xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision b94605a3889b9084d88f1fe06b043e082bc6b075)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 		placement->num_placement = 0;
127 		return;
128 
129 	case TTM_PL_VRAM:
130 		if (!adev->mman.buffer_funcs_enabled) {
131 			/* Move to system memory */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133 
134 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
137 
138 			/* Try evicting to the CPU inaccessible part of VRAM
139 			 * first, but only set GTT as busy placement, so this
140 			 * BO will be evicted to GTT rather than causing other
141 			 * BOs to be evicted from VRAM
142 			 */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 							AMDGPU_GEM_DOMAIN_GTT |
145 							AMDGPU_GEM_DOMAIN_CPU);
146 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 			abo->placements[0].lpfn = 0;
148 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 		} else {
150 			/* Move to GTT memory */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 							AMDGPU_GEM_DOMAIN_CPU);
153 		}
154 		break;
155 	case TTM_PL_TT:
156 	case AMDGPU_PL_PREEMPT:
157 	default:
158 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 		break;
160 	}
161 	*placement = abo->placement;
162 }
163 
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 				 struct ttm_resource *mem,
180 				 struct amdgpu_res_cursor *mm_cur,
181 				 unsigned int window, struct amdgpu_ring *ring,
182 				 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 	struct amdgpu_device *adev = ring->adev;
185 	unsigned int offset, num_pages, num_dw, num_bytes;
186 	uint64_t src_addr, dst_addr;
187 	struct amdgpu_job *job;
188 	void *cpu_addr;
189 	uint64_t flags;
190 	unsigned int i;
191 	int r;
192 
193 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195 
196 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 		return -EINVAL;
198 
199 	/* Map only what can't be accessed directly */
200 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 			mm_cur->start;
203 		return 0;
204 	}
205 
206 
207 	/*
208 	 * If start begins at an offset inside the page, then adjust the size
209 	 * and addr accordingly
210 	 */
211 	offset = mm_cur->start & ~PAGE_MASK;
212 
213 	num_pages = PFN_UP(*size + offset);
214 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215 
216 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += offset;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 				     AMDGPU_FENCE_OWNER_UNDEFINED,
228 				     num_dw * 4 + num_bytes,
229 				     AMDGPU_IB_POOL_DELAYED, &job);
230 	if (r)
231 		return r;
232 
233 	src_addr = num_dw * 4;
234 	src_addr += job->ibs[0].gpu_addr;
235 
236 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 				dst_addr, num_bytes, false);
240 
241 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 	WARN_ON(job->ibs[0].length_dw > num_dw);
243 
244 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 	if (tmz)
246 		flags |= AMDGPU_PTE_TMZ;
247 
248 	cpu_addr = &job->ibs[0].ptr[num_dw];
249 
250 	if (mem->mem_type == TTM_PL_TT) {
251 		dma_addr_t *dma_addr;
252 
253 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 	} else {
256 		dma_addr_t dma_address;
257 
258 		dma_address = mm_cur->start;
259 		dma_address += adev->vm_manager.vram_base_offset;
260 
261 		for (i = 0; i < num_pages; ++i) {
262 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 					flags, cpu_addr);
264 			dma_address += PAGE_SIZE;
265 		}
266 	}
267 
268 	dma_fence_put(amdgpu_job_submit(job));
269 	return 0;
270 }
271 
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 			       const struct amdgpu_copy_mem *src,
289 			       const struct amdgpu_copy_mem *dst,
290 			       uint64_t size, bool tmz,
291 			       struct dma_resv *resv,
292 			       struct dma_fence **f)
293 {
294 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 	struct amdgpu_res_cursor src_mm, dst_mm;
296 	struct dma_fence *fence = NULL;
297 	int r = 0;
298 
299 	if (!adev->mman.buffer_funcs_enabled) {
300 		DRM_ERROR("Trying to move memory with ring turned off.\n");
301 		return -EINVAL;
302 	}
303 
304 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306 
307 	mutex_lock(&adev->mman.gtt_window_lock);
308 	while (src_mm.remaining) {
309 		uint64_t from, to, cur_size;
310 		struct dma_fence *next;
311 
312 		/* Never copy more than 256MiB at once to avoid a timeout */
313 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314 
315 		/* Map src to window 0 and dst to window 1. */
316 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 					  0, ring, tmz, &cur_size, &from);
318 		if (r)
319 			goto error;
320 
321 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 					  1, ring, tmz, &cur_size, &to);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 				       resv, &next, false, true, tmz);
328 		if (r)
329 			goto error;
330 
331 		dma_fence_put(fence);
332 		fence = next;
333 
334 		amdgpu_res_next(&src_mm, cur_size);
335 		amdgpu_res_next(&dst_mm, cur_size);
336 	}
337 error:
338 	mutex_unlock(&adev->mman.gtt_window_lock);
339 	if (f)
340 		*f = dma_fence_get(fence);
341 	dma_fence_put(fence);
342 	return r;
343 }
344 
345 /*
346  * amdgpu_move_blit - Copy an entire buffer to another buffer
347  *
348  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349  * help move buffers to and from VRAM.
350  */
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352 			    bool evict,
353 			    struct ttm_resource *new_mem,
354 			    struct ttm_resource *old_mem)
355 {
356 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 	struct amdgpu_copy_mem src, dst;
359 	struct dma_fence *fence = NULL;
360 	int r;
361 
362 	src.bo = bo;
363 	dst.bo = bo;
364 	src.mem = old_mem;
365 	dst.mem = new_mem;
366 	src.offset = 0;
367 	dst.offset = 0;
368 
369 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370 				       new_mem->size,
371 				       amdgpu_bo_encrypted(abo),
372 				       bo->base.resv, &fence);
373 	if (r)
374 		goto error;
375 
376 	/* clear the space being freed */
377 	if (old_mem->mem_type == TTM_PL_VRAM &&
378 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 		struct dma_fence *wipe_fence = NULL;
380 
381 		r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
382 				       false);
383 		if (r) {
384 			goto error;
385 		} else if (wipe_fence) {
386 			amdgpu_vram_mgr_set_cleared(bo->resource);
387 			dma_fence_put(fence);
388 			fence = wipe_fence;
389 		}
390 	}
391 
392 	/* Always block for VM page tables before committing the new location */
393 	if (bo->type == ttm_bo_type_kernel)
394 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
395 	else
396 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
397 	dma_fence_put(fence);
398 	return r;
399 
400 error:
401 	if (fence)
402 		dma_fence_wait(fence, false);
403 	dma_fence_put(fence);
404 	return r;
405 }
406 
407 /**
408  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
409  * @adev: amdgpu device
410  * @res: the resource to check
411  *
412  * Returns: true if the full resource is CPU visible, false otherwise.
413  */
414 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
415 			    struct ttm_resource *res)
416 {
417 	struct amdgpu_res_cursor cursor;
418 
419 	if (!res)
420 		return false;
421 
422 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
423 	    res->mem_type == AMDGPU_PL_PREEMPT)
424 		return true;
425 
426 	if (res->mem_type != TTM_PL_VRAM)
427 		return false;
428 
429 	amdgpu_res_first(res, 0, res->size, &cursor);
430 	while (cursor.remaining) {
431 		if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size)
432 			return false;
433 		amdgpu_res_next(&cursor, cursor.size);
434 	}
435 
436 	return true;
437 }
438 
439 /*
440  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
441  *
442  * Called by amdgpu_bo_move()
443  */
444 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
445 				struct ttm_resource *mem)
446 {
447 	if (!amdgpu_res_cpu_visible(adev, mem))
448 		return false;
449 
450 	/* ttm_resource_ioremap only supports contiguous memory */
451 	if (mem->mem_type == TTM_PL_VRAM &&
452 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
453 		return false;
454 
455 	return true;
456 }
457 
458 /*
459  * amdgpu_bo_move - Move a buffer object to a new memory location
460  *
461  * Called by ttm_bo_handle_move_mem()
462  */
463 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
464 			  struct ttm_operation_ctx *ctx,
465 			  struct ttm_resource *new_mem,
466 			  struct ttm_place *hop)
467 {
468 	struct amdgpu_device *adev;
469 	struct amdgpu_bo *abo;
470 	struct ttm_resource *old_mem = bo->resource;
471 	int r;
472 
473 	if (new_mem->mem_type == TTM_PL_TT ||
474 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
475 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
476 		if (r)
477 			return r;
478 	}
479 
480 	abo = ttm_to_amdgpu_bo(bo);
481 	adev = amdgpu_ttm_adev(bo->bdev);
482 
483 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
484 			 bo->ttm == NULL)) {
485 		ttm_bo_move_null(bo, new_mem);
486 		goto out;
487 	}
488 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
489 	    (new_mem->mem_type == TTM_PL_TT ||
490 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491 		ttm_bo_move_null(bo, new_mem);
492 		goto out;
493 	}
494 	if ((old_mem->mem_type == TTM_PL_TT ||
495 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
496 	    new_mem->mem_type == TTM_PL_SYSTEM) {
497 		r = ttm_bo_wait_ctx(bo, ctx);
498 		if (r)
499 			return r;
500 
501 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
502 		ttm_resource_free(bo, &bo->resource);
503 		ttm_bo_assign_mem(bo, new_mem);
504 		goto out;
505 	}
506 
507 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
508 	    old_mem->mem_type == AMDGPU_PL_GWS ||
509 	    old_mem->mem_type == AMDGPU_PL_OA ||
510 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
511 	    new_mem->mem_type == AMDGPU_PL_GDS ||
512 	    new_mem->mem_type == AMDGPU_PL_GWS ||
513 	    new_mem->mem_type == AMDGPU_PL_OA ||
514 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
515 		/* Nothing to save here */
516 		ttm_bo_move_null(bo, new_mem);
517 		goto out;
518 	}
519 
520 	if (bo->type == ttm_bo_type_device &&
521 	    new_mem->mem_type == TTM_PL_VRAM &&
522 	    old_mem->mem_type != TTM_PL_VRAM) {
523 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
524 		 * accesses the BO after it's moved.
525 		 */
526 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
527 	}
528 
529 	if (adev->mman.buffer_funcs_enabled) {
530 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
531 		      new_mem->mem_type == TTM_PL_VRAM) ||
532 		     (old_mem->mem_type == TTM_PL_VRAM &&
533 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
534 			hop->fpfn = 0;
535 			hop->lpfn = 0;
536 			hop->mem_type = TTM_PL_TT;
537 			hop->flags = TTM_PL_FLAG_TEMPORARY;
538 			return -EMULTIHOP;
539 		}
540 
541 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
542 	} else {
543 		r = -ENODEV;
544 	}
545 
546 	if (r) {
547 		/* Check that all memory is CPU accessible */
548 		if (!amdgpu_res_copyable(adev, old_mem) ||
549 		    !amdgpu_res_copyable(adev, new_mem)) {
550 			pr_err("Move buffer fallback to memcpy unavailable\n");
551 			return r;
552 		}
553 
554 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
555 		if (r)
556 			return r;
557 	}
558 
559 	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
560 out:
561 	/* update statistics */
562 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
563 	amdgpu_bo_move_notify(bo, evict);
564 	return 0;
565 }
566 
567 /*
568  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
569  *
570  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
571  */
572 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
573 				     struct ttm_resource *mem)
574 {
575 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
576 
577 	switch (mem->mem_type) {
578 	case TTM_PL_SYSTEM:
579 		/* system memory */
580 		return 0;
581 	case TTM_PL_TT:
582 	case AMDGPU_PL_PREEMPT:
583 		break;
584 	case TTM_PL_VRAM:
585 		mem->bus.offset = mem->start << PAGE_SHIFT;
586 
587 		if (adev->mman.aper_base_kaddr &&
588 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
589 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
590 					mem->bus.offset;
591 
592 		mem->bus.offset += adev->gmc.aper_base;
593 		mem->bus.is_iomem = true;
594 		break;
595 	case AMDGPU_PL_DOORBELL:
596 		mem->bus.offset = mem->start << PAGE_SHIFT;
597 		mem->bus.offset += adev->doorbell.base;
598 		mem->bus.is_iomem = true;
599 		mem->bus.caching = ttm_uncached;
600 		break;
601 	default:
602 		return -EINVAL;
603 	}
604 	return 0;
605 }
606 
607 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
608 					   unsigned long page_offset)
609 {
610 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
611 	struct amdgpu_res_cursor cursor;
612 
613 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
614 			 &cursor);
615 
616 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
617 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
618 
619 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
620 }
621 
622 /**
623  * amdgpu_ttm_domain_start - Returns GPU start address
624  * @adev: amdgpu device object
625  * @type: type of the memory
626  *
627  * Returns:
628  * GPU start address of a memory domain
629  */
630 
631 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
632 {
633 	switch (type) {
634 	case TTM_PL_TT:
635 		return adev->gmc.gart_start;
636 	case TTM_PL_VRAM:
637 		return adev->gmc.vram_start;
638 	}
639 
640 	return 0;
641 }
642 
643 /*
644  * TTM backend functions.
645  */
646 struct amdgpu_ttm_tt {
647 	struct ttm_tt	ttm;
648 	struct drm_gem_object	*gobj;
649 	u64			offset;
650 	uint64_t		userptr;
651 	struct task_struct	*usertask;
652 	uint32_t		userflags;
653 	bool			bound;
654 	int32_t			pool_id;
655 };
656 
657 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
658 
659 #ifdef CONFIG_DRM_AMDGPU_USERPTR
660 /*
661  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
662  * memory and start HMM tracking CPU page table update
663  *
664  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
665  * once afterwards to stop HMM tracking
666  */
667 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
668 				 struct hmm_range **range)
669 {
670 	struct ttm_tt *ttm = bo->tbo.ttm;
671 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
672 	unsigned long start = gtt->userptr;
673 	struct vm_area_struct *vma;
674 	struct mm_struct *mm;
675 	bool readonly;
676 	int r = 0;
677 
678 	/* Make sure get_user_pages_done() can cleanup gracefully */
679 	*range = NULL;
680 
681 	mm = bo->notifier.mm;
682 	if (unlikely(!mm)) {
683 		DRM_DEBUG_DRIVER("BO is not registered?\n");
684 		return -EFAULT;
685 	}
686 
687 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
688 		return -ESRCH;
689 
690 	mmap_read_lock(mm);
691 	vma = vma_lookup(mm, start);
692 	if (unlikely(!vma)) {
693 		r = -EFAULT;
694 		goto out_unlock;
695 	}
696 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
697 		vma->vm_file)) {
698 		r = -EPERM;
699 		goto out_unlock;
700 	}
701 
702 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
703 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
704 				       readonly, NULL, pages, range);
705 out_unlock:
706 	mmap_read_unlock(mm);
707 	if (r)
708 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
709 
710 	mmput(mm);
711 
712 	return r;
713 }
714 
715 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
716  */
717 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
718 				      struct hmm_range *range)
719 {
720 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
721 
722 	if (gtt && gtt->userptr && range)
723 		amdgpu_hmm_range_get_pages_done(range);
724 }
725 
726 /*
727  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
728  * Check if the pages backing this ttm range have been invalidated
729  *
730  * Returns: true if pages are still valid
731  */
732 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
733 				       struct hmm_range *range)
734 {
735 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
736 
737 	if (!gtt || !gtt->userptr || !range)
738 		return false;
739 
740 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
741 		gtt->userptr, ttm->num_pages);
742 
743 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
744 
745 	return !amdgpu_hmm_range_get_pages_done(range);
746 }
747 #endif
748 
749 /*
750  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
751  *
752  * Called by amdgpu_cs_list_validate(). This creates the page list
753  * that backs user memory and will ultimately be mapped into the device
754  * address space.
755  */
756 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
757 {
758 	unsigned long i;
759 
760 	for (i = 0; i < ttm->num_pages; ++i)
761 		ttm->pages[i] = pages ? pages[i] : NULL;
762 }
763 
764 /*
765  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
766  *
767  * Called by amdgpu_ttm_backend_bind()
768  **/
769 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
770 				     struct ttm_tt *ttm)
771 {
772 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
773 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
774 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
775 	enum dma_data_direction direction = write ?
776 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
777 	int r;
778 
779 	/* Allocate an SG array and squash pages into it */
780 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
781 				      (u64)ttm->num_pages << PAGE_SHIFT,
782 				      GFP_KERNEL);
783 	if (r)
784 		goto release_sg;
785 
786 	/* Map SG to device */
787 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
788 	if (r)
789 		goto release_sg;
790 
791 	/* convert SG to linear array of pages and dma addresses */
792 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
793 				       ttm->num_pages);
794 
795 	return 0;
796 
797 release_sg:
798 	kfree(ttm->sg);
799 	ttm->sg = NULL;
800 	return r;
801 }
802 
803 /*
804  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
805  */
806 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
807 					struct ttm_tt *ttm)
808 {
809 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
810 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
811 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
812 	enum dma_data_direction direction = write ?
813 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
814 
815 	/* double check that we don't free the table twice */
816 	if (!ttm->sg || !ttm->sg->sgl)
817 		return;
818 
819 	/* unmap the pages mapped to the device */
820 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
821 	sg_free_table(ttm->sg);
822 }
823 
824 /*
825  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
826  * MQDn+CtrlStackn where n is the number of XCCs per partition.
827  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
828  * and uses memory type default, UC. The rest of pages_per_xcc are
829  * Ctrl stack and modify their memory type to NC.
830  */
831 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
832 				struct ttm_tt *ttm, uint64_t flags)
833 {
834 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
835 	uint64_t total_pages = ttm->num_pages;
836 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
837 	uint64_t page_idx, pages_per_xcc;
838 	int i;
839 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
840 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
841 
842 	pages_per_xcc = total_pages;
843 	do_div(pages_per_xcc, num_xcc);
844 
845 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
846 		/* MQD page: use default flags */
847 		amdgpu_gart_bind(adev,
848 				gtt->offset + (page_idx << PAGE_SHIFT),
849 				1, &gtt->ttm.dma_address[page_idx], flags);
850 		/*
851 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
852 		 * the second page of the BO onward.
853 		 */
854 		amdgpu_gart_bind(adev,
855 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
856 				pages_per_xcc - 1,
857 				&gtt->ttm.dma_address[page_idx + 1],
858 				ctrl_flags);
859 	}
860 }
861 
862 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
863 				 struct ttm_buffer_object *tbo,
864 				 uint64_t flags)
865 {
866 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
867 	struct ttm_tt *ttm = tbo->ttm;
868 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
869 
870 	if (amdgpu_bo_encrypted(abo))
871 		flags |= AMDGPU_PTE_TMZ;
872 
873 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
874 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
875 	} else {
876 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
877 				 gtt->ttm.dma_address, flags);
878 	}
879 	gtt->bound = true;
880 }
881 
882 /*
883  * amdgpu_ttm_backend_bind - Bind GTT memory
884  *
885  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
886  * This handles binding GTT memory to the device address space.
887  */
888 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
889 				   struct ttm_tt *ttm,
890 				   struct ttm_resource *bo_mem)
891 {
892 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
893 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
894 	uint64_t flags;
895 	int r;
896 
897 	if (!bo_mem)
898 		return -EINVAL;
899 
900 	if (gtt->bound)
901 		return 0;
902 
903 	if (gtt->userptr) {
904 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
905 		if (r) {
906 			DRM_ERROR("failed to pin userptr\n");
907 			return r;
908 		}
909 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
910 		if (!ttm->sg) {
911 			struct dma_buf_attachment *attach;
912 			struct sg_table *sgt;
913 
914 			attach = gtt->gobj->import_attach;
915 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
916 			if (IS_ERR(sgt))
917 				return PTR_ERR(sgt);
918 
919 			ttm->sg = sgt;
920 		}
921 
922 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
923 					       ttm->num_pages);
924 	}
925 
926 	if (!ttm->num_pages) {
927 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
928 		     ttm->num_pages, bo_mem, ttm);
929 	}
930 
931 	if (bo_mem->mem_type != TTM_PL_TT ||
932 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
933 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
934 		return 0;
935 	}
936 
937 	/* compute PTE flags relevant to this BO memory */
938 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
939 
940 	/* bind pages into GART page tables */
941 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
942 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
943 			 gtt->ttm.dma_address, flags);
944 	gtt->bound = true;
945 	return 0;
946 }
947 
948 /*
949  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
950  * through AGP or GART aperture.
951  *
952  * If bo is accessible through AGP aperture, then use AGP aperture
953  * to access bo; otherwise allocate logical space in GART aperture
954  * and map bo to GART aperture.
955  */
956 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
957 {
958 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
959 	struct ttm_operation_ctx ctx = { false, false };
960 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
961 	struct ttm_placement placement;
962 	struct ttm_place placements;
963 	struct ttm_resource *tmp;
964 	uint64_t addr, flags;
965 	int r;
966 
967 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
968 		return 0;
969 
970 	addr = amdgpu_gmc_agp_addr(bo);
971 	if (addr != AMDGPU_BO_INVALID_OFFSET)
972 		return 0;
973 
974 	/* allocate GART space */
975 	placement.num_placement = 1;
976 	placement.placement = &placements;
977 	placements.fpfn = 0;
978 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
979 	placements.mem_type = TTM_PL_TT;
980 	placements.flags = bo->resource->placement;
981 
982 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
983 	if (unlikely(r))
984 		return r;
985 
986 	/* compute PTE flags for this buffer object */
987 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
988 
989 	/* Bind pages */
990 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
991 	amdgpu_ttm_gart_bind(adev, bo, flags);
992 	amdgpu_gart_invalidate_tlb(adev);
993 	ttm_resource_free(bo, &bo->resource);
994 	ttm_bo_assign_mem(bo, tmp);
995 
996 	return 0;
997 }
998 
999 /*
1000  * amdgpu_ttm_recover_gart - Rebind GTT pages
1001  *
1002  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1003  * rebind GTT pages during a GPU reset.
1004  */
1005 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1006 {
1007 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1008 	uint64_t flags;
1009 
1010 	if (!tbo->ttm)
1011 		return;
1012 
1013 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1014 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1015 }
1016 
1017 /*
1018  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1019  *
1020  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1021  * ttm_tt_destroy().
1022  */
1023 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1024 				      struct ttm_tt *ttm)
1025 {
1026 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1027 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1028 
1029 	/* if the pages have userptr pinning then clear that first */
1030 	if (gtt->userptr) {
1031 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1032 	} else if (ttm->sg && gtt->gobj->import_attach) {
1033 		struct dma_buf_attachment *attach;
1034 
1035 		attach = gtt->gobj->import_attach;
1036 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1037 		ttm->sg = NULL;
1038 	}
1039 
1040 	if (!gtt->bound)
1041 		return;
1042 
1043 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1044 		return;
1045 
1046 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1047 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1048 	gtt->bound = false;
1049 }
1050 
1051 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1052 				       struct ttm_tt *ttm)
1053 {
1054 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1055 
1056 	if (gtt->usertask)
1057 		put_task_struct(gtt->usertask);
1058 
1059 	ttm_tt_fini(&gtt->ttm);
1060 	kfree(gtt);
1061 }
1062 
1063 /**
1064  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1065  *
1066  * @bo: The buffer object to create a GTT ttm_tt object around
1067  * @page_flags: Page flags to be added to the ttm_tt object
1068  *
1069  * Called by ttm_tt_create().
1070  */
1071 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1072 					   uint32_t page_flags)
1073 {
1074 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1075 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1076 	struct amdgpu_ttm_tt *gtt;
1077 	enum ttm_caching caching;
1078 
1079 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1080 	if (!gtt)
1081 		return NULL;
1082 
1083 	gtt->gobj = &bo->base;
1084 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1085 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1086 	else
1087 		gtt->pool_id = abo->xcp_id;
1088 
1089 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1090 		caching = ttm_write_combined;
1091 	else
1092 		caching = ttm_cached;
1093 
1094 	/* allocate space for the uninitialized page entries */
1095 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1096 		kfree(gtt);
1097 		return NULL;
1098 	}
1099 	return &gtt->ttm;
1100 }
1101 
1102 /*
1103  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1104  *
1105  * Map the pages of a ttm_tt object to an address space visible
1106  * to the underlying device.
1107  */
1108 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1109 				  struct ttm_tt *ttm,
1110 				  struct ttm_operation_ctx *ctx)
1111 {
1112 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1113 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1114 	struct ttm_pool *pool;
1115 	pgoff_t i;
1116 	int ret;
1117 
1118 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1119 	if (gtt->userptr) {
1120 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1121 		if (!ttm->sg)
1122 			return -ENOMEM;
1123 		return 0;
1124 	}
1125 
1126 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1127 		return 0;
1128 
1129 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1130 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1131 	else
1132 		pool = &adev->mman.bdev.pool;
1133 	ret = ttm_pool_alloc(pool, ttm, ctx);
1134 	if (ret)
1135 		return ret;
1136 
1137 	for (i = 0; i < ttm->num_pages; ++i)
1138 		ttm->pages[i]->mapping = bdev->dev_mapping;
1139 
1140 	return 0;
1141 }
1142 
1143 /*
1144  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1145  *
1146  * Unmaps pages of a ttm_tt object from the device address space and
1147  * unpopulates the page array backing it.
1148  */
1149 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1150 				     struct ttm_tt *ttm)
1151 {
1152 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1153 	struct amdgpu_device *adev;
1154 	struct ttm_pool *pool;
1155 	pgoff_t i;
1156 
1157 	amdgpu_ttm_backend_unbind(bdev, ttm);
1158 
1159 	if (gtt->userptr) {
1160 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1161 		kfree(ttm->sg);
1162 		ttm->sg = NULL;
1163 		return;
1164 	}
1165 
1166 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1167 		return;
1168 
1169 	for (i = 0; i < ttm->num_pages; ++i)
1170 		ttm->pages[i]->mapping = NULL;
1171 
1172 	adev = amdgpu_ttm_adev(bdev);
1173 
1174 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1175 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1176 	else
1177 		pool = &adev->mman.bdev.pool;
1178 
1179 	return ttm_pool_free(pool, ttm);
1180 }
1181 
1182 /**
1183  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1184  * task
1185  *
1186  * @tbo: The ttm_buffer_object that contains the userptr
1187  * @user_addr:  The returned value
1188  */
1189 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1190 			      uint64_t *user_addr)
1191 {
1192 	struct amdgpu_ttm_tt *gtt;
1193 
1194 	if (!tbo->ttm)
1195 		return -EINVAL;
1196 
1197 	gtt = (void *)tbo->ttm;
1198 	*user_addr = gtt->userptr;
1199 	return 0;
1200 }
1201 
1202 /**
1203  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1204  * task
1205  *
1206  * @bo: The ttm_buffer_object to bind this userptr to
1207  * @addr:  The address in the current tasks VM space to use
1208  * @flags: Requirements of userptr object.
1209  *
1210  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1211  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1212  * initialize GPU VM for a KFD process.
1213  */
1214 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1215 			      uint64_t addr, uint32_t flags)
1216 {
1217 	struct amdgpu_ttm_tt *gtt;
1218 
1219 	if (!bo->ttm) {
1220 		/* TODO: We want a separate TTM object type for userptrs */
1221 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1222 		if (bo->ttm == NULL)
1223 			return -ENOMEM;
1224 	}
1225 
1226 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1227 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1228 
1229 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1230 	gtt->userptr = addr;
1231 	gtt->userflags = flags;
1232 
1233 	if (gtt->usertask)
1234 		put_task_struct(gtt->usertask);
1235 	gtt->usertask = current->group_leader;
1236 	get_task_struct(gtt->usertask);
1237 
1238 	return 0;
1239 }
1240 
1241 /*
1242  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1243  */
1244 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1245 {
1246 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1247 
1248 	if (gtt == NULL)
1249 		return NULL;
1250 
1251 	if (gtt->usertask == NULL)
1252 		return NULL;
1253 
1254 	return gtt->usertask->mm;
1255 }
1256 
1257 /*
1258  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1259  * address range for the current task.
1260  *
1261  */
1262 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1263 				  unsigned long end, unsigned long *userptr)
1264 {
1265 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1266 	unsigned long size;
1267 
1268 	if (gtt == NULL || !gtt->userptr)
1269 		return false;
1270 
1271 	/* Return false if no part of the ttm_tt object lies within
1272 	 * the range
1273 	 */
1274 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1275 	if (gtt->userptr > end || gtt->userptr + size <= start)
1276 		return false;
1277 
1278 	if (userptr)
1279 		*userptr = gtt->userptr;
1280 	return true;
1281 }
1282 
1283 /*
1284  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1285  */
1286 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1287 {
1288 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1289 
1290 	if (gtt == NULL || !gtt->userptr)
1291 		return false;
1292 
1293 	return true;
1294 }
1295 
1296 /*
1297  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1298  */
1299 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1300 {
1301 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1302 
1303 	if (gtt == NULL)
1304 		return false;
1305 
1306 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1307 }
1308 
1309 /**
1310  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1311  *
1312  * @ttm: The ttm_tt object to compute the flags for
1313  * @mem: The memory registry backing this ttm_tt object
1314  *
1315  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1316  */
1317 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1318 {
1319 	uint64_t flags = 0;
1320 
1321 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1322 		flags |= AMDGPU_PTE_VALID;
1323 
1324 	if (mem && (mem->mem_type == TTM_PL_TT ||
1325 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1326 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1327 		flags |= AMDGPU_PTE_SYSTEM;
1328 
1329 		if (ttm->caching == ttm_cached)
1330 			flags |= AMDGPU_PTE_SNOOPED;
1331 	}
1332 
1333 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1334 			mem->bus.caching == ttm_cached)
1335 		flags |= AMDGPU_PTE_SNOOPED;
1336 
1337 	return flags;
1338 }
1339 
1340 /**
1341  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1342  *
1343  * @adev: amdgpu_device pointer
1344  * @ttm: The ttm_tt object to compute the flags for
1345  * @mem: The memory registry backing this ttm_tt object
1346  *
1347  * Figure out the flags to use for a VM PTE (Page Table Entry).
1348  */
1349 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1350 				 struct ttm_resource *mem)
1351 {
1352 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1353 
1354 	flags |= adev->gart.gart_pte_flags;
1355 	flags |= AMDGPU_PTE_READABLE;
1356 
1357 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1358 		flags |= AMDGPU_PTE_WRITEABLE;
1359 
1360 	return flags;
1361 }
1362 
1363 /*
1364  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1365  * object.
1366  *
1367  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1368  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1369  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1370  * used to clean out a memory space.
1371  */
1372 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1373 					    const struct ttm_place *place)
1374 {
1375 	struct dma_resv_iter resv_cursor;
1376 	struct dma_fence *f;
1377 
1378 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1379 		return ttm_bo_eviction_valuable(bo, place);
1380 
1381 	/* Swapout? */
1382 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1383 		return true;
1384 
1385 	if (bo->type == ttm_bo_type_kernel &&
1386 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1387 		return false;
1388 
1389 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1390 	 * If true, then return false as any KFD process needs all its BOs to
1391 	 * be resident to run successfully
1392 	 */
1393 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1394 				DMA_RESV_USAGE_BOOKKEEP, f) {
1395 		if (amdkfd_fence_check_mm(f, current->mm))
1396 			return false;
1397 	}
1398 
1399 	/* Preemptible BOs don't own system resources managed by the
1400 	 * driver (pages, VRAM, GART space). They point to resources
1401 	 * owned by someone else (e.g. pageable memory in user mode
1402 	 * or a DMABuf). They are used in a preemptible context so we
1403 	 * can guarantee no deadlocks and good QoS in case of MMU
1404 	 * notifiers or DMABuf move notifiers from the resource owner.
1405 	 */
1406 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1407 		return false;
1408 
1409 	if (bo->resource->mem_type == TTM_PL_TT &&
1410 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1411 		return false;
1412 
1413 	return ttm_bo_eviction_valuable(bo, place);
1414 }
1415 
1416 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1417 				      void *buf, size_t size, bool write)
1418 {
1419 	while (size) {
1420 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1421 		uint64_t bytes = 4 - (pos & 0x3);
1422 		uint32_t shift = (pos & 0x3) * 8;
1423 		uint32_t mask = 0xffffffff << shift;
1424 		uint32_t value = 0;
1425 
1426 		if (size < bytes) {
1427 			mask &= 0xffffffff >> (bytes - size) * 8;
1428 			bytes = size;
1429 		}
1430 
1431 		if (mask != 0xffffffff) {
1432 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1433 			if (write) {
1434 				value &= ~mask;
1435 				value |= (*(uint32_t *)buf << shift) & mask;
1436 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1437 			} else {
1438 				value = (value & mask) >> shift;
1439 				memcpy(buf, &value, bytes);
1440 			}
1441 		} else {
1442 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1443 		}
1444 
1445 		pos += bytes;
1446 		buf += bytes;
1447 		size -= bytes;
1448 	}
1449 }
1450 
1451 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1452 					unsigned long offset, void *buf,
1453 					int len, int write)
1454 {
1455 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1456 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1457 	struct amdgpu_res_cursor src_mm;
1458 	struct amdgpu_job *job;
1459 	struct dma_fence *fence;
1460 	uint64_t src_addr, dst_addr;
1461 	unsigned int num_dw;
1462 	int r, idx;
1463 
1464 	if (len != PAGE_SIZE)
1465 		return -EINVAL;
1466 
1467 	if (!adev->mman.sdma_access_ptr)
1468 		return -EACCES;
1469 
1470 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1471 		return -ENODEV;
1472 
1473 	if (write)
1474 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1475 
1476 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1477 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1478 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1479 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1480 				     &job);
1481 	if (r)
1482 		goto out;
1483 
1484 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1485 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1486 		src_mm.start;
1487 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1488 	if (write)
1489 		swap(src_addr, dst_addr);
1490 
1491 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1492 				PAGE_SIZE, false);
1493 
1494 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1495 	WARN_ON(job->ibs[0].length_dw > num_dw);
1496 
1497 	fence = amdgpu_job_submit(job);
1498 
1499 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1500 		r = -ETIMEDOUT;
1501 	dma_fence_put(fence);
1502 
1503 	if (!(r || write))
1504 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1505 out:
1506 	drm_dev_exit(idx);
1507 	return r;
1508 }
1509 
1510 /**
1511  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1512  *
1513  * @bo:  The buffer object to read/write
1514  * @offset:  Offset into buffer object
1515  * @buf:  Secondary buffer to write/read from
1516  * @len: Length in bytes of access
1517  * @write:  true if writing
1518  *
1519  * This is used to access VRAM that backs a buffer object via MMIO
1520  * access for debugging purposes.
1521  */
1522 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1523 				    unsigned long offset, void *buf, int len,
1524 				    int write)
1525 {
1526 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1527 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1528 	struct amdgpu_res_cursor cursor;
1529 	int ret = 0;
1530 
1531 	if (bo->resource->mem_type != TTM_PL_VRAM)
1532 		return -EIO;
1533 
1534 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1535 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1536 		return len;
1537 
1538 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1539 	while (cursor.remaining) {
1540 		size_t count, size = cursor.size;
1541 		loff_t pos = cursor.start;
1542 
1543 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1544 		size -= count;
1545 		if (size) {
1546 			/* using MM to access rest vram and handle un-aligned address */
1547 			pos += count;
1548 			buf += count;
1549 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1550 		}
1551 
1552 		ret += cursor.size;
1553 		buf += cursor.size;
1554 		amdgpu_res_next(&cursor, cursor.size);
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 static void
1561 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1562 {
1563 	amdgpu_bo_move_notify(bo, false);
1564 }
1565 
1566 static struct ttm_device_funcs amdgpu_bo_driver = {
1567 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1568 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1569 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1570 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1571 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1572 	.evict_flags = &amdgpu_evict_flags,
1573 	.move = &amdgpu_bo_move,
1574 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1575 	.release_notify = &amdgpu_bo_release_notify,
1576 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1577 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1578 	.access_memory = &amdgpu_ttm_access_memory,
1579 };
1580 
1581 /*
1582  * Firmware Reservation functions
1583  */
1584 /**
1585  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1586  *
1587  * @adev: amdgpu_device pointer
1588  *
1589  * free fw reserved vram if it has been reserved.
1590  */
1591 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1592 {
1593 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1594 		NULL, &adev->mman.fw_vram_usage_va);
1595 }
1596 
1597 /*
1598  * Driver Reservation functions
1599  */
1600 /**
1601  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1602  *
1603  * @adev: amdgpu_device pointer
1604  *
1605  * free drv reserved vram if it has been reserved.
1606  */
1607 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1608 {
1609 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1610 						  NULL,
1611 						  &adev->mman.drv_vram_usage_va);
1612 }
1613 
1614 /**
1615  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1616  *
1617  * @adev: amdgpu_device pointer
1618  *
1619  * create bo vram reservation from fw.
1620  */
1621 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1622 {
1623 	uint64_t vram_size = adev->gmc.visible_vram_size;
1624 
1625 	adev->mman.fw_vram_usage_va = NULL;
1626 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1627 
1628 	if (adev->mman.fw_vram_usage_size == 0 ||
1629 	    adev->mman.fw_vram_usage_size > vram_size)
1630 		return 0;
1631 
1632 	return amdgpu_bo_create_kernel_at(adev,
1633 					  adev->mman.fw_vram_usage_start_offset,
1634 					  adev->mman.fw_vram_usage_size,
1635 					  &adev->mman.fw_vram_usage_reserved_bo,
1636 					  &adev->mman.fw_vram_usage_va);
1637 }
1638 
1639 /**
1640  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1641  *
1642  * @adev: amdgpu_device pointer
1643  *
1644  * create bo vram reservation from drv.
1645  */
1646 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1647 {
1648 	u64 vram_size = adev->gmc.visible_vram_size;
1649 
1650 	adev->mman.drv_vram_usage_va = NULL;
1651 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1652 
1653 	if (adev->mman.drv_vram_usage_size == 0 ||
1654 	    adev->mman.drv_vram_usage_size > vram_size)
1655 		return 0;
1656 
1657 	return amdgpu_bo_create_kernel_at(adev,
1658 					  adev->mman.drv_vram_usage_start_offset,
1659 					  adev->mman.drv_vram_usage_size,
1660 					  &adev->mman.drv_vram_usage_reserved_bo,
1661 					  &adev->mman.drv_vram_usage_va);
1662 }
1663 
1664 /*
1665  * Memoy training reservation functions
1666  */
1667 
1668 /**
1669  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1670  *
1671  * @adev: amdgpu_device pointer
1672  *
1673  * free memory training reserved vram if it has been reserved.
1674  */
1675 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1676 {
1677 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1678 
1679 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1680 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1681 	ctx->c2p_bo = NULL;
1682 
1683 	return 0;
1684 }
1685 
1686 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1687 						uint32_t reserve_size)
1688 {
1689 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1690 
1691 	memset(ctx, 0, sizeof(*ctx));
1692 
1693 	ctx->c2p_train_data_offset =
1694 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1695 	ctx->p2c_train_data_offset =
1696 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1697 	ctx->train_data_size =
1698 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1699 
1700 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1701 			ctx->train_data_size,
1702 			ctx->p2c_train_data_offset,
1703 			ctx->c2p_train_data_offset);
1704 }
1705 
1706 /*
1707  * reserve TMR memory at the top of VRAM which holds
1708  * IP Discovery data and is protected by PSP.
1709  */
1710 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1711 {
1712 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1713 	bool mem_train_support = false;
1714 	uint32_t reserve_size = 0;
1715 	int ret;
1716 
1717 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1718 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1719 			mem_train_support = true;
1720 		else
1721 			DRM_DEBUG("memory training does not support!\n");
1722 	}
1723 
1724 	/*
1725 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1726 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1727 	 *
1728 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1729 	 * discovery data and G6 memory training data respectively
1730 	 */
1731 	if (adev->bios)
1732 		reserve_size =
1733 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1734 
1735 	if (!adev->bios &&
1736 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1737 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1738 	else if (!reserve_size)
1739 		reserve_size = DISCOVERY_TMR_OFFSET;
1740 
1741 	if (mem_train_support) {
1742 		/* reserve vram for mem train according to TMR location */
1743 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1744 		ret = amdgpu_bo_create_kernel_at(adev,
1745 						 ctx->c2p_train_data_offset,
1746 						 ctx->train_data_size,
1747 						 &ctx->c2p_bo,
1748 						 NULL);
1749 		if (ret) {
1750 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1751 			amdgpu_ttm_training_reserve_vram_fini(adev);
1752 			return ret;
1753 		}
1754 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1755 	}
1756 
1757 	if (!adev->gmc.is_app_apu) {
1758 		ret = amdgpu_bo_create_kernel_at(
1759 			adev, adev->gmc.real_vram_size - reserve_size,
1760 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1761 		if (ret) {
1762 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1763 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1764 					      NULL, NULL);
1765 			return ret;
1766 		}
1767 	} else {
1768 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1775 {
1776 	int i;
1777 
1778 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1779 		return 0;
1780 
1781 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1782 				       sizeof(*adev->mman.ttm_pools),
1783 				       GFP_KERNEL);
1784 	if (!adev->mman.ttm_pools)
1785 		return -ENOMEM;
1786 
1787 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1788 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1789 			      adev->gmc.mem_partitions[i].numa.node,
1790 			      false, false);
1791 	}
1792 	return 0;
1793 }
1794 
1795 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1796 {
1797 	int i;
1798 
1799 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1800 		return;
1801 
1802 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1803 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1804 
1805 	kfree(adev->mman.ttm_pools);
1806 	adev->mman.ttm_pools = NULL;
1807 }
1808 
1809 /*
1810  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1811  * gtt/vram related fields.
1812  *
1813  * This initializes all of the memory space pools that the TTM layer
1814  * will need such as the GTT space (system memory mapped to the device),
1815  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1816  * can be mapped per VMID.
1817  */
1818 int amdgpu_ttm_init(struct amdgpu_device *adev)
1819 {
1820 	uint64_t gtt_size;
1821 	int r;
1822 
1823 	mutex_init(&adev->mman.gtt_window_lock);
1824 
1825 	/* No others user of address space so set it to 0 */
1826 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1827 			       adev_to_drm(adev)->anon_inode->i_mapping,
1828 			       adev_to_drm(adev)->vma_offset_manager,
1829 			       adev->need_swiotlb,
1830 			       dma_addressing_limited(adev->dev));
1831 	if (r) {
1832 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1833 		return r;
1834 	}
1835 
1836 	r = amdgpu_ttm_pools_init(adev);
1837 	if (r) {
1838 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1839 		return r;
1840 	}
1841 	adev->mman.initialized = true;
1842 
1843 	/* Initialize VRAM pool with all of VRAM divided into pages */
1844 	r = amdgpu_vram_mgr_init(adev);
1845 	if (r) {
1846 		DRM_ERROR("Failed initializing VRAM heap.\n");
1847 		return r;
1848 	}
1849 
1850 	/* Change the size here instead of the init above so only lpfn is affected */
1851 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1852 #ifdef CONFIG_64BIT
1853 #ifdef CONFIG_X86
1854 	if (adev->gmc.xgmi.connected_to_cpu)
1855 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1856 				adev->gmc.visible_vram_size);
1857 
1858 	else if (adev->gmc.is_app_apu)
1859 		DRM_DEBUG_DRIVER(
1860 			"No need to ioremap when real vram size is 0\n");
1861 	else
1862 #endif
1863 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1864 				adev->gmc.visible_vram_size);
1865 #endif
1866 
1867 	/*
1868 	 *The reserved vram for firmware must be pinned to the specified
1869 	 *place on the VRAM, so reserve it early.
1870 	 */
1871 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1872 	if (r)
1873 		return r;
1874 
1875 	/*
1876 	 *The reserved vram for driver must be pinned to the specified
1877 	 *place on the VRAM, so reserve it early.
1878 	 */
1879 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1880 	if (r)
1881 		return r;
1882 
1883 	/*
1884 	 * only NAVI10 and onwards ASIC support for IP discovery.
1885 	 * If IP discovery enabled, a block of memory should be
1886 	 * reserved for IP discovey.
1887 	 */
1888 	if (adev->mman.discovery_bin) {
1889 		r = amdgpu_ttm_reserve_tmr(adev);
1890 		if (r)
1891 			return r;
1892 	}
1893 
1894 	/* allocate memory as required for VGA
1895 	 * This is used for VGA emulation and pre-OS scanout buffers to
1896 	 * avoid display artifacts while transitioning between pre-OS
1897 	 * and driver.
1898 	 */
1899 	if (!adev->gmc.is_app_apu) {
1900 		r = amdgpu_bo_create_kernel_at(adev, 0,
1901 					       adev->mman.stolen_vga_size,
1902 					       &adev->mman.stolen_vga_memory,
1903 					       NULL);
1904 		if (r)
1905 			return r;
1906 
1907 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1908 					       adev->mman.stolen_extended_size,
1909 					       &adev->mman.stolen_extended_memory,
1910 					       NULL);
1911 
1912 		if (r)
1913 			return r;
1914 
1915 		r = amdgpu_bo_create_kernel_at(adev,
1916 					       adev->mman.stolen_reserved_offset,
1917 					       adev->mman.stolen_reserved_size,
1918 					       &adev->mman.stolen_reserved_memory,
1919 					       NULL);
1920 		if (r)
1921 			return r;
1922 	} else {
1923 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1924 	}
1925 
1926 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1927 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1928 
1929 	/* Compute GTT size, either based on TTM limit
1930 	 * or whatever the user passed on module init.
1931 	 */
1932 	if (amdgpu_gtt_size == -1)
1933 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1934 	else
1935 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1936 
1937 	/* Initialize GTT memory pool */
1938 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1939 	if (r) {
1940 		DRM_ERROR("Failed initializing GTT heap.\n");
1941 		return r;
1942 	}
1943 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1944 		 (unsigned int)(gtt_size / (1024 * 1024)));
1945 
1946 	/* Initiailize doorbell pool on PCI BAR */
1947 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1948 	if (r) {
1949 		DRM_ERROR("Failed initializing doorbell heap.\n");
1950 		return r;
1951 	}
1952 
1953 	/* Create a boorbell page for kernel usages */
1954 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1955 	if (r) {
1956 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1957 		return r;
1958 	}
1959 
1960 	/* Initialize preemptible memory pool */
1961 	r = amdgpu_preempt_mgr_init(adev);
1962 	if (r) {
1963 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1964 		return r;
1965 	}
1966 
1967 	/* Initialize various on-chip memory pools */
1968 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1969 	if (r) {
1970 		DRM_ERROR("Failed initializing GDS heap.\n");
1971 		return r;
1972 	}
1973 
1974 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1975 	if (r) {
1976 		DRM_ERROR("Failed initializing gws heap.\n");
1977 		return r;
1978 	}
1979 
1980 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1981 	if (r) {
1982 		DRM_ERROR("Failed initializing oa heap.\n");
1983 		return r;
1984 	}
1985 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1986 				AMDGPU_GEM_DOMAIN_GTT,
1987 				&adev->mman.sdma_access_bo, NULL,
1988 				&adev->mman.sdma_access_ptr))
1989 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1990 
1991 	return 0;
1992 }
1993 
1994 /*
1995  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1996  */
1997 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1998 {
1999 	int idx;
2000 
2001 	if (!adev->mman.initialized)
2002 		return;
2003 
2004 	amdgpu_ttm_pools_fini(adev);
2005 
2006 	amdgpu_ttm_training_reserve_vram_fini(adev);
2007 	/* return the stolen vga memory back to VRAM */
2008 	if (!adev->gmc.is_app_apu) {
2009 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2010 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2011 		/* return the FW reserved memory back to VRAM */
2012 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2013 				      NULL);
2014 		if (adev->mman.stolen_reserved_size)
2015 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2016 					      NULL, NULL);
2017 	}
2018 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2019 					&adev->mman.sdma_access_ptr);
2020 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2021 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2022 
2023 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2024 
2025 		if (adev->mman.aper_base_kaddr)
2026 			iounmap(adev->mman.aper_base_kaddr);
2027 		adev->mman.aper_base_kaddr = NULL;
2028 
2029 		drm_dev_exit(idx);
2030 	}
2031 
2032 	amdgpu_vram_mgr_fini(adev);
2033 	amdgpu_gtt_mgr_fini(adev);
2034 	amdgpu_preempt_mgr_fini(adev);
2035 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2036 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2037 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2038 	ttm_device_fini(&adev->mman.bdev);
2039 	adev->mman.initialized = false;
2040 	DRM_INFO("amdgpu: ttm finalized\n");
2041 }
2042 
2043 /**
2044  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2045  *
2046  * @adev: amdgpu_device pointer
2047  * @enable: true when we can use buffer functions.
2048  *
2049  * Enable/disable use of buffer functions during suspend/resume. This should
2050  * only be called at bootup or when userspace isn't running.
2051  */
2052 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2053 {
2054 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2055 	uint64_t size;
2056 	int r;
2057 
2058 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2059 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2060 		return;
2061 
2062 	if (enable) {
2063 		struct amdgpu_ring *ring;
2064 		struct drm_gpu_scheduler *sched;
2065 
2066 		ring = adev->mman.buffer_funcs_ring;
2067 		sched = &ring->sched;
2068 		r = drm_sched_entity_init(&adev->mman.high_pr,
2069 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2070 					  1, NULL);
2071 		if (r) {
2072 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2073 				  r);
2074 			return;
2075 		}
2076 
2077 		r = drm_sched_entity_init(&adev->mman.low_pr,
2078 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2079 					  1, NULL);
2080 		if (r) {
2081 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2082 				  r);
2083 			goto error_free_entity;
2084 		}
2085 	} else {
2086 		drm_sched_entity_destroy(&adev->mman.high_pr);
2087 		drm_sched_entity_destroy(&adev->mman.low_pr);
2088 		dma_fence_put(man->move);
2089 		man->move = NULL;
2090 	}
2091 
2092 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2093 	if (enable)
2094 		size = adev->gmc.real_vram_size;
2095 	else
2096 		size = adev->gmc.visible_vram_size;
2097 	man->size = size;
2098 	adev->mman.buffer_funcs_enabled = enable;
2099 
2100 	return;
2101 
2102 error_free_entity:
2103 	drm_sched_entity_destroy(&adev->mman.high_pr);
2104 }
2105 
2106 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2107 				  bool direct_submit,
2108 				  unsigned int num_dw,
2109 				  struct dma_resv *resv,
2110 				  bool vm_needs_flush,
2111 				  struct amdgpu_job **job,
2112 				  bool delayed)
2113 {
2114 	enum amdgpu_ib_pool_type pool = direct_submit ?
2115 		AMDGPU_IB_POOL_DIRECT :
2116 		AMDGPU_IB_POOL_DELAYED;
2117 	int r;
2118 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2119 						    &adev->mman.high_pr;
2120 	r = amdgpu_job_alloc_with_ib(adev, entity,
2121 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2122 				     num_dw * 4, pool, job);
2123 	if (r)
2124 		return r;
2125 
2126 	if (vm_needs_flush) {
2127 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2128 							adev->gmc.pdb0_bo :
2129 							adev->gart.bo);
2130 		(*job)->vm_needs_flush = true;
2131 	}
2132 	if (!resv)
2133 		return 0;
2134 
2135 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2136 						   DMA_RESV_USAGE_BOOKKEEP);
2137 }
2138 
2139 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2140 		       uint64_t dst_offset, uint32_t byte_count,
2141 		       struct dma_resv *resv,
2142 		       struct dma_fence **fence, bool direct_submit,
2143 		       bool vm_needs_flush, bool tmz)
2144 {
2145 	struct amdgpu_device *adev = ring->adev;
2146 	unsigned int num_loops, num_dw;
2147 	struct amdgpu_job *job;
2148 	uint32_t max_bytes;
2149 	unsigned int i;
2150 	int r;
2151 
2152 	if (!direct_submit && !ring->sched.ready) {
2153 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2154 		return -EINVAL;
2155 	}
2156 
2157 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2158 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2159 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2160 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2161 				   resv, vm_needs_flush, &job, false);
2162 	if (r)
2163 		return r;
2164 
2165 	for (i = 0; i < num_loops; i++) {
2166 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2167 
2168 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2169 					dst_offset, cur_size_in_bytes, tmz);
2170 
2171 		src_offset += cur_size_in_bytes;
2172 		dst_offset += cur_size_in_bytes;
2173 		byte_count -= cur_size_in_bytes;
2174 	}
2175 
2176 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2177 	WARN_ON(job->ibs[0].length_dw > num_dw);
2178 	if (direct_submit)
2179 		r = amdgpu_job_submit_direct(job, ring, fence);
2180 	else
2181 		*fence = amdgpu_job_submit(job);
2182 	if (r)
2183 		goto error_free;
2184 
2185 	return r;
2186 
2187 error_free:
2188 	amdgpu_job_free(job);
2189 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2190 	return r;
2191 }
2192 
2193 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2194 			       uint64_t dst_addr, uint32_t byte_count,
2195 			       struct dma_resv *resv,
2196 			       struct dma_fence **fence,
2197 			       bool vm_needs_flush, bool delayed)
2198 {
2199 	struct amdgpu_device *adev = ring->adev;
2200 	unsigned int num_loops, num_dw;
2201 	struct amdgpu_job *job;
2202 	uint32_t max_bytes;
2203 	unsigned int i;
2204 	int r;
2205 
2206 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2207 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2208 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2209 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2210 				   &job, delayed);
2211 	if (r)
2212 		return r;
2213 
2214 	for (i = 0; i < num_loops; i++) {
2215 		uint32_t cur_size = min(byte_count, max_bytes);
2216 
2217 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2218 					cur_size);
2219 
2220 		dst_addr += cur_size;
2221 		byte_count -= cur_size;
2222 	}
2223 
2224 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2225 	WARN_ON(job->ibs[0].length_dw > num_dw);
2226 	*fence = amdgpu_job_submit(job);
2227 	return 0;
2228 }
2229 
2230 /**
2231  * amdgpu_ttm_clear_buffer - clear memory buffers
2232  * @bo: amdgpu buffer object
2233  * @resv: reservation object
2234  * @fence: dma_fence associated with the operation
2235  *
2236  * Clear the memory buffer resource.
2237  *
2238  * Returns:
2239  * 0 for success or a negative error code on failure.
2240  */
2241 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2242 			    struct dma_resv *resv,
2243 			    struct dma_fence **fence)
2244 {
2245 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2246 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2247 	struct amdgpu_res_cursor cursor;
2248 	u64 addr;
2249 	int r;
2250 
2251 	if (!adev->mman.buffer_funcs_enabled)
2252 		return -EINVAL;
2253 
2254 	if (!fence)
2255 		return -EINVAL;
2256 
2257 	*fence = dma_fence_get_stub();
2258 
2259 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2260 
2261 	mutex_lock(&adev->mman.gtt_window_lock);
2262 	while (cursor.remaining) {
2263 		struct dma_fence *next = NULL;
2264 		u64 size;
2265 
2266 		if (amdgpu_res_cleared(&cursor)) {
2267 			amdgpu_res_next(&cursor, cursor.size);
2268 			continue;
2269 		}
2270 
2271 		/* Never clear more than 256MiB at once to avoid timeouts */
2272 		size = min(cursor.size, 256ULL << 20);
2273 
2274 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2275 					  1, ring, false, &size, &addr);
2276 		if (r)
2277 			goto err;
2278 
2279 		r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2280 					&next, true, true);
2281 		if (r)
2282 			goto err;
2283 
2284 		dma_fence_put(*fence);
2285 		*fence = next;
2286 
2287 		amdgpu_res_next(&cursor, size);
2288 	}
2289 err:
2290 	mutex_unlock(&adev->mman.gtt_window_lock);
2291 
2292 	return r;
2293 }
2294 
2295 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2296 			uint32_t src_data,
2297 			struct dma_resv *resv,
2298 			struct dma_fence **f,
2299 			bool delayed)
2300 {
2301 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2302 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2303 	struct dma_fence *fence = NULL;
2304 	struct amdgpu_res_cursor dst;
2305 	int r;
2306 
2307 	if (!adev->mman.buffer_funcs_enabled) {
2308 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2309 		return -EINVAL;
2310 	}
2311 
2312 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2313 
2314 	mutex_lock(&adev->mman.gtt_window_lock);
2315 	while (dst.remaining) {
2316 		struct dma_fence *next;
2317 		uint64_t cur_size, to;
2318 
2319 		/* Never fill more than 256MiB at once to avoid timeouts */
2320 		cur_size = min(dst.size, 256ULL << 20);
2321 
2322 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2323 					  1, ring, false, &cur_size, &to);
2324 		if (r)
2325 			goto error;
2326 
2327 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2328 					&next, true, delayed);
2329 		if (r)
2330 			goto error;
2331 
2332 		dma_fence_put(fence);
2333 		fence = next;
2334 
2335 		amdgpu_res_next(&dst, cur_size);
2336 	}
2337 error:
2338 	mutex_unlock(&adev->mman.gtt_window_lock);
2339 	if (f)
2340 		*f = dma_fence_get(fence);
2341 	dma_fence_put(fence);
2342 	return r;
2343 }
2344 
2345 /**
2346  * amdgpu_ttm_evict_resources - evict memory buffers
2347  * @adev: amdgpu device object
2348  * @mem_type: evicted BO's memory type
2349  *
2350  * Evicts all @mem_type buffers on the lru list of the memory type.
2351  *
2352  * Returns:
2353  * 0 for success or a negative error code on failure.
2354  */
2355 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2356 {
2357 	struct ttm_resource_manager *man;
2358 
2359 	switch (mem_type) {
2360 	case TTM_PL_VRAM:
2361 	case TTM_PL_TT:
2362 	case AMDGPU_PL_GWS:
2363 	case AMDGPU_PL_GDS:
2364 	case AMDGPU_PL_OA:
2365 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2366 		break;
2367 	default:
2368 		DRM_ERROR("Trying to evict invalid memory type\n");
2369 		return -EINVAL;
2370 	}
2371 
2372 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2373 }
2374 
2375 #if defined(CONFIG_DEBUG_FS)
2376 
2377 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2378 {
2379 	struct amdgpu_device *adev = m->private;
2380 
2381 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2382 }
2383 
2384 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2385 
2386 /*
2387  * amdgpu_ttm_vram_read - Linear read access to VRAM
2388  *
2389  * Accesses VRAM via MMIO for debugging purposes.
2390  */
2391 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2392 				    size_t size, loff_t *pos)
2393 {
2394 	struct amdgpu_device *adev = file_inode(f)->i_private;
2395 	ssize_t result = 0;
2396 
2397 	if (size & 0x3 || *pos & 0x3)
2398 		return -EINVAL;
2399 
2400 	if (*pos >= adev->gmc.mc_vram_size)
2401 		return -ENXIO;
2402 
2403 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2404 	while (size) {
2405 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2406 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2407 
2408 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2409 		if (copy_to_user(buf, value, bytes))
2410 			return -EFAULT;
2411 
2412 		result += bytes;
2413 		buf += bytes;
2414 		*pos += bytes;
2415 		size -= bytes;
2416 	}
2417 
2418 	return result;
2419 }
2420 
2421 /*
2422  * amdgpu_ttm_vram_write - Linear write access to VRAM
2423  *
2424  * Accesses VRAM via MMIO for debugging purposes.
2425  */
2426 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2427 				    size_t size, loff_t *pos)
2428 {
2429 	struct amdgpu_device *adev = file_inode(f)->i_private;
2430 	ssize_t result = 0;
2431 	int r;
2432 
2433 	if (size & 0x3 || *pos & 0x3)
2434 		return -EINVAL;
2435 
2436 	if (*pos >= adev->gmc.mc_vram_size)
2437 		return -ENXIO;
2438 
2439 	while (size) {
2440 		uint32_t value;
2441 
2442 		if (*pos >= adev->gmc.mc_vram_size)
2443 			return result;
2444 
2445 		r = get_user(value, (uint32_t *)buf);
2446 		if (r)
2447 			return r;
2448 
2449 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2450 
2451 		result += 4;
2452 		buf += 4;
2453 		*pos += 4;
2454 		size -= 4;
2455 	}
2456 
2457 	return result;
2458 }
2459 
2460 static const struct file_operations amdgpu_ttm_vram_fops = {
2461 	.owner = THIS_MODULE,
2462 	.read = amdgpu_ttm_vram_read,
2463 	.write = amdgpu_ttm_vram_write,
2464 	.llseek = default_llseek,
2465 };
2466 
2467 /*
2468  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2469  *
2470  * This function is used to read memory that has been mapped to the
2471  * GPU and the known addresses are not physical addresses but instead
2472  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2473  */
2474 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2475 				 size_t size, loff_t *pos)
2476 {
2477 	struct amdgpu_device *adev = file_inode(f)->i_private;
2478 	struct iommu_domain *dom;
2479 	ssize_t result = 0;
2480 	int r;
2481 
2482 	/* retrieve the IOMMU domain if any for this device */
2483 	dom = iommu_get_domain_for_dev(adev->dev);
2484 
2485 	while (size) {
2486 		phys_addr_t addr = *pos & PAGE_MASK;
2487 		loff_t off = *pos & ~PAGE_MASK;
2488 		size_t bytes = PAGE_SIZE - off;
2489 		unsigned long pfn;
2490 		struct page *p;
2491 		void *ptr;
2492 
2493 		bytes = min(bytes, size);
2494 
2495 		/* Translate the bus address to a physical address.  If
2496 		 * the domain is NULL it means there is no IOMMU active
2497 		 * and the address translation is the identity
2498 		 */
2499 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2500 
2501 		pfn = addr >> PAGE_SHIFT;
2502 		if (!pfn_valid(pfn))
2503 			return -EPERM;
2504 
2505 		p = pfn_to_page(pfn);
2506 		if (p->mapping != adev->mman.bdev.dev_mapping)
2507 			return -EPERM;
2508 
2509 		ptr = kmap_local_page(p);
2510 		r = copy_to_user(buf, ptr + off, bytes);
2511 		kunmap_local(ptr);
2512 		if (r)
2513 			return -EFAULT;
2514 
2515 		size -= bytes;
2516 		*pos += bytes;
2517 		result += bytes;
2518 	}
2519 
2520 	return result;
2521 }
2522 
2523 /*
2524  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2525  *
2526  * This function is used to write memory that has been mapped to the
2527  * GPU and the known addresses are not physical addresses but instead
2528  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2529  */
2530 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2531 				 size_t size, loff_t *pos)
2532 {
2533 	struct amdgpu_device *adev = file_inode(f)->i_private;
2534 	struct iommu_domain *dom;
2535 	ssize_t result = 0;
2536 	int r;
2537 
2538 	dom = iommu_get_domain_for_dev(adev->dev);
2539 
2540 	while (size) {
2541 		phys_addr_t addr = *pos & PAGE_MASK;
2542 		loff_t off = *pos & ~PAGE_MASK;
2543 		size_t bytes = PAGE_SIZE - off;
2544 		unsigned long pfn;
2545 		struct page *p;
2546 		void *ptr;
2547 
2548 		bytes = min(bytes, size);
2549 
2550 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2551 
2552 		pfn = addr >> PAGE_SHIFT;
2553 		if (!pfn_valid(pfn))
2554 			return -EPERM;
2555 
2556 		p = pfn_to_page(pfn);
2557 		if (p->mapping != adev->mman.bdev.dev_mapping)
2558 			return -EPERM;
2559 
2560 		ptr = kmap_local_page(p);
2561 		r = copy_from_user(ptr + off, buf, bytes);
2562 		kunmap_local(ptr);
2563 		if (r)
2564 			return -EFAULT;
2565 
2566 		size -= bytes;
2567 		*pos += bytes;
2568 		result += bytes;
2569 	}
2570 
2571 	return result;
2572 }
2573 
2574 static const struct file_operations amdgpu_ttm_iomem_fops = {
2575 	.owner = THIS_MODULE,
2576 	.read = amdgpu_iomem_read,
2577 	.write = amdgpu_iomem_write,
2578 	.llseek = default_llseek
2579 };
2580 
2581 #endif
2582 
2583 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2584 {
2585 #if defined(CONFIG_DEBUG_FS)
2586 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2587 	struct dentry *root = minor->debugfs_root;
2588 
2589 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2590 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2591 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2592 			    &amdgpu_ttm_iomem_fops);
2593 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2594 			    &amdgpu_ttm_page_pool_fops);
2595 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2596 							     TTM_PL_VRAM),
2597 					    root, "amdgpu_vram_mm");
2598 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2599 							     TTM_PL_TT),
2600 					    root, "amdgpu_gtt_mm");
2601 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2602 							     AMDGPU_PL_GDS),
2603 					    root, "amdgpu_gds_mm");
2604 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2605 							     AMDGPU_PL_GWS),
2606 					    root, "amdgpu_gws_mm");
2607 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2608 							     AMDGPU_PL_OA),
2609 					    root, "amdgpu_oa_mm");
2610 
2611 #endif
2612 }
2613