios) 1760 reserve_size = 1761 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1762 1763 if (!adev->bios && 1764 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1765 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4))) 1766 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1767 else if (!reserve_size) 1768 reserve_size = DISCOVERY_TMR_OFFSET; 1769 1770 if (mem_train_support) { 1771 /* reserve vram for mem train according to TMR location */ 1772 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1773 ret = amdgpu_bo_create_kernel_at(adev, 1774 ctx->c2p_train_data_offset, 1775 ctx->train_data_size, 1776 &ctx->c2p_bo, 1777 NULL); 1778 if (ret) { 1779 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1780 amdgpu_ttm_training_reserve_vram_fini(adev); 1781 return ret; 1782 } 1783 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1784 } 1785 1786 if (!adev->gmc.is_app_apu) { 1787 ret = amdgpu_bo_create_kernel_at( 1788 adev, adev->gmc.real_vram_size - reserve_size, 1789 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1790 if (ret) { 1791 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1792 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1793 NULL, NULL); 1794 return ret; 1795 } 1796 } else { 1797 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1798 } 1799 1800 return 0; 1801 } 1802 1803 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1804 { 1805 int i; 1806 1807 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1808 return 0; 1809 1810 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1811 sizeof(*adev->mman.ttm_pools), 1812 GFP_KERNEL); 1813 if (!adev->mman.ttm_pools) 1814 return -ENOMEM; 1815 1816 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1817 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1818 adev->gmc.mem_partitions[i].numa.node, 1819 false, false); 1820 } 1821 return 0; 1822 } 1823 1824 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1825 { 1826 int i; 1827 1828 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1829 return; 1830 1831 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1832 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1833 1834 kfree(adev->mman.ttm_pools); 1835 adev->mman.ttm_pools = NULL; 1836 } 1837 1838 /* 1839 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1840 * gtt/vram related fields. 1841 * 1842 * This initializes all of the memory space pools that the TTM layer 1843 * will need such as the GTT space (system memory mapped to the device), 1844 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1845 * can be mapped per VMID. 1846 */ 1847 int amdgpu_ttm_init(struct amdgpu_device *adev) 1848 { 1849 uint64_t gtt_size; 1850 int r; 1851 1852 mutex_init(&adev->mman.gtt_window_lock); 1853 1854 dma_set_max_seg_size(adev->dev, UINT_MAX); 1855 /* No others user of address space so set it to 0 */ 1856 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1857 adev_to_drm(adev)->anon_inode->i_mapping, 1858 adev_to_drm(adev)->vma_offset_manager, 1859 adev->need_swiotlb, 1860 dma_addressing_limited(adev->dev)); 1861 if (r) { 1862 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1863 return r; 1864 } 1865 1866 r = amdgpu_ttm_pools_init(adev); 1867 if (r) { 1868 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1869 return r; 1870 } 1871 adev->mman.initialized = true; 1872 1873 /* Initialize VRAM pool with all of VRAM divided into pages */ 1874 r = amdgpu_vram_mgr_init(adev); 1875 if (r) { 1876 DRM_ERROR("Failed initializing VRAM heap.\n"); 1877 return r; 1878 } 1879 1880 /* Change the size here instead of the init above so only lpfn is affected */ 1881 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1882 #ifdef CONFIG_64BIT 1883 #ifdef CONFIG_X86 1884 if (adev->gmc.xgmi.connected_to_cpu) 1885 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1886 adev->gmc.visible_vram_size); 1887 1888 else if (adev->gmc.is_app_apu) 1889 DRM_DEBUG_DRIVER( 1890 "No need to ioremap when real vram size is 0\n"); 1891 else 1892 #endif 1893 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1894 adev->gmc.visible_vram_size); 1895 #endif 1896 1897 /* 1898 *The reserved vram for firmware must be pinned to the specified 1899 *place on the VRAM, so reserve it early. 1900 */ 1901 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1902 if (r) 1903 return r; 1904 1905 /* 1906 *The reserved vram for driver must be pinned to the specified 1907 *place on the VRAM, so reserve it early. 1908 */ 1909 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1910 if (r) 1911 return r; 1912 1913 /* 1914 * only NAVI10 and onwards ASIC support for IP discovery. 1915 * If IP discovery enabled, a block of memory should be 1916 * reserved for IP discovey. 1917 */ 1918 if (adev->mman.discovery_bin) { 1919 r = amdgpu_ttm_reserve_tmr(adev); 1920 if (r) 1921 return r; 1922 } 1923 1924 /* allocate memory as required for VGA 1925 * This is used for VGA emulation and pre-OS scanout buffers to 1926 * avoid display artifacts while transitioning between pre-OS 1927 * and driver. 1928 */ 1929 if (!adev->gmc.is_app_apu) { 1930 r = amdgpu_bo_create_kernel_at(adev, 0, 1931 adev->mman.stolen_vga_size, 1932 &adev->mman.stolen_vga_memory, 1933 NULL); 1934 if (r) 1935 return r; 1936 1937 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1938 adev->mman.stolen_extended_size, 1939 &adev->mman.stolen_extended_memory, 1940 NULL); 1941 1942 if (r) 1943 return r; 1944 1945 r = amdgpu_bo_create_kernel_at(adev, 1946 adev->mman.stolen_reserved_offset, 1947 adev->mman.stolen_reserved_size, 1948 &adev->mman.stolen_reserved_memory, 1949 NULL); 1950 if (r) 1951 return r; 1952 } else { 1953 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1954 } 1955 1956 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1957 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1958 1959 /* Compute GTT size, either based on TTM limit 1960 * or whatever the user passed on module init. 1961 */ 1962 if (amdgpu_gtt_size == -1) 1963 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1964 else 1965 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1966 1967 /* Initialize GTT memory pool */ 1968 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1969 if (r) { 1970 DRM_ERROR("Failed initializing GTT heap.\n"); 1971 return r; 1972 } 1973 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1974 (unsigned int)(gtt_size / (1024 * 1024))); 1975 1976 /* Initialize doorbell pool on PCI BAR */ 1977 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1978 if (r) { 1979 DRM_ERROR("Failed initializing doorbell heap.\n"); 1980 return r; 1981 } 1982 1983 /* Create a boorbell page for kernel usages */ 1984 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1985 if (r) { 1986 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1987 return r; 1988 } 1989 1990 /* Initialize preemptible memory pool */ 1991 r = amdgpu_preempt_mgr_init(adev); 1992 if (r) { 1993 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1994 return r; 1995 } 1996 1997 /* Initialize various on-chip memory pools */ 1998 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1999 if (r) { 2000 DRM_ERROR("Failed initializing GDS heap.\n"); 2001 return r; 2002 } 2003 2004 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 2005 if (r) { 2006 DRM_ERROR("Failed initializing gws heap.\n"); 2007 return r; 2008 } 2009 2010 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 2011 if (r) { 2012 DRM_ERROR("Failed initializing oa heap.\n"); 2013 return r; 2014 } 2015 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2016 AMDGPU_GEM_DOMAIN_GTT, 2017 &adev->mman.sdma_access_bo, NULL, 2018 &adev->mman.sdma_access_ptr)) 2019 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2020 2021 return 0; 2022 } 2023 2024 /* 2025 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2026 */ 2027 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2028 { 2029 int idx; 2030 2031 if (!adev->mman.initialized) 2032 return; 2033 2034 amdgpu_ttm_pools_fini(adev); 2035 2036 amdgpu_ttm_training_reserve_vram_fini(adev); 2037 /* return the stolen vga memory back to VRAM */ 2038 if (!adev->gmc.is_app_apu) { 2039 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2040 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2041 /* return the FW reserved memory back to VRAM */ 2042 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2043 NULL); 2044 if (adev->mman.stolen_reserved_size) 2045 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2046 NULL, NULL); 2047 } 2048 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2049 &adev->mman.sdma_access_ptr); 2050 amdgpu_ttm_fw_reserve_vram_fini(adev); 2051 amdgpu_ttm_drv_reserve_vram_fini(adev); 2052 2053 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2054 2055 if (adev->mman.aper_base_kaddr) 2056 iounmap(adev->mman.aper_base_kaddr); 2057 adev->mman.aper_base_kaddr = NULL; 2058 2059 drm_dev_exit(idx); 2060 } 2061 2062 amdgpu_vram_mgr_fini(adev); 2063 amdgpu_gtt_mgr_fini(adev); 2064 amdgpu_preempt_mgr_fini(adev); 2065 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2066 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2067 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2068 ttm_device_fini(&adev->mman.bdev); 2069 adev->mman.initialized = false; 2070 DRM_INFO("amdgpu: ttm finalized\n"); 2071 } 2072 2073 /** 2074 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2075 * 2076 * @adev: amdgpu_device pointer 2077 * @enable: true when we can use buffer functions. 2078 * 2079 * Enable/disable use of buffer functions during suspend/resume. This should 2080 * only be called at bootup or when userspace isn't running. 2081 */ 2082 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2083 { 2084 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2085 uint64_t size; 2086 int r; 2087 2088 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2089 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2090 return; 2091 2092 if (enable) { 2093 struct amdgpu_ring *ring; 2094 struct drm_gpu_scheduler *sched; 2095 2096 ring = adev->mman.buffer_funcs_ring; 2097 sched = &ring->sched; 2098 r = drm_sched_entity_init(&adev->mman.high_pr, 2099 DRM_SCHED_PRIORITY_KERNEL, &sched, 2100 1, NULL); 2101 if (r) { 2102 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2103 r); 2104 return; 2105 } 2106 2107 r = drm_sched_entity_init(&adev->mman.low_pr, 2108 DRM_SCHED_PRIORITY_NORMAL, &sched, 2109 1, NULL); 2110 if (r) { 2111 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2112 r); 2113 goto error_free_entity; 2114 } 2115 } else { 2116 drm_sched_entity_destroy(&adev->mman.high_pr); 2117 drm_sched_entity_destroy(&adev->mman.low_pr); 2118 dma_fence_put(man->move); 2119 man->move = NULL; 2120 } 2121 2122 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2123 if (enable) 2124 size = adev->gmc.real_vram_size; 2125 else 2126 size = adev->gmc.visible_vram_size; 2127 man->size = size; 2128 adev->mman.buffer_funcs_enabled = enable; 2129 2130 return; 2131 2132 error_free_entity: 2133 drm_sched_entity_destroy(&adev->mman.high_pr); 2134 } 2135 2136 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2137 bool direct_submit, 2138 unsigned int num_dw, 2139 struct dma_resv *resv, 2140 bool vm_needs_flush, 2141 struct amdgpu_job **job, 2142 bool delayed) 2143 { 2144 enum amdgpu_ib_pool_type pool = direct_submit ? 2145 AMDGPU_IB_POOL_DIRECT : 2146 AMDGPU_IB_POOL_DELAYED; 2147 int r; 2148 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2149 &adev->mman.high_pr; 2150 r = amdgpu_job_alloc_with_ib(adev, entity, 2151 AMDGPU_FENCE_OWNER_UNDEFINED, 2152 num_dw * 4, pool, job); 2153 if (r) 2154 return r; 2155 2156 if (vm_needs_flush) { 2157 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2158 adev->gmc.pdb0_bo : 2159 adev->gart.bo); 2160 (*job)->vm_needs_flush = true; 2161 } 2162 if (!resv) 2163 return 0; 2164 2165 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2166 DMA_RESV_USAGE_BOOKKEEP); 2167 } 2168 2169 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2170 uint64_t dst_offset, uint32_t byte_count, 2171 struct dma_resv *resv, 2172 struct dma_fence **fence, bool direct_submit, 2173 bool vm_needs_flush, uint32_t copy_flags) 2174 { 2175 struct amdgpu_device *adev = ring->adev; 2176 unsigned int num_loops, num_dw; 2177 struct amdgpu_job *job; 2178 uint32_t max_bytes; 2179 unsigned int i; 2180 int r; 2181 2182 if (!direct_submit && !ring->sched.ready) { 2183 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2184 return -EINVAL; 2185 } 2186 2187 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2188 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2189 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2190 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2191 resv, vm_needs_flush, &job, false); 2192 if (r) 2193 return r; 2194 2195 for (i = 0; i < num_loops; i++) { 2196 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2197 2198 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2199 dst_offset, cur_size_in_bytes, copy_flags); 2200 src_offset += cur_size_in_bytes; 2201 dst_offset += cur_size_in_bytes; 2202 byte_count -= cur_size_in_bytes; 2203 } 2204 2205 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2206 WARN_ON(job->ibs[0].length_dw > num_dw); 2207 if (direct_submit) 2208 r = amdgpu_job_submit_direct(job, ring, fence); 2209 else 2210 *fence = amdgpu_job_submit(job); 2211 if (r) 2212 goto error_free; 2213 2214 return r; 2215 2216 error_free: 2217 amdgpu_job_free(job); 2218 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2219 return r; 2220 } 2221 2222 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2223 uint64_t dst_addr, uint32_t byte_count, 2224 struct dma_resv *resv, 2225 struct dma_fence **fence, 2226 bool vm_needs_flush, bool delayed) 2227 { 2228 struct amdgpu_device *adev = ring->adev; 2229 unsigned int num_loops, num_dw; 2230 struct amdgpu_job *job; 2231 uint32_t max_bytes; 2232 unsigned int i; 2233 int r; 2234 2235 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2236 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2237 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2238 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2239 &job, delayed); 2240 if (r) 2241 return r; 2242 2243 for (i = 0; i < num_loops; i++) { 2244 uint32_t cur_size = min(byte_count, max_bytes); 2245 2246 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2247 cur_size); 2248 2249 dst_addr += cur_size; 2250 byte_count -= cur_size; 2251 } 2252 2253 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2254 WARN_ON(job->ibs[0].length_dw > num_dw); 2255 *fence = amdgpu_job_submit(job); 2256 return 0; 2257 } 2258 2259 /** 2260 * amdgpu_ttm_clear_buffer - clear memory buffers 2261 * @bo: amdgpu buffer object 2262 * @resv: reservation object 2263 * @fence: dma_fence associated with the operation 2264 * 2265 * Clear the memory buffer resource. 2266 * 2267 * Returns: 2268 * 0 for success or a negative error code on failure. 2269 */ 2270 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2271 struct dma_resv *resv, 2272 struct dma_fence **fence) 2273 { 2274 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2275 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2276 struct amdgpu_res_cursor cursor; 2277 u64 addr; 2278 int r; 2279 2280 if (!adev->mman.buffer_funcs_enabled) 2281 return -EINVAL; 2282 2283 if (!fence) 2284 return -EINVAL; 2285 2286 *fence = dma_fence_get_stub(); 2287 2288 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2289 2290 mutex_lock(&adev->mman.gtt_window_lock); 2291 while (cursor.remaining) { 2292 struct dma_fence *next = NULL; 2293 u64 size; 2294 2295 if (amdgpu_res_cleared(&cursor)) { 2296 amdgpu_res_next(&cursor, cursor.size); 2297 continue; 2298 } 2299 2300 /* Never clear more than 256MiB at once to avoid timeouts */ 2301 size = min(cursor.size, 256ULL << 20); 2302 2303 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2304 1, ring, false, &size, &addr); 2305 if (r) 2306 goto err; 2307 2308 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2309 &next, true, true); 2310 if (r) 2311 goto err; 2312 2313 dma_fence_put(*fence); 2314 *fence = next; 2315 2316 amdgpu_res_next(&cursor, size); 2317 } 2318 err: 2319 mutex_unlock(&adev->mman.gtt_window_lock); 2320 2321 return r; 2322 } 2323 2324 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2325 uint32_t src_data, 2326 struct dma_resv *resv, 2327 struct dma_fence **f, 2328 bool delayed) 2329 { 2330 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2331 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2332 struct dma_fence *fence = NULL; 2333 struct amdgpu_res_cursor dst; 2334 int r; 2335 2336 if (!adev->mman.buffer_funcs_enabled) { 2337 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2338 return -EINVAL; 2339 } 2340 2341 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2342 2343 mutex_lock(&adev->mman.gtt_window_lock); 2344 while (dst.remaining) { 2345 struct dma_fence *next; 2346 uint64_t cur_size, to; 2347 2348 /* Never fill more than 256MiB at once to avoid timeouts */ 2349 cur_size = min(dst.size, 256ULL << 20); 2350 2351 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2352 1, ring, false, &cur_size, &to); 2353 if (r) 2354 goto error; 2355 2356 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2357 &next, true, delayed); 2358 if (r) 2359 goto error; 2360 2361 dma_fence_put(fence); 2362 fence = next; 2363 2364 amdgpu_res_next(&dst, cur_size); 2365 } 2366 error: 2367 mutex_unlock(&adev->mman.gtt_window_lock); 2368 if (f) 2369 *f = dma_fence_get(fence); 2370 dma_fence_put(fence); 2371 return r; 2372 } 2373 2374 /** 2375 * amdgpu_ttm_evict_resources - evict memory buffers 2376 * @adev: amdgpu device object 2377 * @mem_type: evicted BO's memory type 2378 * 2379 * Evicts all @mem_type buffers on the lru list of the memory type. 2380 * 2381 * Returns: 2382 * 0 for success or a negative error code on failure. 2383 */ 2384 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2385 { 2386 struct ttm_resource_manager *man; 2387 2388 switch (mem_type) { 2389 case TTM_PL_VRAM: 2390 case TTM_PL_TT: 2391 case AMDGPU_PL_GWS: 2392 case AMDGPU_PL_GDS: 2393 case AMDGPU_PL_OA: 2394 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2395 break; 2396 default: 2397 DRM_ERROR("Trying to evict invalid memory type\n"); 2398 return -EINVAL; 2399 } 2400 2401 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2402 } 2403 2404 #if defined(CONFIG_DEBUG_FS) 2405 2406 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2407 { 2408 struct amdgpu_device *adev = m->private; 2409 2410 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2411 } 2412 2413 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2414 2415 /* 2416 * amdgpu_ttm_vram_read - Linear read access to VRAM 2417 * 2418 * Accesses VRAM via MMIO for debugging purposes. 2419 */ 2420 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2421 size_t size, loff_t *pos) 2422 { 2423 struct amdgpu_device *adev = file_inode(f)->i_private; 2424 ssize_t result = 0; 2425 2426 if (size & 0x3 || *pos & 0x3) 2427 return -EINVAL; 2428 2429 if (*pos >= adev->gmc.mc_vram_size) 2430 return -ENXIO; 2431 2432 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2433 while (size) { 2434 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2435 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2436 2437 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2438 if (copy_to_user(buf, value, bytes)) 2439 return -EFAULT; 2440 2441 result += bytes; 2442 buf += bytes; 2443 *pos += bytes; 2444 size -= bytes; 2445 } 2446 2447 return result; 2448 } 2449 2450 /* 2451 * amdgpu_ttm_vram_write - Linear write access to VRAM 2452 * 2453 * Accesses VRAM via MMIO for debugging purposes. 2454 */ 2455 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2456 size_t size, loff_t *pos) 2457 { 2458 struct amdgpu_device *adev = file_inode(f)->i_private; 2459 ssize_t result = 0; 2460 int r; 2461 2462 if (size & 0x3 || *pos & 0x3) 2463 return -EINVAL; 2464 2465 if (*pos >= adev->gmc.mc_vram_size) 2466 return -ENXIO; 2467 2468 while (size) { 2469 uint32_t value; 2470 2471 if (*pos >= adev->gmc.mc_vram_size) 2472 return result; 2473 2474 r = get_user(value, (uint32_t *)buf); 2475 if (r) 2476 return r; 2477 2478 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2479 2480 result += 4; 2481 buf += 4; 2482 *pos += 4; 2483 size -= 4; 2484 } 2485 2486 return result; 2487 } 2488 2489 static const struct file_operations amdgpu_ttm_vram_fops = { 2490 .owner = THIS_MODULE, 2491 .read = amdgpu_ttm_vram_read, 2492 .write = amdgpu_ttm_vram_write, 2493 .llseek = default_llseek, 2494 }; 2495 2496 /* 2497 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2498 * 2499 * This function is used to read memory that has been mapped to the 2500 * GPU and the known addresses are not physical addresses but instead 2501 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2502 */ 2503 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2504 size_t size, loff_t *pos) 2505 { 2506 struct amdgpu_device *adev = file_inode(f)->i_private; 2507 struct iommu_domain *dom; 2508 ssize_t result = 0; 2509 int r; 2510 2511 /* retrieve the IOMMU domain if any for this device */ 2512 dom = iommu_get_domain_for_dev(adev->dev); 2513 2514 while (size) { 2515 phys_addr_t addr = *pos & PAGE_MASK; 2516 loff_t off = *pos & ~PAGE_MASK; 2517 size_t bytes = PAGE_SIZE - off; 2518 unsigned long pfn; 2519 struct page *p; 2520 void *ptr; 2521 2522 bytes = min(bytes, size); 2523 2524 /* Translate the bus address to a physical address. If 2525 * the domain is NULL it means there is no IOMMU active 2526 * and the address translation is the identity 2527 */ 2528 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2529 2530 pfn = addr >> PAGE_SHIFT; 2531 if (!pfn_valid(pfn)) 2532 return -EPERM; 2533 2534 p = pfn_to_page(pfn); 2535 if (p->mapping != adev->mman.bdev.dev_mapping) 2536 return -EPERM; 2537 2538 ptr = kmap_local_page(p); 2539 r = copy_to_user(buf, ptr + off, bytes); 2540 kunmap_local(ptr); 2541 if (r) 2542 return -EFAULT; 2543 2544 size -= bytes; 2545 *pos += bytes; 2546 result += bytes; 2547 } 2548 2549 return result; 2550 } 2551 2552 /* 2553 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2554 * 2555 * This function is used to write memory that has been mapped to the 2556 * GPU and the known addresses are not physical addresses but instead 2557 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2558 */ 2559 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2560 size_t size, loff_t *pos) 2561 { 2562 struct amdgpu_device *adev = file_inode(f)->i_private; 2563 struct iommu_domain *dom; 2564 ssize_t result = 0; 2565 int r; 2566 2567 dom = iommu_get_domain_for_dev(adev->dev); 2568 2569 while (size) { 2570 phys_addr_t addr = *pos & PAGE_MASK; 2571 loff_t off = *pos & ~PAGE_MASK; 2572 size_t bytes = PAGE_SIZE - off; 2573 unsigned long pfn; 2574 struct page *p; 2575 void *ptr; 2576 2577 bytes = min(bytes, size); 2578 2579 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2580 2581 pfn = addr >> PAGE_SHIFT; 2582 if (!pfn_valid(pfn)) 2583 return -EPERM; 2584 2585 p = pfn_to_page(pfn); 2586 if (p->mapping != adev->mman.bdev.dev_mapping) 2587 return -EPERM; 2588 2589 ptr = kmap_local_page(p); 2590 r = copy_from_user(ptr + off, buf, bytes); 2591 kunmap_local(ptr); 2592 if (r) 2593 return -EFAULT; 2594 2595 size -= bytes; 2596 *pos += bytes; 2597 result += bytes; 2598 } 2599 2600 return result; 2601 } 2602 2603 static const struct file_operations amdgpu_ttm_iomem_fops = { 2604 .owner = THIS_MODULE, 2605 .read = amdgpu_iomem_read, 2606 .write = amdgpu_iomem_write, 2607 .llseek = default_llseek 2608 }; 2609 2610 #endif 2611 2612 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2613 { 2614 #if defined(CONFIG_DEBUG_FS) 2615 struct drm_minor *minor = adev_to_drm(adev)->primary; 2616 struct dentry *root = minor->debugfs_root; 2617 2618 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2619 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2620 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2621 &amdgpu_ttm_iomem_fops); 2622 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2623 &amdgpu_ttm_page_pool_fops); 2624 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2625 TTM_PL_VRAM), 2626 root, "amdgpu_vram_mm"); 2627 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2628 TTM_PL_TT), 2629 root, "amdgpu_gtt_mm"); 2630 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2631 AMDGPU_PL_GDS), 2632 root, "amdgpu_gds_mm"); 2633 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2634 AMDGPU_PL_GWS), 2635 root, "amdgpu_gws_mm"); 2636 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2637 AMDGPU_PL_OA), 2638 root, "amdgpu_oa_mm"); 2639 2640 #endif 2641 } 2642