xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision ab6a0edb7ded060e84dc1a24e3936c86c3d048b9)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 		placement->num_placement = 0;
127 		return;
128 
129 	case TTM_PL_VRAM:
130 		if (!adev->mman.buffer_funcs_enabled) {
131 			/* Move to system memory */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133 
134 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
137 
138 			/* Try evicting to the CPU inaccessible part of VRAM
139 			 * first, but only set GTT as busy placement, so this
140 			 * BO will be evicted to GTT rather than causing other
141 			 * BOs to be evicted from VRAM
142 			 */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 							AMDGPU_GEM_DOMAIN_GTT |
145 							AMDGPU_GEM_DOMAIN_CPU);
146 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 			abo->placements[0].lpfn = 0;
148 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 		} else {
150 			/* Move to GTT memory */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 							AMDGPU_GEM_DOMAIN_CPU);
153 		}
154 		break;
155 	case TTM_PL_TT:
156 	case AMDGPU_PL_PREEMPT:
157 	default:
158 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 		break;
160 	}
161 	*placement = abo->placement;
162 }
163 
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 				 struct ttm_resource *mem,
180 				 struct amdgpu_res_cursor *mm_cur,
181 				 unsigned int window, struct amdgpu_ring *ring,
182 				 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 	struct amdgpu_device *adev = ring->adev;
185 	unsigned int offset, num_pages, num_dw, num_bytes;
186 	uint64_t src_addr, dst_addr;
187 	struct amdgpu_job *job;
188 	void *cpu_addr;
189 	uint64_t flags;
190 	unsigned int i;
191 	int r;
192 
193 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195 
196 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 		return -EINVAL;
198 
199 	/* Map only what can't be accessed directly */
200 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 			mm_cur->start;
203 		return 0;
204 	}
205 
206 
207 	/*
208 	 * If start begins at an offset inside the page, then adjust the size
209 	 * and addr accordingly
210 	 */
211 	offset = mm_cur->start & ~PAGE_MASK;
212 
213 	num_pages = PFN_UP(*size + offset);
214 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215 
216 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += offset;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 				     AMDGPU_FENCE_OWNER_UNDEFINED,
228 				     num_dw * 4 + num_bytes,
229 				     AMDGPU_IB_POOL_DELAYED, &job);
230 	if (r)
231 		return r;
232 
233 	src_addr = num_dw * 4;
234 	src_addr += job->ibs[0].gpu_addr;
235 
236 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 				dst_addr, num_bytes, 0);
240 
241 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 	WARN_ON(job->ibs[0].length_dw > num_dw);
243 
244 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 	if (tmz)
246 		flags |= AMDGPU_PTE_TMZ;
247 
248 	cpu_addr = &job->ibs[0].ptr[num_dw];
249 
250 	if (mem->mem_type == TTM_PL_TT) {
251 		dma_addr_t *dma_addr;
252 
253 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 	} else {
256 		dma_addr_t dma_address;
257 
258 		dma_address = mm_cur->start;
259 		dma_address += adev->vm_manager.vram_base_offset;
260 
261 		for (i = 0; i < num_pages; ++i) {
262 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 					flags, cpu_addr);
264 			dma_address += PAGE_SIZE;
265 		}
266 	}
267 
268 	dma_fence_put(amdgpu_job_submit(job));
269 	return 0;
270 }
271 
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 			       const struct amdgpu_copy_mem *src,
289 			       const struct amdgpu_copy_mem *dst,
290 			       uint64_t size, bool tmz,
291 			       struct dma_resv *resv,
292 			       struct dma_fence **f)
293 {
294 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 	struct amdgpu_res_cursor src_mm, dst_mm;
296 	struct dma_fence *fence = NULL;
297 	int r = 0;
298 
299 	uint32_t copy_flags = 0;
300 
301 	if (!adev->mman.buffer_funcs_enabled) {
302 		DRM_ERROR("Trying to move memory with ring turned off.\n");
303 		return -EINVAL;
304 	}
305 
306 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
308 
309 	mutex_lock(&adev->mman.gtt_window_lock);
310 	while (src_mm.remaining) {
311 		uint64_t from, to, cur_size;
312 		struct dma_fence *next;
313 
314 		/* Never copy more than 256MiB at once to avoid a timeout */
315 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
316 
317 		/* Map src to window 0 and dst to window 1. */
318 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
319 					  0, ring, tmz, &cur_size, &from);
320 		if (r)
321 			goto error;
322 
323 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
324 					  1, ring, tmz, &cur_size, &to);
325 		if (r)
326 			goto error;
327 
328 		if (tmz)
329 			copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
330 
331 		r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
332 				       &next, false, true, copy_flags);
333 		if (r)
334 			goto error;
335 
336 		dma_fence_put(fence);
337 		fence = next;
338 
339 		amdgpu_res_next(&src_mm, cur_size);
340 		amdgpu_res_next(&dst_mm, cur_size);
341 	}
342 error:
343 	mutex_unlock(&adev->mman.gtt_window_lock);
344 	if (f)
345 		*f = dma_fence_get(fence);
346 	dma_fence_put(fence);
347 	return r;
348 }
349 
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 			    bool evict,
358 			    struct ttm_resource *new_mem,
359 			    struct ttm_resource *old_mem)
360 {
361 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 	struct amdgpu_copy_mem src, dst;
364 	struct dma_fence *fence = NULL;
365 	int r;
366 
367 	src.bo = bo;
368 	dst.bo = bo;
369 	src.mem = old_mem;
370 	dst.mem = new_mem;
371 	src.offset = 0;
372 	dst.offset = 0;
373 
374 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 				       new_mem->size,
376 				       amdgpu_bo_encrypted(abo),
377 				       bo->base.resv, &fence);
378 	if (r)
379 		goto error;
380 
381 	/* clear the space being freed */
382 	if (old_mem->mem_type == TTM_PL_VRAM &&
383 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 		struct dma_fence *wipe_fence = NULL;
385 
386 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 					false);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /**
412  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
413  * @adev: amdgpu device
414  * @res: the resource to check
415  *
416  * Returns: true if the full resource is CPU visible, false otherwise.
417  */
418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
419 			    struct ttm_resource *res)
420 {
421 	struct amdgpu_res_cursor cursor;
422 
423 	if (!res)
424 		return false;
425 
426 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
427 	    res->mem_type == AMDGPU_PL_PREEMPT)
428 		return true;
429 
430 	if (res->mem_type != TTM_PL_VRAM)
431 		return false;
432 
433 	amdgpu_res_first(res, 0, res->size, &cursor);
434 	while (cursor.remaining) {
435 		if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size)
436 			return false;
437 		amdgpu_res_next(&cursor, cursor.size);
438 	}
439 
440 	return true;
441 }
442 
443 /*
444  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
445  *
446  * Called by amdgpu_bo_move()
447  */
448 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
449 				struct ttm_resource *mem)
450 {
451 	if (!amdgpu_res_cpu_visible(adev, mem))
452 		return false;
453 
454 	/* ttm_resource_ioremap only supports contiguous memory */
455 	if (mem->mem_type == TTM_PL_VRAM &&
456 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
457 		return false;
458 
459 	return true;
460 }
461 
462 /*
463  * amdgpu_bo_move - Move a buffer object to a new memory location
464  *
465  * Called by ttm_bo_handle_move_mem()
466  */
467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468 			  struct ttm_operation_ctx *ctx,
469 			  struct ttm_resource *new_mem,
470 			  struct ttm_place *hop)
471 {
472 	struct amdgpu_device *adev;
473 	struct amdgpu_bo *abo;
474 	struct ttm_resource *old_mem = bo->resource;
475 	int r;
476 
477 	if (new_mem->mem_type == TTM_PL_TT ||
478 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
479 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
480 		if (r)
481 			return r;
482 	}
483 
484 	abo = ttm_to_amdgpu_bo(bo);
485 	adev = amdgpu_ttm_adev(bo->bdev);
486 
487 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
488 			 bo->ttm == NULL)) {
489 		ttm_bo_move_null(bo, new_mem);
490 		goto out;
491 	}
492 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
493 	    (new_mem->mem_type == TTM_PL_TT ||
494 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
495 		ttm_bo_move_null(bo, new_mem);
496 		goto out;
497 	}
498 	if ((old_mem->mem_type == TTM_PL_TT ||
499 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
500 	    new_mem->mem_type == TTM_PL_SYSTEM) {
501 		r = ttm_bo_wait_ctx(bo, ctx);
502 		if (r)
503 			return r;
504 
505 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
506 		ttm_resource_free(bo, &bo->resource);
507 		ttm_bo_assign_mem(bo, new_mem);
508 		goto out;
509 	}
510 
511 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
512 	    old_mem->mem_type == AMDGPU_PL_GWS ||
513 	    old_mem->mem_type == AMDGPU_PL_OA ||
514 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
515 	    new_mem->mem_type == AMDGPU_PL_GDS ||
516 	    new_mem->mem_type == AMDGPU_PL_GWS ||
517 	    new_mem->mem_type == AMDGPU_PL_OA ||
518 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
519 		/* Nothing to save here */
520 		ttm_bo_move_null(bo, new_mem);
521 		goto out;
522 	}
523 
524 	if (bo->type == ttm_bo_type_device &&
525 	    new_mem->mem_type == TTM_PL_VRAM &&
526 	    old_mem->mem_type != TTM_PL_VRAM) {
527 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
528 		 * accesses the BO after it's moved.
529 		 */
530 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
531 	}
532 
533 	if (adev->mman.buffer_funcs_enabled) {
534 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
535 		      new_mem->mem_type == TTM_PL_VRAM) ||
536 		     (old_mem->mem_type == TTM_PL_VRAM &&
537 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
538 			hop->fpfn = 0;
539 			hop->lpfn = 0;
540 			hop->mem_type = TTM_PL_TT;
541 			hop->flags = TTM_PL_FLAG_TEMPORARY;
542 			return -EMULTIHOP;
543 		}
544 
545 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
546 	} else {
547 		r = -ENODEV;
548 	}
549 
550 	if (r) {
551 		/* Check that all memory is CPU accessible */
552 		if (!amdgpu_res_copyable(adev, old_mem) ||
553 		    !amdgpu_res_copyable(adev, new_mem)) {
554 			pr_err("Move buffer fallback to memcpy unavailable\n");
555 			return r;
556 		}
557 
558 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
559 		if (r)
560 			return r;
561 	}
562 
563 	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
564 out:
565 	/* update statistics */
566 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
567 	amdgpu_bo_move_notify(bo, evict);
568 	return 0;
569 }
570 
571 /*
572  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
573  *
574  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
575  */
576 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
577 				     struct ttm_resource *mem)
578 {
579 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
580 
581 	switch (mem->mem_type) {
582 	case TTM_PL_SYSTEM:
583 		/* system memory */
584 		return 0;
585 	case TTM_PL_TT:
586 	case AMDGPU_PL_PREEMPT:
587 		break;
588 	case TTM_PL_VRAM:
589 		mem->bus.offset = mem->start << PAGE_SHIFT;
590 
591 		if (adev->mman.aper_base_kaddr &&
592 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
593 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
594 					mem->bus.offset;
595 
596 		mem->bus.offset += adev->gmc.aper_base;
597 		mem->bus.is_iomem = true;
598 		break;
599 	case AMDGPU_PL_DOORBELL:
600 		mem->bus.offset = mem->start << PAGE_SHIFT;
601 		mem->bus.offset += adev->doorbell.base;
602 		mem->bus.is_iomem = true;
603 		mem->bus.caching = ttm_uncached;
604 		break;
605 	default:
606 		return -EINVAL;
607 	}
608 	return 0;
609 }
610 
611 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
612 					   unsigned long page_offset)
613 {
614 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
615 	struct amdgpu_res_cursor cursor;
616 
617 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
618 			 &cursor);
619 
620 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
621 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
622 
623 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
624 }
625 
626 /**
627  * amdgpu_ttm_domain_start - Returns GPU start address
628  * @adev: amdgpu device object
629  * @type: type of the memory
630  *
631  * Returns:
632  * GPU start address of a memory domain
633  */
634 
635 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
636 {
637 	switch (type) {
638 	case TTM_PL_TT:
639 		return adev->gmc.gart_start;
640 	case TTM_PL_VRAM:
641 		return adev->gmc.vram_start;
642 	}
643 
644 	return 0;
645 }
646 
647 /*
648  * TTM backend functions.
649  */
650 struct amdgpu_ttm_tt {
651 	struct ttm_tt	ttm;
652 	struct drm_gem_object	*gobj;
653 	u64			offset;
654 	uint64_t		userptr;
655 	struct task_struct	*usertask;
656 	uint32_t		userflags;
657 	bool			bound;
658 	int32_t			pool_id;
659 };
660 
661 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
662 
663 #ifdef CONFIG_DRM_AMDGPU_USERPTR
664 /*
665  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
666  * memory and start HMM tracking CPU page table update
667  *
668  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
669  * once afterwards to stop HMM tracking
670  */
671 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
672 				 struct hmm_range **range)
673 {
674 	struct ttm_tt *ttm = bo->tbo.ttm;
675 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
676 	unsigned long start = gtt->userptr;
677 	struct vm_area_struct *vma;
678 	struct mm_struct *mm;
679 	bool readonly;
680 	int r = 0;
681 
682 	/* Make sure get_user_pages_done() can cleanup gracefully */
683 	*range = NULL;
684 
685 	mm = bo->notifier.mm;
686 	if (unlikely(!mm)) {
687 		DRM_DEBUG_DRIVER("BO is not registered?\n");
688 		return -EFAULT;
689 	}
690 
691 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
692 		return -ESRCH;
693 
694 	mmap_read_lock(mm);
695 	vma = vma_lookup(mm, start);
696 	if (unlikely(!vma)) {
697 		r = -EFAULT;
698 		goto out_unlock;
699 	}
700 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
701 		vma->vm_file)) {
702 		r = -EPERM;
703 		goto out_unlock;
704 	}
705 
706 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
707 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
708 				       readonly, NULL, pages, range);
709 out_unlock:
710 	mmap_read_unlock(mm);
711 	if (r)
712 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
713 
714 	mmput(mm);
715 
716 	return r;
717 }
718 
719 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
720  */
721 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
722 				      struct hmm_range *range)
723 {
724 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
725 
726 	if (gtt && gtt->userptr && range)
727 		amdgpu_hmm_range_get_pages_done(range);
728 }
729 
730 /*
731  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
732  * Check if the pages backing this ttm range have been invalidated
733  *
734  * Returns: true if pages are still valid
735  */
736 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
737 				       struct hmm_range *range)
738 {
739 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
740 
741 	if (!gtt || !gtt->userptr || !range)
742 		return false;
743 
744 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
745 		gtt->userptr, ttm->num_pages);
746 
747 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
748 
749 	return !amdgpu_hmm_range_get_pages_done(range);
750 }
751 #endif
752 
753 /*
754  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
755  *
756  * Called by amdgpu_cs_list_validate(). This creates the page list
757  * that backs user memory and will ultimately be mapped into the device
758  * address space.
759  */
760 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
761 {
762 	unsigned long i;
763 
764 	for (i = 0; i < ttm->num_pages; ++i)
765 		ttm->pages[i] = pages ? pages[i] : NULL;
766 }
767 
768 /*
769  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
770  *
771  * Called by amdgpu_ttm_backend_bind()
772  **/
773 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
774 				     struct ttm_tt *ttm)
775 {
776 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
777 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
778 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
779 	enum dma_data_direction direction = write ?
780 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
781 	int r;
782 
783 	/* Allocate an SG array and squash pages into it */
784 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
785 				      (u64)ttm->num_pages << PAGE_SHIFT,
786 				      GFP_KERNEL);
787 	if (r)
788 		goto release_sg;
789 
790 	/* Map SG to device */
791 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
792 	if (r)
793 		goto release_sg;
794 
795 	/* convert SG to linear array of pages and dma addresses */
796 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
797 				       ttm->num_pages);
798 
799 	return 0;
800 
801 release_sg:
802 	kfree(ttm->sg);
803 	ttm->sg = NULL;
804 	return r;
805 }
806 
807 /*
808  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
809  */
810 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
811 					struct ttm_tt *ttm)
812 {
813 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
814 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
815 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
816 	enum dma_data_direction direction = write ?
817 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
818 
819 	/* double check that we don't free the table twice */
820 	if (!ttm->sg || !ttm->sg->sgl)
821 		return;
822 
823 	/* unmap the pages mapped to the device */
824 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
825 	sg_free_table(ttm->sg);
826 }
827 
828 /*
829  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
830  * MQDn+CtrlStackn where n is the number of XCCs per partition.
831  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
832  * and uses memory type default, UC. The rest of pages_per_xcc are
833  * Ctrl stack and modify their memory type to NC.
834  */
835 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
836 				struct ttm_tt *ttm, uint64_t flags)
837 {
838 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
839 	uint64_t total_pages = ttm->num_pages;
840 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
841 	uint64_t page_idx, pages_per_xcc;
842 	int i;
843 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
844 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
845 
846 	pages_per_xcc = total_pages;
847 	do_div(pages_per_xcc, num_xcc);
848 
849 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
850 		/* MQD page: use default flags */
851 		amdgpu_gart_bind(adev,
852 				gtt->offset + (page_idx << PAGE_SHIFT),
853 				1, &gtt->ttm.dma_address[page_idx], flags);
854 		/*
855 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
856 		 * the second page of the BO onward.
857 		 */
858 		amdgpu_gart_bind(adev,
859 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
860 				pages_per_xcc - 1,
861 				&gtt->ttm.dma_address[page_idx + 1],
862 				ctrl_flags);
863 	}
864 }
865 
866 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
867 				 struct ttm_buffer_object *tbo,
868 				 uint64_t flags)
869 {
870 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
871 	struct ttm_tt *ttm = tbo->ttm;
872 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
873 
874 	if (amdgpu_bo_encrypted(abo))
875 		flags |= AMDGPU_PTE_TMZ;
876 
877 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
878 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
879 	} else {
880 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
881 				 gtt->ttm.dma_address, flags);
882 	}
883 	gtt->bound = true;
884 }
885 
886 /*
887  * amdgpu_ttm_backend_bind - Bind GTT memory
888  *
889  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
890  * This handles binding GTT memory to the device address space.
891  */
892 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
893 				   struct ttm_tt *ttm,
894 				   struct ttm_resource *bo_mem)
895 {
896 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
897 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
898 	uint64_t flags;
899 	int r;
900 
901 	if (!bo_mem)
902 		return -EINVAL;
903 
904 	if (gtt->bound)
905 		return 0;
906 
907 	if (gtt->userptr) {
908 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
909 		if (r) {
910 			DRM_ERROR("failed to pin userptr\n");
911 			return r;
912 		}
913 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
914 		if (!ttm->sg) {
915 			struct dma_buf_attachment *attach;
916 			struct sg_table *sgt;
917 
918 			attach = gtt->gobj->import_attach;
919 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
920 			if (IS_ERR(sgt))
921 				return PTR_ERR(sgt);
922 
923 			ttm->sg = sgt;
924 		}
925 
926 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
927 					       ttm->num_pages);
928 	}
929 
930 	if (!ttm->num_pages) {
931 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
932 		     ttm->num_pages, bo_mem, ttm);
933 	}
934 
935 	if (bo_mem->mem_type != TTM_PL_TT ||
936 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
937 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
938 		return 0;
939 	}
940 
941 	/* compute PTE flags relevant to this BO memory */
942 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
943 
944 	/* bind pages into GART page tables */
945 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
946 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
947 			 gtt->ttm.dma_address, flags);
948 	gtt->bound = true;
949 	return 0;
950 }
951 
952 /*
953  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
954  * through AGP or GART aperture.
955  *
956  * If bo is accessible through AGP aperture, then use AGP aperture
957  * to access bo; otherwise allocate logical space in GART aperture
958  * and map bo to GART aperture.
959  */
960 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
961 {
962 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
963 	struct ttm_operation_ctx ctx = { false, false };
964 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
965 	struct ttm_placement placement;
966 	struct ttm_place placements;
967 	struct ttm_resource *tmp;
968 	uint64_t addr, flags;
969 	int r;
970 
971 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
972 		return 0;
973 
974 	addr = amdgpu_gmc_agp_addr(bo);
975 	if (addr != AMDGPU_BO_INVALID_OFFSET)
976 		return 0;
977 
978 	/* allocate GART space */
979 	placement.num_placement = 1;
980 	placement.placement = &placements;
981 	placements.fpfn = 0;
982 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
983 	placements.mem_type = TTM_PL_TT;
984 	placements.flags = bo->resource->placement;
985 
986 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
987 	if (unlikely(r))
988 		return r;
989 
990 	/* compute PTE flags for this buffer object */
991 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
992 
993 	/* Bind pages */
994 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
995 	amdgpu_ttm_gart_bind(adev, bo, flags);
996 	amdgpu_gart_invalidate_tlb(adev);
997 	ttm_resource_free(bo, &bo->resource);
998 	ttm_bo_assign_mem(bo, tmp);
999 
1000 	return 0;
1001 }
1002 
1003 /*
1004  * amdgpu_ttm_recover_gart - Rebind GTT pages
1005  *
1006  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1007  * rebind GTT pages during a GPU reset.
1008  */
1009 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1010 {
1011 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1012 	uint64_t flags;
1013 
1014 	if (!tbo->ttm)
1015 		return;
1016 
1017 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1018 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1019 }
1020 
1021 /*
1022  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1023  *
1024  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1025  * ttm_tt_destroy().
1026  */
1027 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1028 				      struct ttm_tt *ttm)
1029 {
1030 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1031 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1032 
1033 	/* if the pages have userptr pinning then clear that first */
1034 	if (gtt->userptr) {
1035 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1036 	} else if (ttm->sg && gtt->gobj->import_attach) {
1037 		struct dma_buf_attachment *attach;
1038 
1039 		attach = gtt->gobj->import_attach;
1040 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1041 		ttm->sg = NULL;
1042 	}
1043 
1044 	if (!gtt->bound)
1045 		return;
1046 
1047 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1048 		return;
1049 
1050 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1051 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1052 	gtt->bound = false;
1053 }
1054 
1055 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1056 				       struct ttm_tt *ttm)
1057 {
1058 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1059 
1060 	if (gtt->usertask)
1061 		put_task_struct(gtt->usertask);
1062 
1063 	ttm_tt_fini(&gtt->ttm);
1064 	kfree(gtt);
1065 }
1066 
1067 /**
1068  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1069  *
1070  * @bo: The buffer object to create a GTT ttm_tt object around
1071  * @page_flags: Page flags to be added to the ttm_tt object
1072  *
1073  * Called by ttm_tt_create().
1074  */
1075 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1076 					   uint32_t page_flags)
1077 {
1078 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1079 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1080 	struct amdgpu_ttm_tt *gtt;
1081 	enum ttm_caching caching;
1082 
1083 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1084 	if (!gtt)
1085 		return NULL;
1086 
1087 	gtt->gobj = &bo->base;
1088 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1089 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1090 	else
1091 		gtt->pool_id = abo->xcp_id;
1092 
1093 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1094 		caching = ttm_write_combined;
1095 	else
1096 		caching = ttm_cached;
1097 
1098 	/* allocate space for the uninitialized page entries */
1099 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1100 		kfree(gtt);
1101 		return NULL;
1102 	}
1103 	return &gtt->ttm;
1104 }
1105 
1106 /*
1107  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1108  *
1109  * Map the pages of a ttm_tt object to an address space visible
1110  * to the underlying device.
1111  */
1112 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1113 				  struct ttm_tt *ttm,
1114 				  struct ttm_operation_ctx *ctx)
1115 {
1116 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1117 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1118 	struct ttm_pool *pool;
1119 	pgoff_t i;
1120 	int ret;
1121 
1122 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1123 	if (gtt->userptr) {
1124 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1125 		if (!ttm->sg)
1126 			return -ENOMEM;
1127 		return 0;
1128 	}
1129 
1130 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1131 		return 0;
1132 
1133 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1134 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1135 	else
1136 		pool = &adev->mman.bdev.pool;
1137 	ret = ttm_pool_alloc(pool, ttm, ctx);
1138 	if (ret)
1139 		return ret;
1140 
1141 	for (i = 0; i < ttm->num_pages; ++i)
1142 		ttm->pages[i]->mapping = bdev->dev_mapping;
1143 
1144 	return 0;
1145 }
1146 
1147 /*
1148  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1149  *
1150  * Unmaps pages of a ttm_tt object from the device address space and
1151  * unpopulates the page array backing it.
1152  */
1153 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1154 				     struct ttm_tt *ttm)
1155 {
1156 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1157 	struct amdgpu_device *adev;
1158 	struct ttm_pool *pool;
1159 	pgoff_t i;
1160 
1161 	amdgpu_ttm_backend_unbind(bdev, ttm);
1162 
1163 	if (gtt->userptr) {
1164 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1165 		kfree(ttm->sg);
1166 		ttm->sg = NULL;
1167 		return;
1168 	}
1169 
1170 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1171 		return;
1172 
1173 	for (i = 0; i < ttm->num_pages; ++i)
1174 		ttm->pages[i]->mapping = NULL;
1175 
1176 	adev = amdgpu_ttm_adev(bdev);
1177 
1178 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1179 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1180 	else
1181 		pool = &adev->mman.bdev.pool;
1182 
1183 	return ttm_pool_free(pool, ttm);
1184 }
1185 
1186 /**
1187  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1188  * task
1189  *
1190  * @tbo: The ttm_buffer_object that contains the userptr
1191  * @user_addr:  The returned value
1192  */
1193 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1194 			      uint64_t *user_addr)
1195 {
1196 	struct amdgpu_ttm_tt *gtt;
1197 
1198 	if (!tbo->ttm)
1199 		return -EINVAL;
1200 
1201 	gtt = (void *)tbo->ttm;
1202 	*user_addr = gtt->userptr;
1203 	return 0;
1204 }
1205 
1206 /**
1207  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1208  * task
1209  *
1210  * @bo: The ttm_buffer_object to bind this userptr to
1211  * @addr:  The address in the current tasks VM space to use
1212  * @flags: Requirements of userptr object.
1213  *
1214  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1215  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1216  * initialize GPU VM for a KFD process.
1217  */
1218 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1219 			      uint64_t addr, uint32_t flags)
1220 {
1221 	struct amdgpu_ttm_tt *gtt;
1222 
1223 	if (!bo->ttm) {
1224 		/* TODO: We want a separate TTM object type for userptrs */
1225 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1226 		if (bo->ttm == NULL)
1227 			return -ENOMEM;
1228 	}
1229 
1230 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1231 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1232 
1233 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1234 	gtt->userptr = addr;
1235 	gtt->userflags = flags;
1236 
1237 	if (gtt->usertask)
1238 		put_task_struct(gtt->usertask);
1239 	gtt->usertask = current->group_leader;
1240 	get_task_struct(gtt->usertask);
1241 
1242 	return 0;
1243 }
1244 
1245 /*
1246  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1247  */
1248 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1249 {
1250 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1251 
1252 	if (gtt == NULL)
1253 		return NULL;
1254 
1255 	if (gtt->usertask == NULL)
1256 		return NULL;
1257 
1258 	return gtt->usertask->mm;
1259 }
1260 
1261 /*
1262  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1263  * address range for the current task.
1264  *
1265  */
1266 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1267 				  unsigned long end, unsigned long *userptr)
1268 {
1269 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1270 	unsigned long size;
1271 
1272 	if (gtt == NULL || !gtt->userptr)
1273 		return false;
1274 
1275 	/* Return false if no part of the ttm_tt object lies within
1276 	 * the range
1277 	 */
1278 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1279 	if (gtt->userptr > end || gtt->userptr + size <= start)
1280 		return false;
1281 
1282 	if (userptr)
1283 		*userptr = gtt->userptr;
1284 	return true;
1285 }
1286 
1287 /*
1288  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1289  */
1290 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1291 {
1292 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1293 
1294 	if (gtt == NULL || !gtt->userptr)
1295 		return false;
1296 
1297 	return true;
1298 }
1299 
1300 /*
1301  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1302  */
1303 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1304 {
1305 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1306 
1307 	if (gtt == NULL)
1308 		return false;
1309 
1310 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1311 }
1312 
1313 /**
1314  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1315  *
1316  * @ttm: The ttm_tt object to compute the flags for
1317  * @mem: The memory registry backing this ttm_tt object
1318  *
1319  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1320  */
1321 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1322 {
1323 	uint64_t flags = 0;
1324 
1325 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1326 		flags |= AMDGPU_PTE_VALID;
1327 
1328 	if (mem && (mem->mem_type == TTM_PL_TT ||
1329 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1330 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1331 		flags |= AMDGPU_PTE_SYSTEM;
1332 
1333 		if (ttm->caching == ttm_cached)
1334 			flags |= AMDGPU_PTE_SNOOPED;
1335 	}
1336 
1337 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1338 			mem->bus.caching == ttm_cached)
1339 		flags |= AMDGPU_PTE_SNOOPED;
1340 
1341 	return flags;
1342 }
1343 
1344 /**
1345  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1346  *
1347  * @adev: amdgpu_device pointer
1348  * @ttm: The ttm_tt object to compute the flags for
1349  * @mem: The memory registry backing this ttm_tt object
1350  *
1351  * Figure out the flags to use for a VM PTE (Page Table Entry).
1352  */
1353 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1354 				 struct ttm_resource *mem)
1355 {
1356 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1357 
1358 	flags |= adev->gart.gart_pte_flags;
1359 	flags |= AMDGPU_PTE_READABLE;
1360 
1361 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1362 		flags |= AMDGPU_PTE_WRITEABLE;
1363 
1364 	return flags;
1365 }
1366 
1367 /*
1368  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1369  * object.
1370  *
1371  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1372  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1373  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1374  * used to clean out a memory space.
1375  */
1376 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1377 					    const struct ttm_place *place)
1378 {
1379 	struct dma_resv_iter resv_cursor;
1380 	struct dma_fence *f;
1381 
1382 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1383 		return ttm_bo_eviction_valuable(bo, place);
1384 
1385 	/* Swapout? */
1386 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1387 		return true;
1388 
1389 	if (bo->type == ttm_bo_type_kernel &&
1390 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1391 		return false;
1392 
1393 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1394 	 * If true, then return false as any KFD process needs all its BOs to
1395 	 * be resident to run successfully
1396 	 */
1397 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1398 				DMA_RESV_USAGE_BOOKKEEP, f) {
1399 		if (amdkfd_fence_check_mm(f, current->mm))
1400 			return false;
1401 	}
1402 
1403 	/* Preemptible BOs don't own system resources managed by the
1404 	 * driver (pages, VRAM, GART space). They point to resources
1405 	 * owned by someone else (e.g. pageable memory in user mode
1406 	 * or a DMABuf). They are used in a preemptible context so we
1407 	 * can guarantee no deadlocks and good QoS in case of MMU
1408 	 * notifiers or DMABuf move notifiers from the resource owner.
1409 	 */
1410 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1411 		return false;
1412 
1413 	if (bo->resource->mem_type == TTM_PL_TT &&
1414 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1415 		return false;
1416 
1417 	return ttm_bo_eviction_valuable(bo, place);
1418 }
1419 
1420 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1421 				      void *buf, size_t size, bool write)
1422 {
1423 	while (size) {
1424 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1425 		uint64_t bytes = 4 - (pos & 0x3);
1426 		uint32_t shift = (pos & 0x3) * 8;
1427 		uint32_t mask = 0xffffffff << shift;
1428 		uint32_t value = 0;
1429 
1430 		if (size < bytes) {
1431 			mask &= 0xffffffff >> (bytes - size) * 8;
1432 			bytes = size;
1433 		}
1434 
1435 		if (mask != 0xffffffff) {
1436 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1437 			if (write) {
1438 				value &= ~mask;
1439 				value |= (*(uint32_t *)buf << shift) & mask;
1440 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1441 			} else {
1442 				value = (value & mask) >> shift;
1443 				memcpy(buf, &value, bytes);
1444 			}
1445 		} else {
1446 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1447 		}
1448 
1449 		pos += bytes;
1450 		buf += bytes;
1451 		size -= bytes;
1452 	}
1453 }
1454 
1455 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1456 					unsigned long offset, void *buf,
1457 					int len, int write)
1458 {
1459 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1460 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1461 	struct amdgpu_res_cursor src_mm;
1462 	struct amdgpu_job *job;
1463 	struct dma_fence *fence;
1464 	uint64_t src_addr, dst_addr;
1465 	unsigned int num_dw;
1466 	int r, idx;
1467 
1468 	if (len != PAGE_SIZE)
1469 		return -EINVAL;
1470 
1471 	if (!adev->mman.sdma_access_ptr)
1472 		return -EACCES;
1473 
1474 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1475 		return -ENODEV;
1476 
1477 	if (write)
1478 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1479 
1480 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1481 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1482 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1483 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1484 				     &job);
1485 	if (r)
1486 		goto out;
1487 
1488 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1489 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1490 		src_mm.start;
1491 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1492 	if (write)
1493 		swap(src_addr, dst_addr);
1494 
1495 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1496 				PAGE_SIZE, 0);
1497 
1498 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1499 	WARN_ON(job->ibs[0].length_dw > num_dw);
1500 
1501 	fence = amdgpu_job_submit(job);
1502 
1503 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1504 		r = -ETIMEDOUT;
1505 	dma_fence_put(fence);
1506 
1507 	if (!(r || write))
1508 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1509 out:
1510 	drm_dev_exit(idx);
1511 	return r;
1512 }
1513 
1514 /**
1515  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1516  *
1517  * @bo:  The buffer object to read/write
1518  * @offset:  Offset into buffer object
1519  * @buf:  Secondary buffer to write/read from
1520  * @len: Length in bytes of access
1521  * @write:  true if writing
1522  *
1523  * This is used to access VRAM that backs a buffer object via MMIO
1524  * access for debugging purposes.
1525  */
1526 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1527 				    unsigned long offset, void *buf, int len,
1528 				    int write)
1529 {
1530 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1531 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1532 	struct amdgpu_res_cursor cursor;
1533 	int ret = 0;
1534 
1535 	if (bo->resource->mem_type != TTM_PL_VRAM)
1536 		return -EIO;
1537 
1538 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1539 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1540 		return len;
1541 
1542 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1543 	while (cursor.remaining) {
1544 		size_t count, size = cursor.size;
1545 		loff_t pos = cursor.start;
1546 
1547 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1548 		size -= count;
1549 		if (size) {
1550 			/* using MM to access rest vram and handle un-aligned address */
1551 			pos += count;
1552 			buf += count;
1553 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1554 		}
1555 
1556 		ret += cursor.size;
1557 		buf += cursor.size;
1558 		amdgpu_res_next(&cursor, cursor.size);
1559 	}
1560 
1561 	return ret;
1562 }
1563 
1564 static void
1565 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1566 {
1567 	amdgpu_bo_move_notify(bo, false);
1568 }
1569 
1570 static struct ttm_device_funcs amdgpu_bo_driver = {
1571 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1572 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1573 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1574 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1575 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1576 	.evict_flags = &amdgpu_evict_flags,
1577 	.move = &amdgpu_bo_move,
1578 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1579 	.release_notify = &amdgpu_bo_release_notify,
1580 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1581 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1582 	.access_memory = &amdgpu_ttm_access_memory,
1583 };
1584 
1585 /*
1586  * Firmware Reservation functions
1587  */
1588 /**
1589  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1590  *
1591  * @adev: amdgpu_device pointer
1592  *
1593  * free fw reserved vram if it has been reserved.
1594  */
1595 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1596 {
1597 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1598 		NULL, &adev->mman.fw_vram_usage_va);
1599 }
1600 
1601 /*
1602  * Driver Reservation functions
1603  */
1604 /**
1605  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1606  *
1607  * @adev: amdgpu_device pointer
1608  *
1609  * free drv reserved vram if it has been reserved.
1610  */
1611 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1612 {
1613 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1614 						  NULL,
1615 						  &adev->mman.drv_vram_usage_va);
1616 }
1617 
1618 /**
1619  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1620  *
1621  * @adev: amdgpu_device pointer
1622  *
1623  * create bo vram reservation from fw.
1624  */
1625 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1626 {
1627 	uint64_t vram_size = adev->gmc.visible_vram_size;
1628 
1629 	adev->mman.fw_vram_usage_va = NULL;
1630 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1631 
1632 	if (adev->mman.fw_vram_usage_size == 0 ||
1633 	    adev->mman.fw_vram_usage_size > vram_size)
1634 		return 0;
1635 
1636 	return amdgpu_bo_create_kernel_at(adev,
1637 					  adev->mman.fw_vram_usage_start_offset,
1638 					  adev->mman.fw_vram_usage_size,
1639 					  &adev->mman.fw_vram_usage_reserved_bo,
1640 					  &adev->mman.fw_vram_usage_va);
1641 }
1642 
1643 /**
1644  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1645  *
1646  * @adev: amdgpu_device pointer
1647  *
1648  * create bo vram reservation from drv.
1649  */
1650 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1651 {
1652 	u64 vram_size = adev->gmc.visible_vram_size;
1653 
1654 	adev->mman.drv_vram_usage_va = NULL;
1655 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1656 
1657 	if (adev->mman.drv_vram_usage_size == 0 ||
1658 	    adev->mman.drv_vram_usage_size > vram_size)
1659 		return 0;
1660 
1661 	return amdgpu_bo_create_kernel_at(adev,
1662 					  adev->mman.drv_vram_usage_start_offset,
1663 					  adev->mman.drv_vram_usage_size,
1664 					  &adev->mman.drv_vram_usage_reserved_bo,
1665 					  &adev->mman.drv_vram_usage_va);
1666 }
1667 
1668 /*
1669  * Memoy training reservation functions
1670  */
1671 
1672 /**
1673  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1674  *
1675  * @adev: amdgpu_device pointer
1676  *
1677  * free memory training reserved vram if it has been reserved.
1678  */
1679 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1680 {
1681 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1682 
1683 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1684 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1685 	ctx->c2p_bo = NULL;
1686 
1687 	return 0;
1688 }
1689 
1690 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1691 						uint32_t reserve_size)
1692 {
1693 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1694 
1695 	memset(ctx, 0, sizeof(*ctx));
1696 
1697 	ctx->c2p_train_data_offset =
1698 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1699 	ctx->p2c_train_data_offset =
1700 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1701 	ctx->train_data_size =
1702 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1703 
1704 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1705 			ctx->train_data_size,
1706 			ctx->p2c_train_data_offset,
1707 			ctx->c2p_train_data_offset);
1708 }
1709 
1710 /*
1711  * reserve TMR memory at the top of VRAM which holds
1712  * IP Discovery data and is protected by PSP.
1713  */
1714 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1715 {
1716 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1717 	bool mem_train_support = false;
1718 	uint32_t reserve_size = 0;
1719 	int ret;
1720 
1721 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1722 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1723 			mem_train_support = true;
1724 		else
1725 			DRM_DEBUG("memory training does not support!\n");
1726 	}
1727 
1728 	/*
1729 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1730 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1731 	 *
1732 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1733 	 * discovery data and G6 memory training data respectively
1734 	 */
1735 	if (adev->bios)
1736 		reserve_size =
1737 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1738 
1739 	if (!adev->bios &&
1740 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1741 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1742 	else if (!reserve_size)
1743 		reserve_size = DISCOVERY_TMR_OFFSET;
1744 
1745 	if (mem_train_support) {
1746 		/* reserve vram for mem train according to TMR location */
1747 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1748 		ret = amdgpu_bo_create_kernel_at(adev,
1749 						 ctx->c2p_train_data_offset,
1750 						 ctx->train_data_size,
1751 						 &ctx->c2p_bo,
1752 						 NULL);
1753 		if (ret) {
1754 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1755 			amdgpu_ttm_training_reserve_vram_fini(adev);
1756 			return ret;
1757 		}
1758 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1759 	}
1760 
1761 	if (!adev->gmc.is_app_apu) {
1762 		ret = amdgpu_bo_create_kernel_at(
1763 			adev, adev->gmc.real_vram_size - reserve_size,
1764 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1765 		if (ret) {
1766 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1767 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1768 					      NULL, NULL);
1769 			return ret;
1770 		}
1771 	} else {
1772 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1779 {
1780 	int i;
1781 
1782 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1783 		return 0;
1784 
1785 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1786 				       sizeof(*adev->mman.ttm_pools),
1787 				       GFP_KERNEL);
1788 	if (!adev->mman.ttm_pools)
1789 		return -ENOMEM;
1790 
1791 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1792 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1793 			      adev->gmc.mem_partitions[i].numa.node,
1794 			      false, false);
1795 	}
1796 	return 0;
1797 }
1798 
1799 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1800 {
1801 	int i;
1802 
1803 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1804 		return;
1805 
1806 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1807 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1808 
1809 	kfree(adev->mman.ttm_pools);
1810 	adev->mman.ttm_pools = NULL;
1811 }
1812 
1813 /*
1814  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1815  * gtt/vram related fields.
1816  *
1817  * This initializes all of the memory space pools that the TTM layer
1818  * will need such as the GTT space (system memory mapped to the device),
1819  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1820  * can be mapped per VMID.
1821  */
1822 int amdgpu_ttm_init(struct amdgpu_device *adev)
1823 {
1824 	uint64_t gtt_size;
1825 	int r;
1826 
1827 	mutex_init(&adev->mman.gtt_window_lock);
1828 
1829 	/* No others user of address space so set it to 0 */
1830 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1831 			       adev_to_drm(adev)->anon_inode->i_mapping,
1832 			       adev_to_drm(adev)->vma_offset_manager,
1833 			       adev->need_swiotlb,
1834 			       dma_addressing_limited(adev->dev));
1835 	if (r) {
1836 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1837 		return r;
1838 	}
1839 
1840 	r = amdgpu_ttm_pools_init(adev);
1841 	if (r) {
1842 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1843 		return r;
1844 	}
1845 	adev->mman.initialized = true;
1846 
1847 	/* Initialize VRAM pool with all of VRAM divided into pages */
1848 	r = amdgpu_vram_mgr_init(adev);
1849 	if (r) {
1850 		DRM_ERROR("Failed initializing VRAM heap.\n");
1851 		return r;
1852 	}
1853 
1854 	/* Change the size here instead of the init above so only lpfn is affected */
1855 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1856 #ifdef CONFIG_64BIT
1857 #ifdef CONFIG_X86
1858 	if (adev->gmc.xgmi.connected_to_cpu)
1859 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1860 				adev->gmc.visible_vram_size);
1861 
1862 	else if (adev->gmc.is_app_apu)
1863 		DRM_DEBUG_DRIVER(
1864 			"No need to ioremap when real vram size is 0\n");
1865 	else
1866 #endif
1867 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1868 				adev->gmc.visible_vram_size);
1869 #endif
1870 
1871 	/*
1872 	 *The reserved vram for firmware must be pinned to the specified
1873 	 *place on the VRAM, so reserve it early.
1874 	 */
1875 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1876 	if (r)
1877 		return r;
1878 
1879 	/*
1880 	 *The reserved vram for driver must be pinned to the specified
1881 	 *place on the VRAM, so reserve it early.
1882 	 */
1883 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1884 	if (r)
1885 		return r;
1886 
1887 	/*
1888 	 * only NAVI10 and onwards ASIC support for IP discovery.
1889 	 * If IP discovery enabled, a block of memory should be
1890 	 * reserved for IP discovey.
1891 	 */
1892 	if (adev->mman.discovery_bin) {
1893 		r = amdgpu_ttm_reserve_tmr(adev);
1894 		if (r)
1895 			return r;
1896 	}
1897 
1898 	/* allocate memory as required for VGA
1899 	 * This is used for VGA emulation and pre-OS scanout buffers to
1900 	 * avoid display artifacts while transitioning between pre-OS
1901 	 * and driver.
1902 	 */
1903 	if (!adev->gmc.is_app_apu) {
1904 		r = amdgpu_bo_create_kernel_at(adev, 0,
1905 					       adev->mman.stolen_vga_size,
1906 					       &adev->mman.stolen_vga_memory,
1907 					       NULL);
1908 		if (r)
1909 			return r;
1910 
1911 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1912 					       adev->mman.stolen_extended_size,
1913 					       &adev->mman.stolen_extended_memory,
1914 					       NULL);
1915 
1916 		if (r)
1917 			return r;
1918 
1919 		r = amdgpu_bo_create_kernel_at(adev,
1920 					       adev->mman.stolen_reserved_offset,
1921 					       adev->mman.stolen_reserved_size,
1922 					       &adev->mman.stolen_reserved_memory,
1923 					       NULL);
1924 		if (r)
1925 			return r;
1926 	} else {
1927 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1928 	}
1929 
1930 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1931 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1932 
1933 	/* Compute GTT size, either based on TTM limit
1934 	 * or whatever the user passed on module init.
1935 	 */
1936 	if (amdgpu_gtt_size == -1)
1937 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1938 	else
1939 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1940 
1941 	/* Initialize GTT memory pool */
1942 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1943 	if (r) {
1944 		DRM_ERROR("Failed initializing GTT heap.\n");
1945 		return r;
1946 	}
1947 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1948 		 (unsigned int)(gtt_size / (1024 * 1024)));
1949 
1950 	/* Initiailize doorbell pool on PCI BAR */
1951 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1952 	if (r) {
1953 		DRM_ERROR("Failed initializing doorbell heap.\n");
1954 		return r;
1955 	}
1956 
1957 	/* Create a boorbell page for kernel usages */
1958 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1959 	if (r) {
1960 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1961 		return r;
1962 	}
1963 
1964 	/* Initialize preemptible memory pool */
1965 	r = amdgpu_preempt_mgr_init(adev);
1966 	if (r) {
1967 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1968 		return r;
1969 	}
1970 
1971 	/* Initialize various on-chip memory pools */
1972 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1973 	if (r) {
1974 		DRM_ERROR("Failed initializing GDS heap.\n");
1975 		return r;
1976 	}
1977 
1978 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1979 	if (r) {
1980 		DRM_ERROR("Failed initializing gws heap.\n");
1981 		return r;
1982 	}
1983 
1984 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1985 	if (r) {
1986 		DRM_ERROR("Failed initializing oa heap.\n");
1987 		return r;
1988 	}
1989 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1990 				AMDGPU_GEM_DOMAIN_GTT,
1991 				&adev->mman.sdma_access_bo, NULL,
1992 				&adev->mman.sdma_access_ptr))
1993 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1994 
1995 	return 0;
1996 }
1997 
1998 /*
1999  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2000  */
2001 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2002 {
2003 	int idx;
2004 
2005 	if (!adev->mman.initialized)
2006 		return;
2007 
2008 	amdgpu_ttm_pools_fini(adev);
2009 
2010 	amdgpu_ttm_training_reserve_vram_fini(adev);
2011 	/* return the stolen vga memory back to VRAM */
2012 	if (!adev->gmc.is_app_apu) {
2013 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2014 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2015 		/* return the FW reserved memory back to VRAM */
2016 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2017 				      NULL);
2018 		if (adev->mman.stolen_reserved_size)
2019 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2020 					      NULL, NULL);
2021 	}
2022 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2023 					&adev->mman.sdma_access_ptr);
2024 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2025 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2026 
2027 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2028 
2029 		if (adev->mman.aper_base_kaddr)
2030 			iounmap(adev->mman.aper_base_kaddr);
2031 		adev->mman.aper_base_kaddr = NULL;
2032 
2033 		drm_dev_exit(idx);
2034 	}
2035 
2036 	amdgpu_vram_mgr_fini(adev);
2037 	amdgpu_gtt_mgr_fini(adev);
2038 	amdgpu_preempt_mgr_fini(adev);
2039 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2040 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2041 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2042 	ttm_device_fini(&adev->mman.bdev);
2043 	adev->mman.initialized = false;
2044 	DRM_INFO("amdgpu: ttm finalized\n");
2045 }
2046 
2047 /**
2048  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2049  *
2050  * @adev: amdgpu_device pointer
2051  * @enable: true when we can use buffer functions.
2052  *
2053  * Enable/disable use of buffer functions during suspend/resume. This should
2054  * only be called at bootup or when userspace isn't running.
2055  */
2056 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2057 {
2058 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2059 	uint64_t size;
2060 	int r;
2061 
2062 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2063 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2064 		return;
2065 
2066 	if (enable) {
2067 		struct amdgpu_ring *ring;
2068 		struct drm_gpu_scheduler *sched;
2069 
2070 		ring = adev->mman.buffer_funcs_ring;
2071 		sched = &ring->sched;
2072 		r = drm_sched_entity_init(&adev->mman.high_pr,
2073 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2074 					  1, NULL);
2075 		if (r) {
2076 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2077 				  r);
2078 			return;
2079 		}
2080 
2081 		r = drm_sched_entity_init(&adev->mman.low_pr,
2082 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2083 					  1, NULL);
2084 		if (r) {
2085 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2086 				  r);
2087 			goto error_free_entity;
2088 		}
2089 	} else {
2090 		drm_sched_entity_destroy(&adev->mman.high_pr);
2091 		drm_sched_entity_destroy(&adev->mman.low_pr);
2092 		dma_fence_put(man->move);
2093 		man->move = NULL;
2094 	}
2095 
2096 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2097 	if (enable)
2098 		size = adev->gmc.real_vram_size;
2099 	else
2100 		size = adev->gmc.visible_vram_size;
2101 	man->size = size;
2102 	adev->mman.buffer_funcs_enabled = enable;
2103 
2104 	return;
2105 
2106 error_free_entity:
2107 	drm_sched_entity_destroy(&adev->mman.high_pr);
2108 }
2109 
2110 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2111 				  bool direct_submit,
2112 				  unsigned int num_dw,
2113 				  struct dma_resv *resv,
2114 				  bool vm_needs_flush,
2115 				  struct amdgpu_job **job,
2116 				  bool delayed)
2117 {
2118 	enum amdgpu_ib_pool_type pool = direct_submit ?
2119 		AMDGPU_IB_POOL_DIRECT :
2120 		AMDGPU_IB_POOL_DELAYED;
2121 	int r;
2122 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2123 						    &adev->mman.high_pr;
2124 	r = amdgpu_job_alloc_with_ib(adev, entity,
2125 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2126 				     num_dw * 4, pool, job);
2127 	if (r)
2128 		return r;
2129 
2130 	if (vm_needs_flush) {
2131 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2132 							adev->gmc.pdb0_bo :
2133 							adev->gart.bo);
2134 		(*job)->vm_needs_flush = true;
2135 	}
2136 	if (!resv)
2137 		return 0;
2138 
2139 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2140 						   DMA_RESV_USAGE_BOOKKEEP);
2141 }
2142 
2143 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2144 		       uint64_t dst_offset, uint32_t byte_count,
2145 		       struct dma_resv *resv,
2146 		       struct dma_fence **fence, bool direct_submit,
2147 		       bool vm_needs_flush, uint32_t copy_flags)
2148 {
2149 	struct amdgpu_device *adev = ring->adev;
2150 	unsigned int num_loops, num_dw;
2151 	struct amdgpu_job *job;
2152 	uint32_t max_bytes;
2153 	unsigned int i;
2154 	int r;
2155 
2156 	if (!direct_submit && !ring->sched.ready) {
2157 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2158 		return -EINVAL;
2159 	}
2160 
2161 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2162 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2163 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2164 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2165 				   resv, vm_needs_flush, &job, false);
2166 	if (r)
2167 		return r;
2168 
2169 	for (i = 0; i < num_loops; i++) {
2170 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2171 
2172 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2173 					dst_offset, cur_size_in_bytes, copy_flags);
2174 		src_offset += cur_size_in_bytes;
2175 		dst_offset += cur_size_in_bytes;
2176 		byte_count -= cur_size_in_bytes;
2177 	}
2178 
2179 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2180 	WARN_ON(job->ibs[0].length_dw > num_dw);
2181 	if (direct_submit)
2182 		r = amdgpu_job_submit_direct(job, ring, fence);
2183 	else
2184 		*fence = amdgpu_job_submit(job);
2185 	if (r)
2186 		goto error_free;
2187 
2188 	return r;
2189 
2190 error_free:
2191 	amdgpu_job_free(job);
2192 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2193 	return r;
2194 }
2195 
2196 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2197 			       uint64_t dst_addr, uint32_t byte_count,
2198 			       struct dma_resv *resv,
2199 			       struct dma_fence **fence,
2200 			       bool vm_needs_flush, bool delayed)
2201 {
2202 	struct amdgpu_device *adev = ring->adev;
2203 	unsigned int num_loops, num_dw;
2204 	struct amdgpu_job *job;
2205 	uint32_t max_bytes;
2206 	unsigned int i;
2207 	int r;
2208 
2209 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2210 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2211 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2212 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2213 				   &job, delayed);
2214 	if (r)
2215 		return r;
2216 
2217 	for (i = 0; i < num_loops; i++) {
2218 		uint32_t cur_size = min(byte_count, max_bytes);
2219 
2220 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2221 					cur_size);
2222 
2223 		dst_addr += cur_size;
2224 		byte_count -= cur_size;
2225 	}
2226 
2227 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2228 	WARN_ON(job->ibs[0].length_dw > num_dw);
2229 	*fence = amdgpu_job_submit(job);
2230 	return 0;
2231 }
2232 
2233 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2234 			uint32_t src_data,
2235 			struct dma_resv *resv,
2236 			struct dma_fence **f,
2237 			bool delayed)
2238 {
2239 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2240 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2241 	struct dma_fence *fence = NULL;
2242 	struct amdgpu_res_cursor dst;
2243 	int r;
2244 
2245 	if (!adev->mman.buffer_funcs_enabled) {
2246 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2247 		return -EINVAL;
2248 	}
2249 
2250 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2251 
2252 	mutex_lock(&adev->mman.gtt_window_lock);
2253 	while (dst.remaining) {
2254 		struct dma_fence *next;
2255 		uint64_t cur_size, to;
2256 
2257 		/* Never fill more than 256MiB at once to avoid timeouts */
2258 		cur_size = min(dst.size, 256ULL << 20);
2259 
2260 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2261 					  1, ring, false, &cur_size, &to);
2262 		if (r)
2263 			goto error;
2264 
2265 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2266 					&next, true, delayed);
2267 		if (r)
2268 			goto error;
2269 
2270 		dma_fence_put(fence);
2271 		fence = next;
2272 
2273 		amdgpu_res_next(&dst, cur_size);
2274 	}
2275 error:
2276 	mutex_unlock(&adev->mman.gtt_window_lock);
2277 	if (f)
2278 		*f = dma_fence_get(fence);
2279 	dma_fence_put(fence);
2280 	return r;
2281 }
2282 
2283 /**
2284  * amdgpu_ttm_evict_resources - evict memory buffers
2285  * @adev: amdgpu device object
2286  * @mem_type: evicted BO's memory type
2287  *
2288  * Evicts all @mem_type buffers on the lru list of the memory type.
2289  *
2290  * Returns:
2291  * 0 for success or a negative error code on failure.
2292  */
2293 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2294 {
2295 	struct ttm_resource_manager *man;
2296 
2297 	switch (mem_type) {
2298 	case TTM_PL_VRAM:
2299 	case TTM_PL_TT:
2300 	case AMDGPU_PL_GWS:
2301 	case AMDGPU_PL_GDS:
2302 	case AMDGPU_PL_OA:
2303 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2304 		break;
2305 	default:
2306 		DRM_ERROR("Trying to evict invalid memory type\n");
2307 		return -EINVAL;
2308 	}
2309 
2310 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2311 }
2312 
2313 #if defined(CONFIG_DEBUG_FS)
2314 
2315 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2316 {
2317 	struct amdgpu_device *adev = m->private;
2318 
2319 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2320 }
2321 
2322 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2323 
2324 /*
2325  * amdgpu_ttm_vram_read - Linear read access to VRAM
2326  *
2327  * Accesses VRAM via MMIO for debugging purposes.
2328  */
2329 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2330 				    size_t size, loff_t *pos)
2331 {
2332 	struct amdgpu_device *adev = file_inode(f)->i_private;
2333 	ssize_t result = 0;
2334 
2335 	if (size & 0x3 || *pos & 0x3)
2336 		return -EINVAL;
2337 
2338 	if (*pos >= adev->gmc.mc_vram_size)
2339 		return -ENXIO;
2340 
2341 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2342 	while (size) {
2343 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2344 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2345 
2346 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2347 		if (copy_to_user(buf, value, bytes))
2348 			return -EFAULT;
2349 
2350 		result += bytes;
2351 		buf += bytes;
2352 		*pos += bytes;
2353 		size -= bytes;
2354 	}
2355 
2356 	return result;
2357 }
2358 
2359 /*
2360  * amdgpu_ttm_vram_write - Linear write access to VRAM
2361  *
2362  * Accesses VRAM via MMIO for debugging purposes.
2363  */
2364 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2365 				    size_t size, loff_t *pos)
2366 {
2367 	struct amdgpu_device *adev = file_inode(f)->i_private;
2368 	ssize_t result = 0;
2369 	int r;
2370 
2371 	if (size & 0x3 || *pos & 0x3)
2372 		return -EINVAL;
2373 
2374 	if (*pos >= adev->gmc.mc_vram_size)
2375 		return -ENXIO;
2376 
2377 	while (size) {
2378 		uint32_t value;
2379 
2380 		if (*pos >= adev->gmc.mc_vram_size)
2381 			return result;
2382 
2383 		r = get_user(value, (uint32_t *)buf);
2384 		if (r)
2385 			return r;
2386 
2387 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2388 
2389 		result += 4;
2390 		buf += 4;
2391 		*pos += 4;
2392 		size -= 4;
2393 	}
2394 
2395 	return result;
2396 }
2397 
2398 static const struct file_operations amdgpu_ttm_vram_fops = {
2399 	.owner = THIS_MODULE,
2400 	.read = amdgpu_ttm_vram_read,
2401 	.write = amdgpu_ttm_vram_write,
2402 	.llseek = default_llseek,
2403 };
2404 
2405 /*
2406  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2407  *
2408  * This function is used to read memory that has been mapped to the
2409  * GPU and the known addresses are not physical addresses but instead
2410  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2411  */
2412 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2413 				 size_t size, loff_t *pos)
2414 {
2415 	struct amdgpu_device *adev = file_inode(f)->i_private;
2416 	struct iommu_domain *dom;
2417 	ssize_t result = 0;
2418 	int r;
2419 
2420 	/* retrieve the IOMMU domain if any for this device */
2421 	dom = iommu_get_domain_for_dev(adev->dev);
2422 
2423 	while (size) {
2424 		phys_addr_t addr = *pos & PAGE_MASK;
2425 		loff_t off = *pos & ~PAGE_MASK;
2426 		size_t bytes = PAGE_SIZE - off;
2427 		unsigned long pfn;
2428 		struct page *p;
2429 		void *ptr;
2430 
2431 		bytes = min(bytes, size);
2432 
2433 		/* Translate the bus address to a physical address.  If
2434 		 * the domain is NULL it means there is no IOMMU active
2435 		 * and the address translation is the identity
2436 		 */
2437 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2438 
2439 		pfn = addr >> PAGE_SHIFT;
2440 		if (!pfn_valid(pfn))
2441 			return -EPERM;
2442 
2443 		p = pfn_to_page(pfn);
2444 		if (p->mapping != adev->mman.bdev.dev_mapping)
2445 			return -EPERM;
2446 
2447 		ptr = kmap_local_page(p);
2448 		r = copy_to_user(buf, ptr + off, bytes);
2449 		kunmap_local(ptr);
2450 		if (r)
2451 			return -EFAULT;
2452 
2453 		size -= bytes;
2454 		*pos += bytes;
2455 		result += bytes;
2456 	}
2457 
2458 	return result;
2459 }
2460 
2461 /*
2462  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2463  *
2464  * This function is used to write memory that has been mapped to the
2465  * GPU and the known addresses are not physical addresses but instead
2466  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2467  */
2468 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2469 				 size_t size, loff_t *pos)
2470 {
2471 	struct amdgpu_device *adev = file_inode(f)->i_private;
2472 	struct iommu_domain *dom;
2473 	ssize_t result = 0;
2474 	int r;
2475 
2476 	dom = iommu_get_domain_for_dev(adev->dev);
2477 
2478 	while (size) {
2479 		phys_addr_t addr = *pos & PAGE_MASK;
2480 		loff_t off = *pos & ~PAGE_MASK;
2481 		size_t bytes = PAGE_SIZE - off;
2482 		unsigned long pfn;
2483 		struct page *p;
2484 		void *ptr;
2485 
2486 		bytes = min(bytes, size);
2487 
2488 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2489 
2490 		pfn = addr >> PAGE_SHIFT;
2491 		if (!pfn_valid(pfn))
2492 			return -EPERM;
2493 
2494 		p = pfn_to_page(pfn);
2495 		if (p->mapping != adev->mman.bdev.dev_mapping)
2496 			return -EPERM;
2497 
2498 		ptr = kmap_local_page(p);
2499 		r = copy_from_user(ptr + off, buf, bytes);
2500 		kunmap_local(ptr);
2501 		if (r)
2502 			return -EFAULT;
2503 
2504 		size -= bytes;
2505 		*pos += bytes;
2506 		result += bytes;
2507 	}
2508 
2509 	return result;
2510 }
2511 
2512 static const struct file_operations amdgpu_ttm_iomem_fops = {
2513 	.owner = THIS_MODULE,
2514 	.read = amdgpu_iomem_read,
2515 	.write = amdgpu_iomem_write,
2516 	.llseek = default_llseek
2517 };
2518 
2519 #endif
2520 
2521 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2522 {
2523 #if defined(CONFIG_DEBUG_FS)
2524 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2525 	struct dentry *root = minor->debugfs_root;
2526 
2527 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2528 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2529 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2530 			    &amdgpu_ttm_iomem_fops);
2531 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2532 			    &amdgpu_ttm_page_pool_fops);
2533 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534 							     TTM_PL_VRAM),
2535 					    root, "amdgpu_vram_mm");
2536 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537 							     TTM_PL_TT),
2538 					    root, "amdgpu_gtt_mm");
2539 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2540 							     AMDGPU_PL_GDS),
2541 					    root, "amdgpu_gds_mm");
2542 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2543 							     AMDGPU_PL_GWS),
2544 					    root, "amdgpu_gws_mm");
2545 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2546 							     AMDGPU_PL_OA),
2547 					    root, "amdgpu_oa_mm");
2548 
2549 #endif
2550 }
2551