xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 8f8d74ee110c02137f5b78ca0a2bd6c10331f267)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 		placement->num_placement = 0;
127 		return;
128 
129 	case TTM_PL_VRAM:
130 		if (!adev->mman.buffer_funcs_enabled) {
131 			/* Move to system memory */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133 
134 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
137 
138 			/* Try evicting to the CPU inaccessible part of VRAM
139 			 * first, but only set GTT as busy placement, so this
140 			 * BO will be evicted to GTT rather than causing other
141 			 * BOs to be evicted from VRAM
142 			 */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 							AMDGPU_GEM_DOMAIN_GTT |
145 							AMDGPU_GEM_DOMAIN_CPU);
146 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 			abo->placements[0].lpfn = 0;
148 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 		} else {
150 			/* Move to GTT memory */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 							AMDGPU_GEM_DOMAIN_CPU);
153 		}
154 		break;
155 	case TTM_PL_TT:
156 	case AMDGPU_PL_PREEMPT:
157 	default:
158 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 		break;
160 	}
161 	*placement = abo->placement;
162 }
163 
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 				 struct ttm_resource *mem,
180 				 struct amdgpu_res_cursor *mm_cur,
181 				 unsigned int window, struct amdgpu_ring *ring,
182 				 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 	struct amdgpu_device *adev = ring->adev;
185 	unsigned int offset, num_pages, num_dw, num_bytes;
186 	uint64_t src_addr, dst_addr;
187 	struct amdgpu_job *job;
188 	void *cpu_addr;
189 	uint64_t flags;
190 	unsigned int i;
191 	int r;
192 
193 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195 
196 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 		return -EINVAL;
198 
199 	/* Map only what can't be accessed directly */
200 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 			mm_cur->start;
203 		return 0;
204 	}
205 
206 
207 	/*
208 	 * If start begins at an offset inside the page, then adjust the size
209 	 * and addr accordingly
210 	 */
211 	offset = mm_cur->start & ~PAGE_MASK;
212 
213 	num_pages = PFN_UP(*size + offset);
214 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215 
216 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += offset;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 				     AMDGPU_FENCE_OWNER_UNDEFINED,
228 				     num_dw * 4 + num_bytes,
229 				     AMDGPU_IB_POOL_DELAYED, &job);
230 	if (r)
231 		return r;
232 
233 	src_addr = num_dw * 4;
234 	src_addr += job->ibs[0].gpu_addr;
235 
236 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 				dst_addr, num_bytes, false);
240 
241 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 	WARN_ON(job->ibs[0].length_dw > num_dw);
243 
244 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 	if (tmz)
246 		flags |= AMDGPU_PTE_TMZ;
247 
248 	cpu_addr = &job->ibs[0].ptr[num_dw];
249 
250 	if (mem->mem_type == TTM_PL_TT) {
251 		dma_addr_t *dma_addr;
252 
253 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 	} else {
256 		dma_addr_t dma_address;
257 
258 		dma_address = mm_cur->start;
259 		dma_address += adev->vm_manager.vram_base_offset;
260 
261 		for (i = 0; i < num_pages; ++i) {
262 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 					flags, cpu_addr);
264 			dma_address += PAGE_SIZE;
265 		}
266 	}
267 
268 	dma_fence_put(amdgpu_job_submit(job));
269 	return 0;
270 }
271 
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 			       const struct amdgpu_copy_mem *src,
289 			       const struct amdgpu_copy_mem *dst,
290 			       uint64_t size, bool tmz,
291 			       struct dma_resv *resv,
292 			       struct dma_fence **f)
293 {
294 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 	struct amdgpu_res_cursor src_mm, dst_mm;
296 	struct dma_fence *fence = NULL;
297 	int r = 0;
298 
299 	if (!adev->mman.buffer_funcs_enabled) {
300 		DRM_ERROR("Trying to move memory with ring turned off.\n");
301 		return -EINVAL;
302 	}
303 
304 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306 
307 	mutex_lock(&adev->mman.gtt_window_lock);
308 	while (src_mm.remaining) {
309 		uint64_t from, to, cur_size;
310 		struct dma_fence *next;
311 
312 		/* Never copy more than 256MiB at once to avoid a timeout */
313 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314 
315 		/* Map src to window 0 and dst to window 1. */
316 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 					  0, ring, tmz, &cur_size, &from);
318 		if (r)
319 			goto error;
320 
321 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 					  1, ring, tmz, &cur_size, &to);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 				       resv, &next, false, true, tmz);
328 		if (r)
329 			goto error;
330 
331 		dma_fence_put(fence);
332 		fence = next;
333 
334 		amdgpu_res_next(&src_mm, cur_size);
335 		amdgpu_res_next(&dst_mm, cur_size);
336 	}
337 error:
338 	mutex_unlock(&adev->mman.gtt_window_lock);
339 	if (f)
340 		*f = dma_fence_get(fence);
341 	dma_fence_put(fence);
342 	return r;
343 }
344 
345 /*
346  * amdgpu_move_blit - Copy an entire buffer to another buffer
347  *
348  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349  * help move buffers to and from VRAM.
350  */
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352 			    bool evict,
353 			    struct ttm_resource *new_mem,
354 			    struct ttm_resource *old_mem)
355 {
356 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 	struct amdgpu_copy_mem src, dst;
359 	struct dma_fence *fence = NULL;
360 	int r;
361 
362 	src.bo = bo;
363 	dst.bo = bo;
364 	src.mem = old_mem;
365 	dst.mem = new_mem;
366 	src.offset = 0;
367 	dst.offset = 0;
368 
369 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370 				       new_mem->size,
371 				       amdgpu_bo_encrypted(abo),
372 				       bo->base.resv, &fence);
373 	if (r)
374 		goto error;
375 
376 	/* clear the space being freed */
377 	if (old_mem->mem_type == TTM_PL_VRAM &&
378 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 		struct dma_fence *wipe_fence = NULL;
380 
381 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
382 					false);
383 		if (r) {
384 			goto error;
385 		} else if (wipe_fence) {
386 			dma_fence_put(fence);
387 			fence = wipe_fence;
388 		}
389 	}
390 
391 	/* Always block for VM page tables before committing the new location */
392 	if (bo->type == ttm_bo_type_kernel)
393 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
394 	else
395 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
396 	dma_fence_put(fence);
397 	return r;
398 
399 error:
400 	if (fence)
401 		dma_fence_wait(fence, false);
402 	dma_fence_put(fence);
403 	return r;
404 }
405 
406 /**
407  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
408  * @adev: amdgpu device
409  * @res: the resource to check
410  *
411  * Returns: true if the full resource is CPU visible, false otherwise.
412  */
413 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
414 			    struct ttm_resource *res)
415 {
416 	struct amdgpu_res_cursor cursor;
417 
418 	if (!res)
419 		return false;
420 
421 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
422 	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
423 		return true;
424 
425 	if (res->mem_type != TTM_PL_VRAM)
426 		return false;
427 
428 	amdgpu_res_first(res, 0, res->size, &cursor);
429 	while (cursor.remaining) {
430 		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
431 			return false;
432 		amdgpu_res_next(&cursor, cursor.size);
433 	}
434 
435 	return true;
436 }
437 
438 /*
439  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
440  *
441  * Called by amdgpu_bo_move()
442  */
443 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
444 				struct ttm_resource *mem)
445 {
446 	if (!amdgpu_res_cpu_visible(adev, mem))
447 		return false;
448 
449 	/* ttm_resource_ioremap only supports contiguous memory */
450 	if (mem->mem_type == TTM_PL_VRAM &&
451 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
452 		return false;
453 
454 	return true;
455 }
456 
457 /*
458  * amdgpu_bo_move - Move a buffer object to a new memory location
459  *
460  * Called by ttm_bo_handle_move_mem()
461  */
462 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
463 			  struct ttm_operation_ctx *ctx,
464 			  struct ttm_resource *new_mem,
465 			  struct ttm_place *hop)
466 {
467 	struct amdgpu_device *adev;
468 	struct amdgpu_bo *abo;
469 	struct ttm_resource *old_mem = bo->resource;
470 	int r;
471 
472 	if (new_mem->mem_type == TTM_PL_TT ||
473 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
474 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
475 		if (r)
476 			return r;
477 	}
478 
479 	abo = ttm_to_amdgpu_bo(bo);
480 	adev = amdgpu_ttm_adev(bo->bdev);
481 
482 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
483 			 bo->ttm == NULL)) {
484 		amdgpu_bo_move_notify(bo, evict, new_mem);
485 		ttm_bo_move_null(bo, new_mem);
486 		return 0;
487 	}
488 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
489 	    (new_mem->mem_type == TTM_PL_TT ||
490 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491 		amdgpu_bo_move_notify(bo, evict, new_mem);
492 		ttm_bo_move_null(bo, new_mem);
493 		return 0;
494 	}
495 	if ((old_mem->mem_type == TTM_PL_TT ||
496 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
497 	    new_mem->mem_type == TTM_PL_SYSTEM) {
498 		r = ttm_bo_wait_ctx(bo, ctx);
499 		if (r)
500 			return r;
501 
502 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
503 		amdgpu_bo_move_notify(bo, evict, new_mem);
504 		ttm_resource_free(bo, &bo->resource);
505 		ttm_bo_assign_mem(bo, new_mem);
506 		return 0;
507 	}
508 
509 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
510 	    old_mem->mem_type == AMDGPU_PL_GWS ||
511 	    old_mem->mem_type == AMDGPU_PL_OA ||
512 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
513 	    new_mem->mem_type == AMDGPU_PL_GDS ||
514 	    new_mem->mem_type == AMDGPU_PL_GWS ||
515 	    new_mem->mem_type == AMDGPU_PL_OA ||
516 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
517 		/* Nothing to save here */
518 		amdgpu_bo_move_notify(bo, evict, new_mem);
519 		ttm_bo_move_null(bo, new_mem);
520 		return 0;
521 	}
522 
523 	if (bo->type == ttm_bo_type_device &&
524 	    new_mem->mem_type == TTM_PL_VRAM &&
525 	    old_mem->mem_type != TTM_PL_VRAM) {
526 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
527 		 * accesses the BO after it's moved.
528 		 */
529 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
530 	}
531 
532 	if (adev->mman.buffer_funcs_enabled &&
533 	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
534 	      new_mem->mem_type == TTM_PL_VRAM) ||
535 	     (old_mem->mem_type == TTM_PL_VRAM &&
536 	      new_mem->mem_type == TTM_PL_SYSTEM))) {
537 		hop->fpfn = 0;
538 		hop->lpfn = 0;
539 		hop->mem_type = TTM_PL_TT;
540 		hop->flags = TTM_PL_FLAG_TEMPORARY;
541 		return -EMULTIHOP;
542 	}
543 
544 	amdgpu_bo_move_notify(bo, evict, new_mem);
545 	if (adev->mman.buffer_funcs_enabled)
546 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
547 	else
548 		r = -ENODEV;
549 
550 	if (r) {
551 		/* Check that all memory is CPU accessible */
552 		if (!amdgpu_res_copyable(adev, old_mem) ||
553 		    !amdgpu_res_copyable(adev, new_mem)) {
554 			pr_err("Move buffer fallback to memcpy unavailable\n");
555 			return r;
556 		}
557 
558 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
559 		if (r)
560 			return r;
561 	}
562 
563 	/* update statistics after the move */
564 	if (evict)
565 		atomic64_inc(&adev->num_evictions);
566 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
567 	return 0;
568 }
569 
570 /*
571  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
572  *
573  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
574  */
575 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
576 				     struct ttm_resource *mem)
577 {
578 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
579 
580 	switch (mem->mem_type) {
581 	case TTM_PL_SYSTEM:
582 		/* system memory */
583 		return 0;
584 	case TTM_PL_TT:
585 	case AMDGPU_PL_PREEMPT:
586 		break;
587 	case TTM_PL_VRAM:
588 		mem->bus.offset = mem->start << PAGE_SHIFT;
589 
590 		if (adev->mman.aper_base_kaddr &&
591 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
592 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
593 					mem->bus.offset;
594 
595 		mem->bus.offset += adev->gmc.aper_base;
596 		mem->bus.is_iomem = true;
597 		break;
598 	case AMDGPU_PL_DOORBELL:
599 		mem->bus.offset = mem->start << PAGE_SHIFT;
600 		mem->bus.offset += adev->doorbell.base;
601 		mem->bus.is_iomem = true;
602 		mem->bus.caching = ttm_uncached;
603 		break;
604 	default:
605 		return -EINVAL;
606 	}
607 	return 0;
608 }
609 
610 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
611 					   unsigned long page_offset)
612 {
613 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
614 	struct amdgpu_res_cursor cursor;
615 
616 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
617 			 &cursor);
618 
619 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
620 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
621 
622 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
623 }
624 
625 /**
626  * amdgpu_ttm_domain_start - Returns GPU start address
627  * @adev: amdgpu device object
628  * @type: type of the memory
629  *
630  * Returns:
631  * GPU start address of a memory domain
632  */
633 
634 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
635 {
636 	switch (type) {
637 	case TTM_PL_TT:
638 		return adev->gmc.gart_start;
639 	case TTM_PL_VRAM:
640 		return adev->gmc.vram_start;
641 	}
642 
643 	return 0;
644 }
645 
646 /*
647  * TTM backend functions.
648  */
649 struct amdgpu_ttm_tt {
650 	struct ttm_tt	ttm;
651 	struct drm_gem_object	*gobj;
652 	u64			offset;
653 	uint64_t		userptr;
654 	struct task_struct	*usertask;
655 	uint32_t		userflags;
656 	bool			bound;
657 	int32_t			pool_id;
658 };
659 
660 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
661 
662 #ifdef CONFIG_DRM_AMDGPU_USERPTR
663 /*
664  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
665  * memory and start HMM tracking CPU page table update
666  *
667  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
668  * once afterwards to stop HMM tracking
669  */
670 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
671 				 struct hmm_range **range)
672 {
673 	struct ttm_tt *ttm = bo->tbo.ttm;
674 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
675 	unsigned long start = gtt->userptr;
676 	struct vm_area_struct *vma;
677 	struct mm_struct *mm;
678 	bool readonly;
679 	int r = 0;
680 
681 	/* Make sure get_user_pages_done() can cleanup gracefully */
682 	*range = NULL;
683 
684 	mm = bo->notifier.mm;
685 	if (unlikely(!mm)) {
686 		DRM_DEBUG_DRIVER("BO is not registered?\n");
687 		return -EFAULT;
688 	}
689 
690 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
691 		return -ESRCH;
692 
693 	mmap_read_lock(mm);
694 	vma = vma_lookup(mm, start);
695 	if (unlikely(!vma)) {
696 		r = -EFAULT;
697 		goto out_unlock;
698 	}
699 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
700 		vma->vm_file)) {
701 		r = -EPERM;
702 		goto out_unlock;
703 	}
704 
705 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
706 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
707 				       readonly, NULL, pages, range);
708 out_unlock:
709 	mmap_read_unlock(mm);
710 	if (r)
711 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
712 
713 	mmput(mm);
714 
715 	return r;
716 }
717 
718 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
719  */
720 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
721 				      struct hmm_range *range)
722 {
723 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
724 
725 	if (gtt && gtt->userptr && range)
726 		amdgpu_hmm_range_get_pages_done(range);
727 }
728 
729 /*
730  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
731  * Check if the pages backing this ttm range have been invalidated
732  *
733  * Returns: true if pages are still valid
734  */
735 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
736 				       struct hmm_range *range)
737 {
738 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
739 
740 	if (!gtt || !gtt->userptr || !range)
741 		return false;
742 
743 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
744 		gtt->userptr, ttm->num_pages);
745 
746 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
747 
748 	return !amdgpu_hmm_range_get_pages_done(range);
749 }
750 #endif
751 
752 /*
753  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
754  *
755  * Called by amdgpu_cs_list_validate(). This creates the page list
756  * that backs user memory and will ultimately be mapped into the device
757  * address space.
758  */
759 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
760 {
761 	unsigned long i;
762 
763 	for (i = 0; i < ttm->num_pages; ++i)
764 		ttm->pages[i] = pages ? pages[i] : NULL;
765 }
766 
767 /*
768  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
769  *
770  * Called by amdgpu_ttm_backend_bind()
771  **/
772 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
773 				     struct ttm_tt *ttm)
774 {
775 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
776 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
777 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
778 	enum dma_data_direction direction = write ?
779 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
780 	int r;
781 
782 	/* Allocate an SG array and squash pages into it */
783 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
784 				      (u64)ttm->num_pages << PAGE_SHIFT,
785 				      GFP_KERNEL);
786 	if (r)
787 		goto release_sg;
788 
789 	/* Map SG to device */
790 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
791 	if (r)
792 		goto release_sg;
793 
794 	/* convert SG to linear array of pages and dma addresses */
795 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
796 				       ttm->num_pages);
797 
798 	return 0;
799 
800 release_sg:
801 	kfree(ttm->sg);
802 	ttm->sg = NULL;
803 	return r;
804 }
805 
806 /*
807  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
808  */
809 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
810 					struct ttm_tt *ttm)
811 {
812 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
813 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
814 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
815 	enum dma_data_direction direction = write ?
816 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
817 
818 	/* double check that we don't free the table twice */
819 	if (!ttm->sg || !ttm->sg->sgl)
820 		return;
821 
822 	/* unmap the pages mapped to the device */
823 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
824 	sg_free_table(ttm->sg);
825 }
826 
827 /*
828  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
829  * MQDn+CtrlStackn where n is the number of XCCs per partition.
830  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
831  * and uses memory type default, UC. The rest of pages_per_xcc are
832  * Ctrl stack and modify their memory type to NC.
833  */
834 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
835 				struct ttm_tt *ttm, uint64_t flags)
836 {
837 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
838 	uint64_t total_pages = ttm->num_pages;
839 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
840 	uint64_t page_idx, pages_per_xcc;
841 	int i;
842 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
843 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
844 
845 	pages_per_xcc = total_pages;
846 	do_div(pages_per_xcc, num_xcc);
847 
848 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
849 		/* MQD page: use default flags */
850 		amdgpu_gart_bind(adev,
851 				gtt->offset + (page_idx << PAGE_SHIFT),
852 				1, &gtt->ttm.dma_address[page_idx], flags);
853 		/*
854 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
855 		 * the second page of the BO onward.
856 		 */
857 		amdgpu_gart_bind(adev,
858 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
859 				pages_per_xcc - 1,
860 				&gtt->ttm.dma_address[page_idx + 1],
861 				ctrl_flags);
862 	}
863 }
864 
865 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
866 				 struct ttm_buffer_object *tbo,
867 				 uint64_t flags)
868 {
869 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
870 	struct ttm_tt *ttm = tbo->ttm;
871 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
872 
873 	if (amdgpu_bo_encrypted(abo))
874 		flags |= AMDGPU_PTE_TMZ;
875 
876 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
877 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
878 	} else {
879 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
880 				 gtt->ttm.dma_address, flags);
881 	}
882 	gtt->bound = true;
883 }
884 
885 /*
886  * amdgpu_ttm_backend_bind - Bind GTT memory
887  *
888  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
889  * This handles binding GTT memory to the device address space.
890  */
891 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
892 				   struct ttm_tt *ttm,
893 				   struct ttm_resource *bo_mem)
894 {
895 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
896 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
897 	uint64_t flags;
898 	int r;
899 
900 	if (!bo_mem)
901 		return -EINVAL;
902 
903 	if (gtt->bound)
904 		return 0;
905 
906 	if (gtt->userptr) {
907 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
908 		if (r) {
909 			DRM_ERROR("failed to pin userptr\n");
910 			return r;
911 		}
912 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
913 		if (!ttm->sg) {
914 			struct dma_buf_attachment *attach;
915 			struct sg_table *sgt;
916 
917 			attach = gtt->gobj->import_attach;
918 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
919 			if (IS_ERR(sgt))
920 				return PTR_ERR(sgt);
921 
922 			ttm->sg = sgt;
923 		}
924 
925 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
926 					       ttm->num_pages);
927 	}
928 
929 	if (!ttm->num_pages) {
930 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
931 		     ttm->num_pages, bo_mem, ttm);
932 	}
933 
934 	if (bo_mem->mem_type != TTM_PL_TT ||
935 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
936 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
937 		return 0;
938 	}
939 
940 	/* compute PTE flags relevant to this BO memory */
941 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
942 
943 	/* bind pages into GART page tables */
944 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
945 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
946 			 gtt->ttm.dma_address, flags);
947 	gtt->bound = true;
948 	return 0;
949 }
950 
951 /*
952  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
953  * through AGP or GART aperture.
954  *
955  * If bo is accessible through AGP aperture, then use AGP aperture
956  * to access bo; otherwise allocate logical space in GART aperture
957  * and map bo to GART aperture.
958  */
959 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
960 {
961 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
962 	struct ttm_operation_ctx ctx = { false, false };
963 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
964 	struct ttm_placement placement;
965 	struct ttm_place placements;
966 	struct ttm_resource *tmp;
967 	uint64_t addr, flags;
968 	int r;
969 
970 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
971 		return 0;
972 
973 	addr = amdgpu_gmc_agp_addr(bo);
974 	if (addr != AMDGPU_BO_INVALID_OFFSET)
975 		return 0;
976 
977 	/* allocate GART space */
978 	placement.num_placement = 1;
979 	placement.placement = &placements;
980 	placements.fpfn = 0;
981 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
982 	placements.mem_type = TTM_PL_TT;
983 	placements.flags = bo->resource->placement;
984 
985 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
986 	if (unlikely(r))
987 		return r;
988 
989 	/* compute PTE flags for this buffer object */
990 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
991 
992 	/* Bind pages */
993 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
994 	amdgpu_ttm_gart_bind(adev, bo, flags);
995 	amdgpu_gart_invalidate_tlb(adev);
996 	ttm_resource_free(bo, &bo->resource);
997 	ttm_bo_assign_mem(bo, tmp);
998 
999 	return 0;
1000 }
1001 
1002 /*
1003  * amdgpu_ttm_recover_gart - Rebind GTT pages
1004  *
1005  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1006  * rebind GTT pages during a GPU reset.
1007  */
1008 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1009 {
1010 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1011 	uint64_t flags;
1012 
1013 	if (!tbo->ttm)
1014 		return;
1015 
1016 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1017 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1018 }
1019 
1020 /*
1021  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1022  *
1023  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1024  * ttm_tt_destroy().
1025  */
1026 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1027 				      struct ttm_tt *ttm)
1028 {
1029 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1030 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1031 
1032 	/* if the pages have userptr pinning then clear that first */
1033 	if (gtt->userptr) {
1034 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1035 	} else if (ttm->sg && gtt->gobj->import_attach) {
1036 		struct dma_buf_attachment *attach;
1037 
1038 		attach = gtt->gobj->import_attach;
1039 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1040 		ttm->sg = NULL;
1041 	}
1042 
1043 	if (!gtt->bound)
1044 		return;
1045 
1046 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1047 		return;
1048 
1049 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1050 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1051 	gtt->bound = false;
1052 }
1053 
1054 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1055 				       struct ttm_tt *ttm)
1056 {
1057 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1058 
1059 	if (gtt->usertask)
1060 		put_task_struct(gtt->usertask);
1061 
1062 	ttm_tt_fini(&gtt->ttm);
1063 	kfree(gtt);
1064 }
1065 
1066 /**
1067  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1068  *
1069  * @bo: The buffer object to create a GTT ttm_tt object around
1070  * @page_flags: Page flags to be added to the ttm_tt object
1071  *
1072  * Called by ttm_tt_create().
1073  */
1074 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1075 					   uint32_t page_flags)
1076 {
1077 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1078 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1079 	struct amdgpu_ttm_tt *gtt;
1080 	enum ttm_caching caching;
1081 
1082 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1083 	if (!gtt)
1084 		return NULL;
1085 
1086 	gtt->gobj = &bo->base;
1087 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1088 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1089 	else
1090 		gtt->pool_id = abo->xcp_id;
1091 
1092 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1093 		caching = ttm_write_combined;
1094 	else
1095 		caching = ttm_cached;
1096 
1097 	/* allocate space for the uninitialized page entries */
1098 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1099 		kfree(gtt);
1100 		return NULL;
1101 	}
1102 	return &gtt->ttm;
1103 }
1104 
1105 /*
1106  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1107  *
1108  * Map the pages of a ttm_tt object to an address space visible
1109  * to the underlying device.
1110  */
1111 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1112 				  struct ttm_tt *ttm,
1113 				  struct ttm_operation_ctx *ctx)
1114 {
1115 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1116 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1117 	struct ttm_pool *pool;
1118 	pgoff_t i;
1119 	int ret;
1120 
1121 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1122 	if (gtt->userptr) {
1123 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1124 		if (!ttm->sg)
1125 			return -ENOMEM;
1126 		return 0;
1127 	}
1128 
1129 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1130 		return 0;
1131 
1132 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1133 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1134 	else
1135 		pool = &adev->mman.bdev.pool;
1136 	ret = ttm_pool_alloc(pool, ttm, ctx);
1137 	if (ret)
1138 		return ret;
1139 
1140 	for (i = 0; i < ttm->num_pages; ++i)
1141 		ttm->pages[i]->mapping = bdev->dev_mapping;
1142 
1143 	return 0;
1144 }
1145 
1146 /*
1147  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1148  *
1149  * Unmaps pages of a ttm_tt object from the device address space and
1150  * unpopulates the page array backing it.
1151  */
1152 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1153 				     struct ttm_tt *ttm)
1154 {
1155 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1156 	struct amdgpu_device *adev;
1157 	struct ttm_pool *pool;
1158 	pgoff_t i;
1159 
1160 	amdgpu_ttm_backend_unbind(bdev, ttm);
1161 
1162 	if (gtt->userptr) {
1163 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1164 		kfree(ttm->sg);
1165 		ttm->sg = NULL;
1166 		return;
1167 	}
1168 
1169 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1170 		return;
1171 
1172 	for (i = 0; i < ttm->num_pages; ++i)
1173 		ttm->pages[i]->mapping = NULL;
1174 
1175 	adev = amdgpu_ttm_adev(bdev);
1176 
1177 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1178 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1179 	else
1180 		pool = &adev->mman.bdev.pool;
1181 
1182 	return ttm_pool_free(pool, ttm);
1183 }
1184 
1185 /**
1186  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1187  * task
1188  *
1189  * @tbo: The ttm_buffer_object that contains the userptr
1190  * @user_addr:  The returned value
1191  */
1192 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1193 			      uint64_t *user_addr)
1194 {
1195 	struct amdgpu_ttm_tt *gtt;
1196 
1197 	if (!tbo->ttm)
1198 		return -EINVAL;
1199 
1200 	gtt = (void *)tbo->ttm;
1201 	*user_addr = gtt->userptr;
1202 	return 0;
1203 }
1204 
1205 /**
1206  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1207  * task
1208  *
1209  * @bo: The ttm_buffer_object to bind this userptr to
1210  * @addr:  The address in the current tasks VM space to use
1211  * @flags: Requirements of userptr object.
1212  *
1213  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1214  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1215  * initialize GPU VM for a KFD process.
1216  */
1217 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1218 			      uint64_t addr, uint32_t flags)
1219 {
1220 	struct amdgpu_ttm_tt *gtt;
1221 
1222 	if (!bo->ttm) {
1223 		/* TODO: We want a separate TTM object type for userptrs */
1224 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1225 		if (bo->ttm == NULL)
1226 			return -ENOMEM;
1227 	}
1228 
1229 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1230 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1231 
1232 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1233 	gtt->userptr = addr;
1234 	gtt->userflags = flags;
1235 
1236 	if (gtt->usertask)
1237 		put_task_struct(gtt->usertask);
1238 	gtt->usertask = current->group_leader;
1239 	get_task_struct(gtt->usertask);
1240 
1241 	return 0;
1242 }
1243 
1244 /*
1245  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1246  */
1247 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1248 {
1249 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1250 
1251 	if (gtt == NULL)
1252 		return NULL;
1253 
1254 	if (gtt->usertask == NULL)
1255 		return NULL;
1256 
1257 	return gtt->usertask->mm;
1258 }
1259 
1260 /*
1261  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1262  * address range for the current task.
1263  *
1264  */
1265 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1266 				  unsigned long end, unsigned long *userptr)
1267 {
1268 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1269 	unsigned long size;
1270 
1271 	if (gtt == NULL || !gtt->userptr)
1272 		return false;
1273 
1274 	/* Return false if no part of the ttm_tt object lies within
1275 	 * the range
1276 	 */
1277 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1278 	if (gtt->userptr > end || gtt->userptr + size <= start)
1279 		return false;
1280 
1281 	if (userptr)
1282 		*userptr = gtt->userptr;
1283 	return true;
1284 }
1285 
1286 /*
1287  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1288  */
1289 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1290 {
1291 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1292 
1293 	if (gtt == NULL || !gtt->userptr)
1294 		return false;
1295 
1296 	return true;
1297 }
1298 
1299 /*
1300  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1301  */
1302 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1303 {
1304 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1305 
1306 	if (gtt == NULL)
1307 		return false;
1308 
1309 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1310 }
1311 
1312 /**
1313  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1314  *
1315  * @ttm: The ttm_tt object to compute the flags for
1316  * @mem: The memory registry backing this ttm_tt object
1317  *
1318  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1319  */
1320 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1321 {
1322 	uint64_t flags = 0;
1323 
1324 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1325 		flags |= AMDGPU_PTE_VALID;
1326 
1327 	if (mem && (mem->mem_type == TTM_PL_TT ||
1328 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1329 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1330 		flags |= AMDGPU_PTE_SYSTEM;
1331 
1332 		if (ttm->caching == ttm_cached)
1333 			flags |= AMDGPU_PTE_SNOOPED;
1334 	}
1335 
1336 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1337 			mem->bus.caching == ttm_cached)
1338 		flags |= AMDGPU_PTE_SNOOPED;
1339 
1340 	return flags;
1341 }
1342 
1343 /**
1344  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1345  *
1346  * @adev: amdgpu_device pointer
1347  * @ttm: The ttm_tt object to compute the flags for
1348  * @mem: The memory registry backing this ttm_tt object
1349  *
1350  * Figure out the flags to use for a VM PTE (Page Table Entry).
1351  */
1352 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1353 				 struct ttm_resource *mem)
1354 {
1355 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1356 
1357 	flags |= adev->gart.gart_pte_flags;
1358 	flags |= AMDGPU_PTE_READABLE;
1359 
1360 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1361 		flags |= AMDGPU_PTE_WRITEABLE;
1362 
1363 	return flags;
1364 }
1365 
1366 /*
1367  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1368  * object.
1369  *
1370  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1371  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1372  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1373  * used to clean out a memory space.
1374  */
1375 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1376 					    const struct ttm_place *place)
1377 {
1378 	struct dma_resv_iter resv_cursor;
1379 	struct dma_fence *f;
1380 
1381 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1382 		return ttm_bo_eviction_valuable(bo, place);
1383 
1384 	/* Swapout? */
1385 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1386 		return true;
1387 
1388 	if (bo->type == ttm_bo_type_kernel &&
1389 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1390 		return false;
1391 
1392 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1393 	 * If true, then return false as any KFD process needs all its BOs to
1394 	 * be resident to run successfully
1395 	 */
1396 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1397 				DMA_RESV_USAGE_BOOKKEEP, f) {
1398 		if (amdkfd_fence_check_mm(f, current->mm))
1399 			return false;
1400 	}
1401 
1402 	/* Preemptible BOs don't own system resources managed by the
1403 	 * driver (pages, VRAM, GART space). They point to resources
1404 	 * owned by someone else (e.g. pageable memory in user mode
1405 	 * or a DMABuf). They are used in a preemptible context so we
1406 	 * can guarantee no deadlocks and good QoS in case of MMU
1407 	 * notifiers or DMABuf move notifiers from the resource owner.
1408 	 */
1409 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1410 		return false;
1411 
1412 	if (bo->resource->mem_type == TTM_PL_TT &&
1413 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1414 		return false;
1415 
1416 	return ttm_bo_eviction_valuable(bo, place);
1417 }
1418 
1419 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1420 				      void *buf, size_t size, bool write)
1421 {
1422 	while (size) {
1423 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1424 		uint64_t bytes = 4 - (pos & 0x3);
1425 		uint32_t shift = (pos & 0x3) * 8;
1426 		uint32_t mask = 0xffffffff << shift;
1427 		uint32_t value = 0;
1428 
1429 		if (size < bytes) {
1430 			mask &= 0xffffffff >> (bytes - size) * 8;
1431 			bytes = size;
1432 		}
1433 
1434 		if (mask != 0xffffffff) {
1435 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1436 			if (write) {
1437 				value &= ~mask;
1438 				value |= (*(uint32_t *)buf << shift) & mask;
1439 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1440 			} else {
1441 				value = (value & mask) >> shift;
1442 				memcpy(buf, &value, bytes);
1443 			}
1444 		} else {
1445 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1446 		}
1447 
1448 		pos += bytes;
1449 		buf += bytes;
1450 		size -= bytes;
1451 	}
1452 }
1453 
1454 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1455 					unsigned long offset, void *buf,
1456 					int len, int write)
1457 {
1458 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1459 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1460 	struct amdgpu_res_cursor src_mm;
1461 	struct amdgpu_job *job;
1462 	struct dma_fence *fence;
1463 	uint64_t src_addr, dst_addr;
1464 	unsigned int num_dw;
1465 	int r, idx;
1466 
1467 	if (len != PAGE_SIZE)
1468 		return -EINVAL;
1469 
1470 	if (!adev->mman.sdma_access_ptr)
1471 		return -EACCES;
1472 
1473 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1474 		return -ENODEV;
1475 
1476 	if (write)
1477 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1478 
1479 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1480 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1481 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1482 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1483 				     &job);
1484 	if (r)
1485 		goto out;
1486 
1487 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1488 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1489 		src_mm.start;
1490 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1491 	if (write)
1492 		swap(src_addr, dst_addr);
1493 
1494 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1495 				PAGE_SIZE, false);
1496 
1497 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1498 	WARN_ON(job->ibs[0].length_dw > num_dw);
1499 
1500 	fence = amdgpu_job_submit(job);
1501 
1502 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1503 		r = -ETIMEDOUT;
1504 	dma_fence_put(fence);
1505 
1506 	if (!(r || write))
1507 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1508 out:
1509 	drm_dev_exit(idx);
1510 	return r;
1511 }
1512 
1513 /**
1514  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1515  *
1516  * @bo:  The buffer object to read/write
1517  * @offset:  Offset into buffer object
1518  * @buf:  Secondary buffer to write/read from
1519  * @len: Length in bytes of access
1520  * @write:  true if writing
1521  *
1522  * This is used to access VRAM that backs a buffer object via MMIO
1523  * access for debugging purposes.
1524  */
1525 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1526 				    unsigned long offset, void *buf, int len,
1527 				    int write)
1528 {
1529 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1530 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1531 	struct amdgpu_res_cursor cursor;
1532 	int ret = 0;
1533 
1534 	if (bo->resource->mem_type != TTM_PL_VRAM)
1535 		return -EIO;
1536 
1537 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1538 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1539 		return len;
1540 
1541 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1542 	while (cursor.remaining) {
1543 		size_t count, size = cursor.size;
1544 		loff_t pos = cursor.start;
1545 
1546 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1547 		size -= count;
1548 		if (size) {
1549 			/* using MM to access rest vram and handle un-aligned address */
1550 			pos += count;
1551 			buf += count;
1552 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1553 		}
1554 
1555 		ret += cursor.size;
1556 		buf += cursor.size;
1557 		amdgpu_res_next(&cursor, cursor.size);
1558 	}
1559 
1560 	return ret;
1561 }
1562 
1563 static void
1564 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1565 {
1566 	amdgpu_bo_move_notify(bo, false, NULL);
1567 }
1568 
1569 static struct ttm_device_funcs amdgpu_bo_driver = {
1570 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1571 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1572 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1573 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1574 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1575 	.evict_flags = &amdgpu_evict_flags,
1576 	.move = &amdgpu_bo_move,
1577 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1578 	.release_notify = &amdgpu_bo_release_notify,
1579 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1580 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1581 	.access_memory = &amdgpu_ttm_access_memory,
1582 };
1583 
1584 /*
1585  * Firmware Reservation functions
1586  */
1587 /**
1588  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1589  *
1590  * @adev: amdgpu_device pointer
1591  *
1592  * free fw reserved vram if it has been reserved.
1593  */
1594 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1595 {
1596 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1597 		NULL, &adev->mman.fw_vram_usage_va);
1598 }
1599 
1600 /*
1601  * Driver Reservation functions
1602  */
1603 /**
1604  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1605  *
1606  * @adev: amdgpu_device pointer
1607  *
1608  * free drv reserved vram if it has been reserved.
1609  */
1610 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1611 {
1612 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1613 						  NULL,
1614 						  &adev->mman.drv_vram_usage_va);
1615 }
1616 
1617 /**
1618  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1619  *
1620  * @adev: amdgpu_device pointer
1621  *
1622  * create bo vram reservation from fw.
1623  */
1624 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1625 {
1626 	uint64_t vram_size = adev->gmc.visible_vram_size;
1627 
1628 	adev->mman.fw_vram_usage_va = NULL;
1629 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1630 
1631 	if (adev->mman.fw_vram_usage_size == 0 ||
1632 	    adev->mman.fw_vram_usage_size > vram_size)
1633 		return 0;
1634 
1635 	return amdgpu_bo_create_kernel_at(adev,
1636 					  adev->mman.fw_vram_usage_start_offset,
1637 					  adev->mman.fw_vram_usage_size,
1638 					  &adev->mman.fw_vram_usage_reserved_bo,
1639 					  &adev->mman.fw_vram_usage_va);
1640 }
1641 
1642 /**
1643  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1644  *
1645  * @adev: amdgpu_device pointer
1646  *
1647  * create bo vram reservation from drv.
1648  */
1649 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1650 {
1651 	u64 vram_size = adev->gmc.visible_vram_size;
1652 
1653 	adev->mman.drv_vram_usage_va = NULL;
1654 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1655 
1656 	if (adev->mman.drv_vram_usage_size == 0 ||
1657 	    adev->mman.drv_vram_usage_size > vram_size)
1658 		return 0;
1659 
1660 	return amdgpu_bo_create_kernel_at(adev,
1661 					  adev->mman.drv_vram_usage_start_offset,
1662 					  adev->mman.drv_vram_usage_size,
1663 					  &adev->mman.drv_vram_usage_reserved_bo,
1664 					  &adev->mman.drv_vram_usage_va);
1665 }
1666 
1667 /*
1668  * Memoy training reservation functions
1669  */
1670 
1671 /**
1672  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1673  *
1674  * @adev: amdgpu_device pointer
1675  *
1676  * free memory training reserved vram if it has been reserved.
1677  */
1678 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1679 {
1680 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1681 
1682 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1683 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1684 	ctx->c2p_bo = NULL;
1685 
1686 	return 0;
1687 }
1688 
1689 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1690 						uint32_t reserve_size)
1691 {
1692 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1693 
1694 	memset(ctx, 0, sizeof(*ctx));
1695 
1696 	ctx->c2p_train_data_offset =
1697 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1698 	ctx->p2c_train_data_offset =
1699 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1700 	ctx->train_data_size =
1701 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1702 
1703 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1704 			ctx->train_data_size,
1705 			ctx->p2c_train_data_offset,
1706 			ctx->c2p_train_data_offset);
1707 }
1708 
1709 /*
1710  * reserve TMR memory at the top of VRAM which holds
1711  * IP Discovery data and is protected by PSP.
1712  */
1713 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1714 {
1715 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1716 	bool mem_train_support = false;
1717 	uint32_t reserve_size = 0;
1718 	int ret;
1719 
1720 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1721 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1722 			mem_train_support = true;
1723 		else
1724 			DRM_DEBUG("memory training does not support!\n");
1725 	}
1726 
1727 	/*
1728 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1729 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1730 	 *
1731 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1732 	 * discovery data and G6 memory training data respectively
1733 	 */
1734 	if (adev->bios)
1735 		reserve_size =
1736 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1737 
1738 	if (!adev->bios &&
1739 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1740 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1741 	else if (!reserve_size)
1742 		reserve_size = DISCOVERY_TMR_OFFSET;
1743 
1744 	if (mem_train_support) {
1745 		/* reserve vram for mem train according to TMR location */
1746 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1747 		ret = amdgpu_bo_create_kernel_at(adev,
1748 						 ctx->c2p_train_data_offset,
1749 						 ctx->train_data_size,
1750 						 &ctx->c2p_bo,
1751 						 NULL);
1752 		if (ret) {
1753 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1754 			amdgpu_ttm_training_reserve_vram_fini(adev);
1755 			return ret;
1756 		}
1757 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1758 	}
1759 
1760 	if (!adev->gmc.is_app_apu) {
1761 		ret = amdgpu_bo_create_kernel_at(
1762 			adev, adev->gmc.real_vram_size - reserve_size,
1763 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1764 		if (ret) {
1765 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1766 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1767 					      NULL, NULL);
1768 			return ret;
1769 		}
1770 	} else {
1771 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1778 {
1779 	int i;
1780 
1781 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1782 		return 0;
1783 
1784 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1785 				       sizeof(*adev->mman.ttm_pools),
1786 				       GFP_KERNEL);
1787 	if (!adev->mman.ttm_pools)
1788 		return -ENOMEM;
1789 
1790 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1791 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1792 			      adev->gmc.mem_partitions[i].numa.node,
1793 			      false, false);
1794 	}
1795 	return 0;
1796 }
1797 
1798 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1799 {
1800 	int i;
1801 
1802 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1803 		return;
1804 
1805 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1806 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1807 
1808 	kfree(adev->mman.ttm_pools);
1809 	adev->mman.ttm_pools = NULL;
1810 }
1811 
1812 /*
1813  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1814  * gtt/vram related fields.
1815  *
1816  * This initializes all of the memory space pools that the TTM layer
1817  * will need such as the GTT space (system memory mapped to the device),
1818  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1819  * can be mapped per VMID.
1820  */
1821 int amdgpu_ttm_init(struct amdgpu_device *adev)
1822 {
1823 	uint64_t gtt_size;
1824 	int r;
1825 
1826 	mutex_init(&adev->mman.gtt_window_lock);
1827 
1828 	/* No others user of address space so set it to 0 */
1829 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1830 			       adev_to_drm(adev)->anon_inode->i_mapping,
1831 			       adev_to_drm(adev)->vma_offset_manager,
1832 			       adev->need_swiotlb,
1833 			       dma_addressing_limited(adev->dev));
1834 	if (r) {
1835 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1836 		return r;
1837 	}
1838 
1839 	r = amdgpu_ttm_pools_init(adev);
1840 	if (r) {
1841 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1842 		return r;
1843 	}
1844 	adev->mman.initialized = true;
1845 
1846 	/* Initialize VRAM pool with all of VRAM divided into pages */
1847 	r = amdgpu_vram_mgr_init(adev);
1848 	if (r) {
1849 		DRM_ERROR("Failed initializing VRAM heap.\n");
1850 		return r;
1851 	}
1852 
1853 	/* Change the size here instead of the init above so only lpfn is affected */
1854 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1855 #ifdef CONFIG_64BIT
1856 #ifdef CONFIG_X86
1857 	if (adev->gmc.xgmi.connected_to_cpu)
1858 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1859 				adev->gmc.visible_vram_size);
1860 
1861 	else if (adev->gmc.is_app_apu)
1862 		DRM_DEBUG_DRIVER(
1863 			"No need to ioremap when real vram size is 0\n");
1864 	else
1865 #endif
1866 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1867 				adev->gmc.visible_vram_size);
1868 #endif
1869 
1870 	/*
1871 	 *The reserved vram for firmware must be pinned to the specified
1872 	 *place on the VRAM, so reserve it early.
1873 	 */
1874 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1875 	if (r)
1876 		return r;
1877 
1878 	/*
1879 	 *The reserved vram for driver must be pinned to the specified
1880 	 *place on the VRAM, so reserve it early.
1881 	 */
1882 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1883 	if (r)
1884 		return r;
1885 
1886 	/*
1887 	 * only NAVI10 and onwards ASIC support for IP discovery.
1888 	 * If IP discovery enabled, a block of memory should be
1889 	 * reserved for IP discovey.
1890 	 */
1891 	if (adev->mman.discovery_bin) {
1892 		r = amdgpu_ttm_reserve_tmr(adev);
1893 		if (r)
1894 			return r;
1895 	}
1896 
1897 	/* allocate memory as required for VGA
1898 	 * This is used for VGA emulation and pre-OS scanout buffers to
1899 	 * avoid display artifacts while transitioning between pre-OS
1900 	 * and driver.
1901 	 */
1902 	if (!adev->gmc.is_app_apu) {
1903 		r = amdgpu_bo_create_kernel_at(adev, 0,
1904 					       adev->mman.stolen_vga_size,
1905 					       &adev->mman.stolen_vga_memory,
1906 					       NULL);
1907 		if (r)
1908 			return r;
1909 
1910 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1911 					       adev->mman.stolen_extended_size,
1912 					       &adev->mman.stolen_extended_memory,
1913 					       NULL);
1914 
1915 		if (r)
1916 			return r;
1917 
1918 		r = amdgpu_bo_create_kernel_at(adev,
1919 					       adev->mman.stolen_reserved_offset,
1920 					       adev->mman.stolen_reserved_size,
1921 					       &adev->mman.stolen_reserved_memory,
1922 					       NULL);
1923 		if (r)
1924 			return r;
1925 	} else {
1926 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1927 	}
1928 
1929 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1930 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1931 
1932 	/* Compute GTT size, either based on TTM limit
1933 	 * or whatever the user passed on module init.
1934 	 */
1935 	if (amdgpu_gtt_size == -1)
1936 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1937 	else
1938 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1939 
1940 	/* Initialize GTT memory pool */
1941 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1942 	if (r) {
1943 		DRM_ERROR("Failed initializing GTT heap.\n");
1944 		return r;
1945 	}
1946 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1947 		 (unsigned int)(gtt_size / (1024 * 1024)));
1948 
1949 	/* Initiailize doorbell pool on PCI BAR */
1950 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1951 	if (r) {
1952 		DRM_ERROR("Failed initializing doorbell heap.\n");
1953 		return r;
1954 	}
1955 
1956 	/* Create a boorbell page for kernel usages */
1957 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1958 	if (r) {
1959 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1960 		return r;
1961 	}
1962 
1963 	/* Initialize preemptible memory pool */
1964 	r = amdgpu_preempt_mgr_init(adev);
1965 	if (r) {
1966 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1967 		return r;
1968 	}
1969 
1970 	/* Initialize various on-chip memory pools */
1971 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1972 	if (r) {
1973 		DRM_ERROR("Failed initializing GDS heap.\n");
1974 		return r;
1975 	}
1976 
1977 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1978 	if (r) {
1979 		DRM_ERROR("Failed initializing gws heap.\n");
1980 		return r;
1981 	}
1982 
1983 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1984 	if (r) {
1985 		DRM_ERROR("Failed initializing oa heap.\n");
1986 		return r;
1987 	}
1988 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1989 				AMDGPU_GEM_DOMAIN_GTT,
1990 				&adev->mman.sdma_access_bo, NULL,
1991 				&adev->mman.sdma_access_ptr))
1992 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1993 
1994 	return 0;
1995 }
1996 
1997 /*
1998  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1999  */
2000 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2001 {
2002 	int idx;
2003 
2004 	if (!adev->mman.initialized)
2005 		return;
2006 
2007 	amdgpu_ttm_pools_fini(adev);
2008 
2009 	amdgpu_ttm_training_reserve_vram_fini(adev);
2010 	/* return the stolen vga memory back to VRAM */
2011 	if (!adev->gmc.is_app_apu) {
2012 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2013 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2014 		/* return the FW reserved memory back to VRAM */
2015 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2016 				      NULL);
2017 		if (adev->mman.stolen_reserved_size)
2018 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2019 					      NULL, NULL);
2020 	}
2021 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2022 					&adev->mman.sdma_access_ptr);
2023 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2024 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2025 
2026 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2027 
2028 		if (adev->mman.aper_base_kaddr)
2029 			iounmap(adev->mman.aper_base_kaddr);
2030 		adev->mman.aper_base_kaddr = NULL;
2031 
2032 		drm_dev_exit(idx);
2033 	}
2034 
2035 	amdgpu_vram_mgr_fini(adev);
2036 	amdgpu_gtt_mgr_fini(adev);
2037 	amdgpu_preempt_mgr_fini(adev);
2038 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2039 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2040 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2041 	ttm_device_fini(&adev->mman.bdev);
2042 	adev->mman.initialized = false;
2043 	DRM_INFO("amdgpu: ttm finalized\n");
2044 }
2045 
2046 /**
2047  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2048  *
2049  * @adev: amdgpu_device pointer
2050  * @enable: true when we can use buffer functions.
2051  *
2052  * Enable/disable use of buffer functions during suspend/resume. This should
2053  * only be called at bootup or when userspace isn't running.
2054  */
2055 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2056 {
2057 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2058 	uint64_t size;
2059 	int r;
2060 
2061 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2062 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2063 		return;
2064 
2065 	if (enable) {
2066 		struct amdgpu_ring *ring;
2067 		struct drm_gpu_scheduler *sched;
2068 
2069 		ring = adev->mman.buffer_funcs_ring;
2070 		sched = &ring->sched;
2071 		r = drm_sched_entity_init(&adev->mman.high_pr,
2072 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2073 					  1, NULL);
2074 		if (r) {
2075 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076 				  r);
2077 			return;
2078 		}
2079 
2080 		r = drm_sched_entity_init(&adev->mman.low_pr,
2081 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2082 					  1, NULL);
2083 		if (r) {
2084 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2085 				  r);
2086 			goto error_free_entity;
2087 		}
2088 	} else {
2089 		drm_sched_entity_destroy(&adev->mman.high_pr);
2090 		drm_sched_entity_destroy(&adev->mman.low_pr);
2091 		dma_fence_put(man->move);
2092 		man->move = NULL;
2093 	}
2094 
2095 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2096 	if (enable)
2097 		size = adev->gmc.real_vram_size;
2098 	else
2099 		size = adev->gmc.visible_vram_size;
2100 	man->size = size;
2101 	adev->mman.buffer_funcs_enabled = enable;
2102 
2103 	return;
2104 
2105 error_free_entity:
2106 	drm_sched_entity_destroy(&adev->mman.high_pr);
2107 }
2108 
2109 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2110 				  bool direct_submit,
2111 				  unsigned int num_dw,
2112 				  struct dma_resv *resv,
2113 				  bool vm_needs_flush,
2114 				  struct amdgpu_job **job,
2115 				  bool delayed)
2116 {
2117 	enum amdgpu_ib_pool_type pool = direct_submit ?
2118 		AMDGPU_IB_POOL_DIRECT :
2119 		AMDGPU_IB_POOL_DELAYED;
2120 	int r;
2121 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2122 						    &adev->mman.high_pr;
2123 	r = amdgpu_job_alloc_with_ib(adev, entity,
2124 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2125 				     num_dw * 4, pool, job);
2126 	if (r)
2127 		return r;
2128 
2129 	if (vm_needs_flush) {
2130 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2131 							adev->gmc.pdb0_bo :
2132 							adev->gart.bo);
2133 		(*job)->vm_needs_flush = true;
2134 	}
2135 	if (!resv)
2136 		return 0;
2137 
2138 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2139 						   DMA_RESV_USAGE_BOOKKEEP);
2140 }
2141 
2142 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2143 		       uint64_t dst_offset, uint32_t byte_count,
2144 		       struct dma_resv *resv,
2145 		       struct dma_fence **fence, bool direct_submit,
2146 		       bool vm_needs_flush, bool tmz)
2147 {
2148 	struct amdgpu_device *adev = ring->adev;
2149 	unsigned int num_loops, num_dw;
2150 	struct amdgpu_job *job;
2151 	uint32_t max_bytes;
2152 	unsigned int i;
2153 	int r;
2154 
2155 	if (!direct_submit && !ring->sched.ready) {
2156 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2157 		return -EINVAL;
2158 	}
2159 
2160 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2161 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2162 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2163 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2164 				   resv, vm_needs_flush, &job, false);
2165 	if (r)
2166 		return r;
2167 
2168 	for (i = 0; i < num_loops; i++) {
2169 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2170 
2171 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2172 					dst_offset, cur_size_in_bytes, tmz);
2173 
2174 		src_offset += cur_size_in_bytes;
2175 		dst_offset += cur_size_in_bytes;
2176 		byte_count -= cur_size_in_bytes;
2177 	}
2178 
2179 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2180 	WARN_ON(job->ibs[0].length_dw > num_dw);
2181 	if (direct_submit)
2182 		r = amdgpu_job_submit_direct(job, ring, fence);
2183 	else
2184 		*fence = amdgpu_job_submit(job);
2185 	if (r)
2186 		goto error_free;
2187 
2188 	return r;
2189 
2190 error_free:
2191 	amdgpu_job_free(job);
2192 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2193 	return r;
2194 }
2195 
2196 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2197 			       uint64_t dst_addr, uint32_t byte_count,
2198 			       struct dma_resv *resv,
2199 			       struct dma_fence **fence,
2200 			       bool vm_needs_flush, bool delayed)
2201 {
2202 	struct amdgpu_device *adev = ring->adev;
2203 	unsigned int num_loops, num_dw;
2204 	struct amdgpu_job *job;
2205 	uint32_t max_bytes;
2206 	unsigned int i;
2207 	int r;
2208 
2209 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2210 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2211 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2212 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2213 				   &job, delayed);
2214 	if (r)
2215 		return r;
2216 
2217 	for (i = 0; i < num_loops; i++) {
2218 		uint32_t cur_size = min(byte_count, max_bytes);
2219 
2220 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2221 					cur_size);
2222 
2223 		dst_addr += cur_size;
2224 		byte_count -= cur_size;
2225 	}
2226 
2227 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2228 	WARN_ON(job->ibs[0].length_dw > num_dw);
2229 	*fence = amdgpu_job_submit(job);
2230 	return 0;
2231 }
2232 
2233 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2234 			uint32_t src_data,
2235 			struct dma_resv *resv,
2236 			struct dma_fence **f,
2237 			bool delayed)
2238 {
2239 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2240 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2241 	struct dma_fence *fence = NULL;
2242 	struct amdgpu_res_cursor dst;
2243 	int r;
2244 
2245 	if (!adev->mman.buffer_funcs_enabled) {
2246 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2247 		return -EINVAL;
2248 	}
2249 
2250 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2251 
2252 	mutex_lock(&adev->mman.gtt_window_lock);
2253 	while (dst.remaining) {
2254 		struct dma_fence *next;
2255 		uint64_t cur_size, to;
2256 
2257 		/* Never fill more than 256MiB at once to avoid timeouts */
2258 		cur_size = min(dst.size, 256ULL << 20);
2259 
2260 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2261 					  1, ring, false, &cur_size, &to);
2262 		if (r)
2263 			goto error;
2264 
2265 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2266 					&next, true, delayed);
2267 		if (r)
2268 			goto error;
2269 
2270 		dma_fence_put(fence);
2271 		fence = next;
2272 
2273 		amdgpu_res_next(&dst, cur_size);
2274 	}
2275 error:
2276 	mutex_unlock(&adev->mman.gtt_window_lock);
2277 	if (f)
2278 		*f = dma_fence_get(fence);
2279 	dma_fence_put(fence);
2280 	return r;
2281 }
2282 
2283 /**
2284  * amdgpu_ttm_evict_resources - evict memory buffers
2285  * @adev: amdgpu device object
2286  * @mem_type: evicted BO's memory type
2287  *
2288  * Evicts all @mem_type buffers on the lru list of the memory type.
2289  *
2290  * Returns:
2291  * 0 for success or a negative error code on failure.
2292  */
2293 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2294 {
2295 	struct ttm_resource_manager *man;
2296 
2297 	switch (mem_type) {
2298 	case TTM_PL_VRAM:
2299 	case TTM_PL_TT:
2300 	case AMDGPU_PL_GWS:
2301 	case AMDGPU_PL_GDS:
2302 	case AMDGPU_PL_OA:
2303 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2304 		break;
2305 	default:
2306 		DRM_ERROR("Trying to evict invalid memory type\n");
2307 		return -EINVAL;
2308 	}
2309 
2310 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2311 }
2312 
2313 #if defined(CONFIG_DEBUG_FS)
2314 
2315 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2316 {
2317 	struct amdgpu_device *adev = m->private;
2318 
2319 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2320 }
2321 
2322 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2323 
2324 /*
2325  * amdgpu_ttm_vram_read - Linear read access to VRAM
2326  *
2327  * Accesses VRAM via MMIO for debugging purposes.
2328  */
2329 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2330 				    size_t size, loff_t *pos)
2331 {
2332 	struct amdgpu_device *adev = file_inode(f)->i_private;
2333 	ssize_t result = 0;
2334 
2335 	if (size & 0x3 || *pos & 0x3)
2336 		return -EINVAL;
2337 
2338 	if (*pos >= adev->gmc.mc_vram_size)
2339 		return -ENXIO;
2340 
2341 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2342 	while (size) {
2343 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2344 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2345 
2346 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2347 		if (copy_to_user(buf, value, bytes))
2348 			return -EFAULT;
2349 
2350 		result += bytes;
2351 		buf += bytes;
2352 		*pos += bytes;
2353 		size -= bytes;
2354 	}
2355 
2356 	return result;
2357 }
2358 
2359 /*
2360  * amdgpu_ttm_vram_write - Linear write access to VRAM
2361  *
2362  * Accesses VRAM via MMIO for debugging purposes.
2363  */
2364 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2365 				    size_t size, loff_t *pos)
2366 {
2367 	struct amdgpu_device *adev = file_inode(f)->i_private;
2368 	ssize_t result = 0;
2369 	int r;
2370 
2371 	if (size & 0x3 || *pos & 0x3)
2372 		return -EINVAL;
2373 
2374 	if (*pos >= adev->gmc.mc_vram_size)
2375 		return -ENXIO;
2376 
2377 	while (size) {
2378 		uint32_t value;
2379 
2380 		if (*pos >= adev->gmc.mc_vram_size)
2381 			return result;
2382 
2383 		r = get_user(value, (uint32_t *)buf);
2384 		if (r)
2385 			return r;
2386 
2387 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2388 
2389 		result += 4;
2390 		buf += 4;
2391 		*pos += 4;
2392 		size -= 4;
2393 	}
2394 
2395 	return result;
2396 }
2397 
2398 static const struct file_operations amdgpu_ttm_vram_fops = {
2399 	.owner = THIS_MODULE,
2400 	.read = amdgpu_ttm_vram_read,
2401 	.write = amdgpu_ttm_vram_write,
2402 	.llseek = default_llseek,
2403 };
2404 
2405 /*
2406  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2407  *
2408  * This function is used to read memory that has been mapped to the
2409  * GPU and the known addresses are not physical addresses but instead
2410  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2411  */
2412 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2413 				 size_t size, loff_t *pos)
2414 {
2415 	struct amdgpu_device *adev = file_inode(f)->i_private;
2416 	struct iommu_domain *dom;
2417 	ssize_t result = 0;
2418 	int r;
2419 
2420 	/* retrieve the IOMMU domain if any for this device */
2421 	dom = iommu_get_domain_for_dev(adev->dev);
2422 
2423 	while (size) {
2424 		phys_addr_t addr = *pos & PAGE_MASK;
2425 		loff_t off = *pos & ~PAGE_MASK;
2426 		size_t bytes = PAGE_SIZE - off;
2427 		unsigned long pfn;
2428 		struct page *p;
2429 		void *ptr;
2430 
2431 		bytes = min(bytes, size);
2432 
2433 		/* Translate the bus address to a physical address.  If
2434 		 * the domain is NULL it means there is no IOMMU active
2435 		 * and the address translation is the identity
2436 		 */
2437 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2438 
2439 		pfn = addr >> PAGE_SHIFT;
2440 		if (!pfn_valid(pfn))
2441 			return -EPERM;
2442 
2443 		p = pfn_to_page(pfn);
2444 		if (p->mapping != adev->mman.bdev.dev_mapping)
2445 			return -EPERM;
2446 
2447 		ptr = kmap_local_page(p);
2448 		r = copy_to_user(buf, ptr + off, bytes);
2449 		kunmap_local(ptr);
2450 		if (r)
2451 			return -EFAULT;
2452 
2453 		size -= bytes;
2454 		*pos += bytes;
2455 		result += bytes;
2456 	}
2457 
2458 	return result;
2459 }
2460 
2461 /*
2462  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2463  *
2464  * This function is used to write memory that has been mapped to the
2465  * GPU and the known addresses are not physical addresses but instead
2466  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2467  */
2468 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2469 				 size_t size, loff_t *pos)
2470 {
2471 	struct amdgpu_device *adev = file_inode(f)->i_private;
2472 	struct iommu_domain *dom;
2473 	ssize_t result = 0;
2474 	int r;
2475 
2476 	dom = iommu_get_domain_for_dev(adev->dev);
2477 
2478 	while (size) {
2479 		phys_addr_t addr = *pos & PAGE_MASK;
2480 		loff_t off = *pos & ~PAGE_MASK;
2481 		size_t bytes = PAGE_SIZE - off;
2482 		unsigned long pfn;
2483 		struct page *p;
2484 		void *ptr;
2485 
2486 		bytes = min(bytes, size);
2487 
2488 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2489 
2490 		pfn = addr >> PAGE_SHIFT;
2491 		if (!pfn_valid(pfn))
2492 			return -EPERM;
2493 
2494 		p = pfn_to_page(pfn);
2495 		if (p->mapping != adev->mman.bdev.dev_mapping)
2496 			return -EPERM;
2497 
2498 		ptr = kmap_local_page(p);
2499 		r = copy_from_user(ptr + off, buf, bytes);
2500 		kunmap_local(ptr);
2501 		if (r)
2502 			return -EFAULT;
2503 
2504 		size -= bytes;
2505 		*pos += bytes;
2506 		result += bytes;
2507 	}
2508 
2509 	return result;
2510 }
2511 
2512 static const struct file_operations amdgpu_ttm_iomem_fops = {
2513 	.owner = THIS_MODULE,
2514 	.read = amdgpu_iomem_read,
2515 	.write = amdgpu_iomem_write,
2516 	.llseek = default_llseek
2517 };
2518 
2519 #endif
2520 
2521 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2522 {
2523 #if defined(CONFIG_DEBUG_FS)
2524 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2525 	struct dentry *root = minor->debugfs_root;
2526 
2527 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2528 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2529 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2530 			    &amdgpu_ttm_iomem_fops);
2531 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2532 			    &amdgpu_ttm_page_pool_fops);
2533 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534 							     TTM_PL_VRAM),
2535 					    root, "amdgpu_vram_mm");
2536 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537 							     TTM_PL_TT),
2538 					    root, "amdgpu_gtt_mm");
2539 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2540 							     AMDGPU_PL_GDS),
2541 					    root, "amdgpu_gds_mm");
2542 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2543 							     AMDGPU_PL_GWS),
2544 					    root, "amdgpu_gws_mm");
2545 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2546 							     AMDGPU_PL_OA),
2547 					    root, "amdgpu_oa_mm");
2548 
2549 #endif
2550 }
2551