1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS("DMA_BUF"); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 case AMDGPU_PL_MMIO_REMAP: 127 placement->num_placement = 0; 128 return; 129 130 case TTM_PL_VRAM: 131 if (!adev->mman.buffer_funcs_enabled) { 132 /* Move to system memory */ 133 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 134 135 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 136 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 137 amdgpu_res_cpu_visible(adev, bo->resource)) { 138 139 /* Try evicting to the CPU inaccessible part of VRAM 140 * first, but only set GTT as busy placement, so this 141 * BO will be evicted to GTT rather than causing other 142 * BOs to be evicted from VRAM 143 */ 144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 145 AMDGPU_GEM_DOMAIN_GTT | 146 AMDGPU_GEM_DOMAIN_CPU); 147 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 148 abo->placements[0].lpfn = 0; 149 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 150 } else { 151 /* Move to GTT memory */ 152 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 153 AMDGPU_GEM_DOMAIN_CPU); 154 } 155 break; 156 case TTM_PL_TT: 157 case AMDGPU_PL_PREEMPT: 158 default: 159 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 160 break; 161 } 162 *placement = abo->placement; 163 } 164 165 /** 166 * amdgpu_ttm_map_buffer - Map memory into the GART windows 167 * @bo: buffer object to map 168 * @mem: memory object to map 169 * @mm_cur: range to map 170 * @window: which GART window to use 171 * @ring: DMA ring to use for the copy 172 * @tmz: if we should setup a TMZ enabled mapping 173 * @size: in number of bytes to map, out number of bytes mapped 174 * @addr: resulting address inside the MC address space 175 * 176 * Setup one of the GART windows to access a specific piece of memory or return 177 * the physical address for local memory. 178 */ 179 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 180 struct ttm_resource *mem, 181 struct amdgpu_res_cursor *mm_cur, 182 unsigned int window, struct amdgpu_ring *ring, 183 bool tmz, uint64_t *size, uint64_t *addr) 184 { 185 struct amdgpu_device *adev = ring->adev; 186 unsigned int offset, num_pages, num_dw, num_bytes; 187 uint64_t src_addr, dst_addr; 188 struct amdgpu_job *job; 189 void *cpu_addr; 190 uint64_t flags; 191 unsigned int i; 192 int r; 193 194 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 195 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 196 197 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 198 return -EINVAL; 199 200 /* Map only what can't be accessed directly */ 201 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 202 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 203 mm_cur->start; 204 return 0; 205 } 206 207 208 /* 209 * If start begins at an offset inside the page, then adjust the size 210 * and addr accordingly 211 */ 212 offset = mm_cur->start & ~PAGE_MASK; 213 214 num_pages = PFN_UP(*size + offset); 215 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 216 217 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 218 219 *addr = adev->gmc.gart_start; 220 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 221 AMDGPU_GPU_PAGE_SIZE; 222 *addr += offset; 223 224 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 225 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 226 227 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 228 AMDGPU_FENCE_OWNER_UNDEFINED, 229 num_dw * 4 + num_bytes, 230 AMDGPU_IB_POOL_DELAYED, &job); 231 if (r) 232 return r; 233 234 src_addr = num_dw * 4; 235 src_addr += job->ibs[0].gpu_addr; 236 237 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 238 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 239 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 240 dst_addr, num_bytes, 0); 241 242 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 243 WARN_ON(job->ibs[0].length_dw > num_dw); 244 245 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 246 if (tmz) 247 flags |= AMDGPU_PTE_TMZ; 248 249 cpu_addr = &job->ibs[0].ptr[num_dw]; 250 251 if (mem->mem_type == TTM_PL_TT) { 252 dma_addr_t *dma_addr; 253 254 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 255 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 256 } else { 257 dma_addr_t dma_address; 258 259 dma_address = mm_cur->start; 260 dma_address += adev->vm_manager.vram_base_offset; 261 262 for (i = 0; i < num_pages; ++i) { 263 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 264 flags, cpu_addr); 265 dma_address += PAGE_SIZE; 266 } 267 } 268 269 dma_fence_put(amdgpu_job_submit(job)); 270 return 0; 271 } 272 273 /** 274 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 275 * @adev: amdgpu device 276 * @src: buffer/address where to read from 277 * @dst: buffer/address where to write to 278 * @size: number of bytes to copy 279 * @tmz: if a secure copy should be used 280 * @resv: resv object to sync to 281 * @f: Returns the last fence if multiple jobs are submitted. 282 * 283 * The function copies @size bytes from {src->mem + src->offset} to 284 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 285 * move and different for a BO to BO copy. 286 * 287 */ 288 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 289 const struct amdgpu_copy_mem *src, 290 const struct amdgpu_copy_mem *dst, 291 uint64_t size, bool tmz, 292 struct dma_resv *resv, 293 struct dma_fence **f) 294 { 295 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 296 struct amdgpu_res_cursor src_mm, dst_mm; 297 struct dma_fence *fence = NULL; 298 int r = 0; 299 uint32_t copy_flags = 0; 300 struct amdgpu_bo *abo_src, *abo_dst; 301 302 if (!adev->mman.buffer_funcs_enabled) { 303 dev_err(adev->dev, 304 "Trying to move memory with ring turned off.\n"); 305 return -EINVAL; 306 } 307 308 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 309 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 310 311 mutex_lock(&adev->mman.gtt_window_lock); 312 while (src_mm.remaining) { 313 uint64_t from, to, cur_size, tiling_flags; 314 uint32_t num_type, data_format, max_com, write_compress_disable; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 abo_src = ttm_to_amdgpu_bo(src->bo); 332 abo_dst = ttm_to_amdgpu_bo(dst->bo); 333 if (tmz) 334 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 335 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 336 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM)) 337 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED; 338 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 339 (dst->mem->mem_type == TTM_PL_VRAM)) { 340 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED; 341 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags); 342 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK); 343 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE); 344 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT); 345 write_compress_disable = 346 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE); 347 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) | 348 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) | 349 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) | 350 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE, 351 write_compress_disable)); 352 } 353 354 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 355 &next, false, true, copy_flags); 356 if (r) 357 goto error; 358 359 dma_fence_put(fence); 360 fence = next; 361 362 amdgpu_res_next(&src_mm, cur_size); 363 amdgpu_res_next(&dst_mm, cur_size); 364 } 365 error: 366 mutex_unlock(&adev->mman.gtt_window_lock); 367 if (f) 368 *f = dma_fence_get(fence); 369 dma_fence_put(fence); 370 return r; 371 } 372 373 /* 374 * amdgpu_move_blit - Copy an entire buffer to another buffer 375 * 376 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 377 * help move buffers to and from VRAM. 378 */ 379 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 380 bool evict, 381 struct ttm_resource *new_mem, 382 struct ttm_resource *old_mem) 383 { 384 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 385 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 386 struct amdgpu_copy_mem src, dst; 387 struct dma_fence *fence = NULL; 388 int r; 389 390 src.bo = bo; 391 dst.bo = bo; 392 src.mem = old_mem; 393 dst.mem = new_mem; 394 src.offset = 0; 395 dst.offset = 0; 396 397 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 398 new_mem->size, 399 amdgpu_bo_encrypted(abo), 400 bo->base.resv, &fence); 401 if (r) 402 goto error; 403 404 /* clear the space being freed */ 405 if (old_mem->mem_type == TTM_PL_VRAM && 406 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 407 struct dma_fence *wipe_fence = NULL; 408 409 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 410 false); 411 if (r) { 412 goto error; 413 } else if (wipe_fence) { 414 amdgpu_vram_mgr_set_cleared(bo->resource); 415 dma_fence_put(fence); 416 fence = wipe_fence; 417 } 418 } 419 420 /* Always block for VM page tables before committing the new location */ 421 if (bo->type == ttm_bo_type_kernel) 422 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 423 else 424 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 425 dma_fence_put(fence); 426 return r; 427 428 error: 429 if (fence) 430 dma_fence_wait(fence, false); 431 dma_fence_put(fence); 432 return r; 433 } 434 435 /** 436 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 437 * @adev: amdgpu device 438 * @res: the resource to check 439 * 440 * Returns: true if the full resource is CPU visible, false otherwise. 441 */ 442 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 443 struct ttm_resource *res) 444 { 445 struct amdgpu_res_cursor cursor; 446 447 if (!res) 448 return false; 449 450 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 451 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL || 452 res->mem_type == AMDGPU_PL_MMIO_REMAP) 453 return true; 454 455 if (res->mem_type != TTM_PL_VRAM) 456 return false; 457 458 amdgpu_res_first(res, 0, res->size, &cursor); 459 while (cursor.remaining) { 460 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 461 return false; 462 amdgpu_res_next(&cursor, cursor.size); 463 } 464 465 return true; 466 } 467 468 /* 469 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 470 * 471 * Called by amdgpu_bo_move() 472 */ 473 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 474 struct ttm_resource *mem) 475 { 476 if (!amdgpu_res_cpu_visible(adev, mem)) 477 return false; 478 479 /* ttm_resource_ioremap only supports contiguous memory */ 480 if (mem->mem_type == TTM_PL_VRAM && 481 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 482 return false; 483 484 return true; 485 } 486 487 /* 488 * amdgpu_bo_move - Move a buffer object to a new memory location 489 * 490 * Called by ttm_bo_handle_move_mem() 491 */ 492 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 493 struct ttm_operation_ctx *ctx, 494 struct ttm_resource *new_mem, 495 struct ttm_place *hop) 496 { 497 struct amdgpu_device *adev; 498 struct amdgpu_bo *abo; 499 struct ttm_resource *old_mem = bo->resource; 500 int r; 501 502 if (new_mem->mem_type == TTM_PL_TT || 503 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 504 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 505 if (r) 506 return r; 507 } 508 509 abo = ttm_to_amdgpu_bo(bo); 510 adev = amdgpu_ttm_adev(bo->bdev); 511 512 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 513 bo->ttm == NULL)) { 514 amdgpu_bo_move_notify(bo, evict, new_mem); 515 ttm_bo_move_null(bo, new_mem); 516 return 0; 517 } 518 if (old_mem->mem_type == TTM_PL_SYSTEM && 519 (new_mem->mem_type == TTM_PL_TT || 520 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 521 amdgpu_bo_move_notify(bo, evict, new_mem); 522 ttm_bo_move_null(bo, new_mem); 523 return 0; 524 } 525 if ((old_mem->mem_type == TTM_PL_TT || 526 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 527 new_mem->mem_type == TTM_PL_SYSTEM) { 528 r = ttm_bo_wait_ctx(bo, ctx); 529 if (r) 530 return r; 531 532 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 533 amdgpu_bo_move_notify(bo, evict, new_mem); 534 ttm_resource_free(bo, &bo->resource); 535 ttm_bo_assign_mem(bo, new_mem); 536 return 0; 537 } 538 539 if (old_mem->mem_type == AMDGPU_PL_GDS || 540 old_mem->mem_type == AMDGPU_PL_GWS || 541 old_mem->mem_type == AMDGPU_PL_OA || 542 old_mem->mem_type == AMDGPU_PL_DOORBELL || 543 old_mem->mem_type == AMDGPU_PL_MMIO_REMAP || 544 new_mem->mem_type == AMDGPU_PL_GDS || 545 new_mem->mem_type == AMDGPU_PL_GWS || 546 new_mem->mem_type == AMDGPU_PL_OA || 547 new_mem->mem_type == AMDGPU_PL_DOORBELL || 548 new_mem->mem_type == AMDGPU_PL_MMIO_REMAP) { 549 /* Nothing to save here */ 550 amdgpu_bo_move_notify(bo, evict, new_mem); 551 ttm_bo_move_null(bo, new_mem); 552 return 0; 553 } 554 555 if (bo->type == ttm_bo_type_device && 556 new_mem->mem_type == TTM_PL_VRAM && 557 old_mem->mem_type != TTM_PL_VRAM) { 558 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 559 * accesses the BO after it's moved. 560 */ 561 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 562 } 563 564 if (adev->mman.buffer_funcs_enabled && 565 ((old_mem->mem_type == TTM_PL_SYSTEM && 566 new_mem->mem_type == TTM_PL_VRAM) || 567 (old_mem->mem_type == TTM_PL_VRAM && 568 new_mem->mem_type == TTM_PL_SYSTEM))) { 569 hop->fpfn = 0; 570 hop->lpfn = 0; 571 hop->mem_type = TTM_PL_TT; 572 hop->flags = TTM_PL_FLAG_TEMPORARY; 573 return -EMULTIHOP; 574 } 575 576 amdgpu_bo_move_notify(bo, evict, new_mem); 577 if (adev->mman.buffer_funcs_enabled) 578 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 579 else 580 r = -ENODEV; 581 582 if (r) { 583 /* Check that all memory is CPU accessible */ 584 if (!amdgpu_res_copyable(adev, old_mem) || 585 !amdgpu_res_copyable(adev, new_mem)) { 586 pr_err("Move buffer fallback to memcpy unavailable\n"); 587 return r; 588 } 589 590 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 591 if (r) 592 return r; 593 } 594 595 /* update statistics after the move */ 596 if (evict) 597 atomic64_inc(&adev->num_evictions); 598 atomic64_add(bo->base.size, &adev->num_bytes_moved); 599 return 0; 600 } 601 602 /* 603 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 604 * 605 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 606 */ 607 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 608 struct ttm_resource *mem) 609 { 610 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 611 612 switch (mem->mem_type) { 613 case TTM_PL_SYSTEM: 614 /* system memory */ 615 return 0; 616 case TTM_PL_TT: 617 case AMDGPU_PL_PREEMPT: 618 break; 619 case TTM_PL_VRAM: 620 mem->bus.offset = mem->start << PAGE_SHIFT; 621 622 if (adev->mman.aper_base_kaddr && 623 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 624 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 625 mem->bus.offset; 626 627 mem->bus.offset += adev->gmc.aper_base; 628 mem->bus.is_iomem = true; 629 break; 630 case AMDGPU_PL_DOORBELL: 631 mem->bus.offset = mem->start << PAGE_SHIFT; 632 mem->bus.offset += adev->doorbell.base; 633 mem->bus.is_iomem = true; 634 mem->bus.caching = ttm_uncached; 635 break; 636 case AMDGPU_PL_MMIO_REMAP: 637 mem->bus.offset = mem->start << PAGE_SHIFT; 638 mem->bus.offset += adev->rmmio_remap.bus_addr; 639 mem->bus.is_iomem = true; 640 mem->bus.caching = ttm_uncached; 641 break; 642 default: 643 return -EINVAL; 644 } 645 return 0; 646 } 647 648 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 649 unsigned long page_offset) 650 { 651 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 652 struct amdgpu_res_cursor cursor; 653 654 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 655 &cursor); 656 657 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 658 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 659 else if (bo->resource->mem_type == AMDGPU_PL_MMIO_REMAP) 660 return ((uint64_t)(adev->rmmio_remap.bus_addr + cursor.start)) >> PAGE_SHIFT; 661 662 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 663 } 664 665 /** 666 * amdgpu_ttm_domain_start - Returns GPU start address 667 * @adev: amdgpu device object 668 * @type: type of the memory 669 * 670 * Returns: 671 * GPU start address of a memory domain 672 */ 673 674 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 675 { 676 switch (type) { 677 case TTM_PL_TT: 678 return adev->gmc.gart_start; 679 case TTM_PL_VRAM: 680 return adev->gmc.vram_start; 681 } 682 683 return 0; 684 } 685 686 /* 687 * TTM backend functions. 688 */ 689 struct amdgpu_ttm_tt { 690 struct ttm_tt ttm; 691 struct drm_gem_object *gobj; 692 u64 offset; 693 uint64_t userptr; 694 struct task_struct *usertask; 695 uint32_t userflags; 696 bool bound; 697 int32_t pool_id; 698 }; 699 700 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 701 702 #ifdef CONFIG_DRM_AMDGPU_USERPTR 703 /* 704 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 705 * memory and start HMM tracking CPU page table update 706 * 707 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 708 * once afterwards to stop HMM tracking 709 */ 710 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 711 struct hmm_range **range) 712 { 713 struct ttm_tt *ttm = bo->tbo.ttm; 714 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 715 unsigned long start = gtt->userptr; 716 struct vm_area_struct *vma; 717 struct mm_struct *mm; 718 bool readonly; 719 int r = 0; 720 721 /* Make sure get_user_pages_done() can cleanup gracefully */ 722 *range = NULL; 723 724 mm = bo->notifier.mm; 725 if (unlikely(!mm)) { 726 DRM_DEBUG_DRIVER("BO is not registered?\n"); 727 return -EFAULT; 728 } 729 730 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 731 return -ESRCH; 732 733 mmap_read_lock(mm); 734 vma = vma_lookup(mm, start); 735 if (unlikely(!vma)) { 736 r = -EFAULT; 737 goto out_unlock; 738 } 739 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 740 vma->vm_file)) { 741 r = -EPERM; 742 goto out_unlock; 743 } 744 745 readonly = amdgpu_ttm_tt_is_readonly(ttm); 746 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 747 readonly, NULL, pages, range); 748 out_unlock: 749 mmap_read_unlock(mm); 750 if (r) 751 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 752 753 mmput(mm); 754 755 return r; 756 } 757 758 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 759 */ 760 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 761 struct hmm_range *range) 762 { 763 struct amdgpu_ttm_tt *gtt = (void *)ttm; 764 765 if (gtt && gtt->userptr && range) 766 amdgpu_hmm_range_get_pages_done(range); 767 } 768 769 /* 770 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 771 * Check if the pages backing this ttm range have been invalidated 772 * 773 * Returns: true if pages are still valid 774 */ 775 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 776 struct hmm_range *range) 777 { 778 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 779 780 if (!gtt || !gtt->userptr || !range) 781 return false; 782 783 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 784 gtt->userptr, ttm->num_pages); 785 786 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 787 788 return !amdgpu_hmm_range_get_pages_done(range); 789 } 790 #endif 791 792 /* 793 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 794 * 795 * Called by amdgpu_cs_list_validate(). This creates the page list 796 * that backs user memory and will ultimately be mapped into the device 797 * address space. 798 */ 799 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 800 { 801 unsigned long i; 802 803 for (i = 0; i < ttm->num_pages; ++i) 804 ttm->pages[i] = pages ? pages[i] : NULL; 805 } 806 807 /* 808 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 809 * 810 * Called by amdgpu_ttm_backend_bind() 811 **/ 812 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 813 struct ttm_tt *ttm) 814 { 815 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 816 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 817 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 818 enum dma_data_direction direction = write ? 819 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 820 int r; 821 822 /* Allocate an SG array and squash pages into it */ 823 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 824 (u64)ttm->num_pages << PAGE_SHIFT, 825 GFP_KERNEL); 826 if (r) 827 goto release_sg; 828 829 /* Map SG to device */ 830 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 831 if (r) 832 goto release_sg_table; 833 834 /* convert SG to linear array of pages and dma addresses */ 835 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 836 ttm->num_pages); 837 838 return 0; 839 840 release_sg_table: 841 sg_free_table(ttm->sg); 842 release_sg: 843 kfree(ttm->sg); 844 ttm->sg = NULL; 845 return r; 846 } 847 848 /* 849 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 850 */ 851 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 852 struct ttm_tt *ttm) 853 { 854 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 855 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 856 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 857 enum dma_data_direction direction = write ? 858 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 859 860 /* double check that we don't free the table twice */ 861 if (!ttm->sg || !ttm->sg->sgl) 862 return; 863 864 /* unmap the pages mapped to the device */ 865 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 866 sg_free_table(ttm->sg); 867 } 868 869 /* 870 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 871 * MQDn+CtrlStackn where n is the number of XCCs per partition. 872 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 873 * and uses memory type default, UC. The rest of pages_per_xcc are 874 * Ctrl stack and modify their memory type to NC. 875 */ 876 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 877 struct ttm_tt *ttm, uint64_t flags) 878 { 879 struct amdgpu_ttm_tt *gtt = (void *)ttm; 880 uint64_t total_pages = ttm->num_pages; 881 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 882 uint64_t page_idx, pages_per_xcc; 883 int i; 884 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC); 885 886 pages_per_xcc = total_pages; 887 do_div(pages_per_xcc, num_xcc); 888 889 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 890 /* MQD page: use default flags */ 891 amdgpu_gart_bind(adev, 892 gtt->offset + (page_idx << PAGE_SHIFT), 893 1, >t->ttm.dma_address[page_idx], flags); 894 /* 895 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 896 * the second page of the BO onward. 897 */ 898 amdgpu_gart_bind(adev, 899 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 900 pages_per_xcc - 1, 901 >t->ttm.dma_address[page_idx + 1], 902 ctrl_flags); 903 } 904 } 905 906 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 907 struct ttm_buffer_object *tbo, 908 uint64_t flags) 909 { 910 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 911 struct ttm_tt *ttm = tbo->ttm; 912 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 913 914 if (amdgpu_bo_encrypted(abo)) 915 flags |= AMDGPU_PTE_TMZ; 916 917 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 918 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 919 } else { 920 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 921 gtt->ttm.dma_address, flags); 922 } 923 gtt->bound = true; 924 } 925 926 /* 927 * amdgpu_ttm_backend_bind - Bind GTT memory 928 * 929 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 930 * This handles binding GTT memory to the device address space. 931 */ 932 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 933 struct ttm_tt *ttm, 934 struct ttm_resource *bo_mem) 935 { 936 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 937 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 938 uint64_t flags; 939 int r; 940 941 if (!bo_mem) 942 return -EINVAL; 943 944 if (gtt->bound) 945 return 0; 946 947 if (gtt->userptr) { 948 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 949 if (r) { 950 dev_err(adev->dev, "failed to pin userptr\n"); 951 return r; 952 } 953 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 954 if (!ttm->sg) { 955 struct dma_buf_attachment *attach; 956 struct sg_table *sgt; 957 958 attach = gtt->gobj->import_attach; 959 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 960 if (IS_ERR(sgt)) 961 return PTR_ERR(sgt); 962 963 ttm->sg = sgt; 964 } 965 966 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 967 ttm->num_pages); 968 } 969 970 if (!ttm->num_pages) { 971 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 972 ttm->num_pages, bo_mem, ttm); 973 } 974 975 if (bo_mem->mem_type != TTM_PL_TT || 976 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 977 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 978 return 0; 979 } 980 981 /* compute PTE flags relevant to this BO memory */ 982 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 983 984 /* bind pages into GART page tables */ 985 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 986 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 987 gtt->ttm.dma_address, flags); 988 gtt->bound = true; 989 return 0; 990 } 991 992 /* 993 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 994 * through AGP or GART aperture. 995 * 996 * If bo is accessible through AGP aperture, then use AGP aperture 997 * to access bo; otherwise allocate logical space in GART aperture 998 * and map bo to GART aperture. 999 */ 1000 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1001 { 1002 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1003 struct ttm_operation_ctx ctx = { false, false }; 1004 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1005 struct ttm_placement placement; 1006 struct ttm_place placements; 1007 struct ttm_resource *tmp; 1008 uint64_t addr, flags; 1009 int r; 1010 1011 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 1012 return 0; 1013 1014 addr = amdgpu_gmc_agp_addr(bo); 1015 if (addr != AMDGPU_BO_INVALID_OFFSET) 1016 return 0; 1017 1018 /* allocate GART space */ 1019 placement.num_placement = 1; 1020 placement.placement = &placements; 1021 placements.fpfn = 0; 1022 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1023 placements.mem_type = TTM_PL_TT; 1024 placements.flags = bo->resource->placement; 1025 1026 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1027 if (unlikely(r)) 1028 return r; 1029 1030 /* compute PTE flags for this buffer object */ 1031 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 1032 1033 /* Bind pages */ 1034 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1035 amdgpu_ttm_gart_bind(adev, bo, flags); 1036 amdgpu_gart_invalidate_tlb(adev); 1037 ttm_resource_free(bo, &bo->resource); 1038 ttm_bo_assign_mem(bo, tmp); 1039 1040 return 0; 1041 } 1042 1043 /* 1044 * amdgpu_ttm_recover_gart - Rebind GTT pages 1045 * 1046 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1047 * rebind GTT pages during a GPU reset. 1048 */ 1049 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1050 { 1051 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1052 uint64_t flags; 1053 1054 if (!tbo->ttm) 1055 return; 1056 1057 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1058 amdgpu_ttm_gart_bind(adev, tbo, flags); 1059 } 1060 1061 /* 1062 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1063 * 1064 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1065 * ttm_tt_destroy(). 1066 */ 1067 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1068 struct ttm_tt *ttm) 1069 { 1070 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1071 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1072 1073 /* if the pages have userptr pinning then clear that first */ 1074 if (gtt->userptr) { 1075 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1076 } else if (ttm->sg && drm_gem_is_imported(gtt->gobj)) { 1077 struct dma_buf_attachment *attach; 1078 1079 attach = gtt->gobj->import_attach; 1080 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1081 ttm->sg = NULL; 1082 } 1083 1084 if (!gtt->bound) 1085 return; 1086 1087 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1088 return; 1089 1090 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1091 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1092 gtt->bound = false; 1093 } 1094 1095 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1096 struct ttm_tt *ttm) 1097 { 1098 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1099 1100 if (gtt->usertask) 1101 put_task_struct(gtt->usertask); 1102 1103 ttm_tt_fini(>t->ttm); 1104 kfree(gtt); 1105 } 1106 1107 /** 1108 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1109 * 1110 * @bo: The buffer object to create a GTT ttm_tt object around 1111 * @page_flags: Page flags to be added to the ttm_tt object 1112 * 1113 * Called by ttm_tt_create(). 1114 */ 1115 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1116 uint32_t page_flags) 1117 { 1118 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1119 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1120 struct amdgpu_ttm_tt *gtt; 1121 enum ttm_caching caching; 1122 1123 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1124 if (!gtt) 1125 return NULL; 1126 1127 gtt->gobj = &bo->base; 1128 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1129 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1130 else 1131 gtt->pool_id = abo->xcp_id; 1132 1133 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1134 caching = ttm_write_combined; 1135 else 1136 caching = ttm_cached; 1137 1138 /* allocate space for the uninitialized page entries */ 1139 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1140 kfree(gtt); 1141 return NULL; 1142 } 1143 return >t->ttm; 1144 } 1145 1146 /* 1147 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1148 * 1149 * Map the pages of a ttm_tt object to an address space visible 1150 * to the underlying device. 1151 */ 1152 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1153 struct ttm_tt *ttm, 1154 struct ttm_operation_ctx *ctx) 1155 { 1156 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1157 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1158 struct ttm_pool *pool; 1159 pgoff_t i; 1160 int ret; 1161 1162 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1163 if (gtt->userptr) { 1164 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1165 if (!ttm->sg) 1166 return -ENOMEM; 1167 return 0; 1168 } 1169 1170 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1171 return 0; 1172 1173 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1174 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1175 else 1176 pool = &adev->mman.bdev.pool; 1177 ret = ttm_pool_alloc(pool, ttm, ctx); 1178 if (ret) 1179 return ret; 1180 1181 for (i = 0; i < ttm->num_pages; ++i) 1182 ttm->pages[i]->mapping = bdev->dev_mapping; 1183 1184 return 0; 1185 } 1186 1187 /* 1188 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1189 * 1190 * Unmaps pages of a ttm_tt object from the device address space and 1191 * unpopulates the page array backing it. 1192 */ 1193 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1194 struct ttm_tt *ttm) 1195 { 1196 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1197 struct amdgpu_device *adev; 1198 struct ttm_pool *pool; 1199 pgoff_t i; 1200 1201 amdgpu_ttm_backend_unbind(bdev, ttm); 1202 1203 if (gtt->userptr) { 1204 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1205 kfree(ttm->sg); 1206 ttm->sg = NULL; 1207 return; 1208 } 1209 1210 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1211 return; 1212 1213 for (i = 0; i < ttm->num_pages; ++i) 1214 ttm->pages[i]->mapping = NULL; 1215 1216 adev = amdgpu_ttm_adev(bdev); 1217 1218 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1219 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1220 else 1221 pool = &adev->mman.bdev.pool; 1222 1223 return ttm_pool_free(pool, ttm); 1224 } 1225 1226 /** 1227 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1228 * task 1229 * 1230 * @tbo: The ttm_buffer_object that contains the userptr 1231 * @user_addr: The returned value 1232 */ 1233 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1234 uint64_t *user_addr) 1235 { 1236 struct amdgpu_ttm_tt *gtt; 1237 1238 if (!tbo->ttm) 1239 return -EINVAL; 1240 1241 gtt = (void *)tbo->ttm; 1242 *user_addr = gtt->userptr; 1243 return 0; 1244 } 1245 1246 /** 1247 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1248 * task 1249 * 1250 * @bo: The ttm_buffer_object to bind this userptr to 1251 * @addr: The address in the current tasks VM space to use 1252 * @flags: Requirements of userptr object. 1253 * 1254 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1255 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1256 * initialize GPU VM for a KFD process. 1257 */ 1258 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1259 uint64_t addr, uint32_t flags) 1260 { 1261 struct amdgpu_ttm_tt *gtt; 1262 1263 if (!bo->ttm) { 1264 /* TODO: We want a separate TTM object type for userptrs */ 1265 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1266 if (bo->ttm == NULL) 1267 return -ENOMEM; 1268 } 1269 1270 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1271 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1272 1273 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1274 gtt->userptr = addr; 1275 gtt->userflags = flags; 1276 1277 if (gtt->usertask) 1278 put_task_struct(gtt->usertask); 1279 gtt->usertask = current->group_leader; 1280 get_task_struct(gtt->usertask); 1281 1282 return 0; 1283 } 1284 1285 /* 1286 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1287 */ 1288 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1289 { 1290 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1291 1292 if (gtt == NULL) 1293 return NULL; 1294 1295 if (gtt->usertask == NULL) 1296 return NULL; 1297 1298 return gtt->usertask->mm; 1299 } 1300 1301 /* 1302 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1303 * address range for the current task. 1304 * 1305 */ 1306 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1307 unsigned long end, unsigned long *userptr) 1308 { 1309 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1310 unsigned long size; 1311 1312 if (gtt == NULL || !gtt->userptr) 1313 return false; 1314 1315 /* Return false if no part of the ttm_tt object lies within 1316 * the range 1317 */ 1318 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1319 if (gtt->userptr > end || gtt->userptr + size <= start) 1320 return false; 1321 1322 if (userptr) 1323 *userptr = gtt->userptr; 1324 return true; 1325 } 1326 1327 /* 1328 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1329 */ 1330 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1331 { 1332 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1333 1334 if (gtt == NULL || !gtt->userptr) 1335 return false; 1336 1337 return true; 1338 } 1339 1340 /* 1341 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1342 */ 1343 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1344 { 1345 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1346 1347 if (gtt == NULL) 1348 return false; 1349 1350 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1351 } 1352 1353 /** 1354 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1355 * 1356 * @ttm: The ttm_tt object to compute the flags for 1357 * @mem: The memory registry backing this ttm_tt object 1358 * 1359 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1360 */ 1361 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1362 { 1363 uint64_t flags = 0; 1364 1365 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1366 flags |= AMDGPU_PTE_VALID; 1367 1368 if (mem && (mem->mem_type == TTM_PL_TT || 1369 mem->mem_type == AMDGPU_PL_DOORBELL || 1370 mem->mem_type == AMDGPU_PL_PREEMPT || 1371 mem->mem_type == AMDGPU_PL_MMIO_REMAP)) { 1372 flags |= AMDGPU_PTE_SYSTEM; 1373 1374 if (ttm->caching == ttm_cached) 1375 flags |= AMDGPU_PTE_SNOOPED; 1376 } 1377 1378 if (mem && mem->mem_type == TTM_PL_VRAM && 1379 mem->bus.caching == ttm_cached) 1380 flags |= AMDGPU_PTE_SNOOPED; 1381 1382 return flags; 1383 } 1384 1385 /** 1386 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1387 * 1388 * @adev: amdgpu_device pointer 1389 * @ttm: The ttm_tt object to compute the flags for 1390 * @mem: The memory registry backing this ttm_tt object 1391 * 1392 * Figure out the flags to use for a VM PTE (Page Table Entry). 1393 */ 1394 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1395 struct ttm_resource *mem) 1396 { 1397 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1398 1399 flags |= adev->gart.gart_pte_flags; 1400 flags |= AMDGPU_PTE_READABLE; 1401 1402 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1403 flags |= AMDGPU_PTE_WRITEABLE; 1404 1405 return flags; 1406 } 1407 1408 /* 1409 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1410 * object. 1411 * 1412 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1413 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1414 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1415 * used to clean out a memory space. 1416 */ 1417 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1418 const struct ttm_place *place) 1419 { 1420 struct dma_resv_iter resv_cursor; 1421 struct dma_fence *f; 1422 1423 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1424 return ttm_bo_eviction_valuable(bo, place); 1425 1426 /* Swapout? */ 1427 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1428 return true; 1429 1430 if (bo->type == ttm_bo_type_kernel && 1431 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1432 return false; 1433 1434 /* If bo is a KFD BO, check if the bo belongs to the current process. 1435 * If true, then return false as any KFD process needs all its BOs to 1436 * be resident to run successfully 1437 */ 1438 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1439 DMA_RESV_USAGE_BOOKKEEP, f) { 1440 if (amdkfd_fence_check_mm(f, current->mm) && 1441 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1442 return false; 1443 } 1444 1445 /* Preemptible BOs don't own system resources managed by the 1446 * driver (pages, VRAM, GART space). They point to resources 1447 * owned by someone else (e.g. pageable memory in user mode 1448 * or a DMABuf). They are used in a preemptible context so we 1449 * can guarantee no deadlocks and good QoS in case of MMU 1450 * notifiers or DMABuf move notifiers from the resource owner. 1451 */ 1452 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1453 return false; 1454 1455 if (bo->resource->mem_type == TTM_PL_TT && 1456 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1457 return false; 1458 1459 return ttm_bo_eviction_valuable(bo, place); 1460 } 1461 1462 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1463 void *buf, size_t size, bool write) 1464 { 1465 while (size) { 1466 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1467 uint64_t bytes = 4 - (pos & 0x3); 1468 uint32_t shift = (pos & 0x3) * 8; 1469 uint32_t mask = 0xffffffff << shift; 1470 uint32_t value = 0; 1471 1472 if (size < bytes) { 1473 mask &= 0xffffffff >> (bytes - size) * 8; 1474 bytes = size; 1475 } 1476 1477 if (mask != 0xffffffff) { 1478 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1479 if (write) { 1480 value &= ~mask; 1481 value |= (*(uint32_t *)buf << shift) & mask; 1482 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1483 } else { 1484 value = (value & mask) >> shift; 1485 memcpy(buf, &value, bytes); 1486 } 1487 } else { 1488 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1489 } 1490 1491 pos += bytes; 1492 buf += bytes; 1493 size -= bytes; 1494 } 1495 } 1496 1497 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1498 unsigned long offset, void *buf, 1499 int len, int write) 1500 { 1501 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1502 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1503 struct amdgpu_res_cursor src_mm; 1504 struct amdgpu_job *job; 1505 struct dma_fence *fence; 1506 uint64_t src_addr, dst_addr; 1507 unsigned int num_dw; 1508 int r, idx; 1509 1510 if (len != PAGE_SIZE) 1511 return -EINVAL; 1512 1513 if (!adev->mman.sdma_access_ptr) 1514 return -EACCES; 1515 1516 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1517 return -ENODEV; 1518 1519 if (write) 1520 memcpy(adev->mman.sdma_access_ptr, buf, len); 1521 1522 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1523 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1524 AMDGPU_FENCE_OWNER_UNDEFINED, 1525 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1526 &job); 1527 if (r) 1528 goto out; 1529 1530 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1531 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1532 src_mm.start; 1533 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1534 if (write) 1535 swap(src_addr, dst_addr); 1536 1537 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1538 PAGE_SIZE, 0); 1539 1540 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1541 WARN_ON(job->ibs[0].length_dw > num_dw); 1542 1543 fence = amdgpu_job_submit(job); 1544 1545 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1546 r = -ETIMEDOUT; 1547 dma_fence_put(fence); 1548 1549 if (!(r || write)) 1550 memcpy(buf, adev->mman.sdma_access_ptr, len); 1551 out: 1552 drm_dev_exit(idx); 1553 return r; 1554 } 1555 1556 /** 1557 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1558 * 1559 * @bo: The buffer object to read/write 1560 * @offset: Offset into buffer object 1561 * @buf: Secondary buffer to write/read from 1562 * @len: Length in bytes of access 1563 * @write: true if writing 1564 * 1565 * This is used to access VRAM that backs a buffer object via MMIO 1566 * access for debugging purposes. 1567 */ 1568 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1569 unsigned long offset, void *buf, int len, 1570 int write) 1571 { 1572 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1573 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1574 struct amdgpu_res_cursor cursor; 1575 int ret = 0; 1576 1577 if (bo->resource->mem_type != TTM_PL_VRAM) 1578 return -EIO; 1579 1580 if (amdgpu_device_has_timeouts_enabled(adev) && 1581 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1582 return len; 1583 1584 amdgpu_res_first(bo->resource, offset, len, &cursor); 1585 while (cursor.remaining) { 1586 size_t count, size = cursor.size; 1587 loff_t pos = cursor.start; 1588 1589 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1590 size -= count; 1591 if (size) { 1592 /* using MM to access rest vram and handle un-aligned address */ 1593 pos += count; 1594 buf += count; 1595 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1596 } 1597 1598 ret += cursor.size; 1599 buf += cursor.size; 1600 amdgpu_res_next(&cursor, cursor.size); 1601 } 1602 1603 return ret; 1604 } 1605 1606 static void 1607 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1608 { 1609 amdgpu_bo_move_notify(bo, false, NULL); 1610 } 1611 1612 static struct ttm_device_funcs amdgpu_bo_driver = { 1613 .ttm_tt_create = &amdgpu_ttm_tt_create, 1614 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1615 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1616 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1617 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1618 .evict_flags = &amdgpu_evict_flags, 1619 .move = &amdgpu_bo_move, 1620 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1621 .release_notify = &amdgpu_bo_release_notify, 1622 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1623 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1624 .access_memory = &amdgpu_ttm_access_memory, 1625 }; 1626 1627 /* 1628 * Firmware Reservation functions 1629 */ 1630 /** 1631 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1632 * 1633 * @adev: amdgpu_device pointer 1634 * 1635 * free fw reserved vram if it has been reserved. 1636 */ 1637 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1638 { 1639 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1640 NULL, &adev->mman.fw_vram_usage_va); 1641 } 1642 1643 /* 1644 * Driver Reservation functions 1645 */ 1646 /** 1647 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1648 * 1649 * @adev: amdgpu_device pointer 1650 * 1651 * free drv reserved vram if it has been reserved. 1652 */ 1653 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1654 { 1655 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1656 NULL, 1657 &adev->mman.drv_vram_usage_va); 1658 } 1659 1660 /** 1661 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1662 * 1663 * @adev: amdgpu_device pointer 1664 * 1665 * create bo vram reservation from fw. 1666 */ 1667 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1668 { 1669 uint64_t vram_size = adev->gmc.visible_vram_size; 1670 1671 adev->mman.fw_vram_usage_va = NULL; 1672 adev->mman.fw_vram_usage_reserved_bo = NULL; 1673 1674 if (adev->mman.fw_vram_usage_size == 0 || 1675 adev->mman.fw_vram_usage_size > vram_size) 1676 return 0; 1677 1678 return amdgpu_bo_create_kernel_at(adev, 1679 adev->mman.fw_vram_usage_start_offset, 1680 adev->mman.fw_vram_usage_size, 1681 &adev->mman.fw_vram_usage_reserved_bo, 1682 &adev->mman.fw_vram_usage_va); 1683 } 1684 1685 /** 1686 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1687 * 1688 * @adev: amdgpu_device pointer 1689 * 1690 * create bo vram reservation from drv. 1691 */ 1692 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1693 { 1694 u64 vram_size = adev->gmc.visible_vram_size; 1695 1696 adev->mman.drv_vram_usage_va = NULL; 1697 adev->mman.drv_vram_usage_reserved_bo = NULL; 1698 1699 if (adev->mman.drv_vram_usage_size == 0 || 1700 adev->mman.drv_vram_usage_size > vram_size) 1701 return 0; 1702 1703 return amdgpu_bo_create_kernel_at(adev, 1704 adev->mman.drv_vram_usage_start_offset, 1705 adev->mman.drv_vram_usage_size, 1706 &adev->mman.drv_vram_usage_reserved_bo, 1707 &adev->mman.drv_vram_usage_va); 1708 } 1709 1710 /* 1711 * Memoy training reservation functions 1712 */ 1713 1714 /** 1715 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1716 * 1717 * @adev: amdgpu_device pointer 1718 * 1719 * free memory training reserved vram if it has been reserved. 1720 */ 1721 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1722 { 1723 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1724 1725 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1726 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1727 ctx->c2p_bo = NULL; 1728 1729 return 0; 1730 } 1731 1732 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1733 uint32_t reserve_size) 1734 { 1735 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1736 1737 memset(ctx, 0, sizeof(*ctx)); 1738 1739 ctx->c2p_train_data_offset = 1740 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1741 ctx->p2c_train_data_offset = 1742 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1743 ctx->train_data_size = 1744 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1745 1746 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1747 ctx->train_data_size, 1748 ctx->p2c_train_data_offset, 1749 ctx->c2p_train_data_offset); 1750 } 1751 1752 /* 1753 * reserve TMR memory at the top of VRAM which holds 1754 * IP Discovery data and is protected by PSP. 1755 */ 1756 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1757 { 1758 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1759 bool mem_train_support = false; 1760 uint32_t reserve_size = 0; 1761 int ret; 1762 1763 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1764 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1765 mem_train_support = true; 1766 else 1767 DRM_DEBUG("memory training does not support!\n"); 1768 } 1769 1770 /* 1771 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1772 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1773 * 1774 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1775 * discovery data and G6 memory training data respectively 1776 */ 1777 if (adev->bios) 1778 reserve_size = 1779 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1780 1781 if (!adev->bios && 1782 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1783 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) || 1784 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0))) 1785 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1786 else if (!reserve_size) 1787 reserve_size = DISCOVERY_TMR_OFFSET; 1788 1789 if (mem_train_support) { 1790 /* reserve vram for mem train according to TMR location */ 1791 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1792 ret = amdgpu_bo_create_kernel_at(adev, 1793 ctx->c2p_train_data_offset, 1794 ctx->train_data_size, 1795 &ctx->c2p_bo, 1796 NULL); 1797 if (ret) { 1798 dev_err(adev->dev, "alloc c2p_bo failed(%d)!\n", ret); 1799 amdgpu_ttm_training_reserve_vram_fini(adev); 1800 return ret; 1801 } 1802 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1803 } 1804 1805 if (!adev->gmc.is_app_apu) { 1806 ret = amdgpu_bo_create_kernel_at( 1807 adev, adev->gmc.real_vram_size - reserve_size, 1808 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1809 if (ret) { 1810 dev_err(adev->dev, "alloc tmr failed(%d)!\n", ret); 1811 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1812 NULL, NULL); 1813 return ret; 1814 } 1815 } else { 1816 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1817 } 1818 1819 return 0; 1820 } 1821 1822 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1823 { 1824 int i; 1825 1826 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1827 return 0; 1828 1829 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1830 sizeof(*adev->mman.ttm_pools), 1831 GFP_KERNEL); 1832 if (!adev->mman.ttm_pools) 1833 return -ENOMEM; 1834 1835 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1836 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1837 adev->gmc.mem_partitions[i].numa.node, 1838 false, false); 1839 } 1840 return 0; 1841 } 1842 1843 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1844 { 1845 int i; 1846 1847 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1848 return; 1849 1850 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1851 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1852 1853 kfree(adev->mman.ttm_pools); 1854 adev->mman.ttm_pools = NULL; 1855 } 1856 1857 /** 1858 * amdgpu_ttm_mmio_remap_bo_init - Allocate the singleton 4K MMIO_REMAP BO 1859 * @adev: amdgpu device 1860 * 1861 * Allocates a one-page (4K) GEM BO in AMDGPU_GEM_DOMAIN_MMIO_REMAP when the 1862 * hardware exposes a remap base (adev->rmmio_remap.bus_addr) and the host 1863 * PAGE_SIZE is <= AMDGPU_GPU_PAGE_SIZE (4K). The BO is created as a regular 1864 * GEM object (amdgpu_bo_create). 1865 * 1866 * Return: 1867 * * 0 on success or intentional skip (feature not present/unsupported) 1868 * * negative errno on allocation failure 1869 */ 1870 static int amdgpu_ttm_mmio_remap_bo_init(struct amdgpu_device *adev) 1871 { 1872 struct amdgpu_bo_param bp; 1873 int r; 1874 1875 /* Skip if HW doesn't expose remap, or if PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE (4K). */ 1876 if (!adev->rmmio_remap.bus_addr || PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE) 1877 return 0; 1878 1879 memset(&bp, 0, sizeof(bp)); 1880 1881 /* Create exactly one GEM BO in the MMIO_REMAP domain. */ 1882 bp.type = ttm_bo_type_device; /* userspace-mappable GEM */ 1883 bp.size = AMDGPU_GPU_PAGE_SIZE; /* 4K */ 1884 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 1885 bp.domain = AMDGPU_GEM_DOMAIN_MMIO_REMAP; 1886 bp.flags = 0; 1887 bp.resv = NULL; 1888 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 1889 1890 r = amdgpu_bo_create(adev, &bp, &adev->rmmio_remap.bo); 1891 if (r) 1892 return r; 1893 1894 return 0; 1895 } 1896 1897 /** 1898 * amdgpu_ttm_mmio_remap_bo_fini - Free the singleton MMIO_REMAP BO 1899 * @adev: amdgpu device 1900 * 1901 * Frees the kernel-owned MMIO_REMAP BO if it was allocated by 1902 * amdgpu_ttm_mmio_remap_bo_init(). 1903 */ 1904 static void amdgpu_ttm_mmio_remap_bo_fini(struct amdgpu_device *adev) 1905 { 1906 amdgpu_bo_unref(&adev->rmmio_remap.bo); 1907 adev->rmmio_remap.bo = NULL; 1908 } 1909 1910 /* 1911 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1912 * gtt/vram related fields. 1913 * 1914 * This initializes all of the memory space pools that the TTM layer 1915 * will need such as the GTT space (system memory mapped to the device), 1916 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1917 * can be mapped per VMID. 1918 */ 1919 int amdgpu_ttm_init(struct amdgpu_device *adev) 1920 { 1921 uint64_t gtt_size; 1922 int r; 1923 1924 mutex_init(&adev->mman.gtt_window_lock); 1925 1926 dma_set_max_seg_size(adev->dev, UINT_MAX); 1927 /* No others user of address space so set it to 0 */ 1928 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1929 adev_to_drm(adev)->anon_inode->i_mapping, 1930 adev_to_drm(adev)->vma_offset_manager, 1931 adev->need_swiotlb, 1932 dma_addressing_limited(adev->dev)); 1933 if (r) { 1934 dev_err(adev->dev, 1935 "failed initializing buffer object driver(%d).\n", r); 1936 return r; 1937 } 1938 1939 r = amdgpu_ttm_pools_init(adev); 1940 if (r) { 1941 dev_err(adev->dev, "failed to init ttm pools(%d).\n", r); 1942 return r; 1943 } 1944 adev->mman.initialized = true; 1945 1946 /* Initialize VRAM pool with all of VRAM divided into pages */ 1947 r = amdgpu_vram_mgr_init(adev); 1948 if (r) { 1949 dev_err(adev->dev, "Failed initializing VRAM heap.\n"); 1950 return r; 1951 } 1952 1953 /* Change the size here instead of the init above so only lpfn is affected */ 1954 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1955 #ifdef CONFIG_64BIT 1956 #ifdef CONFIG_X86 1957 if (adev->gmc.xgmi.connected_to_cpu) 1958 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1959 adev->gmc.visible_vram_size); 1960 1961 else if (adev->gmc.is_app_apu) 1962 DRM_DEBUG_DRIVER( 1963 "No need to ioremap when real vram size is 0\n"); 1964 else 1965 #endif 1966 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1967 adev->gmc.visible_vram_size); 1968 #endif 1969 1970 /* 1971 *The reserved vram for firmware must be pinned to the specified 1972 *place on the VRAM, so reserve it early. 1973 */ 1974 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1975 if (r) 1976 return r; 1977 1978 /* 1979 *The reserved vram for driver must be pinned to the specified 1980 *place on the VRAM, so reserve it early. 1981 */ 1982 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1983 if (r) 1984 return r; 1985 1986 /* 1987 * only NAVI10 and onwards ASIC support for IP discovery. 1988 * If IP discovery enabled, a block of memory should be 1989 * reserved for IP discovey. 1990 */ 1991 if (adev->mman.discovery_bin) { 1992 r = amdgpu_ttm_reserve_tmr(adev); 1993 if (r) 1994 return r; 1995 } 1996 1997 /* allocate memory as required for VGA 1998 * This is used for VGA emulation and pre-OS scanout buffers to 1999 * avoid display artifacts while transitioning between pre-OS 2000 * and driver. 2001 */ 2002 if (!adev->gmc.is_app_apu) { 2003 r = amdgpu_bo_create_kernel_at(adev, 0, 2004 adev->mman.stolen_vga_size, 2005 &adev->mman.stolen_vga_memory, 2006 NULL); 2007 if (r) 2008 return r; 2009 2010 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 2011 adev->mman.stolen_extended_size, 2012 &adev->mman.stolen_extended_memory, 2013 NULL); 2014 2015 if (r) 2016 return r; 2017 2018 r = amdgpu_bo_create_kernel_at(adev, 2019 adev->mman.stolen_reserved_offset, 2020 adev->mman.stolen_reserved_size, 2021 &adev->mman.stolen_reserved_memory, 2022 NULL); 2023 if (r) 2024 return r; 2025 } else { 2026 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 2027 } 2028 2029 dev_info(adev->dev, "amdgpu: %uM of VRAM memory ready\n", 2030 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 2031 2032 /* Compute GTT size, either based on TTM limit 2033 * or whatever the user passed on module init. 2034 */ 2035 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 2036 if (amdgpu_gtt_size != -1) { 2037 uint64_t configured_size = (uint64_t)amdgpu_gtt_size << 20; 2038 2039 drm_warn(&adev->ddev, 2040 "Configuring gttsize via module parameter is deprecated, please use ttm.pages_limit\n"); 2041 if (gtt_size != configured_size) 2042 drm_warn(&adev->ddev, 2043 "GTT size has been set as %llu but TTM size has been set as %llu, this is unusual\n", 2044 configured_size, gtt_size); 2045 2046 gtt_size = configured_size; 2047 } 2048 2049 /* Initialize GTT memory pool */ 2050 r = amdgpu_gtt_mgr_init(adev, gtt_size); 2051 if (r) { 2052 dev_err(adev->dev, "Failed initializing GTT heap.\n"); 2053 return r; 2054 } 2055 dev_info(adev->dev, "amdgpu: %uM of GTT memory ready.\n", 2056 (unsigned int)(gtt_size / (1024 * 1024))); 2057 2058 if (adev->flags & AMD_IS_APU) { 2059 if (adev->gmc.real_vram_size < gtt_size) 2060 adev->apu_prefer_gtt = true; 2061 } 2062 2063 /* Initialize doorbell pool on PCI BAR */ 2064 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 2065 if (r) { 2066 dev_err(adev->dev, "Failed initializing doorbell heap.\n"); 2067 return r; 2068 } 2069 2070 /* Create a boorbell page for kernel usages */ 2071 r = amdgpu_doorbell_create_kernel_doorbells(adev); 2072 if (r) { 2073 dev_err(adev->dev, "Failed to initialize kernel doorbells.\n"); 2074 return r; 2075 } 2076 2077 /* Initialize MMIO-remap pool (single page 4K) */ 2078 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_MMIO_REMAP, 1); 2079 if (r) { 2080 dev_err(adev->dev, "Failed initializing MMIO-remap heap.\n"); 2081 return r; 2082 } 2083 2084 /* Allocate the singleton MMIO_REMAP BO (4K) if supported */ 2085 r = amdgpu_ttm_mmio_remap_bo_init(adev); 2086 if (r) 2087 return r; 2088 2089 /* Initialize preemptible memory pool */ 2090 r = amdgpu_preempt_mgr_init(adev); 2091 if (r) { 2092 dev_err(adev->dev, "Failed initializing PREEMPT heap.\n"); 2093 return r; 2094 } 2095 2096 /* Initialize various on-chip memory pools */ 2097 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 2098 if (r) { 2099 dev_err(adev->dev, "Failed initializing GDS heap.\n"); 2100 return r; 2101 } 2102 2103 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 2104 if (r) { 2105 dev_err(adev->dev, "Failed initializing gws heap.\n"); 2106 return r; 2107 } 2108 2109 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 2110 if (r) { 2111 dev_err(adev->dev, "Failed initializing oa heap.\n"); 2112 return r; 2113 } 2114 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2115 AMDGPU_GEM_DOMAIN_GTT, 2116 &adev->mman.sdma_access_bo, NULL, 2117 &adev->mman.sdma_access_ptr)) 2118 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2119 2120 return 0; 2121 } 2122 2123 /* 2124 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2125 */ 2126 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2127 { 2128 int idx; 2129 2130 if (!adev->mman.initialized) 2131 return; 2132 2133 amdgpu_ttm_pools_fini(adev); 2134 2135 amdgpu_ttm_training_reserve_vram_fini(adev); 2136 /* return the stolen vga memory back to VRAM */ 2137 if (!adev->gmc.is_app_apu) { 2138 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2139 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2140 /* return the FW reserved memory back to VRAM */ 2141 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2142 NULL); 2143 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory_extend, NULL, 2144 NULL); 2145 if (adev->mman.stolen_reserved_size) 2146 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2147 NULL, NULL); 2148 } 2149 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2150 &adev->mman.sdma_access_ptr); 2151 2152 amdgpu_ttm_mmio_remap_bo_fini(adev); 2153 amdgpu_ttm_fw_reserve_vram_fini(adev); 2154 amdgpu_ttm_drv_reserve_vram_fini(adev); 2155 2156 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2157 2158 if (adev->mman.aper_base_kaddr) 2159 iounmap(adev->mman.aper_base_kaddr); 2160 adev->mman.aper_base_kaddr = NULL; 2161 2162 drm_dev_exit(idx); 2163 } 2164 2165 amdgpu_vram_mgr_fini(adev); 2166 amdgpu_gtt_mgr_fini(adev); 2167 amdgpu_preempt_mgr_fini(adev); 2168 amdgpu_doorbell_fini(adev); 2169 2170 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2171 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2172 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2173 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL); 2174 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_MMIO_REMAP); 2175 ttm_device_fini(&adev->mman.bdev); 2176 adev->mman.initialized = false; 2177 dev_info(adev->dev, "amdgpu: ttm finalized\n"); 2178 } 2179 2180 /** 2181 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2182 * 2183 * @adev: amdgpu_device pointer 2184 * @enable: true when we can use buffer functions. 2185 * 2186 * Enable/disable use of buffer functions during suspend/resume. This should 2187 * only be called at bootup or when userspace isn't running. 2188 */ 2189 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2190 { 2191 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2192 uint64_t size; 2193 int r; 2194 2195 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2196 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2197 return; 2198 2199 if (enable) { 2200 struct amdgpu_ring *ring; 2201 struct drm_gpu_scheduler *sched; 2202 2203 ring = adev->mman.buffer_funcs_ring; 2204 sched = &ring->sched; 2205 r = drm_sched_entity_init(&adev->mman.high_pr, 2206 DRM_SCHED_PRIORITY_KERNEL, &sched, 2207 1, NULL); 2208 if (r) { 2209 dev_err(adev->dev, 2210 "Failed setting up TTM BO move entity (%d)\n", 2211 r); 2212 return; 2213 } 2214 2215 r = drm_sched_entity_init(&adev->mman.low_pr, 2216 DRM_SCHED_PRIORITY_NORMAL, &sched, 2217 1, NULL); 2218 if (r) { 2219 dev_err(adev->dev, 2220 "Failed setting up TTM BO move entity (%d)\n", 2221 r); 2222 goto error_free_entity; 2223 } 2224 } else { 2225 drm_sched_entity_destroy(&adev->mman.high_pr); 2226 drm_sched_entity_destroy(&adev->mman.low_pr); 2227 dma_fence_put(man->move); 2228 man->move = NULL; 2229 } 2230 2231 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2232 if (enable) 2233 size = adev->gmc.real_vram_size; 2234 else 2235 size = adev->gmc.visible_vram_size; 2236 man->size = size; 2237 adev->mman.buffer_funcs_enabled = enable; 2238 2239 return; 2240 2241 error_free_entity: 2242 drm_sched_entity_destroy(&adev->mman.high_pr); 2243 } 2244 2245 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2246 bool direct_submit, 2247 unsigned int num_dw, 2248 struct dma_resv *resv, 2249 bool vm_needs_flush, 2250 struct amdgpu_job **job, 2251 bool delayed) 2252 { 2253 enum amdgpu_ib_pool_type pool = direct_submit ? 2254 AMDGPU_IB_POOL_DIRECT : 2255 AMDGPU_IB_POOL_DELAYED; 2256 int r; 2257 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2258 &adev->mman.high_pr; 2259 r = amdgpu_job_alloc_with_ib(adev, entity, 2260 AMDGPU_FENCE_OWNER_UNDEFINED, 2261 num_dw * 4, pool, job); 2262 if (r) 2263 return r; 2264 2265 if (vm_needs_flush) { 2266 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2267 adev->gmc.pdb0_bo : 2268 adev->gart.bo); 2269 (*job)->vm_needs_flush = true; 2270 } 2271 if (!resv) 2272 return 0; 2273 2274 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2275 DMA_RESV_USAGE_BOOKKEEP); 2276 } 2277 2278 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2279 uint64_t dst_offset, uint32_t byte_count, 2280 struct dma_resv *resv, 2281 struct dma_fence **fence, bool direct_submit, 2282 bool vm_needs_flush, uint32_t copy_flags) 2283 { 2284 struct amdgpu_device *adev = ring->adev; 2285 unsigned int num_loops, num_dw; 2286 struct amdgpu_job *job; 2287 uint32_t max_bytes; 2288 unsigned int i; 2289 int r; 2290 2291 if (!direct_submit && !ring->sched.ready) { 2292 dev_err(adev->dev, 2293 "Trying to move memory with ring turned off.\n"); 2294 return -EINVAL; 2295 } 2296 2297 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2298 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2299 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2300 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2301 resv, vm_needs_flush, &job, false); 2302 if (r) 2303 return r; 2304 2305 for (i = 0; i < num_loops; i++) { 2306 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2307 2308 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2309 dst_offset, cur_size_in_bytes, copy_flags); 2310 src_offset += cur_size_in_bytes; 2311 dst_offset += cur_size_in_bytes; 2312 byte_count -= cur_size_in_bytes; 2313 } 2314 2315 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2316 WARN_ON(job->ibs[0].length_dw > num_dw); 2317 if (direct_submit) 2318 r = amdgpu_job_submit_direct(job, ring, fence); 2319 else 2320 *fence = amdgpu_job_submit(job); 2321 if (r) 2322 goto error_free; 2323 2324 return r; 2325 2326 error_free: 2327 amdgpu_job_free(job); 2328 dev_err(adev->dev, "Error scheduling IBs (%d)\n", r); 2329 return r; 2330 } 2331 2332 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2333 uint64_t dst_addr, uint32_t byte_count, 2334 struct dma_resv *resv, 2335 struct dma_fence **fence, 2336 bool vm_needs_flush, bool delayed) 2337 { 2338 struct amdgpu_device *adev = ring->adev; 2339 unsigned int num_loops, num_dw; 2340 struct amdgpu_job *job; 2341 uint32_t max_bytes; 2342 unsigned int i; 2343 int r; 2344 2345 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2346 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2347 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2348 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2349 &job, delayed); 2350 if (r) 2351 return r; 2352 2353 for (i = 0; i < num_loops; i++) { 2354 uint32_t cur_size = min(byte_count, max_bytes); 2355 2356 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2357 cur_size); 2358 2359 dst_addr += cur_size; 2360 byte_count -= cur_size; 2361 } 2362 2363 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2364 WARN_ON(job->ibs[0].length_dw > num_dw); 2365 *fence = amdgpu_job_submit(job); 2366 return 0; 2367 } 2368 2369 /** 2370 * amdgpu_ttm_clear_buffer - clear memory buffers 2371 * @bo: amdgpu buffer object 2372 * @resv: reservation object 2373 * @fence: dma_fence associated with the operation 2374 * 2375 * Clear the memory buffer resource. 2376 * 2377 * Returns: 2378 * 0 for success or a negative error code on failure. 2379 */ 2380 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2381 struct dma_resv *resv, 2382 struct dma_fence **fence) 2383 { 2384 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2385 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2386 struct amdgpu_res_cursor cursor; 2387 u64 addr; 2388 int r = 0; 2389 2390 if (!adev->mman.buffer_funcs_enabled) 2391 return -EINVAL; 2392 2393 if (!fence) 2394 return -EINVAL; 2395 2396 *fence = dma_fence_get_stub(); 2397 2398 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2399 2400 mutex_lock(&adev->mman.gtt_window_lock); 2401 while (cursor.remaining) { 2402 struct dma_fence *next = NULL; 2403 u64 size; 2404 2405 if (amdgpu_res_cleared(&cursor)) { 2406 amdgpu_res_next(&cursor, cursor.size); 2407 continue; 2408 } 2409 2410 /* Never clear more than 256MiB at once to avoid timeouts */ 2411 size = min(cursor.size, 256ULL << 20); 2412 2413 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2414 1, ring, false, &size, &addr); 2415 if (r) 2416 goto err; 2417 2418 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2419 &next, true, true); 2420 if (r) 2421 goto err; 2422 2423 dma_fence_put(*fence); 2424 *fence = next; 2425 2426 amdgpu_res_next(&cursor, size); 2427 } 2428 err: 2429 mutex_unlock(&adev->mman.gtt_window_lock); 2430 2431 return r; 2432 } 2433 2434 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2435 uint32_t src_data, 2436 struct dma_resv *resv, 2437 struct dma_fence **f, 2438 bool delayed) 2439 { 2440 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2441 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2442 struct dma_fence *fence = NULL; 2443 struct amdgpu_res_cursor dst; 2444 int r; 2445 2446 if (!adev->mman.buffer_funcs_enabled) { 2447 dev_err(adev->dev, 2448 "Trying to clear memory with ring turned off.\n"); 2449 return -EINVAL; 2450 } 2451 2452 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2453 2454 mutex_lock(&adev->mman.gtt_window_lock); 2455 while (dst.remaining) { 2456 struct dma_fence *next; 2457 uint64_t cur_size, to; 2458 2459 /* Never fill more than 256MiB at once to avoid timeouts */ 2460 cur_size = min(dst.size, 256ULL << 20); 2461 2462 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2463 1, ring, false, &cur_size, &to); 2464 if (r) 2465 goto error; 2466 2467 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2468 &next, true, delayed); 2469 if (r) 2470 goto error; 2471 2472 dma_fence_put(fence); 2473 fence = next; 2474 2475 amdgpu_res_next(&dst, cur_size); 2476 } 2477 error: 2478 mutex_unlock(&adev->mman.gtt_window_lock); 2479 if (f) 2480 *f = dma_fence_get(fence); 2481 dma_fence_put(fence); 2482 return r; 2483 } 2484 2485 /** 2486 * amdgpu_ttm_evict_resources - evict memory buffers 2487 * @adev: amdgpu device object 2488 * @mem_type: evicted BO's memory type 2489 * 2490 * Evicts all @mem_type buffers on the lru list of the memory type. 2491 * 2492 * Returns: 2493 * 0 for success or a negative error code on failure. 2494 */ 2495 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2496 { 2497 struct ttm_resource_manager *man; 2498 2499 switch (mem_type) { 2500 case TTM_PL_VRAM: 2501 case TTM_PL_TT: 2502 case AMDGPU_PL_GWS: 2503 case AMDGPU_PL_GDS: 2504 case AMDGPU_PL_OA: 2505 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2506 break; 2507 default: 2508 dev_err(adev->dev, "Trying to evict invalid memory type\n"); 2509 return -EINVAL; 2510 } 2511 2512 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2513 } 2514 2515 #if defined(CONFIG_DEBUG_FS) 2516 2517 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2518 { 2519 struct amdgpu_device *adev = m->private; 2520 2521 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2522 } 2523 2524 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2525 2526 /* 2527 * amdgpu_ttm_vram_read - Linear read access to VRAM 2528 * 2529 * Accesses VRAM via MMIO for debugging purposes. 2530 */ 2531 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2532 size_t size, loff_t *pos) 2533 { 2534 struct amdgpu_device *adev = file_inode(f)->i_private; 2535 ssize_t result = 0; 2536 2537 if (size & 0x3 || *pos & 0x3) 2538 return -EINVAL; 2539 2540 if (*pos >= adev->gmc.mc_vram_size) 2541 return -ENXIO; 2542 2543 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2544 while (size) { 2545 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2546 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2547 2548 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2549 if (copy_to_user(buf, value, bytes)) 2550 return -EFAULT; 2551 2552 result += bytes; 2553 buf += bytes; 2554 *pos += bytes; 2555 size -= bytes; 2556 } 2557 2558 return result; 2559 } 2560 2561 /* 2562 * amdgpu_ttm_vram_write - Linear write access to VRAM 2563 * 2564 * Accesses VRAM via MMIO for debugging purposes. 2565 */ 2566 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2567 size_t size, loff_t *pos) 2568 { 2569 struct amdgpu_device *adev = file_inode(f)->i_private; 2570 ssize_t result = 0; 2571 int r; 2572 2573 if (size & 0x3 || *pos & 0x3) 2574 return -EINVAL; 2575 2576 if (*pos >= adev->gmc.mc_vram_size) 2577 return -ENXIO; 2578 2579 while (size) { 2580 uint32_t value; 2581 2582 if (*pos >= adev->gmc.mc_vram_size) 2583 return result; 2584 2585 r = get_user(value, (uint32_t *)buf); 2586 if (r) 2587 return r; 2588 2589 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2590 2591 result += 4; 2592 buf += 4; 2593 *pos += 4; 2594 size -= 4; 2595 } 2596 2597 return result; 2598 } 2599 2600 static const struct file_operations amdgpu_ttm_vram_fops = { 2601 .owner = THIS_MODULE, 2602 .read = amdgpu_ttm_vram_read, 2603 .write = amdgpu_ttm_vram_write, 2604 .llseek = default_llseek, 2605 }; 2606 2607 /* 2608 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2609 * 2610 * This function is used to read memory that has been mapped to the 2611 * GPU and the known addresses are not physical addresses but instead 2612 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2613 */ 2614 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2615 size_t size, loff_t *pos) 2616 { 2617 struct amdgpu_device *adev = file_inode(f)->i_private; 2618 struct iommu_domain *dom; 2619 ssize_t result = 0; 2620 int r; 2621 2622 /* retrieve the IOMMU domain if any for this device */ 2623 dom = iommu_get_domain_for_dev(adev->dev); 2624 2625 while (size) { 2626 phys_addr_t addr = *pos & PAGE_MASK; 2627 loff_t off = *pos & ~PAGE_MASK; 2628 size_t bytes = PAGE_SIZE - off; 2629 unsigned long pfn; 2630 struct page *p; 2631 void *ptr; 2632 2633 bytes = min(bytes, size); 2634 2635 /* Translate the bus address to a physical address. If 2636 * the domain is NULL it means there is no IOMMU active 2637 * and the address translation is the identity 2638 */ 2639 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2640 2641 pfn = addr >> PAGE_SHIFT; 2642 if (!pfn_valid(pfn)) 2643 return -EPERM; 2644 2645 p = pfn_to_page(pfn); 2646 if (p->mapping != adev->mman.bdev.dev_mapping) 2647 return -EPERM; 2648 2649 ptr = kmap_local_page(p); 2650 r = copy_to_user(buf, ptr + off, bytes); 2651 kunmap_local(ptr); 2652 if (r) 2653 return -EFAULT; 2654 2655 size -= bytes; 2656 *pos += bytes; 2657 result += bytes; 2658 } 2659 2660 return result; 2661 } 2662 2663 /* 2664 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2665 * 2666 * This function is used to write memory that has been mapped to the 2667 * GPU and the known addresses are not physical addresses but instead 2668 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2669 */ 2670 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2671 size_t size, loff_t *pos) 2672 { 2673 struct amdgpu_device *adev = file_inode(f)->i_private; 2674 struct iommu_domain *dom; 2675 ssize_t result = 0; 2676 int r; 2677 2678 dom = iommu_get_domain_for_dev(adev->dev); 2679 2680 while (size) { 2681 phys_addr_t addr = *pos & PAGE_MASK; 2682 loff_t off = *pos & ~PAGE_MASK; 2683 size_t bytes = PAGE_SIZE - off; 2684 unsigned long pfn; 2685 struct page *p; 2686 void *ptr; 2687 2688 bytes = min(bytes, size); 2689 2690 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2691 2692 pfn = addr >> PAGE_SHIFT; 2693 if (!pfn_valid(pfn)) 2694 return -EPERM; 2695 2696 p = pfn_to_page(pfn); 2697 if (p->mapping != adev->mman.bdev.dev_mapping) 2698 return -EPERM; 2699 2700 ptr = kmap_local_page(p); 2701 r = copy_from_user(ptr + off, buf, bytes); 2702 kunmap_local(ptr); 2703 if (r) 2704 return -EFAULT; 2705 2706 size -= bytes; 2707 *pos += bytes; 2708 result += bytes; 2709 } 2710 2711 return result; 2712 } 2713 2714 static const struct file_operations amdgpu_ttm_iomem_fops = { 2715 .owner = THIS_MODULE, 2716 .read = amdgpu_iomem_read, 2717 .write = amdgpu_iomem_write, 2718 .llseek = default_llseek 2719 }; 2720 2721 #endif 2722 2723 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2724 { 2725 #if defined(CONFIG_DEBUG_FS) 2726 struct drm_minor *minor = adev_to_drm(adev)->primary; 2727 struct dentry *root = minor->debugfs_root; 2728 2729 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2730 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2731 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2732 &amdgpu_ttm_iomem_fops); 2733 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2734 &amdgpu_ttm_page_pool_fops); 2735 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2736 TTM_PL_VRAM), 2737 root, "amdgpu_vram_mm"); 2738 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2739 TTM_PL_TT), 2740 root, "amdgpu_gtt_mm"); 2741 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2742 AMDGPU_PL_GDS), 2743 root, "amdgpu_gds_mm"); 2744 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2745 AMDGPU_PL_GWS), 2746 root, "amdgpu_gws_mm"); 2747 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2748 AMDGPU_PL_OA), 2749 root, "amdgpu_oa_mm"); 2750 2751 #endif 2752 } 2753