1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, 0); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 299 uint32_t copy_flags = 0; 300 301 if (!adev->mman.buffer_funcs_enabled) { 302 DRM_ERROR("Trying to move memory with ring turned off.\n"); 303 return -EINVAL; 304 } 305 306 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 308 309 mutex_lock(&adev->mman.gtt_window_lock); 310 while (src_mm.remaining) { 311 uint64_t from, to, cur_size; 312 struct dma_fence *next; 313 314 /* Never copy more than 256MiB at once to avoid a timeout */ 315 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 316 317 /* Map src to window 0 and dst to window 1. */ 318 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 319 0, ring, tmz, &cur_size, &from); 320 if (r) 321 goto error; 322 323 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 324 1, ring, tmz, &cur_size, &to); 325 if (r) 326 goto error; 327 328 if (tmz) 329 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 332 &next, false, true, copy_flags); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /** 412 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 413 * @adev: amdgpu device 414 * @res: the resource to check 415 * 416 * Returns: true if the full resource is CPU visible, false otherwise. 417 */ 418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 419 struct ttm_resource *res) 420 { 421 struct amdgpu_res_cursor cursor; 422 423 if (!res) 424 return false; 425 426 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 427 res->mem_type == AMDGPU_PL_PREEMPT) 428 return true; 429 430 if (res->mem_type != TTM_PL_VRAM) 431 return false; 432 433 amdgpu_res_first(res, 0, res->size, &cursor); 434 while (cursor.remaining) { 435 if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size) 436 return false; 437 amdgpu_res_next(&cursor, cursor.size); 438 } 439 440 return true; 441 } 442 443 /* 444 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 445 * 446 * Called by amdgpu_bo_move() 447 */ 448 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 449 struct ttm_resource *mem) 450 { 451 if (!amdgpu_res_cpu_visible(adev, mem)) 452 return false; 453 454 /* ttm_resource_ioremap only supports contiguous memory */ 455 if (mem->mem_type == TTM_PL_VRAM && 456 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 457 return false; 458 459 return true; 460 } 461 462 /* 463 * amdgpu_bo_move - Move a buffer object to a new memory location 464 * 465 * Called by ttm_bo_handle_move_mem() 466 */ 467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 468 struct ttm_operation_ctx *ctx, 469 struct ttm_resource *new_mem, 470 struct ttm_place *hop) 471 { 472 struct amdgpu_device *adev; 473 struct amdgpu_bo *abo; 474 struct ttm_resource *old_mem = bo->resource; 475 int r; 476 477 if (new_mem->mem_type == TTM_PL_TT || 478 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 479 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 480 if (r) 481 return r; 482 } 483 484 abo = ttm_to_amdgpu_bo(bo); 485 adev = amdgpu_ttm_adev(bo->bdev); 486 487 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 488 bo->ttm == NULL)) { 489 ttm_bo_move_null(bo, new_mem); 490 goto out; 491 } 492 if (old_mem->mem_type == TTM_PL_SYSTEM && 493 (new_mem->mem_type == TTM_PL_TT || 494 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 495 ttm_bo_move_null(bo, new_mem); 496 goto out; 497 } 498 if ((old_mem->mem_type == TTM_PL_TT || 499 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 500 new_mem->mem_type == TTM_PL_SYSTEM) { 501 r = ttm_bo_wait_ctx(bo, ctx); 502 if (r) 503 return r; 504 505 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 506 ttm_resource_free(bo, &bo->resource); 507 ttm_bo_assign_mem(bo, new_mem); 508 goto out; 509 } 510 511 if (old_mem->mem_type == AMDGPU_PL_GDS || 512 old_mem->mem_type == AMDGPU_PL_GWS || 513 old_mem->mem_type == AMDGPU_PL_OA || 514 old_mem->mem_type == AMDGPU_PL_DOORBELL || 515 new_mem->mem_type == AMDGPU_PL_GDS || 516 new_mem->mem_type == AMDGPU_PL_GWS || 517 new_mem->mem_type == AMDGPU_PL_OA || 518 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 519 /* Nothing to save here */ 520 ttm_bo_move_null(bo, new_mem); 521 goto out; 522 } 523 524 if (bo->type == ttm_bo_type_device && 525 new_mem->mem_type == TTM_PL_VRAM && 526 old_mem->mem_type != TTM_PL_VRAM) { 527 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 528 * accesses the BO after it's moved. 529 */ 530 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 531 } 532 533 if (adev->mman.buffer_funcs_enabled) { 534 if (((old_mem->mem_type == TTM_PL_SYSTEM && 535 new_mem->mem_type == TTM_PL_VRAM) || 536 (old_mem->mem_type == TTM_PL_VRAM && 537 new_mem->mem_type == TTM_PL_SYSTEM))) { 538 hop->fpfn = 0; 539 hop->lpfn = 0; 540 hop->mem_type = TTM_PL_TT; 541 hop->flags = TTM_PL_FLAG_TEMPORARY; 542 return -EMULTIHOP; 543 } 544 545 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 546 } else { 547 r = -ENODEV; 548 } 549 550 if (r) { 551 /* Check that all memory is CPU accessible */ 552 if (!amdgpu_res_copyable(adev, old_mem) || 553 !amdgpu_res_copyable(adev, new_mem)) { 554 pr_err("Move buffer fallback to memcpy unavailable\n"); 555 return r; 556 } 557 558 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 559 if (r) 560 return r; 561 } 562 563 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type); 564 out: 565 /* update statistics */ 566 atomic64_add(bo->base.size, &adev->num_bytes_moved); 567 amdgpu_bo_move_notify(bo, evict); 568 return 0; 569 } 570 571 /* 572 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 573 * 574 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 575 */ 576 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 577 struct ttm_resource *mem) 578 { 579 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 580 581 switch (mem->mem_type) { 582 case TTM_PL_SYSTEM: 583 /* system memory */ 584 return 0; 585 case TTM_PL_TT: 586 case AMDGPU_PL_PREEMPT: 587 break; 588 case TTM_PL_VRAM: 589 mem->bus.offset = mem->start << PAGE_SHIFT; 590 591 if (adev->mman.aper_base_kaddr && 592 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 593 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 594 mem->bus.offset; 595 596 mem->bus.offset += adev->gmc.aper_base; 597 mem->bus.is_iomem = true; 598 break; 599 case AMDGPU_PL_DOORBELL: 600 mem->bus.offset = mem->start << PAGE_SHIFT; 601 mem->bus.offset += adev->doorbell.base; 602 mem->bus.is_iomem = true; 603 mem->bus.caching = ttm_uncached; 604 break; 605 default: 606 return -EINVAL; 607 } 608 return 0; 609 } 610 611 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 612 unsigned long page_offset) 613 { 614 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 615 struct amdgpu_res_cursor cursor; 616 617 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 618 &cursor); 619 620 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 621 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 622 623 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 624 } 625 626 /** 627 * amdgpu_ttm_domain_start - Returns GPU start address 628 * @adev: amdgpu device object 629 * @type: type of the memory 630 * 631 * Returns: 632 * GPU start address of a memory domain 633 */ 634 635 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 636 { 637 switch (type) { 638 case TTM_PL_TT: 639 return adev->gmc.gart_start; 640 case TTM_PL_VRAM: 641 return adev->gmc.vram_start; 642 } 643 644 return 0; 645 } 646 647 /* 648 * TTM backend functions. 649 */ 650 struct amdgpu_ttm_tt { 651 struct ttm_tt ttm; 652 struct drm_gem_object *gobj; 653 u64 offset; 654 uint64_t userptr; 655 struct task_struct *usertask; 656 uint32_t userflags; 657 bool bound; 658 int32_t pool_id; 659 }; 660 661 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 662 663 #ifdef CONFIG_DRM_AMDGPU_USERPTR 664 /* 665 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 666 * memory and start HMM tracking CPU page table update 667 * 668 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 669 * once afterwards to stop HMM tracking 670 */ 671 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 672 struct hmm_range **range) 673 { 674 struct ttm_tt *ttm = bo->tbo.ttm; 675 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 676 unsigned long start = gtt->userptr; 677 struct vm_area_struct *vma; 678 struct mm_struct *mm; 679 bool readonly; 680 int r = 0; 681 682 /* Make sure get_user_pages_done() can cleanup gracefully */ 683 *range = NULL; 684 685 mm = bo->notifier.mm; 686 if (unlikely(!mm)) { 687 DRM_DEBUG_DRIVER("BO is not registered?\n"); 688 return -EFAULT; 689 } 690 691 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 692 return -ESRCH; 693 694 mmap_read_lock(mm); 695 vma = vma_lookup(mm, start); 696 if (unlikely(!vma)) { 697 r = -EFAULT; 698 goto out_unlock; 699 } 700 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 701 vma->vm_file)) { 702 r = -EPERM; 703 goto out_unlock; 704 } 705 706 readonly = amdgpu_ttm_tt_is_readonly(ttm); 707 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 708 readonly, NULL, pages, range); 709 out_unlock: 710 mmap_read_unlock(mm); 711 if (r) 712 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 713 714 mmput(mm); 715 716 return r; 717 } 718 719 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 720 */ 721 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 722 struct hmm_range *range) 723 { 724 struct amdgpu_ttm_tt *gtt = (void *)ttm; 725 726 if (gtt && gtt->userptr && range) 727 amdgpu_hmm_range_get_pages_done(range); 728 } 729 730 /* 731 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 732 * Check if the pages backing this ttm range have been invalidated 733 * 734 * Returns: true if pages are still valid 735 */ 736 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 737 struct hmm_range *range) 738 { 739 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 740 741 if (!gtt || !gtt->userptr || !range) 742 return false; 743 744 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 745 gtt->userptr, ttm->num_pages); 746 747 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 748 749 return !amdgpu_hmm_range_get_pages_done(range); 750 } 751 #endif 752 753 /* 754 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 755 * 756 * Called by amdgpu_cs_list_validate(). This creates the page list 757 * that backs user memory and will ultimately be mapped into the device 758 * address space. 759 */ 760 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 761 { 762 unsigned long i; 763 764 for (i = 0; i < ttm->num_pages; ++i) 765 ttm->pages[i] = pages ? pages[i] : NULL; 766 } 767 768 /* 769 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 770 * 771 * Called by amdgpu_ttm_backend_bind() 772 **/ 773 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 774 struct ttm_tt *ttm) 775 { 776 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 777 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 778 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 779 enum dma_data_direction direction = write ? 780 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 781 int r; 782 783 /* Allocate an SG array and squash pages into it */ 784 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 785 (u64)ttm->num_pages << PAGE_SHIFT, 786 GFP_KERNEL); 787 if (r) 788 goto release_sg; 789 790 /* Map SG to device */ 791 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 792 if (r) 793 goto release_sg; 794 795 /* convert SG to linear array of pages and dma addresses */ 796 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 797 ttm->num_pages); 798 799 return 0; 800 801 release_sg: 802 kfree(ttm->sg); 803 ttm->sg = NULL; 804 return r; 805 } 806 807 /* 808 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 809 */ 810 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 811 struct ttm_tt *ttm) 812 { 813 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 814 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 815 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 816 enum dma_data_direction direction = write ? 817 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 818 819 /* double check that we don't free the table twice */ 820 if (!ttm->sg || !ttm->sg->sgl) 821 return; 822 823 /* unmap the pages mapped to the device */ 824 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 825 sg_free_table(ttm->sg); 826 } 827 828 /* 829 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 830 * MQDn+CtrlStackn where n is the number of XCCs per partition. 831 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 832 * and uses memory type default, UC. The rest of pages_per_xcc are 833 * Ctrl stack and modify their memory type to NC. 834 */ 835 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 836 struct ttm_tt *ttm, uint64_t flags) 837 { 838 struct amdgpu_ttm_tt *gtt = (void *)ttm; 839 uint64_t total_pages = ttm->num_pages; 840 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 841 uint64_t page_idx, pages_per_xcc; 842 int i; 843 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 844 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 845 846 pages_per_xcc = total_pages; 847 do_div(pages_per_xcc, num_xcc); 848 849 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 850 /* MQD page: use default flags */ 851 amdgpu_gart_bind(adev, 852 gtt->offset + (page_idx << PAGE_SHIFT), 853 1, >t->ttm.dma_address[page_idx], flags); 854 /* 855 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 856 * the second page of the BO onward. 857 */ 858 amdgpu_gart_bind(adev, 859 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 860 pages_per_xcc - 1, 861 >t->ttm.dma_address[page_idx + 1], 862 ctrl_flags); 863 } 864 } 865 866 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 867 struct ttm_buffer_object *tbo, 868 uint64_t flags) 869 { 870 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 871 struct ttm_tt *ttm = tbo->ttm; 872 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 873 874 if (amdgpu_bo_encrypted(abo)) 875 flags |= AMDGPU_PTE_TMZ; 876 877 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 878 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 879 } else { 880 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 881 gtt->ttm.dma_address, flags); 882 } 883 gtt->bound = true; 884 } 885 886 /* 887 * amdgpu_ttm_backend_bind - Bind GTT memory 888 * 889 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 890 * This handles binding GTT memory to the device address space. 891 */ 892 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 893 struct ttm_tt *ttm, 894 struct ttm_resource *bo_mem) 895 { 896 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 897 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 898 uint64_t flags; 899 int r; 900 901 if (!bo_mem) 902 return -EINVAL; 903 904 if (gtt->bound) 905 return 0; 906 907 if (gtt->userptr) { 908 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 909 if (r) { 910 DRM_ERROR("failed to pin userptr\n"); 911 return r; 912 } 913 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 914 if (!ttm->sg) { 915 struct dma_buf_attachment *attach; 916 struct sg_table *sgt; 917 918 attach = gtt->gobj->import_attach; 919 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 920 if (IS_ERR(sgt)) 921 return PTR_ERR(sgt); 922 923 ttm->sg = sgt; 924 } 925 926 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 927 ttm->num_pages); 928 } 929 930 if (!ttm->num_pages) { 931 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 932 ttm->num_pages, bo_mem, ttm); 933 } 934 935 if (bo_mem->mem_type != TTM_PL_TT || 936 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 937 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 938 return 0; 939 } 940 941 /* compute PTE flags relevant to this BO memory */ 942 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 943 944 /* bind pages into GART page tables */ 945 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 946 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 947 gtt->ttm.dma_address, flags); 948 gtt->bound = true; 949 return 0; 950 } 951 952 /* 953 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 954 * through AGP or GART aperture. 955 * 956 * If bo is accessible through AGP aperture, then use AGP aperture 957 * to access bo; otherwise allocate logical space in GART aperture 958 * and map bo to GART aperture. 959 */ 960 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 961 { 962 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 963 struct ttm_operation_ctx ctx = { false, false }; 964 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 965 struct ttm_placement placement; 966 struct ttm_place placements; 967 struct ttm_resource *tmp; 968 uint64_t addr, flags; 969 int r; 970 971 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 972 return 0; 973 974 addr = amdgpu_gmc_agp_addr(bo); 975 if (addr != AMDGPU_BO_INVALID_OFFSET) 976 return 0; 977 978 /* allocate GART space */ 979 placement.num_placement = 1; 980 placement.placement = &placements; 981 placements.fpfn = 0; 982 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 983 placements.mem_type = TTM_PL_TT; 984 placements.flags = bo->resource->placement; 985 986 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 987 if (unlikely(r)) 988 return r; 989 990 /* compute PTE flags for this buffer object */ 991 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 992 993 /* Bind pages */ 994 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 995 amdgpu_ttm_gart_bind(adev, bo, flags); 996 amdgpu_gart_invalidate_tlb(adev); 997 ttm_resource_free(bo, &bo->resource); 998 ttm_bo_assign_mem(bo, tmp); 999 1000 return 0; 1001 } 1002 1003 /* 1004 * amdgpu_ttm_recover_gart - Rebind GTT pages 1005 * 1006 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1007 * rebind GTT pages during a GPU reset. 1008 */ 1009 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1010 { 1011 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1012 uint64_t flags; 1013 1014 if (!tbo->ttm) 1015 return; 1016 1017 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1018 amdgpu_ttm_gart_bind(adev, tbo, flags); 1019 } 1020 1021 /* 1022 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1023 * 1024 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1025 * ttm_tt_destroy(). 1026 */ 1027 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1028 struct ttm_tt *ttm) 1029 { 1030 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1031 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1032 1033 /* if the pages have userptr pinning then clear that first */ 1034 if (gtt->userptr) { 1035 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1036 } else if (ttm->sg && gtt->gobj->import_attach) { 1037 struct dma_buf_attachment *attach; 1038 1039 attach = gtt->gobj->import_attach; 1040 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1041 ttm->sg = NULL; 1042 } 1043 1044 if (!gtt->bound) 1045 return; 1046 1047 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1048 return; 1049 1050 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1051 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1052 gtt->bound = false; 1053 } 1054 1055 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1056 struct ttm_tt *ttm) 1057 { 1058 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1059 1060 if (gtt->usertask) 1061 put_task_struct(gtt->usertask); 1062 1063 ttm_tt_fini(>t->ttm); 1064 kfree(gtt); 1065 } 1066 1067 /** 1068 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1069 * 1070 * @bo: The buffer object to create a GTT ttm_tt object around 1071 * @page_flags: Page flags to be added to the ttm_tt object 1072 * 1073 * Called by ttm_tt_create(). 1074 */ 1075 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1076 uint32_t page_flags) 1077 { 1078 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1079 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1080 struct amdgpu_ttm_tt *gtt; 1081 enum ttm_caching caching; 1082 1083 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1084 if (!gtt) 1085 return NULL; 1086 1087 gtt->gobj = &bo->base; 1088 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1089 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1090 else 1091 gtt->pool_id = abo->xcp_id; 1092 1093 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1094 caching = ttm_write_combined; 1095 else 1096 caching = ttm_cached; 1097 1098 /* allocate space for the uninitialized page entries */ 1099 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1100 kfree(gtt); 1101 return NULL; 1102 } 1103 return >t->ttm; 1104 } 1105 1106 /* 1107 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1108 * 1109 * Map the pages of a ttm_tt object to an address space visible 1110 * to the underlying device. 1111 */ 1112 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1113 struct ttm_tt *ttm, 1114 struct ttm_operation_ctx *ctx) 1115 { 1116 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1117 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1118 struct ttm_pool *pool; 1119 pgoff_t i; 1120 int ret; 1121 1122 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1123 if (gtt->userptr) { 1124 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1125 if (!ttm->sg) 1126 return -ENOMEM; 1127 return 0; 1128 } 1129 1130 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1131 return 0; 1132 1133 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1134 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1135 else 1136 pool = &adev->mman.bdev.pool; 1137 ret = ttm_pool_alloc(pool, ttm, ctx); 1138 if (ret) 1139 return ret; 1140 1141 for (i = 0; i < ttm->num_pages; ++i) 1142 ttm->pages[i]->mapping = bdev->dev_mapping; 1143 1144 return 0; 1145 } 1146 1147 /* 1148 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1149 * 1150 * Unmaps pages of a ttm_tt object from the device address space and 1151 * unpopulates the page array backing it. 1152 */ 1153 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1154 struct ttm_tt *ttm) 1155 { 1156 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1157 struct amdgpu_device *adev; 1158 struct ttm_pool *pool; 1159 pgoff_t i; 1160 1161 amdgpu_ttm_backend_unbind(bdev, ttm); 1162 1163 if (gtt->userptr) { 1164 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1165 kfree(ttm->sg); 1166 ttm->sg = NULL; 1167 return; 1168 } 1169 1170 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1171 return; 1172 1173 for (i = 0; i < ttm->num_pages; ++i) 1174 ttm->pages[i]->mapping = NULL; 1175 1176 adev = amdgpu_ttm_adev(bdev); 1177 1178 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1179 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1180 else 1181 pool = &adev->mman.bdev.pool; 1182 1183 return ttm_pool_free(pool, ttm); 1184 } 1185 1186 /** 1187 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1188 * task 1189 * 1190 * @tbo: The ttm_buffer_object that contains the userptr 1191 * @user_addr: The returned value 1192 */ 1193 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1194 uint64_t *user_addr) 1195 { 1196 struct amdgpu_ttm_tt *gtt; 1197 1198 if (!tbo->ttm) 1199 return -EINVAL; 1200 1201 gtt = (void *)tbo->ttm; 1202 *user_addr = gtt->userptr; 1203 return 0; 1204 } 1205 1206 /** 1207 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1208 * task 1209 * 1210 * @bo: The ttm_buffer_object to bind this userptr to 1211 * @addr: The address in the current tasks VM space to use 1212 * @flags: Requirements of userptr object. 1213 * 1214 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1215 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1216 * initialize GPU VM for a KFD process. 1217 */ 1218 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1219 uint64_t addr, uint32_t flags) 1220 { 1221 struct amdgpu_ttm_tt *gtt; 1222 1223 if (!bo->ttm) { 1224 /* TODO: We want a separate TTM object type for userptrs */ 1225 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1226 if (bo->ttm == NULL) 1227 return -ENOMEM; 1228 } 1229 1230 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1231 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1232 1233 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1234 gtt->userptr = addr; 1235 gtt->userflags = flags; 1236 1237 if (gtt->usertask) 1238 put_task_struct(gtt->usertask); 1239 gtt->usertask = current->group_leader; 1240 get_task_struct(gtt->usertask); 1241 1242 return 0; 1243 } 1244 1245 /* 1246 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1247 */ 1248 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1249 { 1250 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1251 1252 if (gtt == NULL) 1253 return NULL; 1254 1255 if (gtt->usertask == NULL) 1256 return NULL; 1257 1258 return gtt->usertask->mm; 1259 } 1260 1261 /* 1262 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1263 * address range for the current task. 1264 * 1265 */ 1266 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1267 unsigned long end, unsigned long *userptr) 1268 { 1269 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1270 unsigned long size; 1271 1272 if (gtt == NULL || !gtt->userptr) 1273 return false; 1274 1275 /* Return false if no part of the ttm_tt object lies within 1276 * the range 1277 */ 1278 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1279 if (gtt->userptr > end || gtt->userptr + size <= start) 1280 return false; 1281 1282 if (userptr) 1283 *userptr = gtt->userptr; 1284 return true; 1285 } 1286 1287 /* 1288 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1289 */ 1290 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1291 { 1292 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1293 1294 if (gtt == NULL || !gtt->userptr) 1295 return false; 1296 1297 return true; 1298 } 1299 1300 /* 1301 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1302 */ 1303 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1304 { 1305 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1306 1307 if (gtt == NULL) 1308 return false; 1309 1310 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1311 } 1312 1313 /** 1314 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1315 * 1316 * @ttm: The ttm_tt object to compute the flags for 1317 * @mem: The memory registry backing this ttm_tt object 1318 * 1319 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1320 */ 1321 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1322 { 1323 uint64_t flags = 0; 1324 1325 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1326 flags |= AMDGPU_PTE_VALID; 1327 1328 if (mem && (mem->mem_type == TTM_PL_TT || 1329 mem->mem_type == AMDGPU_PL_DOORBELL || 1330 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1331 flags |= AMDGPU_PTE_SYSTEM; 1332 1333 if (ttm->caching == ttm_cached) 1334 flags |= AMDGPU_PTE_SNOOPED; 1335 } 1336 1337 if (mem && mem->mem_type == TTM_PL_VRAM && 1338 mem->bus.caching == ttm_cached) 1339 flags |= AMDGPU_PTE_SNOOPED; 1340 1341 return flags; 1342 } 1343 1344 /** 1345 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1346 * 1347 * @adev: amdgpu_device pointer 1348 * @ttm: The ttm_tt object to compute the flags for 1349 * @mem: The memory registry backing this ttm_tt object 1350 * 1351 * Figure out the flags to use for a VM PTE (Page Table Entry). 1352 */ 1353 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1354 struct ttm_resource *mem) 1355 { 1356 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1357 1358 flags |= adev->gart.gart_pte_flags; 1359 flags |= AMDGPU_PTE_READABLE; 1360 1361 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1362 flags |= AMDGPU_PTE_WRITEABLE; 1363 1364 return flags; 1365 } 1366 1367 /* 1368 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1369 * object. 1370 * 1371 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1372 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1373 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1374 * used to clean out a memory space. 1375 */ 1376 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1377 const struct ttm_place *place) 1378 { 1379 struct dma_resv_iter resv_cursor; 1380 struct dma_fence *f; 1381 1382 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1383 return ttm_bo_eviction_valuable(bo, place); 1384 1385 /* Swapout? */ 1386 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1387 return true; 1388 1389 if (bo->type == ttm_bo_type_kernel && 1390 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1391 return false; 1392 1393 /* If bo is a KFD BO, check if the bo belongs to the current process. 1394 * If true, then return false as any KFD process needs all its BOs to 1395 * be resident to run successfully 1396 */ 1397 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1398 DMA_RESV_USAGE_BOOKKEEP, f) { 1399 if (amdkfd_fence_check_mm(f, current->mm)) 1400 return false; 1401 } 1402 1403 /* Preemptible BOs don't own system resources managed by the 1404 * driver (pages, VRAM, GART space). They point to resources 1405 * owned by someone else (e.g. pageable memory in user mode 1406 * or a DMABuf). They are used in a preemptible context so we 1407 * can guarantee no deadlocks and good QoS in case of MMU 1408 * notifiers or DMABuf move notifiers from the resource owner. 1409 */ 1410 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1411 return false; 1412 1413 if (bo->resource->mem_type == TTM_PL_TT && 1414 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1415 return false; 1416 1417 return ttm_bo_eviction_valuable(bo, place); 1418 } 1419 1420 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1421 void *buf, size_t size, bool write) 1422 { 1423 while (size) { 1424 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1425 uint64_t bytes = 4 - (pos & 0x3); 1426 uint32_t shift = (pos & 0x3) * 8; 1427 uint32_t mask = 0xffffffff << shift; 1428 uint32_t value = 0; 1429 1430 if (size < bytes) { 1431 mask &= 0xffffffff >> (bytes - size) * 8; 1432 bytes = size; 1433 } 1434 1435 if (mask != 0xffffffff) { 1436 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1437 if (write) { 1438 value &= ~mask; 1439 value |= (*(uint32_t *)buf << shift) & mask; 1440 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1441 } else { 1442 value = (value & mask) >> shift; 1443 memcpy(buf, &value, bytes); 1444 } 1445 } else { 1446 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1447 } 1448 1449 pos += bytes; 1450 buf += bytes; 1451 size -= bytes; 1452 } 1453 } 1454 1455 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1456 unsigned long offset, void *buf, 1457 int len, int write) 1458 { 1459 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1460 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1461 struct amdgpu_res_cursor src_mm; 1462 struct amdgpu_job *job; 1463 struct dma_fence *fence; 1464 uint64_t src_addr, dst_addr; 1465 unsigned int num_dw; 1466 int r, idx; 1467 1468 if (len != PAGE_SIZE) 1469 return -EINVAL; 1470 1471 if (!adev->mman.sdma_access_ptr) 1472 return -EACCES; 1473 1474 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1475 return -ENODEV; 1476 1477 if (write) 1478 memcpy(adev->mman.sdma_access_ptr, buf, len); 1479 1480 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1481 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1482 AMDGPU_FENCE_OWNER_UNDEFINED, 1483 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1484 &job); 1485 if (r) 1486 goto out; 1487 1488 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1489 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1490 src_mm.start; 1491 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1492 if (write) 1493 swap(src_addr, dst_addr); 1494 1495 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1496 PAGE_SIZE, 0); 1497 1498 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1499 WARN_ON(job->ibs[0].length_dw > num_dw); 1500 1501 fence = amdgpu_job_submit(job); 1502 1503 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1504 r = -ETIMEDOUT; 1505 dma_fence_put(fence); 1506 1507 if (!(r || write)) 1508 memcpy(buf, adev->mman.sdma_access_ptr, len); 1509 out: 1510 drm_dev_exit(idx); 1511 return r; 1512 } 1513 1514 /** 1515 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1516 * 1517 * @bo: The buffer object to read/write 1518 * @offset: Offset into buffer object 1519 * @buf: Secondary buffer to write/read from 1520 * @len: Length in bytes of access 1521 * @write: true if writing 1522 * 1523 * This is used to access VRAM that backs a buffer object via MMIO 1524 * access for debugging purposes. 1525 */ 1526 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1527 unsigned long offset, void *buf, int len, 1528 int write) 1529 { 1530 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1531 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1532 struct amdgpu_res_cursor cursor; 1533 int ret = 0; 1534 1535 if (bo->resource->mem_type != TTM_PL_VRAM) 1536 return -EIO; 1537 1538 if (amdgpu_device_has_timeouts_enabled(adev) && 1539 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1540 return len; 1541 1542 amdgpu_res_first(bo->resource, offset, len, &cursor); 1543 while (cursor.remaining) { 1544 size_t count, size = cursor.size; 1545 loff_t pos = cursor.start; 1546 1547 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1548 size -= count; 1549 if (size) { 1550 /* using MM to access rest vram and handle un-aligned address */ 1551 pos += count; 1552 buf += count; 1553 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1554 } 1555 1556 ret += cursor.size; 1557 buf += cursor.size; 1558 amdgpu_res_next(&cursor, cursor.size); 1559 } 1560 1561 return ret; 1562 } 1563 1564 static void 1565 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1566 { 1567 amdgpu_bo_move_notify(bo, false); 1568 } 1569 1570 static struct ttm_device_funcs amdgpu_bo_driver = { 1571 .ttm_tt_create = &amdgpu_ttm_tt_create, 1572 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1573 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1574 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1575 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1576 .evict_flags = &amdgpu_evict_flags, 1577 .move = &amdgpu_bo_move, 1578 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1579 .release_notify = &amdgpu_bo_release_notify, 1580 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1581 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1582 .access_memory = &amdgpu_ttm_access_memory, 1583 }; 1584 1585 /* 1586 * Firmware Reservation functions 1587 */ 1588 /** 1589 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1590 * 1591 * @adev: amdgpu_device pointer 1592 * 1593 * free fw reserved vram if it has been reserved. 1594 */ 1595 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1596 { 1597 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1598 NULL, &adev->mman.fw_vram_usage_va); 1599 } 1600 1601 /* 1602 * Driver Reservation functions 1603 */ 1604 /** 1605 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1606 * 1607 * @adev: amdgpu_device pointer 1608 * 1609 * free drv reserved vram if it has been reserved. 1610 */ 1611 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1612 { 1613 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1614 NULL, 1615 &adev->mman.drv_vram_usage_va); 1616 } 1617 1618 /** 1619 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1620 * 1621 * @adev: amdgpu_device pointer 1622 * 1623 * create bo vram reservation from fw. 1624 */ 1625 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1626 { 1627 uint64_t vram_size = adev->gmc.visible_vram_size; 1628 1629 adev->mman.fw_vram_usage_va = NULL; 1630 adev->mman.fw_vram_usage_reserved_bo = NULL; 1631 1632 if (adev->mman.fw_vram_usage_size == 0 || 1633 adev->mman.fw_vram_usage_size > vram_size) 1634 return 0; 1635 1636 return amdgpu_bo_create_kernel_at(adev, 1637 adev->mman.fw_vram_usage_start_offset, 1638 adev->mman.fw_vram_usage_size, 1639 &adev->mman.fw_vram_usage_reserved_bo, 1640 &adev->mman.fw_vram_usage_va); 1641 } 1642 1643 /** 1644 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1645 * 1646 * @adev: amdgpu_device pointer 1647 * 1648 * create bo vram reservation from drv. 1649 */ 1650 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1651 { 1652 u64 vram_size = adev->gmc.visible_vram_size; 1653 1654 adev->mman.drv_vram_usage_va = NULL; 1655 adev->mman.drv_vram_usage_reserved_bo = NULL; 1656 1657 if (adev->mman.drv_vram_usage_size == 0 || 1658 adev->mman.drv_vram_usage_size > vram_size) 1659 return 0; 1660 1661 return amdgpu_bo_create_kernel_at(adev, 1662 adev->mman.drv_vram_usage_start_offset, 1663 adev->mman.drv_vram_usage_size, 1664 &adev->mman.drv_vram_usage_reserved_bo, 1665 &adev->mman.drv_vram_usage_va); 1666 } 1667 1668 /* 1669 * Memoy training reservation functions 1670 */ 1671 1672 /** 1673 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1674 * 1675 * @adev: amdgpu_device pointer 1676 * 1677 * free memory training reserved vram if it has been reserved. 1678 */ 1679 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1680 { 1681 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1682 1683 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1684 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1685 ctx->c2p_bo = NULL; 1686 1687 return 0; 1688 } 1689 1690 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1691 uint32_t reserve_size) 1692 { 1693 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1694 1695 memset(ctx, 0, sizeof(*ctx)); 1696 1697 ctx->c2p_train_data_offset = 1698 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1699 ctx->p2c_train_data_offset = 1700 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1701 ctx->train_data_size = 1702 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1703 1704 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1705 ctx->train_data_size, 1706 ctx->p2c_train_data_offset, 1707 ctx->c2p_train_data_offset); 1708 } 1709 1710 /* 1711 * reserve TMR memory at the top of VRAM which holds 1712 * IP Discovery data and is protected by PSP. 1713 */ 1714 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1715 { 1716 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1717 bool mem_train_support = false; 1718 uint32_t reserve_size = 0; 1719 int ret; 1720 1721 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1722 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1723 mem_train_support = true; 1724 else 1725 DRM_DEBUG("memory training does not support!\n"); 1726 } 1727 1728 /* 1729 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1730 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1731 * 1732 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1733 * discovery data and G6 memory training data respectively 1734 */ 1735 if (adev->bios) 1736 reserve_size = 1737 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1738 1739 if (!adev->bios && 1740 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) 1741 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1742 else if (!reserve_size) 1743 reserve_size = DISCOVERY_TMR_OFFSET; 1744 1745 if (mem_train_support) { 1746 /* reserve vram for mem train according to TMR location */ 1747 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1748 ret = amdgpu_bo_create_kernel_at(adev, 1749 ctx->c2p_train_data_offset, 1750 ctx->train_data_size, 1751 &ctx->c2p_bo, 1752 NULL); 1753 if (ret) { 1754 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1755 amdgpu_ttm_training_reserve_vram_fini(adev); 1756 return ret; 1757 } 1758 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1759 } 1760 1761 if (!adev->gmc.is_app_apu) { 1762 ret = amdgpu_bo_create_kernel_at( 1763 adev, adev->gmc.real_vram_size - reserve_size, 1764 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1765 if (ret) { 1766 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1767 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1768 NULL, NULL); 1769 return ret; 1770 } 1771 } else { 1772 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1773 } 1774 1775 return 0; 1776 } 1777 1778 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1779 { 1780 int i; 1781 1782 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1783 return 0; 1784 1785 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1786 sizeof(*adev->mman.ttm_pools), 1787 GFP_KERNEL); 1788 if (!adev->mman.ttm_pools) 1789 return -ENOMEM; 1790 1791 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1792 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1793 adev->gmc.mem_partitions[i].numa.node, 1794 false, false); 1795 } 1796 return 0; 1797 } 1798 1799 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1800 { 1801 int i; 1802 1803 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1804 return; 1805 1806 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1807 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1808 1809 kfree(adev->mman.ttm_pools); 1810 adev->mman.ttm_pools = NULL; 1811 } 1812 1813 /* 1814 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1815 * gtt/vram related fields. 1816 * 1817 * This initializes all of the memory space pools that the TTM layer 1818 * will need such as the GTT space (system memory mapped to the device), 1819 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1820 * can be mapped per VMID. 1821 */ 1822 int amdgpu_ttm_init(struct amdgpu_device *adev) 1823 { 1824 uint64_t gtt_size; 1825 int r; 1826 1827 mutex_init(&adev->mman.gtt_window_lock); 1828 1829 /* No others user of address space so set it to 0 */ 1830 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1831 adev_to_drm(adev)->anon_inode->i_mapping, 1832 adev_to_drm(adev)->vma_offset_manager, 1833 adev->need_swiotlb, 1834 dma_addressing_limited(adev->dev)); 1835 if (r) { 1836 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1837 return r; 1838 } 1839 1840 r = amdgpu_ttm_pools_init(adev); 1841 if (r) { 1842 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1843 return r; 1844 } 1845 adev->mman.initialized = true; 1846 1847 /* Initialize VRAM pool with all of VRAM divided into pages */ 1848 r = amdgpu_vram_mgr_init(adev); 1849 if (r) { 1850 DRM_ERROR("Failed initializing VRAM heap.\n"); 1851 return r; 1852 } 1853 1854 /* Change the size here instead of the init above so only lpfn is affected */ 1855 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1856 #ifdef CONFIG_64BIT 1857 #ifdef CONFIG_X86 1858 if (adev->gmc.xgmi.connected_to_cpu) 1859 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1860 adev->gmc.visible_vram_size); 1861 1862 else if (adev->gmc.is_app_apu) 1863 DRM_DEBUG_DRIVER( 1864 "No need to ioremap when real vram size is 0\n"); 1865 else 1866 #endif 1867 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1868 adev->gmc.visible_vram_size); 1869 #endif 1870 1871 /* 1872 *The reserved vram for firmware must be pinned to the specified 1873 *place on the VRAM, so reserve it early. 1874 */ 1875 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1876 if (r) 1877 return r; 1878 1879 /* 1880 *The reserved vram for driver must be pinned to the specified 1881 *place on the VRAM, so reserve it early. 1882 */ 1883 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1884 if (r) 1885 return r; 1886 1887 /* 1888 * only NAVI10 and onwards ASIC support for IP discovery. 1889 * If IP discovery enabled, a block of memory should be 1890 * reserved for IP discovey. 1891 */ 1892 if (adev->mman.discovery_bin) { 1893 r = amdgpu_ttm_reserve_tmr(adev); 1894 if (r) 1895 return r; 1896 } 1897 1898 /* allocate memory as required for VGA 1899 * This is used for VGA emulation and pre-OS scanout buffers to 1900 * avoid display artifacts while transitioning between pre-OS 1901 * and driver. 1902 */ 1903 if (!adev->gmc.is_app_apu) { 1904 r = amdgpu_bo_create_kernel_at(adev, 0, 1905 adev->mman.stolen_vga_size, 1906 &adev->mman.stolen_vga_memory, 1907 NULL); 1908 if (r) 1909 return r; 1910 1911 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1912 adev->mman.stolen_extended_size, 1913 &adev->mman.stolen_extended_memory, 1914 NULL); 1915 1916 if (r) 1917 return r; 1918 1919 r = amdgpu_bo_create_kernel_at(adev, 1920 adev->mman.stolen_reserved_offset, 1921 adev->mman.stolen_reserved_size, 1922 &adev->mman.stolen_reserved_memory, 1923 NULL); 1924 if (r) 1925 return r; 1926 } else { 1927 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1928 } 1929 1930 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1931 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1932 1933 /* Compute GTT size, either based on TTM limit 1934 * or whatever the user passed on module init. 1935 */ 1936 if (amdgpu_gtt_size == -1) 1937 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1938 else 1939 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1940 1941 /* Initialize GTT memory pool */ 1942 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1943 if (r) { 1944 DRM_ERROR("Failed initializing GTT heap.\n"); 1945 return r; 1946 } 1947 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1948 (unsigned int)(gtt_size / (1024 * 1024))); 1949 1950 /* Initiailize doorbell pool on PCI BAR */ 1951 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1952 if (r) { 1953 DRM_ERROR("Failed initializing doorbell heap.\n"); 1954 return r; 1955 } 1956 1957 /* Create a boorbell page for kernel usages */ 1958 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1959 if (r) { 1960 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1961 return r; 1962 } 1963 1964 /* Initialize preemptible memory pool */ 1965 r = amdgpu_preempt_mgr_init(adev); 1966 if (r) { 1967 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1968 return r; 1969 } 1970 1971 /* Initialize various on-chip memory pools */ 1972 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1973 if (r) { 1974 DRM_ERROR("Failed initializing GDS heap.\n"); 1975 return r; 1976 } 1977 1978 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1979 if (r) { 1980 DRM_ERROR("Failed initializing gws heap.\n"); 1981 return r; 1982 } 1983 1984 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1985 if (r) { 1986 DRM_ERROR("Failed initializing oa heap.\n"); 1987 return r; 1988 } 1989 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1990 AMDGPU_GEM_DOMAIN_GTT, 1991 &adev->mman.sdma_access_bo, NULL, 1992 &adev->mman.sdma_access_ptr)) 1993 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1994 1995 return 0; 1996 } 1997 1998 /* 1999 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2000 */ 2001 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2002 { 2003 int idx; 2004 2005 if (!adev->mman.initialized) 2006 return; 2007 2008 amdgpu_ttm_pools_fini(adev); 2009 2010 amdgpu_ttm_training_reserve_vram_fini(adev); 2011 /* return the stolen vga memory back to VRAM */ 2012 if (!adev->gmc.is_app_apu) { 2013 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2014 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2015 /* return the FW reserved memory back to VRAM */ 2016 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2017 NULL); 2018 if (adev->mman.stolen_reserved_size) 2019 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2020 NULL, NULL); 2021 } 2022 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2023 &adev->mman.sdma_access_ptr); 2024 amdgpu_ttm_fw_reserve_vram_fini(adev); 2025 amdgpu_ttm_drv_reserve_vram_fini(adev); 2026 2027 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2028 2029 if (adev->mman.aper_base_kaddr) 2030 iounmap(adev->mman.aper_base_kaddr); 2031 adev->mman.aper_base_kaddr = NULL; 2032 2033 drm_dev_exit(idx); 2034 } 2035 2036 amdgpu_vram_mgr_fini(adev); 2037 amdgpu_gtt_mgr_fini(adev); 2038 amdgpu_preempt_mgr_fini(adev); 2039 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2040 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2041 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2042 ttm_device_fini(&adev->mman.bdev); 2043 adev->mman.initialized = false; 2044 DRM_INFO("amdgpu: ttm finalized\n"); 2045 } 2046 2047 /** 2048 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2049 * 2050 * @adev: amdgpu_device pointer 2051 * @enable: true when we can use buffer functions. 2052 * 2053 * Enable/disable use of buffer functions during suspend/resume. This should 2054 * only be called at bootup or when userspace isn't running. 2055 */ 2056 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2057 { 2058 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2059 uint64_t size; 2060 int r; 2061 2062 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2063 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2064 return; 2065 2066 if (enable) { 2067 struct amdgpu_ring *ring; 2068 struct drm_gpu_scheduler *sched; 2069 2070 ring = adev->mman.buffer_funcs_ring; 2071 sched = &ring->sched; 2072 r = drm_sched_entity_init(&adev->mman.high_pr, 2073 DRM_SCHED_PRIORITY_KERNEL, &sched, 2074 1, NULL); 2075 if (r) { 2076 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2077 r); 2078 return; 2079 } 2080 2081 r = drm_sched_entity_init(&adev->mman.low_pr, 2082 DRM_SCHED_PRIORITY_NORMAL, &sched, 2083 1, NULL); 2084 if (r) { 2085 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2086 r); 2087 goto error_free_entity; 2088 } 2089 } else { 2090 drm_sched_entity_destroy(&adev->mman.high_pr); 2091 drm_sched_entity_destroy(&adev->mman.low_pr); 2092 dma_fence_put(man->move); 2093 man->move = NULL; 2094 } 2095 2096 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2097 if (enable) 2098 size = adev->gmc.real_vram_size; 2099 else 2100 size = adev->gmc.visible_vram_size; 2101 man->size = size; 2102 adev->mman.buffer_funcs_enabled = enable; 2103 2104 return; 2105 2106 error_free_entity: 2107 drm_sched_entity_destroy(&adev->mman.high_pr); 2108 } 2109 2110 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2111 bool direct_submit, 2112 unsigned int num_dw, 2113 struct dma_resv *resv, 2114 bool vm_needs_flush, 2115 struct amdgpu_job **job, 2116 bool delayed) 2117 { 2118 enum amdgpu_ib_pool_type pool = direct_submit ? 2119 AMDGPU_IB_POOL_DIRECT : 2120 AMDGPU_IB_POOL_DELAYED; 2121 int r; 2122 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2123 &adev->mman.high_pr; 2124 r = amdgpu_job_alloc_with_ib(adev, entity, 2125 AMDGPU_FENCE_OWNER_UNDEFINED, 2126 num_dw * 4, pool, job); 2127 if (r) 2128 return r; 2129 2130 if (vm_needs_flush) { 2131 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2132 adev->gmc.pdb0_bo : 2133 adev->gart.bo); 2134 (*job)->vm_needs_flush = true; 2135 } 2136 if (!resv) 2137 return 0; 2138 2139 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2140 DMA_RESV_USAGE_BOOKKEEP); 2141 } 2142 2143 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2144 uint64_t dst_offset, uint32_t byte_count, 2145 struct dma_resv *resv, 2146 struct dma_fence **fence, bool direct_submit, 2147 bool vm_needs_flush, uint32_t copy_flags) 2148 { 2149 struct amdgpu_device *adev = ring->adev; 2150 unsigned int num_loops, num_dw; 2151 struct amdgpu_job *job; 2152 uint32_t max_bytes; 2153 unsigned int i; 2154 int r; 2155 2156 if (!direct_submit && !ring->sched.ready) { 2157 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2158 return -EINVAL; 2159 } 2160 2161 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2162 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2163 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2164 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2165 resv, vm_needs_flush, &job, false); 2166 if (r) 2167 return r; 2168 2169 for (i = 0; i < num_loops; i++) { 2170 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2171 2172 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2173 dst_offset, cur_size_in_bytes, copy_flags); 2174 src_offset += cur_size_in_bytes; 2175 dst_offset += cur_size_in_bytes; 2176 byte_count -= cur_size_in_bytes; 2177 } 2178 2179 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2180 WARN_ON(job->ibs[0].length_dw > num_dw); 2181 if (direct_submit) 2182 r = amdgpu_job_submit_direct(job, ring, fence); 2183 else 2184 *fence = amdgpu_job_submit(job); 2185 if (r) 2186 goto error_free; 2187 2188 return r; 2189 2190 error_free: 2191 amdgpu_job_free(job); 2192 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2193 return r; 2194 } 2195 2196 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2197 uint64_t dst_addr, uint32_t byte_count, 2198 struct dma_resv *resv, 2199 struct dma_fence **fence, 2200 bool vm_needs_flush, bool delayed) 2201 { 2202 struct amdgpu_device *adev = ring->adev; 2203 unsigned int num_loops, num_dw; 2204 struct amdgpu_job *job; 2205 uint32_t max_bytes; 2206 unsigned int i; 2207 int r; 2208 2209 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2210 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2211 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2212 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2213 &job, delayed); 2214 if (r) 2215 return r; 2216 2217 for (i = 0; i < num_loops; i++) { 2218 uint32_t cur_size = min(byte_count, max_bytes); 2219 2220 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2221 cur_size); 2222 2223 dst_addr += cur_size; 2224 byte_count -= cur_size; 2225 } 2226 2227 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2228 WARN_ON(job->ibs[0].length_dw > num_dw); 2229 *fence = amdgpu_job_submit(job); 2230 return 0; 2231 } 2232 2233 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2234 uint32_t src_data, 2235 struct dma_resv *resv, 2236 struct dma_fence **f, 2237 bool delayed) 2238 { 2239 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2240 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2241 struct dma_fence *fence = NULL; 2242 struct amdgpu_res_cursor dst; 2243 int r; 2244 2245 if (!adev->mman.buffer_funcs_enabled) { 2246 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2247 return -EINVAL; 2248 } 2249 2250 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2251 2252 mutex_lock(&adev->mman.gtt_window_lock); 2253 while (dst.remaining) { 2254 struct dma_fence *next; 2255 uint64_t cur_size, to; 2256 2257 /* Never fill more than 256MiB at once to avoid timeouts */ 2258 cur_size = min(dst.size, 256ULL << 20); 2259 2260 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2261 1, ring, false, &cur_size, &to); 2262 if (r) 2263 goto error; 2264 2265 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2266 &next, true, delayed); 2267 if (r) 2268 goto error; 2269 2270 dma_fence_put(fence); 2271 fence = next; 2272 2273 amdgpu_res_next(&dst, cur_size); 2274 } 2275 error: 2276 mutex_unlock(&adev->mman.gtt_window_lock); 2277 if (f) 2278 *f = dma_fence_get(fence); 2279 dma_fence_put(fence); 2280 return r; 2281 } 2282 2283 /** 2284 * amdgpu_ttm_evict_resources - evict memory buffers 2285 * @adev: amdgpu device object 2286 * @mem_type: evicted BO's memory type 2287 * 2288 * Evicts all @mem_type buffers on the lru list of the memory type. 2289 * 2290 * Returns: 2291 * 0 for success or a negative error code on failure. 2292 */ 2293 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2294 { 2295 struct ttm_resource_manager *man; 2296 2297 switch (mem_type) { 2298 case TTM_PL_VRAM: 2299 case TTM_PL_TT: 2300 case AMDGPU_PL_GWS: 2301 case AMDGPU_PL_GDS: 2302 case AMDGPU_PL_OA: 2303 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2304 break; 2305 default: 2306 DRM_ERROR("Trying to evict invalid memory type\n"); 2307 return -EINVAL; 2308 } 2309 2310 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2311 } 2312 2313 #if defined(CONFIG_DEBUG_FS) 2314 2315 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2316 { 2317 struct amdgpu_device *adev = m->private; 2318 2319 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2320 } 2321 2322 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2323 2324 /* 2325 * amdgpu_ttm_vram_read - Linear read access to VRAM 2326 * 2327 * Accesses VRAM via MMIO for debugging purposes. 2328 */ 2329 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2330 size_t size, loff_t *pos) 2331 { 2332 struct amdgpu_device *adev = file_inode(f)->i_private; 2333 ssize_t result = 0; 2334 2335 if (size & 0x3 || *pos & 0x3) 2336 return -EINVAL; 2337 2338 if (*pos >= adev->gmc.mc_vram_size) 2339 return -ENXIO; 2340 2341 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2342 while (size) { 2343 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2344 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2345 2346 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2347 if (copy_to_user(buf, value, bytes)) 2348 return -EFAULT; 2349 2350 result += bytes; 2351 buf += bytes; 2352 *pos += bytes; 2353 size -= bytes; 2354 } 2355 2356 return result; 2357 } 2358 2359 /* 2360 * amdgpu_ttm_vram_write - Linear write access to VRAM 2361 * 2362 * Accesses VRAM via MMIO for debugging purposes. 2363 */ 2364 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2365 size_t size, loff_t *pos) 2366 { 2367 struct amdgpu_device *adev = file_inode(f)->i_private; 2368 ssize_t result = 0; 2369 int r; 2370 2371 if (size & 0x3 || *pos & 0x3) 2372 return -EINVAL; 2373 2374 if (*pos >= adev->gmc.mc_vram_size) 2375 return -ENXIO; 2376 2377 while (size) { 2378 uint32_t value; 2379 2380 if (*pos >= adev->gmc.mc_vram_size) 2381 return result; 2382 2383 r = get_user(value, (uint32_t *)buf); 2384 if (r) 2385 return r; 2386 2387 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2388 2389 result += 4; 2390 buf += 4; 2391 *pos += 4; 2392 size -= 4; 2393 } 2394 2395 return result; 2396 } 2397 2398 static const struct file_operations amdgpu_ttm_vram_fops = { 2399 .owner = THIS_MODULE, 2400 .read = amdgpu_ttm_vram_read, 2401 .write = amdgpu_ttm_vram_write, 2402 .llseek = default_llseek, 2403 }; 2404 2405 /* 2406 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2407 * 2408 * This function is used to read memory that has been mapped to the 2409 * GPU and the known addresses are not physical addresses but instead 2410 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2411 */ 2412 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2413 size_t size, loff_t *pos) 2414 { 2415 struct amdgpu_device *adev = file_inode(f)->i_private; 2416 struct iommu_domain *dom; 2417 ssize_t result = 0; 2418 int r; 2419 2420 /* retrieve the IOMMU domain if any for this device */ 2421 dom = iommu_get_domain_for_dev(adev->dev); 2422 2423 while (size) { 2424 phys_addr_t addr = *pos & PAGE_MASK; 2425 loff_t off = *pos & ~PAGE_MASK; 2426 size_t bytes = PAGE_SIZE - off; 2427 unsigned long pfn; 2428 struct page *p; 2429 void *ptr; 2430 2431 bytes = min(bytes, size); 2432 2433 /* Translate the bus address to a physical address. If 2434 * the domain is NULL it means there is no IOMMU active 2435 * and the address translation is the identity 2436 */ 2437 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2438 2439 pfn = addr >> PAGE_SHIFT; 2440 if (!pfn_valid(pfn)) 2441 return -EPERM; 2442 2443 p = pfn_to_page(pfn); 2444 if (p->mapping != adev->mman.bdev.dev_mapping) 2445 return -EPERM; 2446 2447 ptr = kmap_local_page(p); 2448 r = copy_to_user(buf, ptr + off, bytes); 2449 kunmap_local(ptr); 2450 if (r) 2451 return -EFAULT; 2452 2453 size -= bytes; 2454 *pos += bytes; 2455 result += bytes; 2456 } 2457 2458 return result; 2459 } 2460 2461 /* 2462 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2463 * 2464 * This function is used to write memory that has been mapped to the 2465 * GPU and the known addresses are not physical addresses but instead 2466 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2467 */ 2468 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2469 size_t size, loff_t *pos) 2470 { 2471 struct amdgpu_device *adev = file_inode(f)->i_private; 2472 struct iommu_domain *dom; 2473 ssize_t result = 0; 2474 int r; 2475 2476 dom = iommu_get_domain_for_dev(adev->dev); 2477 2478 while (size) { 2479 phys_addr_t addr = *pos & PAGE_MASK; 2480 loff_t off = *pos & ~PAGE_MASK; 2481 size_t bytes = PAGE_SIZE - off; 2482 unsigned long pfn; 2483 struct page *p; 2484 void *ptr; 2485 2486 bytes = min(bytes, size); 2487 2488 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2489 2490 pfn = addr >> PAGE_SHIFT; 2491 if (!pfn_valid(pfn)) 2492 return -EPERM; 2493 2494 p = pfn_to_page(pfn); 2495 if (p->mapping != adev->mman.bdev.dev_mapping) 2496 return -EPERM; 2497 2498 ptr = kmap_local_page(p); 2499 r = copy_from_user(ptr + off, buf, bytes); 2500 kunmap_local(ptr); 2501 if (r) 2502 return -EFAULT; 2503 2504 size -= bytes; 2505 *pos += bytes; 2506 result += bytes; 2507 } 2508 2509 return result; 2510 } 2511 2512 static const struct file_operations amdgpu_ttm_iomem_fops = { 2513 .owner = THIS_MODULE, 2514 .read = amdgpu_iomem_read, 2515 .write = amdgpu_iomem_write, 2516 .llseek = default_llseek 2517 }; 2518 2519 #endif 2520 2521 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2522 { 2523 #if defined(CONFIG_DEBUG_FS) 2524 struct drm_minor *minor = adev_to_drm(adev)->primary; 2525 struct dentry *root = minor->debugfs_root; 2526 2527 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2528 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2529 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2530 &amdgpu_ttm_iomem_fops); 2531 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2532 &amdgpu_ttm_page_pool_fops); 2533 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2534 TTM_PL_VRAM), 2535 root, "amdgpu_vram_mm"); 2536 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2537 TTM_PL_TT), 2538 root, "amdgpu_gtt_mm"); 2539 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2540 AMDGPU_PL_GDS), 2541 root, "amdgpu_gds_mm"); 2542 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2543 AMDGPU_PL_GWS), 2544 root, "amdgpu_gws_mm"); 2545 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2546 AMDGPU_PL_OA), 2547 root, "amdgpu_oa_mm"); 2548 2549 #endif 2550 } 2551