1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_bo_in_cpu_visible_vram(abo)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, false); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 299 if (!adev->mman.buffer_funcs_enabled) { 300 DRM_ERROR("Trying to move memory with ring turned off.\n"); 301 return -EINVAL; 302 } 303 304 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 305 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 306 307 mutex_lock(&adev->mman.gtt_window_lock); 308 while (src_mm.remaining) { 309 uint64_t from, to, cur_size; 310 struct dma_fence *next; 311 312 /* Never copy more than 256MiB at once to avoid a timeout */ 313 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 314 315 /* Map src to window 0 and dst to window 1. */ 316 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 317 0, ring, tmz, &cur_size, &from); 318 if (r) 319 goto error; 320 321 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 322 1, ring, tmz, &cur_size, &to); 323 if (r) 324 goto error; 325 326 r = amdgpu_copy_buffer(ring, from, to, cur_size, 327 resv, &next, false, true, tmz); 328 if (r) 329 goto error; 330 331 dma_fence_put(fence); 332 fence = next; 333 334 amdgpu_res_next(&src_mm, cur_size); 335 amdgpu_res_next(&dst_mm, cur_size); 336 } 337 error: 338 mutex_unlock(&adev->mman.gtt_window_lock); 339 if (f) 340 *f = dma_fence_get(fence); 341 dma_fence_put(fence); 342 return r; 343 } 344 345 /* 346 * amdgpu_move_blit - Copy an entire buffer to another buffer 347 * 348 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 349 * help move buffers to and from VRAM. 350 */ 351 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 352 bool evict, 353 struct ttm_resource *new_mem, 354 struct ttm_resource *old_mem) 355 { 356 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 357 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 358 struct amdgpu_copy_mem src, dst; 359 struct dma_fence *fence = NULL; 360 int r; 361 362 src.bo = bo; 363 dst.bo = bo; 364 src.mem = old_mem; 365 dst.mem = new_mem; 366 src.offset = 0; 367 dst.offset = 0; 368 369 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 370 new_mem->size, 371 amdgpu_bo_encrypted(abo), 372 bo->base.resv, &fence); 373 if (r) 374 goto error; 375 376 /* clear the space being freed */ 377 if (old_mem->mem_type == TTM_PL_VRAM && 378 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 379 struct dma_fence *wipe_fence = NULL; 380 381 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 382 false); 383 if (r) { 384 goto error; 385 } else if (wipe_fence) { 386 dma_fence_put(fence); 387 fence = wipe_fence; 388 } 389 } 390 391 /* Always block for VM page tables before committing the new location */ 392 if (bo->type == ttm_bo_type_kernel) 393 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 394 else 395 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 396 dma_fence_put(fence); 397 return r; 398 399 error: 400 if (fence) 401 dma_fence_wait(fence, false); 402 dma_fence_put(fence); 403 return r; 404 } 405 406 /* 407 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 408 * 409 * Called by amdgpu_bo_move() 410 */ 411 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 412 struct ttm_resource *mem) 413 { 414 u64 mem_size = (u64)mem->size; 415 struct amdgpu_res_cursor cursor; 416 u64 end; 417 418 if (mem->mem_type == TTM_PL_SYSTEM || 419 mem->mem_type == TTM_PL_TT) 420 return true; 421 if (mem->mem_type != TTM_PL_VRAM) 422 return false; 423 424 amdgpu_res_first(mem, 0, mem_size, &cursor); 425 end = cursor.start + cursor.size; 426 while (cursor.remaining) { 427 amdgpu_res_next(&cursor, cursor.size); 428 429 if (!cursor.remaining) 430 break; 431 432 /* ttm_resource_ioremap only supports contiguous memory */ 433 if (end != cursor.start) 434 return false; 435 436 end = cursor.start + cursor.size; 437 } 438 439 return end <= adev->gmc.visible_vram_size; 440 } 441 442 /* 443 * amdgpu_bo_move - Move a buffer object to a new memory location 444 * 445 * Called by ttm_bo_handle_move_mem() 446 */ 447 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 448 struct ttm_operation_ctx *ctx, 449 struct ttm_resource *new_mem, 450 struct ttm_place *hop) 451 { 452 struct amdgpu_device *adev; 453 struct amdgpu_bo *abo; 454 struct ttm_resource *old_mem = bo->resource; 455 int r; 456 457 if (new_mem->mem_type == TTM_PL_TT || 458 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 459 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 460 if (r) 461 return r; 462 } 463 464 abo = ttm_to_amdgpu_bo(bo); 465 adev = amdgpu_ttm_adev(bo->bdev); 466 467 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 468 bo->ttm == NULL)) { 469 ttm_bo_move_null(bo, new_mem); 470 goto out; 471 } 472 if (old_mem->mem_type == TTM_PL_SYSTEM && 473 (new_mem->mem_type == TTM_PL_TT || 474 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 475 ttm_bo_move_null(bo, new_mem); 476 goto out; 477 } 478 if ((old_mem->mem_type == TTM_PL_TT || 479 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 480 new_mem->mem_type == TTM_PL_SYSTEM) { 481 r = ttm_bo_wait_ctx(bo, ctx); 482 if (r) 483 return r; 484 485 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 486 ttm_resource_free(bo, &bo->resource); 487 ttm_bo_assign_mem(bo, new_mem); 488 goto out; 489 } 490 491 if (old_mem->mem_type == AMDGPU_PL_GDS || 492 old_mem->mem_type == AMDGPU_PL_GWS || 493 old_mem->mem_type == AMDGPU_PL_OA || 494 old_mem->mem_type == AMDGPU_PL_DOORBELL || 495 new_mem->mem_type == AMDGPU_PL_GDS || 496 new_mem->mem_type == AMDGPU_PL_GWS || 497 new_mem->mem_type == AMDGPU_PL_OA || 498 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 499 /* Nothing to save here */ 500 ttm_bo_move_null(bo, new_mem); 501 goto out; 502 } 503 504 if (bo->type == ttm_bo_type_device && 505 new_mem->mem_type == TTM_PL_VRAM && 506 old_mem->mem_type != TTM_PL_VRAM) { 507 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 508 * accesses the BO after it's moved. 509 */ 510 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 511 } 512 513 if (adev->mman.buffer_funcs_enabled) { 514 if (((old_mem->mem_type == TTM_PL_SYSTEM && 515 new_mem->mem_type == TTM_PL_VRAM) || 516 (old_mem->mem_type == TTM_PL_VRAM && 517 new_mem->mem_type == TTM_PL_SYSTEM))) { 518 hop->fpfn = 0; 519 hop->lpfn = 0; 520 hop->mem_type = TTM_PL_TT; 521 hop->flags = TTM_PL_FLAG_TEMPORARY; 522 return -EMULTIHOP; 523 } 524 525 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 526 } else { 527 r = -ENODEV; 528 } 529 530 if (r) { 531 /* Check that all memory is CPU accessible */ 532 if (!amdgpu_mem_visible(adev, old_mem) || 533 !amdgpu_mem_visible(adev, new_mem)) { 534 pr_err("Move buffer fallback to memcpy unavailable\n"); 535 return r; 536 } 537 538 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 539 if (r) 540 return r; 541 } 542 543 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type); 544 out: 545 /* update statistics */ 546 atomic64_add(bo->base.size, &adev->num_bytes_moved); 547 amdgpu_bo_move_notify(bo, evict); 548 return 0; 549 } 550 551 /* 552 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 553 * 554 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 555 */ 556 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 557 struct ttm_resource *mem) 558 { 559 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 560 size_t bus_size = (size_t)mem->size; 561 562 switch (mem->mem_type) { 563 case TTM_PL_SYSTEM: 564 /* system memory */ 565 return 0; 566 case TTM_PL_TT: 567 case AMDGPU_PL_PREEMPT: 568 break; 569 case TTM_PL_VRAM: 570 mem->bus.offset = mem->start << PAGE_SHIFT; 571 /* check if it's visible */ 572 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 573 return -EINVAL; 574 575 if (adev->mman.aper_base_kaddr && 576 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 577 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 578 mem->bus.offset; 579 580 mem->bus.offset += adev->gmc.aper_base; 581 mem->bus.is_iomem = true; 582 break; 583 case AMDGPU_PL_DOORBELL: 584 mem->bus.offset = mem->start << PAGE_SHIFT; 585 mem->bus.offset += adev->doorbell.base; 586 mem->bus.is_iomem = true; 587 mem->bus.caching = ttm_uncached; 588 break; 589 default: 590 return -EINVAL; 591 } 592 return 0; 593 } 594 595 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 596 unsigned long page_offset) 597 { 598 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 599 struct amdgpu_res_cursor cursor; 600 601 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 602 &cursor); 603 604 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 605 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 606 607 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 608 } 609 610 /** 611 * amdgpu_ttm_domain_start - Returns GPU start address 612 * @adev: amdgpu device object 613 * @type: type of the memory 614 * 615 * Returns: 616 * GPU start address of a memory domain 617 */ 618 619 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 620 { 621 switch (type) { 622 case TTM_PL_TT: 623 return adev->gmc.gart_start; 624 case TTM_PL_VRAM: 625 return adev->gmc.vram_start; 626 } 627 628 return 0; 629 } 630 631 /* 632 * TTM backend functions. 633 */ 634 struct amdgpu_ttm_tt { 635 struct ttm_tt ttm; 636 struct drm_gem_object *gobj; 637 u64 offset; 638 uint64_t userptr; 639 struct task_struct *usertask; 640 uint32_t userflags; 641 bool bound; 642 int32_t pool_id; 643 }; 644 645 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 646 647 #ifdef CONFIG_DRM_AMDGPU_USERPTR 648 /* 649 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 650 * memory and start HMM tracking CPU page table update 651 * 652 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 653 * once afterwards to stop HMM tracking 654 */ 655 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 656 struct hmm_range **range) 657 { 658 struct ttm_tt *ttm = bo->tbo.ttm; 659 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 660 unsigned long start = gtt->userptr; 661 struct vm_area_struct *vma; 662 struct mm_struct *mm; 663 bool readonly; 664 int r = 0; 665 666 /* Make sure get_user_pages_done() can cleanup gracefully */ 667 *range = NULL; 668 669 mm = bo->notifier.mm; 670 if (unlikely(!mm)) { 671 DRM_DEBUG_DRIVER("BO is not registered?\n"); 672 return -EFAULT; 673 } 674 675 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 676 return -ESRCH; 677 678 mmap_read_lock(mm); 679 vma = vma_lookup(mm, start); 680 if (unlikely(!vma)) { 681 r = -EFAULT; 682 goto out_unlock; 683 } 684 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 685 vma->vm_file)) { 686 r = -EPERM; 687 goto out_unlock; 688 } 689 690 readonly = amdgpu_ttm_tt_is_readonly(ttm); 691 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 692 readonly, NULL, pages, range); 693 out_unlock: 694 mmap_read_unlock(mm); 695 if (r) 696 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 697 698 mmput(mm); 699 700 return r; 701 } 702 703 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 704 */ 705 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 706 struct hmm_range *range) 707 { 708 struct amdgpu_ttm_tt *gtt = (void *)ttm; 709 710 if (gtt && gtt->userptr && range) 711 amdgpu_hmm_range_get_pages_done(range); 712 } 713 714 /* 715 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 716 * Check if the pages backing this ttm range have been invalidated 717 * 718 * Returns: true if pages are still valid 719 */ 720 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 721 struct hmm_range *range) 722 { 723 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 724 725 if (!gtt || !gtt->userptr || !range) 726 return false; 727 728 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 729 gtt->userptr, ttm->num_pages); 730 731 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 732 733 return !amdgpu_hmm_range_get_pages_done(range); 734 } 735 #endif 736 737 /* 738 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 739 * 740 * Called by amdgpu_cs_list_validate(). This creates the page list 741 * that backs user memory and will ultimately be mapped into the device 742 * address space. 743 */ 744 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 745 { 746 unsigned long i; 747 748 for (i = 0; i < ttm->num_pages; ++i) 749 ttm->pages[i] = pages ? pages[i] : NULL; 750 } 751 752 /* 753 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 754 * 755 * Called by amdgpu_ttm_backend_bind() 756 **/ 757 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 758 struct ttm_tt *ttm) 759 { 760 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 761 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 762 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 763 enum dma_data_direction direction = write ? 764 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 765 int r; 766 767 /* Allocate an SG array and squash pages into it */ 768 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 769 (u64)ttm->num_pages << PAGE_SHIFT, 770 GFP_KERNEL); 771 if (r) 772 goto release_sg; 773 774 /* Map SG to device */ 775 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 776 if (r) 777 goto release_sg; 778 779 /* convert SG to linear array of pages and dma addresses */ 780 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 781 ttm->num_pages); 782 783 return 0; 784 785 release_sg: 786 kfree(ttm->sg); 787 ttm->sg = NULL; 788 return r; 789 } 790 791 /* 792 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 793 */ 794 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 795 struct ttm_tt *ttm) 796 { 797 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 798 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 799 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 800 enum dma_data_direction direction = write ? 801 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 802 803 /* double check that we don't free the table twice */ 804 if (!ttm->sg || !ttm->sg->sgl) 805 return; 806 807 /* unmap the pages mapped to the device */ 808 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 809 sg_free_table(ttm->sg); 810 } 811 812 /* 813 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 814 * MQDn+CtrlStackn where n is the number of XCCs per partition. 815 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 816 * and uses memory type default, UC. The rest of pages_per_xcc are 817 * Ctrl stack and modify their memory type to NC. 818 */ 819 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 820 struct ttm_tt *ttm, uint64_t flags) 821 { 822 struct amdgpu_ttm_tt *gtt = (void *)ttm; 823 uint64_t total_pages = ttm->num_pages; 824 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 825 uint64_t page_idx, pages_per_xcc; 826 int i; 827 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 828 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 829 830 pages_per_xcc = total_pages; 831 do_div(pages_per_xcc, num_xcc); 832 833 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 834 /* MQD page: use default flags */ 835 amdgpu_gart_bind(adev, 836 gtt->offset + (page_idx << PAGE_SHIFT), 837 1, >t->ttm.dma_address[page_idx], flags); 838 /* 839 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 840 * the second page of the BO onward. 841 */ 842 amdgpu_gart_bind(adev, 843 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 844 pages_per_xcc - 1, 845 >t->ttm.dma_address[page_idx + 1], 846 ctrl_flags); 847 } 848 } 849 850 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 851 struct ttm_buffer_object *tbo, 852 uint64_t flags) 853 { 854 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 855 struct ttm_tt *ttm = tbo->ttm; 856 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 857 858 if (amdgpu_bo_encrypted(abo)) 859 flags |= AMDGPU_PTE_TMZ; 860 861 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 862 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 863 } else { 864 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 865 gtt->ttm.dma_address, flags); 866 } 867 gtt->bound = true; 868 } 869 870 /* 871 * amdgpu_ttm_backend_bind - Bind GTT memory 872 * 873 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 874 * This handles binding GTT memory to the device address space. 875 */ 876 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 877 struct ttm_tt *ttm, 878 struct ttm_resource *bo_mem) 879 { 880 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 881 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 882 uint64_t flags; 883 int r; 884 885 if (!bo_mem) 886 return -EINVAL; 887 888 if (gtt->bound) 889 return 0; 890 891 if (gtt->userptr) { 892 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 893 if (r) { 894 DRM_ERROR("failed to pin userptr\n"); 895 return r; 896 } 897 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 898 if (!ttm->sg) { 899 struct dma_buf_attachment *attach; 900 struct sg_table *sgt; 901 902 attach = gtt->gobj->import_attach; 903 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 904 if (IS_ERR(sgt)) 905 return PTR_ERR(sgt); 906 907 ttm->sg = sgt; 908 } 909 910 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 911 ttm->num_pages); 912 } 913 914 if (!ttm->num_pages) { 915 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 916 ttm->num_pages, bo_mem, ttm); 917 } 918 919 if (bo_mem->mem_type != TTM_PL_TT || 920 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 921 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 922 return 0; 923 } 924 925 /* compute PTE flags relevant to this BO memory */ 926 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 927 928 /* bind pages into GART page tables */ 929 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 930 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 931 gtt->ttm.dma_address, flags); 932 gtt->bound = true; 933 return 0; 934 } 935 936 /* 937 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 938 * through AGP or GART aperture. 939 * 940 * If bo is accessible through AGP aperture, then use AGP aperture 941 * to access bo; otherwise allocate logical space in GART aperture 942 * and map bo to GART aperture. 943 */ 944 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 945 { 946 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 947 struct ttm_operation_ctx ctx = { false, false }; 948 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 949 struct ttm_placement placement; 950 struct ttm_place placements; 951 struct ttm_resource *tmp; 952 uint64_t addr, flags; 953 int r; 954 955 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 956 return 0; 957 958 addr = amdgpu_gmc_agp_addr(bo); 959 if (addr != AMDGPU_BO_INVALID_OFFSET) 960 return 0; 961 962 /* allocate GART space */ 963 placement.num_placement = 1; 964 placement.placement = &placements; 965 placements.fpfn = 0; 966 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 967 placements.mem_type = TTM_PL_TT; 968 placements.flags = bo->resource->placement; 969 970 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 971 if (unlikely(r)) 972 return r; 973 974 /* compute PTE flags for this buffer object */ 975 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 976 977 /* Bind pages */ 978 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 979 amdgpu_ttm_gart_bind(adev, bo, flags); 980 amdgpu_gart_invalidate_tlb(adev); 981 ttm_resource_free(bo, &bo->resource); 982 ttm_bo_assign_mem(bo, tmp); 983 984 return 0; 985 } 986 987 /* 988 * amdgpu_ttm_recover_gart - Rebind GTT pages 989 * 990 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 991 * rebind GTT pages during a GPU reset. 992 */ 993 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 994 { 995 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 996 uint64_t flags; 997 998 if (!tbo->ttm) 999 return; 1000 1001 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1002 amdgpu_ttm_gart_bind(adev, tbo, flags); 1003 } 1004 1005 /* 1006 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1007 * 1008 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1009 * ttm_tt_destroy(). 1010 */ 1011 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1012 struct ttm_tt *ttm) 1013 { 1014 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1015 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1016 1017 /* if the pages have userptr pinning then clear that first */ 1018 if (gtt->userptr) { 1019 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1020 } else if (ttm->sg && gtt->gobj->import_attach) { 1021 struct dma_buf_attachment *attach; 1022 1023 attach = gtt->gobj->import_attach; 1024 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1025 ttm->sg = NULL; 1026 } 1027 1028 if (!gtt->bound) 1029 return; 1030 1031 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1032 return; 1033 1034 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1035 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1036 gtt->bound = false; 1037 } 1038 1039 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1040 struct ttm_tt *ttm) 1041 { 1042 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1043 1044 if (gtt->usertask) 1045 put_task_struct(gtt->usertask); 1046 1047 ttm_tt_fini(>t->ttm); 1048 kfree(gtt); 1049 } 1050 1051 /** 1052 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1053 * 1054 * @bo: The buffer object to create a GTT ttm_tt object around 1055 * @page_flags: Page flags to be added to the ttm_tt object 1056 * 1057 * Called by ttm_tt_create(). 1058 */ 1059 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1060 uint32_t page_flags) 1061 { 1062 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1063 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1064 struct amdgpu_ttm_tt *gtt; 1065 enum ttm_caching caching; 1066 1067 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1068 if (!gtt) 1069 return NULL; 1070 1071 gtt->gobj = &bo->base; 1072 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1073 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1074 else 1075 gtt->pool_id = abo->xcp_id; 1076 1077 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1078 caching = ttm_write_combined; 1079 else 1080 caching = ttm_cached; 1081 1082 /* allocate space for the uninitialized page entries */ 1083 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1084 kfree(gtt); 1085 return NULL; 1086 } 1087 return >t->ttm; 1088 } 1089 1090 /* 1091 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1092 * 1093 * Map the pages of a ttm_tt object to an address space visible 1094 * to the underlying device. 1095 */ 1096 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1097 struct ttm_tt *ttm, 1098 struct ttm_operation_ctx *ctx) 1099 { 1100 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1101 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1102 struct ttm_pool *pool; 1103 pgoff_t i; 1104 int ret; 1105 1106 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1107 if (gtt->userptr) { 1108 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1109 if (!ttm->sg) 1110 return -ENOMEM; 1111 return 0; 1112 } 1113 1114 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1115 return 0; 1116 1117 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1118 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1119 else 1120 pool = &adev->mman.bdev.pool; 1121 ret = ttm_pool_alloc(pool, ttm, ctx); 1122 if (ret) 1123 return ret; 1124 1125 for (i = 0; i < ttm->num_pages; ++i) 1126 ttm->pages[i]->mapping = bdev->dev_mapping; 1127 1128 return 0; 1129 } 1130 1131 /* 1132 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1133 * 1134 * Unmaps pages of a ttm_tt object from the device address space and 1135 * unpopulates the page array backing it. 1136 */ 1137 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1138 struct ttm_tt *ttm) 1139 { 1140 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1141 struct amdgpu_device *adev; 1142 struct ttm_pool *pool; 1143 pgoff_t i; 1144 1145 amdgpu_ttm_backend_unbind(bdev, ttm); 1146 1147 if (gtt->userptr) { 1148 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1149 kfree(ttm->sg); 1150 ttm->sg = NULL; 1151 return; 1152 } 1153 1154 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1155 return; 1156 1157 for (i = 0; i < ttm->num_pages; ++i) 1158 ttm->pages[i]->mapping = NULL; 1159 1160 adev = amdgpu_ttm_adev(bdev); 1161 1162 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1163 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1164 else 1165 pool = &adev->mman.bdev.pool; 1166 1167 return ttm_pool_free(pool, ttm); 1168 } 1169 1170 /** 1171 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1172 * task 1173 * 1174 * @tbo: The ttm_buffer_object that contains the userptr 1175 * @user_addr: The returned value 1176 */ 1177 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1178 uint64_t *user_addr) 1179 { 1180 struct amdgpu_ttm_tt *gtt; 1181 1182 if (!tbo->ttm) 1183 return -EINVAL; 1184 1185 gtt = (void *)tbo->ttm; 1186 *user_addr = gtt->userptr; 1187 return 0; 1188 } 1189 1190 /** 1191 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1192 * task 1193 * 1194 * @bo: The ttm_buffer_object to bind this userptr to 1195 * @addr: The address in the current tasks VM space to use 1196 * @flags: Requirements of userptr object. 1197 * 1198 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1199 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1200 * initialize GPU VM for a KFD process. 1201 */ 1202 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1203 uint64_t addr, uint32_t flags) 1204 { 1205 struct amdgpu_ttm_tt *gtt; 1206 1207 if (!bo->ttm) { 1208 /* TODO: We want a separate TTM object type for userptrs */ 1209 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1210 if (bo->ttm == NULL) 1211 return -ENOMEM; 1212 } 1213 1214 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1215 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1216 1217 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1218 gtt->userptr = addr; 1219 gtt->userflags = flags; 1220 1221 if (gtt->usertask) 1222 put_task_struct(gtt->usertask); 1223 gtt->usertask = current->group_leader; 1224 get_task_struct(gtt->usertask); 1225 1226 return 0; 1227 } 1228 1229 /* 1230 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1231 */ 1232 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1233 { 1234 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1235 1236 if (gtt == NULL) 1237 return NULL; 1238 1239 if (gtt->usertask == NULL) 1240 return NULL; 1241 1242 return gtt->usertask->mm; 1243 } 1244 1245 /* 1246 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1247 * address range for the current task. 1248 * 1249 */ 1250 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1251 unsigned long end, unsigned long *userptr) 1252 { 1253 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1254 unsigned long size; 1255 1256 if (gtt == NULL || !gtt->userptr) 1257 return false; 1258 1259 /* Return false if no part of the ttm_tt object lies within 1260 * the range 1261 */ 1262 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1263 if (gtt->userptr > end || gtt->userptr + size <= start) 1264 return false; 1265 1266 if (userptr) 1267 *userptr = gtt->userptr; 1268 return true; 1269 } 1270 1271 /* 1272 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1273 */ 1274 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1275 { 1276 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1277 1278 if (gtt == NULL || !gtt->userptr) 1279 return false; 1280 1281 return true; 1282 } 1283 1284 /* 1285 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1286 */ 1287 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1288 { 1289 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1290 1291 if (gtt == NULL) 1292 return false; 1293 1294 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1295 } 1296 1297 /** 1298 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1299 * 1300 * @ttm: The ttm_tt object to compute the flags for 1301 * @mem: The memory registry backing this ttm_tt object 1302 * 1303 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1304 */ 1305 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1306 { 1307 uint64_t flags = 0; 1308 1309 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1310 flags |= AMDGPU_PTE_VALID; 1311 1312 if (mem && (mem->mem_type == TTM_PL_TT || 1313 mem->mem_type == AMDGPU_PL_DOORBELL || 1314 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1315 flags |= AMDGPU_PTE_SYSTEM; 1316 1317 if (ttm->caching == ttm_cached) 1318 flags |= AMDGPU_PTE_SNOOPED; 1319 } 1320 1321 if (mem && mem->mem_type == TTM_PL_VRAM && 1322 mem->bus.caching == ttm_cached) 1323 flags |= AMDGPU_PTE_SNOOPED; 1324 1325 return flags; 1326 } 1327 1328 /** 1329 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1330 * 1331 * @adev: amdgpu_device pointer 1332 * @ttm: The ttm_tt object to compute the flags for 1333 * @mem: The memory registry backing this ttm_tt object 1334 * 1335 * Figure out the flags to use for a VM PTE (Page Table Entry). 1336 */ 1337 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1338 struct ttm_resource *mem) 1339 { 1340 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1341 1342 flags |= adev->gart.gart_pte_flags; 1343 flags |= AMDGPU_PTE_READABLE; 1344 1345 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1346 flags |= AMDGPU_PTE_WRITEABLE; 1347 1348 return flags; 1349 } 1350 1351 /* 1352 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1353 * object. 1354 * 1355 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1356 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1357 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1358 * used to clean out a memory space. 1359 */ 1360 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1361 const struct ttm_place *place) 1362 { 1363 struct dma_resv_iter resv_cursor; 1364 struct dma_fence *f; 1365 1366 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1367 return ttm_bo_eviction_valuable(bo, place); 1368 1369 /* Swapout? */ 1370 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1371 return true; 1372 1373 if (bo->type == ttm_bo_type_kernel && 1374 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1375 return false; 1376 1377 /* If bo is a KFD BO, check if the bo belongs to the current process. 1378 * If true, then return false as any KFD process needs all its BOs to 1379 * be resident to run successfully 1380 */ 1381 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1382 DMA_RESV_USAGE_BOOKKEEP, f) { 1383 if (amdkfd_fence_check_mm(f, current->mm)) 1384 return false; 1385 } 1386 1387 /* Preemptible BOs don't own system resources managed by the 1388 * driver (pages, VRAM, GART space). They point to resources 1389 * owned by someone else (e.g. pageable memory in user mode 1390 * or a DMABuf). They are used in a preemptible context so we 1391 * can guarantee no deadlocks and good QoS in case of MMU 1392 * notifiers or DMABuf move notifiers from the resource owner. 1393 */ 1394 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1395 return false; 1396 1397 if (bo->resource->mem_type == TTM_PL_TT && 1398 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1399 return false; 1400 1401 return ttm_bo_eviction_valuable(bo, place); 1402 } 1403 1404 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1405 void *buf, size_t size, bool write) 1406 { 1407 while (size) { 1408 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1409 uint64_t bytes = 4 - (pos & 0x3); 1410 uint32_t shift = (pos & 0x3) * 8; 1411 uint32_t mask = 0xffffffff << shift; 1412 uint32_t value = 0; 1413 1414 if (size < bytes) { 1415 mask &= 0xffffffff >> (bytes - size) * 8; 1416 bytes = size; 1417 } 1418 1419 if (mask != 0xffffffff) { 1420 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1421 if (write) { 1422 value &= ~mask; 1423 value |= (*(uint32_t *)buf << shift) & mask; 1424 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1425 } else { 1426 value = (value & mask) >> shift; 1427 memcpy(buf, &value, bytes); 1428 } 1429 } else { 1430 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1431 } 1432 1433 pos += bytes; 1434 buf += bytes; 1435 size -= bytes; 1436 } 1437 } 1438 1439 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1440 unsigned long offset, void *buf, 1441 int len, int write) 1442 { 1443 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1444 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1445 struct amdgpu_res_cursor src_mm; 1446 struct amdgpu_job *job; 1447 struct dma_fence *fence; 1448 uint64_t src_addr, dst_addr; 1449 unsigned int num_dw; 1450 int r, idx; 1451 1452 if (len != PAGE_SIZE) 1453 return -EINVAL; 1454 1455 if (!adev->mman.sdma_access_ptr) 1456 return -EACCES; 1457 1458 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1459 return -ENODEV; 1460 1461 if (write) 1462 memcpy(adev->mman.sdma_access_ptr, buf, len); 1463 1464 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1465 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1466 AMDGPU_FENCE_OWNER_UNDEFINED, 1467 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1468 &job); 1469 if (r) 1470 goto out; 1471 1472 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1473 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1474 src_mm.start; 1475 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1476 if (write) 1477 swap(src_addr, dst_addr); 1478 1479 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1480 PAGE_SIZE, false); 1481 1482 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1483 WARN_ON(job->ibs[0].length_dw > num_dw); 1484 1485 fence = amdgpu_job_submit(job); 1486 1487 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1488 r = -ETIMEDOUT; 1489 dma_fence_put(fence); 1490 1491 if (!(r || write)) 1492 memcpy(buf, adev->mman.sdma_access_ptr, len); 1493 out: 1494 drm_dev_exit(idx); 1495 return r; 1496 } 1497 1498 /** 1499 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1500 * 1501 * @bo: The buffer object to read/write 1502 * @offset: Offset into buffer object 1503 * @buf: Secondary buffer to write/read from 1504 * @len: Length in bytes of access 1505 * @write: true if writing 1506 * 1507 * This is used to access VRAM that backs a buffer object via MMIO 1508 * access for debugging purposes. 1509 */ 1510 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1511 unsigned long offset, void *buf, int len, 1512 int write) 1513 { 1514 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1515 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1516 struct amdgpu_res_cursor cursor; 1517 int ret = 0; 1518 1519 if (bo->resource->mem_type != TTM_PL_VRAM) 1520 return -EIO; 1521 1522 if (amdgpu_device_has_timeouts_enabled(adev) && 1523 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1524 return len; 1525 1526 amdgpu_res_first(bo->resource, offset, len, &cursor); 1527 while (cursor.remaining) { 1528 size_t count, size = cursor.size; 1529 loff_t pos = cursor.start; 1530 1531 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1532 size -= count; 1533 if (size) { 1534 /* using MM to access rest vram and handle un-aligned address */ 1535 pos += count; 1536 buf += count; 1537 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1538 } 1539 1540 ret += cursor.size; 1541 buf += cursor.size; 1542 amdgpu_res_next(&cursor, cursor.size); 1543 } 1544 1545 return ret; 1546 } 1547 1548 static void 1549 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1550 { 1551 amdgpu_bo_move_notify(bo, false); 1552 } 1553 1554 static struct ttm_device_funcs amdgpu_bo_driver = { 1555 .ttm_tt_create = &amdgpu_ttm_tt_create, 1556 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1557 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1558 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1559 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1560 .evict_flags = &amdgpu_evict_flags, 1561 .move = &amdgpu_bo_move, 1562 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1563 .release_notify = &amdgpu_bo_release_notify, 1564 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1565 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1566 .access_memory = &amdgpu_ttm_access_memory, 1567 }; 1568 1569 /* 1570 * Firmware Reservation functions 1571 */ 1572 /** 1573 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1574 * 1575 * @adev: amdgpu_device pointer 1576 * 1577 * free fw reserved vram if it has been reserved. 1578 */ 1579 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1580 { 1581 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1582 NULL, &adev->mman.fw_vram_usage_va); 1583 } 1584 1585 /* 1586 * Driver Reservation functions 1587 */ 1588 /** 1589 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1590 * 1591 * @adev: amdgpu_device pointer 1592 * 1593 * free drv reserved vram if it has been reserved. 1594 */ 1595 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1596 { 1597 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1598 NULL, 1599 &adev->mman.drv_vram_usage_va); 1600 } 1601 1602 /** 1603 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1604 * 1605 * @adev: amdgpu_device pointer 1606 * 1607 * create bo vram reservation from fw. 1608 */ 1609 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1610 { 1611 uint64_t vram_size = adev->gmc.visible_vram_size; 1612 1613 adev->mman.fw_vram_usage_va = NULL; 1614 adev->mman.fw_vram_usage_reserved_bo = NULL; 1615 1616 if (adev->mman.fw_vram_usage_size == 0 || 1617 adev->mman.fw_vram_usage_size > vram_size) 1618 return 0; 1619 1620 return amdgpu_bo_create_kernel_at(adev, 1621 adev->mman.fw_vram_usage_start_offset, 1622 adev->mman.fw_vram_usage_size, 1623 &adev->mman.fw_vram_usage_reserved_bo, 1624 &adev->mman.fw_vram_usage_va); 1625 } 1626 1627 /** 1628 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1629 * 1630 * @adev: amdgpu_device pointer 1631 * 1632 * create bo vram reservation from drv. 1633 */ 1634 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1635 { 1636 u64 vram_size = adev->gmc.visible_vram_size; 1637 1638 adev->mman.drv_vram_usage_va = NULL; 1639 adev->mman.drv_vram_usage_reserved_bo = NULL; 1640 1641 if (adev->mman.drv_vram_usage_size == 0 || 1642 adev->mman.drv_vram_usage_size > vram_size) 1643 return 0; 1644 1645 return amdgpu_bo_create_kernel_at(adev, 1646 adev->mman.drv_vram_usage_start_offset, 1647 adev->mman.drv_vram_usage_size, 1648 &adev->mman.drv_vram_usage_reserved_bo, 1649 &adev->mman.drv_vram_usage_va); 1650 } 1651 1652 /* 1653 * Memoy training reservation functions 1654 */ 1655 1656 /** 1657 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1658 * 1659 * @adev: amdgpu_device pointer 1660 * 1661 * free memory training reserved vram if it has been reserved. 1662 */ 1663 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1664 { 1665 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1666 1667 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1668 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1669 ctx->c2p_bo = NULL; 1670 1671 return 0; 1672 } 1673 1674 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1675 uint32_t reserve_size) 1676 { 1677 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1678 1679 memset(ctx, 0, sizeof(*ctx)); 1680 1681 ctx->c2p_train_data_offset = 1682 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1683 ctx->p2c_train_data_offset = 1684 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1685 ctx->train_data_size = 1686 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1687 1688 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1689 ctx->train_data_size, 1690 ctx->p2c_train_data_offset, 1691 ctx->c2p_train_data_offset); 1692 } 1693 1694 /* 1695 * reserve TMR memory at the top of VRAM which holds 1696 * IP Discovery data and is protected by PSP. 1697 */ 1698 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1699 { 1700 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1701 bool mem_train_support = false; 1702 uint32_t reserve_size = 0; 1703 int ret; 1704 1705 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1706 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1707 mem_train_support = true; 1708 else 1709 DRM_DEBUG("memory training does not support!\n"); 1710 } 1711 1712 /* 1713 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1714 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1715 * 1716 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1717 * discovery data and G6 memory training data respectively 1718 */ 1719 if (adev->bios) 1720 reserve_size = 1721 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1722 1723 if (!adev->bios && 1724 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) 1725 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1726 else if (!reserve_size) 1727 reserve_size = DISCOVERY_TMR_OFFSET; 1728 1729 if (mem_train_support) { 1730 /* reserve vram for mem train according to TMR location */ 1731 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1732 ret = amdgpu_bo_create_kernel_at(adev, 1733 ctx->c2p_train_data_offset, 1734 ctx->train_data_size, 1735 &ctx->c2p_bo, 1736 NULL); 1737 if (ret) { 1738 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1739 amdgpu_ttm_training_reserve_vram_fini(adev); 1740 return ret; 1741 } 1742 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1743 } 1744 1745 if (!adev->gmc.is_app_apu) { 1746 ret = amdgpu_bo_create_kernel_at( 1747 adev, adev->gmc.real_vram_size - reserve_size, 1748 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1749 if (ret) { 1750 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1751 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1752 NULL, NULL); 1753 return ret; 1754 } 1755 } else { 1756 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1757 } 1758 1759 return 0; 1760 } 1761 1762 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1763 { 1764 int i; 1765 1766 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1767 return 0; 1768 1769 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1770 sizeof(*adev->mman.ttm_pools), 1771 GFP_KERNEL); 1772 if (!adev->mman.ttm_pools) 1773 return -ENOMEM; 1774 1775 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1776 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1777 adev->gmc.mem_partitions[i].numa.node, 1778 false, false); 1779 } 1780 return 0; 1781 } 1782 1783 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1784 { 1785 int i; 1786 1787 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1788 return; 1789 1790 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1791 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1792 1793 kfree(adev->mman.ttm_pools); 1794 adev->mman.ttm_pools = NULL; 1795 } 1796 1797 /* 1798 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1799 * gtt/vram related fields. 1800 * 1801 * This initializes all of the memory space pools that the TTM layer 1802 * will need such as the GTT space (system memory mapped to the device), 1803 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1804 * can be mapped per VMID. 1805 */ 1806 int amdgpu_ttm_init(struct amdgpu_device *adev) 1807 { 1808 uint64_t gtt_size; 1809 int r; 1810 1811 mutex_init(&adev->mman.gtt_window_lock); 1812 1813 /* No others user of address space so set it to 0 */ 1814 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1815 adev_to_drm(adev)->anon_inode->i_mapping, 1816 adev_to_drm(adev)->vma_offset_manager, 1817 adev->need_swiotlb, 1818 dma_addressing_limited(adev->dev)); 1819 if (r) { 1820 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1821 return r; 1822 } 1823 1824 r = amdgpu_ttm_pools_init(adev); 1825 if (r) { 1826 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1827 return r; 1828 } 1829 adev->mman.initialized = true; 1830 1831 /* Initialize VRAM pool with all of VRAM divided into pages */ 1832 r = amdgpu_vram_mgr_init(adev); 1833 if (r) { 1834 DRM_ERROR("Failed initializing VRAM heap.\n"); 1835 return r; 1836 } 1837 1838 /* Change the size here instead of the init above so only lpfn is affected */ 1839 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1840 #ifdef CONFIG_64BIT 1841 #ifdef CONFIG_X86 1842 if (adev->gmc.xgmi.connected_to_cpu) 1843 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1844 adev->gmc.visible_vram_size); 1845 1846 else if (adev->gmc.is_app_apu) 1847 DRM_DEBUG_DRIVER( 1848 "No need to ioremap when real vram size is 0\n"); 1849 else 1850 #endif 1851 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1852 adev->gmc.visible_vram_size); 1853 #endif 1854 1855 /* 1856 *The reserved vram for firmware must be pinned to the specified 1857 *place on the VRAM, so reserve it early. 1858 */ 1859 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1860 if (r) 1861 return r; 1862 1863 /* 1864 *The reserved vram for driver must be pinned to the specified 1865 *place on the VRAM, so reserve it early. 1866 */ 1867 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1868 if (r) 1869 return r; 1870 1871 /* 1872 * only NAVI10 and onwards ASIC support for IP discovery. 1873 * If IP discovery enabled, a block of memory should be 1874 * reserved for IP discovey. 1875 */ 1876 if (adev->mman.discovery_bin) { 1877 r = amdgpu_ttm_reserve_tmr(adev); 1878 if (r) 1879 return r; 1880 } 1881 1882 /* allocate memory as required for VGA 1883 * This is used for VGA emulation and pre-OS scanout buffers to 1884 * avoid display artifacts while transitioning between pre-OS 1885 * and driver. 1886 */ 1887 if (!adev->gmc.is_app_apu) { 1888 r = amdgpu_bo_create_kernel_at(adev, 0, 1889 adev->mman.stolen_vga_size, 1890 &adev->mman.stolen_vga_memory, 1891 NULL); 1892 if (r) 1893 return r; 1894 1895 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1896 adev->mman.stolen_extended_size, 1897 &adev->mman.stolen_extended_memory, 1898 NULL); 1899 1900 if (r) 1901 return r; 1902 1903 r = amdgpu_bo_create_kernel_at(adev, 1904 adev->mman.stolen_reserved_offset, 1905 adev->mman.stolen_reserved_size, 1906 &adev->mman.stolen_reserved_memory, 1907 NULL); 1908 if (r) 1909 return r; 1910 } else { 1911 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1912 } 1913 1914 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1915 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1916 1917 /* Compute GTT size, either based on TTM limit 1918 * or whatever the user passed on module init. 1919 */ 1920 if (amdgpu_gtt_size == -1) 1921 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1922 else 1923 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1924 1925 /* Initialize GTT memory pool */ 1926 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1927 if (r) { 1928 DRM_ERROR("Failed initializing GTT heap.\n"); 1929 return r; 1930 } 1931 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1932 (unsigned int)(gtt_size / (1024 * 1024))); 1933 1934 /* Initiailize doorbell pool on PCI BAR */ 1935 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1936 if (r) { 1937 DRM_ERROR("Failed initializing doorbell heap.\n"); 1938 return r; 1939 } 1940 1941 /* Create a boorbell page for kernel usages */ 1942 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1943 if (r) { 1944 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1945 return r; 1946 } 1947 1948 /* Initialize preemptible memory pool */ 1949 r = amdgpu_preempt_mgr_init(adev); 1950 if (r) { 1951 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1952 return r; 1953 } 1954 1955 /* Initialize various on-chip memory pools */ 1956 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1957 if (r) { 1958 DRM_ERROR("Failed initializing GDS heap.\n"); 1959 return r; 1960 } 1961 1962 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1963 if (r) { 1964 DRM_ERROR("Failed initializing gws heap.\n"); 1965 return r; 1966 } 1967 1968 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1969 if (r) { 1970 DRM_ERROR("Failed initializing oa heap.\n"); 1971 return r; 1972 } 1973 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1974 AMDGPU_GEM_DOMAIN_GTT, 1975 &adev->mman.sdma_access_bo, NULL, 1976 &adev->mman.sdma_access_ptr)) 1977 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1978 1979 return 0; 1980 } 1981 1982 /* 1983 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1984 */ 1985 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1986 { 1987 int idx; 1988 1989 if (!adev->mman.initialized) 1990 return; 1991 1992 amdgpu_ttm_pools_fini(adev); 1993 1994 amdgpu_ttm_training_reserve_vram_fini(adev); 1995 /* return the stolen vga memory back to VRAM */ 1996 if (!adev->gmc.is_app_apu) { 1997 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1998 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1999 /* return the FW reserved memory back to VRAM */ 2000 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2001 NULL); 2002 if (adev->mman.stolen_reserved_size) 2003 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2004 NULL, NULL); 2005 } 2006 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2007 &adev->mman.sdma_access_ptr); 2008 amdgpu_ttm_fw_reserve_vram_fini(adev); 2009 amdgpu_ttm_drv_reserve_vram_fini(adev); 2010 2011 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2012 2013 if (adev->mman.aper_base_kaddr) 2014 iounmap(adev->mman.aper_base_kaddr); 2015 adev->mman.aper_base_kaddr = NULL; 2016 2017 drm_dev_exit(idx); 2018 } 2019 2020 amdgpu_vram_mgr_fini(adev); 2021 amdgpu_gtt_mgr_fini(adev); 2022 amdgpu_preempt_mgr_fini(adev); 2023 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2024 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2025 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2026 ttm_device_fini(&adev->mman.bdev); 2027 adev->mman.initialized = false; 2028 DRM_INFO("amdgpu: ttm finalized\n"); 2029 } 2030 2031 /** 2032 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2033 * 2034 * @adev: amdgpu_device pointer 2035 * @enable: true when we can use buffer functions. 2036 * 2037 * Enable/disable use of buffer functions during suspend/resume. This should 2038 * only be called at bootup or when userspace isn't running. 2039 */ 2040 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2041 { 2042 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2043 uint64_t size; 2044 int r; 2045 2046 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2047 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2048 return; 2049 2050 if (enable) { 2051 struct amdgpu_ring *ring; 2052 struct drm_gpu_scheduler *sched; 2053 2054 ring = adev->mman.buffer_funcs_ring; 2055 sched = &ring->sched; 2056 r = drm_sched_entity_init(&adev->mman.high_pr, 2057 DRM_SCHED_PRIORITY_KERNEL, &sched, 2058 1, NULL); 2059 if (r) { 2060 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2061 r); 2062 return; 2063 } 2064 2065 r = drm_sched_entity_init(&adev->mman.low_pr, 2066 DRM_SCHED_PRIORITY_NORMAL, &sched, 2067 1, NULL); 2068 if (r) { 2069 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2070 r); 2071 goto error_free_entity; 2072 } 2073 } else { 2074 drm_sched_entity_destroy(&adev->mman.high_pr); 2075 drm_sched_entity_destroy(&adev->mman.low_pr); 2076 dma_fence_put(man->move); 2077 man->move = NULL; 2078 } 2079 2080 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2081 if (enable) 2082 size = adev->gmc.real_vram_size; 2083 else 2084 size = adev->gmc.visible_vram_size; 2085 man->size = size; 2086 adev->mman.buffer_funcs_enabled = enable; 2087 2088 return; 2089 2090 error_free_entity: 2091 drm_sched_entity_destroy(&adev->mman.high_pr); 2092 } 2093 2094 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2095 bool direct_submit, 2096 unsigned int num_dw, 2097 struct dma_resv *resv, 2098 bool vm_needs_flush, 2099 struct amdgpu_job **job, 2100 bool delayed) 2101 { 2102 enum amdgpu_ib_pool_type pool = direct_submit ? 2103 AMDGPU_IB_POOL_DIRECT : 2104 AMDGPU_IB_POOL_DELAYED; 2105 int r; 2106 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2107 &adev->mman.high_pr; 2108 r = amdgpu_job_alloc_with_ib(adev, entity, 2109 AMDGPU_FENCE_OWNER_UNDEFINED, 2110 num_dw * 4, pool, job); 2111 if (r) 2112 return r; 2113 2114 if (vm_needs_flush) { 2115 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2116 adev->gmc.pdb0_bo : 2117 adev->gart.bo); 2118 (*job)->vm_needs_flush = true; 2119 } 2120 if (!resv) 2121 return 0; 2122 2123 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2124 DMA_RESV_USAGE_BOOKKEEP); 2125 } 2126 2127 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2128 uint64_t dst_offset, uint32_t byte_count, 2129 struct dma_resv *resv, 2130 struct dma_fence **fence, bool direct_submit, 2131 bool vm_needs_flush, bool tmz) 2132 { 2133 struct amdgpu_device *adev = ring->adev; 2134 unsigned int num_loops, num_dw; 2135 struct amdgpu_job *job; 2136 uint32_t max_bytes; 2137 unsigned int i; 2138 int r; 2139 2140 if (!direct_submit && !ring->sched.ready) { 2141 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2142 return -EINVAL; 2143 } 2144 2145 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2146 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2147 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2148 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2149 resv, vm_needs_flush, &job, false); 2150 if (r) 2151 return r; 2152 2153 for (i = 0; i < num_loops; i++) { 2154 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2155 2156 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2157 dst_offset, cur_size_in_bytes, tmz); 2158 2159 src_offset += cur_size_in_bytes; 2160 dst_offset += cur_size_in_bytes; 2161 byte_count -= cur_size_in_bytes; 2162 } 2163 2164 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2165 WARN_ON(job->ibs[0].length_dw > num_dw); 2166 if (direct_submit) 2167 r = amdgpu_job_submit_direct(job, ring, fence); 2168 else 2169 *fence = amdgpu_job_submit(job); 2170 if (r) 2171 goto error_free; 2172 2173 return r; 2174 2175 error_free: 2176 amdgpu_job_free(job); 2177 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2178 return r; 2179 } 2180 2181 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2182 uint64_t dst_addr, uint32_t byte_count, 2183 struct dma_resv *resv, 2184 struct dma_fence **fence, 2185 bool vm_needs_flush, bool delayed) 2186 { 2187 struct amdgpu_device *adev = ring->adev; 2188 unsigned int num_loops, num_dw; 2189 struct amdgpu_job *job; 2190 uint32_t max_bytes; 2191 unsigned int i; 2192 int r; 2193 2194 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2195 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2196 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2197 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2198 &job, delayed); 2199 if (r) 2200 return r; 2201 2202 for (i = 0; i < num_loops; i++) { 2203 uint32_t cur_size = min(byte_count, max_bytes); 2204 2205 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2206 cur_size); 2207 2208 dst_addr += cur_size; 2209 byte_count -= cur_size; 2210 } 2211 2212 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2213 WARN_ON(job->ibs[0].length_dw > num_dw); 2214 *fence = amdgpu_job_submit(job); 2215 return 0; 2216 } 2217 2218 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2219 uint32_t src_data, 2220 struct dma_resv *resv, 2221 struct dma_fence **f, 2222 bool delayed) 2223 { 2224 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2225 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2226 struct dma_fence *fence = NULL; 2227 struct amdgpu_res_cursor dst; 2228 int r; 2229 2230 if (!adev->mman.buffer_funcs_enabled) { 2231 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2232 return -EINVAL; 2233 } 2234 2235 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2236 2237 mutex_lock(&adev->mman.gtt_window_lock); 2238 while (dst.remaining) { 2239 struct dma_fence *next; 2240 uint64_t cur_size, to; 2241 2242 /* Never fill more than 256MiB at once to avoid timeouts */ 2243 cur_size = min(dst.size, 256ULL << 20); 2244 2245 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2246 1, ring, false, &cur_size, &to); 2247 if (r) 2248 goto error; 2249 2250 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2251 &next, true, delayed); 2252 if (r) 2253 goto error; 2254 2255 dma_fence_put(fence); 2256 fence = next; 2257 2258 amdgpu_res_next(&dst, cur_size); 2259 } 2260 error: 2261 mutex_unlock(&adev->mman.gtt_window_lock); 2262 if (f) 2263 *f = dma_fence_get(fence); 2264 dma_fence_put(fence); 2265 return r; 2266 } 2267 2268 /** 2269 * amdgpu_ttm_evict_resources - evict memory buffers 2270 * @adev: amdgpu device object 2271 * @mem_type: evicted BO's memory type 2272 * 2273 * Evicts all @mem_type buffers on the lru list of the memory type. 2274 * 2275 * Returns: 2276 * 0 for success or a negative error code on failure. 2277 */ 2278 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2279 { 2280 struct ttm_resource_manager *man; 2281 2282 switch (mem_type) { 2283 case TTM_PL_VRAM: 2284 case TTM_PL_TT: 2285 case AMDGPU_PL_GWS: 2286 case AMDGPU_PL_GDS: 2287 case AMDGPU_PL_OA: 2288 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2289 break; 2290 default: 2291 DRM_ERROR("Trying to evict invalid memory type\n"); 2292 return -EINVAL; 2293 } 2294 2295 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2296 } 2297 2298 #if defined(CONFIG_DEBUG_FS) 2299 2300 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2301 { 2302 struct amdgpu_device *adev = m->private; 2303 2304 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2305 } 2306 2307 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2308 2309 /* 2310 * amdgpu_ttm_vram_read - Linear read access to VRAM 2311 * 2312 * Accesses VRAM via MMIO for debugging purposes. 2313 */ 2314 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2315 size_t size, loff_t *pos) 2316 { 2317 struct amdgpu_device *adev = file_inode(f)->i_private; 2318 ssize_t result = 0; 2319 2320 if (size & 0x3 || *pos & 0x3) 2321 return -EINVAL; 2322 2323 if (*pos >= adev->gmc.mc_vram_size) 2324 return -ENXIO; 2325 2326 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2327 while (size) { 2328 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2329 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2330 2331 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2332 if (copy_to_user(buf, value, bytes)) 2333 return -EFAULT; 2334 2335 result += bytes; 2336 buf += bytes; 2337 *pos += bytes; 2338 size -= bytes; 2339 } 2340 2341 return result; 2342 } 2343 2344 /* 2345 * amdgpu_ttm_vram_write - Linear write access to VRAM 2346 * 2347 * Accesses VRAM via MMIO for debugging purposes. 2348 */ 2349 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2350 size_t size, loff_t *pos) 2351 { 2352 struct amdgpu_device *adev = file_inode(f)->i_private; 2353 ssize_t result = 0; 2354 int r; 2355 2356 if (size & 0x3 || *pos & 0x3) 2357 return -EINVAL; 2358 2359 if (*pos >= adev->gmc.mc_vram_size) 2360 return -ENXIO; 2361 2362 while (size) { 2363 uint32_t value; 2364 2365 if (*pos >= adev->gmc.mc_vram_size) 2366 return result; 2367 2368 r = get_user(value, (uint32_t *)buf); 2369 if (r) 2370 return r; 2371 2372 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2373 2374 result += 4; 2375 buf += 4; 2376 *pos += 4; 2377 size -= 4; 2378 } 2379 2380 return result; 2381 } 2382 2383 static const struct file_operations amdgpu_ttm_vram_fops = { 2384 .owner = THIS_MODULE, 2385 .read = amdgpu_ttm_vram_read, 2386 .write = amdgpu_ttm_vram_write, 2387 .llseek = default_llseek, 2388 }; 2389 2390 /* 2391 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2392 * 2393 * This function is used to read memory that has been mapped to the 2394 * GPU and the known addresses are not physical addresses but instead 2395 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2396 */ 2397 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2398 size_t size, loff_t *pos) 2399 { 2400 struct amdgpu_device *adev = file_inode(f)->i_private; 2401 struct iommu_domain *dom; 2402 ssize_t result = 0; 2403 int r; 2404 2405 /* retrieve the IOMMU domain if any for this device */ 2406 dom = iommu_get_domain_for_dev(adev->dev); 2407 2408 while (size) { 2409 phys_addr_t addr = *pos & PAGE_MASK; 2410 loff_t off = *pos & ~PAGE_MASK; 2411 size_t bytes = PAGE_SIZE - off; 2412 unsigned long pfn; 2413 struct page *p; 2414 void *ptr; 2415 2416 bytes = min(bytes, size); 2417 2418 /* Translate the bus address to a physical address. If 2419 * the domain is NULL it means there is no IOMMU active 2420 * and the address translation is the identity 2421 */ 2422 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2423 2424 pfn = addr >> PAGE_SHIFT; 2425 if (!pfn_valid(pfn)) 2426 return -EPERM; 2427 2428 p = pfn_to_page(pfn); 2429 if (p->mapping != adev->mman.bdev.dev_mapping) 2430 return -EPERM; 2431 2432 ptr = kmap_local_page(p); 2433 r = copy_to_user(buf, ptr + off, bytes); 2434 kunmap_local(ptr); 2435 if (r) 2436 return -EFAULT; 2437 2438 size -= bytes; 2439 *pos += bytes; 2440 result += bytes; 2441 } 2442 2443 return result; 2444 } 2445 2446 /* 2447 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2448 * 2449 * This function is used to write memory that has been mapped to the 2450 * GPU and the known addresses are not physical addresses but instead 2451 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2452 */ 2453 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2454 size_t size, loff_t *pos) 2455 { 2456 struct amdgpu_device *adev = file_inode(f)->i_private; 2457 struct iommu_domain *dom; 2458 ssize_t result = 0; 2459 int r; 2460 2461 dom = iommu_get_domain_for_dev(adev->dev); 2462 2463 while (size) { 2464 phys_addr_t addr = *pos & PAGE_MASK; 2465 loff_t off = *pos & ~PAGE_MASK; 2466 size_t bytes = PAGE_SIZE - off; 2467 unsigned long pfn; 2468 struct page *p; 2469 void *ptr; 2470 2471 bytes = min(bytes, size); 2472 2473 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2474 2475 pfn = addr >> PAGE_SHIFT; 2476 if (!pfn_valid(pfn)) 2477 return -EPERM; 2478 2479 p = pfn_to_page(pfn); 2480 if (p->mapping != adev->mman.bdev.dev_mapping) 2481 return -EPERM; 2482 2483 ptr = kmap_local_page(p); 2484 r = copy_from_user(ptr + off, buf, bytes); 2485 kunmap_local(ptr); 2486 if (r) 2487 return -EFAULT; 2488 2489 size -= bytes; 2490 *pos += bytes; 2491 result += bytes; 2492 } 2493 2494 return result; 2495 } 2496 2497 static const struct file_operations amdgpu_ttm_iomem_fops = { 2498 .owner = THIS_MODULE, 2499 .read = amdgpu_iomem_read, 2500 .write = amdgpu_iomem_write, 2501 .llseek = default_llseek 2502 }; 2503 2504 #endif 2505 2506 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2507 { 2508 #if defined(CONFIG_DEBUG_FS) 2509 struct drm_minor *minor = adev_to_drm(adev)->primary; 2510 struct dentry *root = minor->debugfs_root; 2511 2512 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2513 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2514 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2515 &amdgpu_ttm_iomem_fops); 2516 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2517 &amdgpu_ttm_page_pool_fops); 2518 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2519 TTM_PL_VRAM), 2520 root, "amdgpu_vram_mm"); 2521 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2522 TTM_PL_TT), 2523 root, "amdgpu_gtt_mm"); 2524 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2525 AMDGPU_PL_GDS), 2526 root, "amdgpu_gds_mm"); 2527 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2528 AMDGPU_PL_GWS), 2529 root, "amdgpu_gws_mm"); 2530 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2531 AMDGPU_PL_OA), 2532 root, "amdgpu_oa_mm"); 2533 2534 #endif 2535 } 2536