1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS("DMA_BUF"); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 case AMDGPU_PL_MMIO_REMAP: 127 placement->num_placement = 0; 128 return; 129 130 case TTM_PL_VRAM: 131 if (!adev->mman.buffer_funcs_enabled) { 132 /* Move to system memory */ 133 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 134 135 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 136 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 137 amdgpu_res_cpu_visible(adev, bo->resource)) { 138 139 /* Try evicting to the CPU inaccessible part of VRAM 140 * first, but only set GTT as busy placement, so this 141 * BO will be evicted to GTT rather than causing other 142 * BOs to be evicted from VRAM 143 */ 144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 145 AMDGPU_GEM_DOMAIN_GTT | 146 AMDGPU_GEM_DOMAIN_CPU); 147 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 148 abo->placements[0].lpfn = 0; 149 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 150 } else { 151 /* Move to GTT memory */ 152 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 153 AMDGPU_GEM_DOMAIN_CPU); 154 } 155 break; 156 case TTM_PL_TT: 157 case AMDGPU_PL_PREEMPT: 158 default: 159 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 160 break; 161 } 162 *placement = abo->placement; 163 } 164 165 /** 166 * amdgpu_ttm_map_buffer - Map memory into the GART windows 167 * @bo: buffer object to map 168 * @mem: memory object to map 169 * @mm_cur: range to map 170 * @window: which GART window to use 171 * @ring: DMA ring to use for the copy 172 * @tmz: if we should setup a TMZ enabled mapping 173 * @size: in number of bytes to map, out number of bytes mapped 174 * @addr: resulting address inside the MC address space 175 * 176 * Setup one of the GART windows to access a specific piece of memory or return 177 * the physical address for local memory. 178 */ 179 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 180 struct ttm_resource *mem, 181 struct amdgpu_res_cursor *mm_cur, 182 unsigned int window, struct amdgpu_ring *ring, 183 bool tmz, uint64_t *size, uint64_t *addr) 184 { 185 struct amdgpu_device *adev = ring->adev; 186 unsigned int offset, num_pages, num_dw, num_bytes; 187 uint64_t src_addr, dst_addr; 188 struct amdgpu_job *job; 189 void *cpu_addr; 190 uint64_t flags; 191 unsigned int i; 192 int r; 193 194 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 195 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 196 197 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 198 return -EINVAL; 199 200 /* Map only what can't be accessed directly */ 201 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 202 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 203 mm_cur->start; 204 return 0; 205 } 206 207 208 /* 209 * If start begins at an offset inside the page, then adjust the size 210 * and addr accordingly 211 */ 212 offset = mm_cur->start & ~PAGE_MASK; 213 214 num_pages = PFN_UP(*size + offset); 215 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 216 217 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 218 219 *addr = adev->gmc.gart_start; 220 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 221 AMDGPU_GPU_PAGE_SIZE; 222 *addr += offset; 223 224 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 225 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 226 227 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 228 AMDGPU_FENCE_OWNER_UNDEFINED, 229 num_dw * 4 + num_bytes, 230 AMDGPU_IB_POOL_DELAYED, &job, 231 AMDGPU_KERNEL_JOB_ID_TTM_MAP_BUFFER); 232 if (r) 233 return r; 234 235 src_addr = num_dw * 4; 236 src_addr += job->ibs[0].gpu_addr; 237 238 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 239 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 240 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 241 dst_addr, num_bytes, 0); 242 243 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 244 WARN_ON(job->ibs[0].length_dw > num_dw); 245 246 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 247 if (tmz) 248 flags |= AMDGPU_PTE_TMZ; 249 250 cpu_addr = &job->ibs[0].ptr[num_dw]; 251 252 if (mem->mem_type == TTM_PL_TT) { 253 dma_addr_t *dma_addr; 254 255 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 256 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 257 } else { 258 dma_addr_t dma_address; 259 260 dma_address = mm_cur->start; 261 dma_address += adev->vm_manager.vram_base_offset; 262 263 for (i = 0; i < num_pages; ++i) { 264 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 265 flags, cpu_addr); 266 dma_address += PAGE_SIZE; 267 } 268 } 269 270 dma_fence_put(amdgpu_job_submit(job)); 271 return 0; 272 } 273 274 /** 275 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 276 * @adev: amdgpu device 277 * @src: buffer/address where to read from 278 * @dst: buffer/address where to write to 279 * @size: number of bytes to copy 280 * @tmz: if a secure copy should be used 281 * @resv: resv object to sync to 282 * @f: Returns the last fence if multiple jobs are submitted. 283 * 284 * The function copies @size bytes from {src->mem + src->offset} to 285 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 286 * move and different for a BO to BO copy. 287 * 288 */ 289 __attribute__((nonnull)) 290 static int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 291 const struct amdgpu_copy_mem *src, 292 const struct amdgpu_copy_mem *dst, 293 uint64_t size, bool tmz, 294 struct dma_resv *resv, 295 struct dma_fence **f) 296 { 297 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 298 struct amdgpu_res_cursor src_mm, dst_mm; 299 struct dma_fence *fence = NULL; 300 int r = 0; 301 uint32_t copy_flags = 0; 302 struct amdgpu_bo *abo_src, *abo_dst; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 dev_err(adev->dev, 306 "Trying to move memory with ring turned off.\n"); 307 return -EINVAL; 308 } 309 310 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 311 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 312 313 mutex_lock(&adev->mman.gtt_window_lock); 314 while (src_mm.remaining) { 315 uint64_t from, to, cur_size, tiling_flags; 316 uint32_t num_type, data_format, max_com, write_compress_disable; 317 struct dma_fence *next; 318 319 /* Never copy more than 256MiB at once to avoid a timeout */ 320 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 321 322 /* Map src to window 0 and dst to window 1. */ 323 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 324 0, ring, tmz, &cur_size, &from); 325 if (r) 326 goto error; 327 328 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 329 1, ring, tmz, &cur_size, &to); 330 if (r) 331 goto error; 332 333 abo_src = ttm_to_amdgpu_bo(src->bo); 334 abo_dst = ttm_to_amdgpu_bo(dst->bo); 335 if (tmz) 336 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 337 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 338 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM)) 339 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED; 340 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 341 (dst->mem->mem_type == TTM_PL_VRAM)) { 342 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED; 343 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags); 344 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK); 345 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE); 346 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT); 347 write_compress_disable = 348 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE); 349 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) | 350 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) | 351 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) | 352 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE, 353 write_compress_disable)); 354 } 355 356 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 357 &next, false, true, copy_flags); 358 if (r) 359 goto error; 360 361 dma_fence_put(fence); 362 fence = next; 363 364 amdgpu_res_next(&src_mm, cur_size); 365 amdgpu_res_next(&dst_mm, cur_size); 366 } 367 error: 368 mutex_unlock(&adev->mman.gtt_window_lock); 369 *f = fence; 370 return r; 371 } 372 373 /* 374 * amdgpu_move_blit - Copy an entire buffer to another buffer 375 * 376 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 377 * help move buffers to and from VRAM. 378 */ 379 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 380 bool evict, 381 struct ttm_resource *new_mem, 382 struct ttm_resource *old_mem) 383 { 384 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 385 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 386 struct amdgpu_copy_mem src, dst; 387 struct dma_fence *fence = NULL; 388 int r; 389 390 src.bo = bo; 391 dst.bo = bo; 392 src.mem = old_mem; 393 dst.mem = new_mem; 394 src.offset = 0; 395 dst.offset = 0; 396 397 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 398 new_mem->size, 399 amdgpu_bo_encrypted(abo), 400 bo->base.resv, &fence); 401 if (r) 402 goto error; 403 404 /* clear the space being freed */ 405 if (old_mem->mem_type == TTM_PL_VRAM && 406 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 407 struct dma_fence *wipe_fence = NULL; 408 409 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 410 false, AMDGPU_KERNEL_JOB_ID_MOVE_BLIT); 411 if (r) { 412 goto error; 413 } else if (wipe_fence) { 414 amdgpu_vram_mgr_set_cleared(bo->resource); 415 dma_fence_put(fence); 416 fence = wipe_fence; 417 } 418 } 419 420 /* Always block for VM page tables before committing the new location */ 421 if (bo->type == ttm_bo_type_kernel) 422 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 423 else 424 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 425 dma_fence_put(fence); 426 return r; 427 428 error: 429 if (fence) 430 dma_fence_wait(fence, false); 431 dma_fence_put(fence); 432 return r; 433 } 434 435 /** 436 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 437 * @adev: amdgpu device 438 * @res: the resource to check 439 * 440 * Returns: true if the full resource is CPU visible, false otherwise. 441 */ 442 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 443 struct ttm_resource *res) 444 { 445 struct amdgpu_res_cursor cursor; 446 447 if (!res) 448 return false; 449 450 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 451 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL || 452 res->mem_type == AMDGPU_PL_MMIO_REMAP) 453 return true; 454 455 if (res->mem_type != TTM_PL_VRAM) 456 return false; 457 458 amdgpu_res_first(res, 0, res->size, &cursor); 459 while (cursor.remaining) { 460 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 461 return false; 462 amdgpu_res_next(&cursor, cursor.size); 463 } 464 465 return true; 466 } 467 468 /* 469 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 470 * 471 * Called by amdgpu_bo_move() 472 */ 473 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 474 struct ttm_resource *mem) 475 { 476 if (!amdgpu_res_cpu_visible(adev, mem)) 477 return false; 478 479 /* ttm_resource_ioremap only supports contiguous memory */ 480 if (mem->mem_type == TTM_PL_VRAM && 481 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 482 return false; 483 484 return true; 485 } 486 487 /* 488 * amdgpu_bo_move - Move a buffer object to a new memory location 489 * 490 * Called by ttm_bo_handle_move_mem() 491 */ 492 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 493 struct ttm_operation_ctx *ctx, 494 struct ttm_resource *new_mem, 495 struct ttm_place *hop) 496 { 497 struct amdgpu_device *adev; 498 struct amdgpu_bo *abo; 499 struct ttm_resource *old_mem = bo->resource; 500 int r; 501 502 if (new_mem->mem_type == TTM_PL_TT || 503 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 504 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 505 if (r) 506 return r; 507 } 508 509 abo = ttm_to_amdgpu_bo(bo); 510 adev = amdgpu_ttm_adev(bo->bdev); 511 512 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 513 bo->ttm == NULL)) { 514 amdgpu_bo_move_notify(bo, evict, new_mem); 515 ttm_bo_move_null(bo, new_mem); 516 return 0; 517 } 518 if (old_mem->mem_type == TTM_PL_SYSTEM && 519 (new_mem->mem_type == TTM_PL_TT || 520 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 521 amdgpu_bo_move_notify(bo, evict, new_mem); 522 ttm_bo_move_null(bo, new_mem); 523 return 0; 524 } 525 if ((old_mem->mem_type == TTM_PL_TT || 526 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 527 new_mem->mem_type == TTM_PL_SYSTEM) { 528 r = ttm_bo_wait_ctx(bo, ctx); 529 if (r) 530 return r; 531 532 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 533 amdgpu_bo_move_notify(bo, evict, new_mem); 534 ttm_resource_free(bo, &bo->resource); 535 ttm_bo_assign_mem(bo, new_mem); 536 return 0; 537 } 538 539 if (old_mem->mem_type == AMDGPU_PL_GDS || 540 old_mem->mem_type == AMDGPU_PL_GWS || 541 old_mem->mem_type == AMDGPU_PL_OA || 542 old_mem->mem_type == AMDGPU_PL_DOORBELL || 543 old_mem->mem_type == AMDGPU_PL_MMIO_REMAP || 544 new_mem->mem_type == AMDGPU_PL_GDS || 545 new_mem->mem_type == AMDGPU_PL_GWS || 546 new_mem->mem_type == AMDGPU_PL_OA || 547 new_mem->mem_type == AMDGPU_PL_DOORBELL || 548 new_mem->mem_type == AMDGPU_PL_MMIO_REMAP) { 549 /* Nothing to save here */ 550 amdgpu_bo_move_notify(bo, evict, new_mem); 551 ttm_bo_move_null(bo, new_mem); 552 return 0; 553 } 554 555 if (bo->type == ttm_bo_type_device && 556 new_mem->mem_type == TTM_PL_VRAM && 557 old_mem->mem_type != TTM_PL_VRAM) { 558 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 559 * accesses the BO after it's moved. 560 */ 561 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 562 } 563 564 if (adev->mman.buffer_funcs_enabled && 565 ((old_mem->mem_type == TTM_PL_SYSTEM && 566 new_mem->mem_type == TTM_PL_VRAM) || 567 (old_mem->mem_type == TTM_PL_VRAM && 568 new_mem->mem_type == TTM_PL_SYSTEM))) { 569 hop->fpfn = 0; 570 hop->lpfn = 0; 571 hop->mem_type = TTM_PL_TT; 572 hop->flags = TTM_PL_FLAG_TEMPORARY; 573 return -EMULTIHOP; 574 } 575 576 amdgpu_bo_move_notify(bo, evict, new_mem); 577 if (adev->mman.buffer_funcs_enabled) 578 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 579 else 580 r = -ENODEV; 581 582 if (r) { 583 /* Check that all memory is CPU accessible */ 584 if (!amdgpu_res_copyable(adev, old_mem) || 585 !amdgpu_res_copyable(adev, new_mem)) { 586 pr_err("Move buffer fallback to memcpy unavailable\n"); 587 return r; 588 } 589 590 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 591 if (r) 592 return r; 593 } 594 595 /* update statistics after the move */ 596 if (evict) 597 atomic64_inc(&adev->num_evictions); 598 atomic64_add(bo->base.size, &adev->num_bytes_moved); 599 return 0; 600 } 601 602 /* 603 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 604 * 605 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 606 */ 607 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 608 struct ttm_resource *mem) 609 { 610 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 611 612 switch (mem->mem_type) { 613 case TTM_PL_SYSTEM: 614 /* system memory */ 615 return 0; 616 case TTM_PL_TT: 617 case AMDGPU_PL_PREEMPT: 618 break; 619 case TTM_PL_VRAM: 620 mem->bus.offset = mem->start << PAGE_SHIFT; 621 622 if (adev->mman.aper_base_kaddr && 623 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 624 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 625 mem->bus.offset; 626 627 mem->bus.offset += adev->gmc.aper_base; 628 mem->bus.is_iomem = true; 629 break; 630 case AMDGPU_PL_DOORBELL: 631 mem->bus.offset = mem->start << PAGE_SHIFT; 632 mem->bus.offset += adev->doorbell.base; 633 mem->bus.is_iomem = true; 634 mem->bus.caching = ttm_uncached; 635 break; 636 case AMDGPU_PL_MMIO_REMAP: 637 mem->bus.offset = mem->start << PAGE_SHIFT; 638 mem->bus.offset += adev->rmmio_remap.bus_addr; 639 mem->bus.is_iomem = true; 640 mem->bus.caching = ttm_uncached; 641 break; 642 default: 643 return -EINVAL; 644 } 645 return 0; 646 } 647 648 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 649 unsigned long page_offset) 650 { 651 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 652 struct amdgpu_res_cursor cursor; 653 654 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 655 &cursor); 656 657 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 658 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 659 else if (bo->resource->mem_type == AMDGPU_PL_MMIO_REMAP) 660 return ((uint64_t)(adev->rmmio_remap.bus_addr + cursor.start)) >> PAGE_SHIFT; 661 662 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 663 } 664 665 /** 666 * amdgpu_ttm_domain_start - Returns GPU start address 667 * @adev: amdgpu device object 668 * @type: type of the memory 669 * 670 * Returns: 671 * GPU start address of a memory domain 672 */ 673 674 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 675 { 676 switch (type) { 677 case TTM_PL_TT: 678 return adev->gmc.gart_start; 679 case TTM_PL_VRAM: 680 return adev->gmc.vram_start; 681 } 682 683 return 0; 684 } 685 686 /* 687 * TTM backend functions. 688 */ 689 struct amdgpu_ttm_tt { 690 struct ttm_tt ttm; 691 struct drm_gem_object *gobj; 692 u64 offset; 693 uint64_t userptr; 694 struct task_struct *usertask; 695 uint32_t userflags; 696 bool bound; 697 int32_t pool_id; 698 }; 699 700 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 701 702 #ifdef CONFIG_DRM_AMDGPU_USERPTR 703 /* 704 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 705 * memory and start HMM tracking CPU page table update 706 * 707 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 708 * once afterwards to stop HMM tracking. Its the caller responsibility to ensure 709 * that range is a valid memory and it is freed too. 710 */ 711 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, 712 struct amdgpu_hmm_range *range) 713 { 714 struct ttm_tt *ttm = bo->tbo.ttm; 715 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 716 unsigned long start = gtt->userptr; 717 struct vm_area_struct *vma; 718 struct mm_struct *mm; 719 bool readonly; 720 int r = 0; 721 722 mm = bo->notifier.mm; 723 if (unlikely(!mm)) { 724 DRM_DEBUG_DRIVER("BO is not registered?\n"); 725 return -EFAULT; 726 } 727 728 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 729 return -ESRCH; 730 731 mmap_read_lock(mm); 732 vma = vma_lookup(mm, start); 733 if (unlikely(!vma)) { 734 r = -EFAULT; 735 goto out_unlock; 736 } 737 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 738 vma->vm_file)) { 739 r = -EPERM; 740 goto out_unlock; 741 } 742 743 readonly = amdgpu_ttm_tt_is_readonly(ttm); 744 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 745 readonly, NULL, range); 746 out_unlock: 747 mmap_read_unlock(mm); 748 if (r) 749 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 750 751 mmput(mm); 752 753 return r; 754 } 755 756 #endif 757 758 /* 759 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 760 * 761 * Called by amdgpu_cs_list_validate(). This creates the page list 762 * that backs user memory and will ultimately be mapped into the device 763 * address space. 764 */ 765 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct amdgpu_hmm_range *range) 766 { 767 unsigned long i; 768 769 for (i = 0; i < ttm->num_pages; ++i) 770 ttm->pages[i] = range ? hmm_pfn_to_page(range->hmm_range.hmm_pfns[i]) : NULL; 771 } 772 773 /* 774 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 775 * 776 * Called by amdgpu_ttm_backend_bind() 777 **/ 778 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 779 struct ttm_tt *ttm) 780 { 781 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 782 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 783 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 784 enum dma_data_direction direction = write ? 785 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 786 int r; 787 788 /* Allocate an SG array and squash pages into it */ 789 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 790 (u64)ttm->num_pages << PAGE_SHIFT, 791 GFP_KERNEL); 792 if (r) 793 goto release_sg; 794 795 /* Map SG to device */ 796 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 797 if (r) 798 goto release_sg_table; 799 800 /* convert SG to linear array of pages and dma addresses */ 801 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 802 ttm->num_pages); 803 804 return 0; 805 806 release_sg_table: 807 sg_free_table(ttm->sg); 808 release_sg: 809 kfree(ttm->sg); 810 ttm->sg = NULL; 811 return r; 812 } 813 814 /* 815 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 816 */ 817 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 818 struct ttm_tt *ttm) 819 { 820 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 821 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 822 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 823 enum dma_data_direction direction = write ? 824 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 825 826 /* double check that we don't free the table twice */ 827 if (!ttm->sg || !ttm->sg->sgl) 828 return; 829 830 /* unmap the pages mapped to the device */ 831 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 832 sg_free_table(ttm->sg); 833 } 834 835 /* 836 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 837 * MQDn+CtrlStackn where n is the number of XCCs per partition. 838 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 839 * and uses memory type default, UC. The rest of pages_per_xcc are 840 * Ctrl stack and modify their memory type to NC. 841 */ 842 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 843 struct ttm_tt *ttm, uint64_t flags) 844 { 845 struct amdgpu_ttm_tt *gtt = (void *)ttm; 846 uint64_t total_pages = ttm->num_pages; 847 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 848 uint64_t page_idx, pages_per_xcc; 849 int i; 850 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC); 851 852 pages_per_xcc = total_pages; 853 do_div(pages_per_xcc, num_xcc); 854 855 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 856 /* MQD page: use default flags */ 857 amdgpu_gart_bind(adev, 858 gtt->offset + (page_idx << PAGE_SHIFT), 859 1, >t->ttm.dma_address[page_idx], flags); 860 /* 861 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 862 * the second page of the BO onward. 863 */ 864 amdgpu_gart_bind(adev, 865 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 866 pages_per_xcc - 1, 867 >t->ttm.dma_address[page_idx + 1], 868 ctrl_flags); 869 } 870 } 871 872 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 873 struct ttm_buffer_object *tbo, 874 uint64_t flags) 875 { 876 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 877 struct ttm_tt *ttm = tbo->ttm; 878 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 879 880 if (amdgpu_bo_encrypted(abo)) 881 flags |= AMDGPU_PTE_TMZ; 882 883 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 884 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 885 } else { 886 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 887 gtt->ttm.dma_address, flags); 888 } 889 gtt->bound = true; 890 } 891 892 /* 893 * amdgpu_ttm_backend_bind - Bind GTT memory 894 * 895 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 896 * This handles binding GTT memory to the device address space. 897 */ 898 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 899 struct ttm_tt *ttm, 900 struct ttm_resource *bo_mem) 901 { 902 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 903 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 904 uint64_t flags; 905 int r; 906 907 if (!bo_mem) 908 return -EINVAL; 909 910 if (gtt->bound) 911 return 0; 912 913 if (gtt->userptr) { 914 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 915 if (r) { 916 dev_err(adev->dev, "failed to pin userptr\n"); 917 return r; 918 } 919 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 920 if (!ttm->sg) { 921 struct dma_buf_attachment *attach; 922 struct sg_table *sgt; 923 924 attach = gtt->gobj->import_attach; 925 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 926 if (IS_ERR(sgt)) 927 return PTR_ERR(sgt); 928 929 ttm->sg = sgt; 930 } 931 932 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 933 ttm->num_pages); 934 } 935 936 if (!ttm->num_pages) { 937 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 938 ttm->num_pages, bo_mem, ttm); 939 } 940 941 if (bo_mem->mem_type != TTM_PL_TT || 942 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 943 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 944 return 0; 945 } 946 947 /* compute PTE flags relevant to this BO memory */ 948 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 949 950 /* bind pages into GART page tables */ 951 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 952 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 953 gtt->ttm.dma_address, flags); 954 gtt->bound = true; 955 return 0; 956 } 957 958 /* 959 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 960 * through AGP or GART aperture. 961 * 962 * If bo is accessible through AGP aperture, then use AGP aperture 963 * to access bo; otherwise allocate logical space in GART aperture 964 * and map bo to GART aperture. 965 */ 966 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 967 { 968 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 969 struct ttm_operation_ctx ctx = { false, false }; 970 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 971 struct ttm_placement placement; 972 struct ttm_place placements; 973 struct ttm_resource *tmp; 974 uint64_t addr, flags; 975 int r; 976 977 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 978 return 0; 979 980 addr = amdgpu_gmc_agp_addr(bo); 981 if (addr != AMDGPU_BO_INVALID_OFFSET) 982 return 0; 983 984 /* allocate GART space */ 985 placement.num_placement = 1; 986 placement.placement = &placements; 987 placements.fpfn = 0; 988 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 989 placements.mem_type = TTM_PL_TT; 990 placements.flags = bo->resource->placement; 991 992 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 993 if (unlikely(r)) 994 return r; 995 996 /* compute PTE flags for this buffer object */ 997 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 998 999 /* Bind pages */ 1000 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1001 amdgpu_ttm_gart_bind(adev, bo, flags); 1002 amdgpu_gart_invalidate_tlb(adev); 1003 ttm_resource_free(bo, &bo->resource); 1004 ttm_bo_assign_mem(bo, tmp); 1005 1006 return 0; 1007 } 1008 1009 /* 1010 * amdgpu_ttm_recover_gart - Rebind GTT pages 1011 * 1012 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1013 * rebind GTT pages during a GPU reset. 1014 */ 1015 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1016 { 1017 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1018 uint64_t flags; 1019 1020 if (!tbo->ttm) 1021 return; 1022 1023 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1024 amdgpu_ttm_gart_bind(adev, tbo, flags); 1025 } 1026 1027 /* 1028 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1029 * 1030 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1031 * ttm_tt_destroy(). 1032 */ 1033 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1034 struct ttm_tt *ttm) 1035 { 1036 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1037 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1038 1039 /* if the pages have userptr pinning then clear that first */ 1040 if (gtt->userptr) { 1041 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1042 } else if (ttm->sg && drm_gem_is_imported(gtt->gobj)) { 1043 struct dma_buf_attachment *attach; 1044 1045 attach = gtt->gobj->import_attach; 1046 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1047 ttm->sg = NULL; 1048 } 1049 1050 if (!gtt->bound) 1051 return; 1052 1053 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1054 return; 1055 1056 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1057 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1058 gtt->bound = false; 1059 } 1060 1061 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1062 struct ttm_tt *ttm) 1063 { 1064 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1065 1066 if (gtt->usertask) 1067 put_task_struct(gtt->usertask); 1068 1069 ttm_tt_fini(>t->ttm); 1070 kfree(gtt); 1071 } 1072 1073 /** 1074 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1075 * 1076 * @bo: The buffer object to create a GTT ttm_tt object around 1077 * @page_flags: Page flags to be added to the ttm_tt object 1078 * 1079 * Called by ttm_tt_create(). 1080 */ 1081 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1082 uint32_t page_flags) 1083 { 1084 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1085 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1086 struct amdgpu_ttm_tt *gtt; 1087 enum ttm_caching caching; 1088 1089 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1090 if (!gtt) 1091 return NULL; 1092 1093 gtt->gobj = &bo->base; 1094 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1095 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1096 else 1097 gtt->pool_id = abo->xcp_id; 1098 1099 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1100 caching = ttm_write_combined; 1101 else 1102 caching = ttm_cached; 1103 1104 /* allocate space for the uninitialized page entries */ 1105 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1106 kfree(gtt); 1107 return NULL; 1108 } 1109 return >t->ttm; 1110 } 1111 1112 /* 1113 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1114 * 1115 * Map the pages of a ttm_tt object to an address space visible 1116 * to the underlying device. 1117 */ 1118 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1119 struct ttm_tt *ttm, 1120 struct ttm_operation_ctx *ctx) 1121 { 1122 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1123 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1124 struct ttm_pool *pool; 1125 pgoff_t i; 1126 int ret; 1127 1128 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1129 if (gtt->userptr) { 1130 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1131 if (!ttm->sg) 1132 return -ENOMEM; 1133 return 0; 1134 } 1135 1136 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1137 return 0; 1138 1139 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1140 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1141 else 1142 pool = &adev->mman.bdev.pool; 1143 ret = ttm_pool_alloc(pool, ttm, ctx); 1144 if (ret) 1145 return ret; 1146 1147 for (i = 0; i < ttm->num_pages; ++i) 1148 ttm->pages[i]->mapping = bdev->dev_mapping; 1149 1150 return 0; 1151 } 1152 1153 /* 1154 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1155 * 1156 * Unmaps pages of a ttm_tt object from the device address space and 1157 * unpopulates the page array backing it. 1158 */ 1159 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1160 struct ttm_tt *ttm) 1161 { 1162 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1163 struct amdgpu_device *adev; 1164 struct ttm_pool *pool; 1165 pgoff_t i; 1166 1167 amdgpu_ttm_backend_unbind(bdev, ttm); 1168 1169 if (gtt->userptr) { 1170 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1171 kfree(ttm->sg); 1172 ttm->sg = NULL; 1173 return; 1174 } 1175 1176 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1177 return; 1178 1179 for (i = 0; i < ttm->num_pages; ++i) 1180 ttm->pages[i]->mapping = NULL; 1181 1182 adev = amdgpu_ttm_adev(bdev); 1183 1184 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1185 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1186 else 1187 pool = &adev->mman.bdev.pool; 1188 1189 return ttm_pool_free(pool, ttm); 1190 } 1191 1192 /** 1193 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1194 * task 1195 * 1196 * @tbo: The ttm_buffer_object that contains the userptr 1197 * @user_addr: The returned value 1198 */ 1199 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1200 uint64_t *user_addr) 1201 { 1202 struct amdgpu_ttm_tt *gtt; 1203 1204 if (!tbo->ttm) 1205 return -EINVAL; 1206 1207 gtt = (void *)tbo->ttm; 1208 *user_addr = gtt->userptr; 1209 return 0; 1210 } 1211 1212 /** 1213 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1214 * task 1215 * 1216 * @bo: The ttm_buffer_object to bind this userptr to 1217 * @addr: The address in the current tasks VM space to use 1218 * @flags: Requirements of userptr object. 1219 * 1220 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1221 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1222 * initialize GPU VM for a KFD process. 1223 */ 1224 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1225 uint64_t addr, uint32_t flags) 1226 { 1227 struct amdgpu_ttm_tt *gtt; 1228 1229 if (!bo->ttm) { 1230 /* TODO: We want a separate TTM object type for userptrs */ 1231 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1232 if (bo->ttm == NULL) 1233 return -ENOMEM; 1234 } 1235 1236 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1237 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1238 1239 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1240 gtt->userptr = addr; 1241 gtt->userflags = flags; 1242 1243 if (gtt->usertask) 1244 put_task_struct(gtt->usertask); 1245 gtt->usertask = current->group_leader; 1246 get_task_struct(gtt->usertask); 1247 1248 return 0; 1249 } 1250 1251 /* 1252 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1253 */ 1254 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1255 { 1256 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1257 1258 if (gtt == NULL) 1259 return NULL; 1260 1261 if (gtt->usertask == NULL) 1262 return NULL; 1263 1264 return gtt->usertask->mm; 1265 } 1266 1267 /* 1268 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1269 * address range for the current task. 1270 * 1271 */ 1272 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1273 unsigned long end, unsigned long *userptr) 1274 { 1275 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1276 unsigned long size; 1277 1278 if (gtt == NULL || !gtt->userptr) 1279 return false; 1280 1281 /* Return false if no part of the ttm_tt object lies within 1282 * the range 1283 */ 1284 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1285 if (gtt->userptr > end || gtt->userptr + size <= start) 1286 return false; 1287 1288 if (userptr) 1289 *userptr = gtt->userptr; 1290 return true; 1291 } 1292 1293 /* 1294 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1295 */ 1296 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1297 { 1298 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1299 1300 if (gtt == NULL || !gtt->userptr) 1301 return false; 1302 1303 return true; 1304 } 1305 1306 /* 1307 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1308 */ 1309 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1310 { 1311 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1312 1313 if (gtt == NULL) 1314 return false; 1315 1316 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1317 } 1318 1319 /** 1320 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1321 * 1322 * @ttm: The ttm_tt object to compute the flags for 1323 * @mem: The memory registry backing this ttm_tt object 1324 * 1325 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1326 */ 1327 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1328 { 1329 uint64_t flags = 0; 1330 1331 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1332 flags |= AMDGPU_PTE_VALID; 1333 1334 if (mem && (mem->mem_type == TTM_PL_TT || 1335 mem->mem_type == AMDGPU_PL_DOORBELL || 1336 mem->mem_type == AMDGPU_PL_PREEMPT || 1337 mem->mem_type == AMDGPU_PL_MMIO_REMAP)) { 1338 flags |= AMDGPU_PTE_SYSTEM; 1339 1340 if (ttm->caching == ttm_cached) 1341 flags |= AMDGPU_PTE_SNOOPED; 1342 } 1343 1344 if (mem && mem->mem_type == TTM_PL_VRAM && 1345 mem->bus.caching == ttm_cached) 1346 flags |= AMDGPU_PTE_SNOOPED; 1347 1348 return flags; 1349 } 1350 1351 /** 1352 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1353 * 1354 * @adev: amdgpu_device pointer 1355 * @ttm: The ttm_tt object to compute the flags for 1356 * @mem: The memory registry backing this ttm_tt object 1357 * 1358 * Figure out the flags to use for a VM PTE (Page Table Entry). 1359 */ 1360 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1361 struct ttm_resource *mem) 1362 { 1363 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1364 1365 flags |= adev->gart.gart_pte_flags; 1366 flags |= AMDGPU_PTE_READABLE; 1367 1368 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1369 flags |= AMDGPU_PTE_WRITEABLE; 1370 1371 return flags; 1372 } 1373 1374 /* 1375 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1376 * object. 1377 * 1378 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1379 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1380 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1381 * used to clean out a memory space. 1382 */ 1383 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1384 const struct ttm_place *place) 1385 { 1386 struct dma_resv_iter resv_cursor; 1387 struct dma_fence *f; 1388 1389 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1390 return ttm_bo_eviction_valuable(bo, place); 1391 1392 /* Swapout? */ 1393 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1394 return true; 1395 1396 if (bo->type == ttm_bo_type_kernel && 1397 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1398 return false; 1399 1400 /* If bo is a KFD BO, check if the bo belongs to the current process. 1401 * If true, then return false as any KFD process needs all its BOs to 1402 * be resident to run successfully 1403 */ 1404 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1405 DMA_RESV_USAGE_BOOKKEEP, f) { 1406 if (amdkfd_fence_check_mm(f, current->mm) && 1407 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1408 return false; 1409 } 1410 1411 /* Preemptible BOs don't own system resources managed by the 1412 * driver (pages, VRAM, GART space). They point to resources 1413 * owned by someone else (e.g. pageable memory in user mode 1414 * or a DMABuf). They are used in a preemptible context so we 1415 * can guarantee no deadlocks and good QoS in case of MMU 1416 * notifiers or DMABuf move notifiers from the resource owner. 1417 */ 1418 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1419 return false; 1420 1421 if (bo->resource->mem_type == TTM_PL_TT && 1422 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1423 return false; 1424 1425 return ttm_bo_eviction_valuable(bo, place); 1426 } 1427 1428 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1429 void *buf, size_t size, bool write) 1430 { 1431 while (size) { 1432 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1433 uint64_t bytes = 4 - (pos & 0x3); 1434 uint32_t shift = (pos & 0x3) * 8; 1435 uint32_t mask = 0xffffffff << shift; 1436 uint32_t value = 0; 1437 1438 if (size < bytes) { 1439 mask &= 0xffffffff >> (bytes - size) * 8; 1440 bytes = size; 1441 } 1442 1443 if (mask != 0xffffffff) { 1444 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1445 if (write) { 1446 value &= ~mask; 1447 value |= (*(uint32_t *)buf << shift) & mask; 1448 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1449 } else { 1450 value = (value & mask) >> shift; 1451 memcpy(buf, &value, bytes); 1452 } 1453 } else { 1454 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1455 } 1456 1457 pos += bytes; 1458 buf += bytes; 1459 size -= bytes; 1460 } 1461 } 1462 1463 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1464 unsigned long offset, void *buf, 1465 int len, int write) 1466 { 1467 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1468 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1469 struct amdgpu_res_cursor src_mm; 1470 struct amdgpu_job *job; 1471 struct dma_fence *fence; 1472 uint64_t src_addr, dst_addr; 1473 unsigned int num_dw; 1474 int r, idx; 1475 1476 if (len != PAGE_SIZE) 1477 return -EINVAL; 1478 1479 if (!adev->mman.sdma_access_ptr) 1480 return -EACCES; 1481 1482 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1483 return -ENODEV; 1484 1485 if (write) 1486 memcpy(adev->mman.sdma_access_ptr, buf, len); 1487 1488 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1489 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1490 AMDGPU_FENCE_OWNER_UNDEFINED, 1491 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1492 &job, 1493 AMDGPU_KERNEL_JOB_ID_TTM_ACCESS_MEMORY_SDMA); 1494 if (r) 1495 goto out; 1496 1497 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1498 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1499 src_mm.start; 1500 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1501 if (write) 1502 swap(src_addr, dst_addr); 1503 1504 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1505 PAGE_SIZE, 0); 1506 1507 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1508 WARN_ON(job->ibs[0].length_dw > num_dw); 1509 1510 fence = amdgpu_job_submit(job); 1511 1512 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1513 r = -ETIMEDOUT; 1514 dma_fence_put(fence); 1515 1516 if (!(r || write)) 1517 memcpy(buf, adev->mman.sdma_access_ptr, len); 1518 out: 1519 drm_dev_exit(idx); 1520 return r; 1521 } 1522 1523 /** 1524 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1525 * 1526 * @bo: The buffer object to read/write 1527 * @offset: Offset into buffer object 1528 * @buf: Secondary buffer to write/read from 1529 * @len: Length in bytes of access 1530 * @write: true if writing 1531 * 1532 * This is used to access VRAM that backs a buffer object via MMIO 1533 * access for debugging purposes. 1534 */ 1535 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1536 unsigned long offset, void *buf, int len, 1537 int write) 1538 { 1539 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1540 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1541 struct amdgpu_res_cursor cursor; 1542 int ret = 0; 1543 1544 if (bo->resource->mem_type != TTM_PL_VRAM) 1545 return -EIO; 1546 1547 if (amdgpu_device_has_timeouts_enabled(adev) && 1548 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1549 return len; 1550 1551 amdgpu_res_first(bo->resource, offset, len, &cursor); 1552 while (cursor.remaining) { 1553 size_t count, size = cursor.size; 1554 loff_t pos = cursor.start; 1555 1556 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1557 size -= count; 1558 if (size) { 1559 /* using MM to access rest vram and handle un-aligned address */ 1560 pos += count; 1561 buf += count; 1562 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1563 } 1564 1565 ret += cursor.size; 1566 buf += cursor.size; 1567 amdgpu_res_next(&cursor, cursor.size); 1568 } 1569 1570 return ret; 1571 } 1572 1573 static void 1574 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1575 { 1576 amdgpu_bo_move_notify(bo, false, NULL); 1577 } 1578 1579 static struct ttm_device_funcs amdgpu_bo_driver = { 1580 .ttm_tt_create = &amdgpu_ttm_tt_create, 1581 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1582 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1583 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1584 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1585 .evict_flags = &amdgpu_evict_flags, 1586 .move = &amdgpu_bo_move, 1587 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1588 .release_notify = &amdgpu_bo_release_notify, 1589 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1590 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1591 .access_memory = &amdgpu_ttm_access_memory, 1592 }; 1593 1594 /* 1595 * Firmware Reservation functions 1596 */ 1597 /** 1598 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1599 * 1600 * @adev: amdgpu_device pointer 1601 * 1602 * free fw reserved vram if it has been reserved. 1603 */ 1604 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1605 { 1606 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1607 NULL, &adev->mman.fw_vram_usage_va); 1608 } 1609 1610 /* 1611 * Driver Reservation functions 1612 */ 1613 /** 1614 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1615 * 1616 * @adev: amdgpu_device pointer 1617 * 1618 * free drv reserved vram if it has been reserved. 1619 */ 1620 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1621 { 1622 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1623 NULL, 1624 &adev->mman.drv_vram_usage_va); 1625 } 1626 1627 /** 1628 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1629 * 1630 * @adev: amdgpu_device pointer 1631 * 1632 * create bo vram reservation from fw. 1633 */ 1634 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1635 { 1636 uint64_t vram_size = adev->gmc.visible_vram_size; 1637 1638 adev->mman.fw_vram_usage_va = NULL; 1639 adev->mman.fw_vram_usage_reserved_bo = NULL; 1640 1641 if (adev->mman.fw_vram_usage_size == 0 || 1642 adev->mman.fw_vram_usage_size > vram_size) 1643 return 0; 1644 1645 return amdgpu_bo_create_kernel_at(adev, 1646 adev->mman.fw_vram_usage_start_offset, 1647 adev->mman.fw_vram_usage_size, 1648 &adev->mman.fw_vram_usage_reserved_bo, 1649 &adev->mman.fw_vram_usage_va); 1650 } 1651 1652 /** 1653 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1654 * 1655 * @adev: amdgpu_device pointer 1656 * 1657 * create bo vram reservation from drv. 1658 */ 1659 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1660 { 1661 u64 vram_size = adev->gmc.visible_vram_size; 1662 1663 adev->mman.drv_vram_usage_va = NULL; 1664 adev->mman.drv_vram_usage_reserved_bo = NULL; 1665 1666 if (adev->mman.drv_vram_usage_size == 0 || 1667 adev->mman.drv_vram_usage_size > vram_size) 1668 return 0; 1669 1670 return amdgpu_bo_create_kernel_at(adev, 1671 adev->mman.drv_vram_usage_start_offset, 1672 adev->mman.drv_vram_usage_size, 1673 &adev->mman.drv_vram_usage_reserved_bo, 1674 &adev->mman.drv_vram_usage_va); 1675 } 1676 1677 /* 1678 * Memoy training reservation functions 1679 */ 1680 1681 /** 1682 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1683 * 1684 * @adev: amdgpu_device pointer 1685 * 1686 * free memory training reserved vram if it has been reserved. 1687 */ 1688 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1689 { 1690 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1691 1692 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1693 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1694 ctx->c2p_bo = NULL; 1695 1696 return 0; 1697 } 1698 1699 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1700 uint32_t reserve_size) 1701 { 1702 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1703 1704 memset(ctx, 0, sizeof(*ctx)); 1705 1706 ctx->c2p_train_data_offset = 1707 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1708 ctx->p2c_train_data_offset = 1709 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1710 ctx->train_data_size = 1711 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1712 1713 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1714 ctx->train_data_size, 1715 ctx->p2c_train_data_offset, 1716 ctx->c2p_train_data_offset); 1717 } 1718 1719 /* 1720 * reserve TMR memory at the top of VRAM which holds 1721 * IP Discovery data and is protected by PSP. 1722 */ 1723 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1724 { 1725 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1726 bool mem_train_support = false; 1727 uint32_t reserve_size = 0; 1728 int ret; 1729 1730 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1731 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1732 mem_train_support = true; 1733 else 1734 DRM_DEBUG("memory training does not support!\n"); 1735 } 1736 1737 /* 1738 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1739 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1740 * 1741 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1742 * discovery data and G6 memory training data respectively 1743 */ 1744 if (adev->bios) 1745 reserve_size = 1746 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1747 1748 if (!adev->bios && 1749 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1750 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) || 1751 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0))) 1752 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1753 else if (!reserve_size) 1754 reserve_size = DISCOVERY_TMR_OFFSET; 1755 1756 if (mem_train_support) { 1757 /* reserve vram for mem train according to TMR location */ 1758 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1759 ret = amdgpu_bo_create_kernel_at(adev, 1760 ctx->c2p_train_data_offset, 1761 ctx->train_data_size, 1762 &ctx->c2p_bo, 1763 NULL); 1764 if (ret) { 1765 dev_err(adev->dev, "alloc c2p_bo failed(%d)!\n", ret); 1766 amdgpu_ttm_training_reserve_vram_fini(adev); 1767 return ret; 1768 } 1769 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1770 } 1771 1772 ret = amdgpu_bo_create_kernel_at( 1773 adev, adev->gmc.real_vram_size - reserve_size, reserve_size, 1774 &adev->mman.fw_reserved_memory, NULL); 1775 if (ret) { 1776 dev_err(adev->dev, "alloc tmr failed(%d)!\n", ret); 1777 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 1778 NULL); 1779 return ret; 1780 } 1781 1782 return 0; 1783 } 1784 1785 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1786 { 1787 int i; 1788 1789 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1790 return 0; 1791 1792 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1793 sizeof(*adev->mman.ttm_pools), 1794 GFP_KERNEL); 1795 if (!adev->mman.ttm_pools) 1796 return -ENOMEM; 1797 1798 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1799 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1800 adev->gmc.mem_partitions[i].numa.node, 1801 false, false); 1802 } 1803 return 0; 1804 } 1805 1806 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1807 { 1808 int i; 1809 1810 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1811 return; 1812 1813 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1814 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1815 1816 kfree(adev->mman.ttm_pools); 1817 adev->mman.ttm_pools = NULL; 1818 } 1819 1820 /** 1821 * amdgpu_ttm_mmio_remap_bo_init - Allocate the singleton 4K MMIO_REMAP BO 1822 * @adev: amdgpu device 1823 * 1824 * Allocates a one-page (4K) GEM BO in AMDGPU_GEM_DOMAIN_MMIO_REMAP when the 1825 * hardware exposes a remap base (adev->rmmio_remap.bus_addr) and the host 1826 * PAGE_SIZE is <= AMDGPU_GPU_PAGE_SIZE (4K). The BO is created as a regular 1827 * GEM object (amdgpu_bo_create). 1828 * 1829 * Return: 1830 * * 0 on success or intentional skip (feature not present/unsupported) 1831 * * negative errno on allocation failure 1832 */ 1833 static int amdgpu_ttm_mmio_remap_bo_init(struct amdgpu_device *adev) 1834 { 1835 struct amdgpu_bo_param bp; 1836 int r; 1837 1838 /* Skip if HW doesn't expose remap, or if PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE (4K). */ 1839 if (!adev->rmmio_remap.bus_addr || PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE) 1840 return 0; 1841 1842 memset(&bp, 0, sizeof(bp)); 1843 1844 /* Create exactly one GEM BO in the MMIO_REMAP domain. */ 1845 bp.type = ttm_bo_type_device; /* userspace-mappable GEM */ 1846 bp.size = AMDGPU_GPU_PAGE_SIZE; /* 4K */ 1847 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 1848 bp.domain = AMDGPU_GEM_DOMAIN_MMIO_REMAP; 1849 bp.flags = 0; 1850 bp.resv = NULL; 1851 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 1852 1853 r = amdgpu_bo_create(adev, &bp, &adev->rmmio_remap.bo); 1854 if (r) 1855 return r; 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * amdgpu_ttm_mmio_remap_bo_fini - Free the singleton MMIO_REMAP BO 1862 * @adev: amdgpu device 1863 * 1864 * Frees the kernel-owned MMIO_REMAP BO if it was allocated by 1865 * amdgpu_ttm_mmio_remap_bo_init(). 1866 */ 1867 static void amdgpu_ttm_mmio_remap_bo_fini(struct amdgpu_device *adev) 1868 { 1869 amdgpu_bo_unref(&adev->rmmio_remap.bo); 1870 adev->rmmio_remap.bo = NULL; 1871 } 1872 1873 /* 1874 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1875 * gtt/vram related fields. 1876 * 1877 * This initializes all of the memory space pools that the TTM layer 1878 * will need such as the GTT space (system memory mapped to the device), 1879 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1880 * can be mapped per VMID. 1881 */ 1882 int amdgpu_ttm_init(struct amdgpu_device *adev) 1883 { 1884 uint64_t gtt_size; 1885 int r; 1886 1887 mutex_init(&adev->mman.gtt_window_lock); 1888 1889 dma_set_max_seg_size(adev->dev, UINT_MAX); 1890 /* No others user of address space so set it to 0 */ 1891 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1892 adev_to_drm(adev)->anon_inode->i_mapping, 1893 adev_to_drm(adev)->vma_offset_manager, 1894 adev->need_swiotlb, 1895 dma_addressing_limited(adev->dev)); 1896 if (r) { 1897 dev_err(adev->dev, 1898 "failed initializing buffer object driver(%d).\n", r); 1899 return r; 1900 } 1901 1902 r = amdgpu_ttm_pools_init(adev); 1903 if (r) { 1904 dev_err(adev->dev, "failed to init ttm pools(%d).\n", r); 1905 return r; 1906 } 1907 adev->mman.initialized = true; 1908 1909 if (!adev->gmc.is_app_apu) { 1910 /* Initialize VRAM pool with all of VRAM divided into pages */ 1911 r = amdgpu_vram_mgr_init(adev); 1912 if (r) { 1913 dev_err(adev->dev, "Failed initializing VRAM heap.\n"); 1914 return r; 1915 } 1916 } 1917 1918 /* Change the size here instead of the init above so only lpfn is affected */ 1919 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1920 #ifdef CONFIG_64BIT 1921 #ifdef CONFIG_X86 1922 if (adev->gmc.xgmi.connected_to_cpu) 1923 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1924 adev->gmc.visible_vram_size); 1925 1926 else if (adev->gmc.is_app_apu) 1927 DRM_DEBUG_DRIVER( 1928 "No need to ioremap when real vram size is 0\n"); 1929 else 1930 #endif 1931 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1932 adev->gmc.visible_vram_size); 1933 #endif 1934 1935 /* 1936 *The reserved vram for firmware must be pinned to the specified 1937 *place on the VRAM, so reserve it early. 1938 */ 1939 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1940 if (r) 1941 return r; 1942 1943 /* 1944 *The reserved vram for driver must be pinned to the specified 1945 *place on the VRAM, so reserve it early. 1946 */ 1947 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1948 if (r) 1949 return r; 1950 1951 /* 1952 * only NAVI10 and onwards ASIC support for IP discovery. 1953 * If IP discovery enabled, a block of memory should be 1954 * reserved for IP discovey. 1955 */ 1956 if (adev->discovery.reserve_tmr) { 1957 r = amdgpu_ttm_reserve_tmr(adev); 1958 if (r) 1959 return r; 1960 } 1961 1962 /* allocate memory as required for VGA 1963 * This is used for VGA emulation and pre-OS scanout buffers to 1964 * avoid display artifacts while transitioning between pre-OS 1965 * and driver. 1966 */ 1967 if (!adev->gmc.is_app_apu) { 1968 r = amdgpu_bo_create_kernel_at(adev, 0, 1969 adev->mman.stolen_vga_size, 1970 &adev->mman.stolen_vga_memory, 1971 NULL); 1972 if (r) 1973 return r; 1974 1975 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1976 adev->mman.stolen_extended_size, 1977 &adev->mman.stolen_extended_memory, 1978 NULL); 1979 1980 if (r) 1981 return r; 1982 1983 r = amdgpu_bo_create_kernel_at(adev, 1984 adev->mman.stolen_reserved_offset, 1985 adev->mman.stolen_reserved_size, 1986 &adev->mman.stolen_reserved_memory, 1987 NULL); 1988 if (r) 1989 return r; 1990 } else { 1991 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1992 } 1993 1994 dev_info(adev->dev, "amdgpu: %uM of VRAM memory ready\n", 1995 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1996 1997 /* Compute GTT size, either based on TTM limit 1998 * or whatever the user passed on module init. 1999 */ 2000 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 2001 if (amdgpu_gtt_size != -1) { 2002 uint64_t configured_size = (uint64_t)amdgpu_gtt_size << 20; 2003 2004 drm_warn(&adev->ddev, 2005 "Configuring gttsize via module parameter is deprecated, please use ttm.pages_limit\n"); 2006 if (gtt_size != configured_size) 2007 drm_warn(&adev->ddev, 2008 "GTT size has been set as %llu but TTM size has been set as %llu, this is unusual\n", 2009 configured_size, gtt_size); 2010 2011 gtt_size = configured_size; 2012 } 2013 2014 /* Initialize GTT memory pool */ 2015 r = amdgpu_gtt_mgr_init(adev, gtt_size); 2016 if (r) { 2017 dev_err(adev->dev, "Failed initializing GTT heap.\n"); 2018 return r; 2019 } 2020 dev_info(adev->dev, "amdgpu: %uM of GTT memory ready.\n", 2021 (unsigned int)(gtt_size / (1024 * 1024))); 2022 2023 if (adev->flags & AMD_IS_APU) { 2024 if (adev->gmc.real_vram_size < gtt_size) 2025 adev->apu_prefer_gtt = true; 2026 } 2027 2028 /* Initialize doorbell pool on PCI BAR */ 2029 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 2030 if (r) { 2031 dev_err(adev->dev, "Failed initializing doorbell heap.\n"); 2032 return r; 2033 } 2034 2035 /* Create a boorbell page for kernel usages */ 2036 r = amdgpu_doorbell_create_kernel_doorbells(adev); 2037 if (r) { 2038 dev_err(adev->dev, "Failed to initialize kernel doorbells.\n"); 2039 return r; 2040 } 2041 2042 /* Initialize MMIO-remap pool (single page 4K) */ 2043 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_MMIO_REMAP, 1); 2044 if (r) { 2045 dev_err(adev->dev, "Failed initializing MMIO-remap heap.\n"); 2046 return r; 2047 } 2048 2049 /* Allocate the singleton MMIO_REMAP BO (4K) if supported */ 2050 r = amdgpu_ttm_mmio_remap_bo_init(adev); 2051 if (r) 2052 return r; 2053 2054 /* Initialize preemptible memory pool */ 2055 r = amdgpu_preempt_mgr_init(adev); 2056 if (r) { 2057 dev_err(adev->dev, "Failed initializing PREEMPT heap.\n"); 2058 return r; 2059 } 2060 2061 /* Initialize various on-chip memory pools */ 2062 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 2063 if (r) { 2064 dev_err(adev->dev, "Failed initializing GDS heap.\n"); 2065 return r; 2066 } 2067 2068 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 2069 if (r) { 2070 dev_err(adev->dev, "Failed initializing gws heap.\n"); 2071 return r; 2072 } 2073 2074 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 2075 if (r) { 2076 dev_err(adev->dev, "Failed initializing oa heap.\n"); 2077 return r; 2078 } 2079 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2080 AMDGPU_GEM_DOMAIN_GTT, 2081 &adev->mman.sdma_access_bo, NULL, 2082 &adev->mman.sdma_access_ptr)) 2083 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2084 2085 return 0; 2086 } 2087 2088 /* 2089 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2090 */ 2091 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2092 { 2093 int idx; 2094 2095 if (!adev->mman.initialized) 2096 return; 2097 2098 amdgpu_ttm_pools_fini(adev); 2099 2100 amdgpu_ttm_training_reserve_vram_fini(adev); 2101 /* return the stolen vga memory back to VRAM */ 2102 if (!adev->gmc.is_app_apu) { 2103 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2104 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2105 /* return the FW reserved memory back to VRAM */ 2106 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2107 NULL); 2108 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory_extend, NULL, 2109 NULL); 2110 if (adev->mman.stolen_reserved_size) 2111 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2112 NULL, NULL); 2113 } 2114 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2115 &adev->mman.sdma_access_ptr); 2116 2117 amdgpu_ttm_mmio_remap_bo_fini(adev); 2118 amdgpu_ttm_fw_reserve_vram_fini(adev); 2119 amdgpu_ttm_drv_reserve_vram_fini(adev); 2120 2121 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2122 2123 if (adev->mman.aper_base_kaddr) 2124 iounmap(adev->mman.aper_base_kaddr); 2125 adev->mman.aper_base_kaddr = NULL; 2126 2127 drm_dev_exit(idx); 2128 } 2129 2130 if (!adev->gmc.is_app_apu) 2131 amdgpu_vram_mgr_fini(adev); 2132 amdgpu_gtt_mgr_fini(adev); 2133 amdgpu_preempt_mgr_fini(adev); 2134 amdgpu_doorbell_fini(adev); 2135 2136 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2137 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2138 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2139 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL); 2140 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_MMIO_REMAP); 2141 ttm_device_fini(&adev->mman.bdev); 2142 adev->mman.initialized = false; 2143 dev_info(adev->dev, "amdgpu: ttm finalized\n"); 2144 } 2145 2146 /** 2147 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2148 * 2149 * @adev: amdgpu_device pointer 2150 * @enable: true when we can use buffer functions. 2151 * 2152 * Enable/disable use of buffer functions during suspend/resume. This should 2153 * only be called at bootup or when userspace isn't running. 2154 */ 2155 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2156 { 2157 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2158 uint64_t size; 2159 int r; 2160 2161 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2162 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2163 return; 2164 2165 if (enable) { 2166 struct amdgpu_ring *ring; 2167 struct drm_gpu_scheduler *sched; 2168 2169 ring = adev->mman.buffer_funcs_ring; 2170 sched = &ring->sched; 2171 r = drm_sched_entity_init(&adev->mman.high_pr, 2172 DRM_SCHED_PRIORITY_KERNEL, &sched, 2173 1, NULL); 2174 if (r) { 2175 dev_err(adev->dev, 2176 "Failed setting up TTM BO move entity (%d)\n", 2177 r); 2178 return; 2179 } 2180 2181 r = drm_sched_entity_init(&adev->mman.low_pr, 2182 DRM_SCHED_PRIORITY_NORMAL, &sched, 2183 1, NULL); 2184 if (r) { 2185 dev_err(adev->dev, 2186 "Failed setting up TTM BO move entity (%d)\n", 2187 r); 2188 goto error_free_entity; 2189 } 2190 } else { 2191 drm_sched_entity_destroy(&adev->mman.high_pr); 2192 drm_sched_entity_destroy(&adev->mman.low_pr); 2193 dma_fence_put(man->move); 2194 man->move = NULL; 2195 } 2196 2197 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2198 if (enable) 2199 size = adev->gmc.real_vram_size; 2200 else 2201 size = adev->gmc.visible_vram_size; 2202 man->size = size; 2203 adev->mman.buffer_funcs_enabled = enable; 2204 2205 return; 2206 2207 error_free_entity: 2208 drm_sched_entity_destroy(&adev->mman.high_pr); 2209 } 2210 2211 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2212 bool direct_submit, 2213 unsigned int num_dw, 2214 struct dma_resv *resv, 2215 bool vm_needs_flush, 2216 struct amdgpu_job **job, 2217 bool delayed, u64 k_job_id) 2218 { 2219 enum amdgpu_ib_pool_type pool = direct_submit ? 2220 AMDGPU_IB_POOL_DIRECT : 2221 AMDGPU_IB_POOL_DELAYED; 2222 int r; 2223 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2224 &adev->mman.high_pr; 2225 r = amdgpu_job_alloc_with_ib(adev, entity, 2226 AMDGPU_FENCE_OWNER_UNDEFINED, 2227 num_dw * 4, pool, job, k_job_id); 2228 if (r) 2229 return r; 2230 2231 if (vm_needs_flush) { 2232 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2233 adev->gmc.pdb0_bo : 2234 adev->gart.bo); 2235 (*job)->vm_needs_flush = true; 2236 } 2237 if (!resv) 2238 return 0; 2239 2240 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2241 DMA_RESV_USAGE_BOOKKEEP); 2242 } 2243 2244 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2245 uint64_t dst_offset, uint32_t byte_count, 2246 struct dma_resv *resv, 2247 struct dma_fence **fence, bool direct_submit, 2248 bool vm_needs_flush, uint32_t copy_flags) 2249 { 2250 struct amdgpu_device *adev = ring->adev; 2251 unsigned int num_loops, num_dw; 2252 struct amdgpu_job *job; 2253 uint32_t max_bytes; 2254 unsigned int i; 2255 int r; 2256 2257 if (!direct_submit && !ring->sched.ready) { 2258 dev_err(adev->dev, 2259 "Trying to move memory with ring turned off.\n"); 2260 return -EINVAL; 2261 } 2262 2263 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2264 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2265 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2266 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2267 resv, vm_needs_flush, &job, false, 2268 AMDGPU_KERNEL_JOB_ID_TTM_COPY_BUFFER); 2269 if (r) 2270 return r; 2271 2272 for (i = 0; i < num_loops; i++) { 2273 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2274 2275 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2276 dst_offset, cur_size_in_bytes, copy_flags); 2277 src_offset += cur_size_in_bytes; 2278 dst_offset += cur_size_in_bytes; 2279 byte_count -= cur_size_in_bytes; 2280 } 2281 2282 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2283 WARN_ON(job->ibs[0].length_dw > num_dw); 2284 if (direct_submit) 2285 r = amdgpu_job_submit_direct(job, ring, fence); 2286 else 2287 *fence = amdgpu_job_submit(job); 2288 if (r) 2289 goto error_free; 2290 2291 return r; 2292 2293 error_free: 2294 amdgpu_job_free(job); 2295 dev_err(adev->dev, "Error scheduling IBs (%d)\n", r); 2296 return r; 2297 } 2298 2299 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2300 uint64_t dst_addr, uint32_t byte_count, 2301 struct dma_resv *resv, 2302 struct dma_fence **fence, 2303 bool vm_needs_flush, bool delayed, 2304 u64 k_job_id) 2305 { 2306 struct amdgpu_device *adev = ring->adev; 2307 unsigned int num_loops, num_dw; 2308 struct amdgpu_job *job; 2309 uint32_t max_bytes; 2310 unsigned int i; 2311 int r; 2312 2313 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2314 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2315 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2316 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2317 &job, delayed, k_job_id); 2318 if (r) 2319 return r; 2320 2321 for (i = 0; i < num_loops; i++) { 2322 uint32_t cur_size = min(byte_count, max_bytes); 2323 2324 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2325 cur_size); 2326 2327 dst_addr += cur_size; 2328 byte_count -= cur_size; 2329 } 2330 2331 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2332 WARN_ON(job->ibs[0].length_dw > num_dw); 2333 *fence = amdgpu_job_submit(job); 2334 return 0; 2335 } 2336 2337 /** 2338 * amdgpu_ttm_clear_buffer - clear memory buffers 2339 * @bo: amdgpu buffer object 2340 * @resv: reservation object 2341 * @fence: dma_fence associated with the operation 2342 * 2343 * Clear the memory buffer resource. 2344 * 2345 * Returns: 2346 * 0 for success or a negative error code on failure. 2347 */ 2348 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2349 struct dma_resv *resv, 2350 struct dma_fence **fence) 2351 { 2352 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2353 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2354 struct amdgpu_res_cursor cursor; 2355 u64 addr; 2356 int r = 0; 2357 2358 if (!adev->mman.buffer_funcs_enabled) 2359 return -EINVAL; 2360 2361 if (!fence) 2362 return -EINVAL; 2363 2364 *fence = dma_fence_get_stub(); 2365 2366 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2367 2368 mutex_lock(&adev->mman.gtt_window_lock); 2369 while (cursor.remaining) { 2370 struct dma_fence *next = NULL; 2371 u64 size; 2372 2373 if (amdgpu_res_cleared(&cursor)) { 2374 amdgpu_res_next(&cursor, cursor.size); 2375 continue; 2376 } 2377 2378 /* Never clear more than 256MiB at once to avoid timeouts */ 2379 size = min(cursor.size, 256ULL << 20); 2380 2381 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2382 1, ring, false, &size, &addr); 2383 if (r) 2384 goto err; 2385 2386 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2387 &next, true, true, 2388 AMDGPU_KERNEL_JOB_ID_TTM_CLEAR_BUFFER); 2389 if (r) 2390 goto err; 2391 2392 dma_fence_put(*fence); 2393 *fence = next; 2394 2395 amdgpu_res_next(&cursor, size); 2396 } 2397 err: 2398 mutex_unlock(&adev->mman.gtt_window_lock); 2399 2400 return r; 2401 } 2402 2403 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2404 uint32_t src_data, 2405 struct dma_resv *resv, 2406 struct dma_fence **f, 2407 bool delayed, 2408 u64 k_job_id) 2409 { 2410 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2411 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2412 struct dma_fence *fence = NULL; 2413 struct amdgpu_res_cursor dst; 2414 int r; 2415 2416 if (!adev->mman.buffer_funcs_enabled) { 2417 dev_err(adev->dev, 2418 "Trying to clear memory with ring turned off.\n"); 2419 return -EINVAL; 2420 } 2421 2422 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2423 2424 mutex_lock(&adev->mman.gtt_window_lock); 2425 while (dst.remaining) { 2426 struct dma_fence *next; 2427 uint64_t cur_size, to; 2428 2429 /* Never fill more than 256MiB at once to avoid timeouts */ 2430 cur_size = min(dst.size, 256ULL << 20); 2431 2432 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2433 1, ring, false, &cur_size, &to); 2434 if (r) 2435 goto error; 2436 2437 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2438 &next, true, delayed, k_job_id); 2439 if (r) 2440 goto error; 2441 2442 dma_fence_put(fence); 2443 fence = next; 2444 2445 amdgpu_res_next(&dst, cur_size); 2446 } 2447 error: 2448 mutex_unlock(&adev->mman.gtt_window_lock); 2449 if (f) 2450 *f = dma_fence_get(fence); 2451 dma_fence_put(fence); 2452 return r; 2453 } 2454 2455 /** 2456 * amdgpu_ttm_evict_resources - evict memory buffers 2457 * @adev: amdgpu device object 2458 * @mem_type: evicted BO's memory type 2459 * 2460 * Evicts all @mem_type buffers on the lru list of the memory type. 2461 * 2462 * Returns: 2463 * 0 for success or a negative error code on failure. 2464 */ 2465 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2466 { 2467 struct ttm_resource_manager *man; 2468 2469 switch (mem_type) { 2470 case TTM_PL_VRAM: 2471 case TTM_PL_TT: 2472 case AMDGPU_PL_GWS: 2473 case AMDGPU_PL_GDS: 2474 case AMDGPU_PL_OA: 2475 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2476 break; 2477 default: 2478 dev_err(adev->dev, "Trying to evict invalid memory type\n"); 2479 return -EINVAL; 2480 } 2481 2482 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2483 } 2484 2485 #if defined(CONFIG_DEBUG_FS) 2486 2487 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2488 { 2489 struct amdgpu_device *adev = m->private; 2490 2491 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2492 } 2493 2494 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2495 2496 /* 2497 * amdgpu_ttm_vram_read - Linear read access to VRAM 2498 * 2499 * Accesses VRAM via MMIO for debugging purposes. 2500 */ 2501 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2502 size_t size, loff_t *pos) 2503 { 2504 struct amdgpu_device *adev = file_inode(f)->i_private; 2505 ssize_t result = 0; 2506 2507 if (size & 0x3 || *pos & 0x3) 2508 return -EINVAL; 2509 2510 if (*pos >= adev->gmc.mc_vram_size) 2511 return -ENXIO; 2512 2513 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2514 while (size) { 2515 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2516 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2517 2518 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2519 if (copy_to_user(buf, value, bytes)) 2520 return -EFAULT; 2521 2522 result += bytes; 2523 buf += bytes; 2524 *pos += bytes; 2525 size -= bytes; 2526 } 2527 2528 return result; 2529 } 2530 2531 /* 2532 * amdgpu_ttm_vram_write - Linear write access to VRAM 2533 * 2534 * Accesses VRAM via MMIO for debugging purposes. 2535 */ 2536 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2537 size_t size, loff_t *pos) 2538 { 2539 struct amdgpu_device *adev = file_inode(f)->i_private; 2540 ssize_t result = 0; 2541 int r; 2542 2543 if (size & 0x3 || *pos & 0x3) 2544 return -EINVAL; 2545 2546 if (*pos >= adev->gmc.mc_vram_size) 2547 return -ENXIO; 2548 2549 while (size) { 2550 uint32_t value; 2551 2552 if (*pos >= adev->gmc.mc_vram_size) 2553 return result; 2554 2555 r = get_user(value, (uint32_t *)buf); 2556 if (r) 2557 return r; 2558 2559 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2560 2561 result += 4; 2562 buf += 4; 2563 *pos += 4; 2564 size -= 4; 2565 } 2566 2567 return result; 2568 } 2569 2570 static const struct file_operations amdgpu_ttm_vram_fops = { 2571 .owner = THIS_MODULE, 2572 .read = amdgpu_ttm_vram_read, 2573 .write = amdgpu_ttm_vram_write, 2574 .llseek = default_llseek, 2575 }; 2576 2577 /* 2578 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2579 * 2580 * This function is used to read memory that has been mapped to the 2581 * GPU and the known addresses are not physical addresses but instead 2582 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2583 */ 2584 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2585 size_t size, loff_t *pos) 2586 { 2587 struct amdgpu_device *adev = file_inode(f)->i_private; 2588 struct iommu_domain *dom; 2589 ssize_t result = 0; 2590 int r; 2591 2592 /* retrieve the IOMMU domain if any for this device */ 2593 dom = iommu_get_domain_for_dev(adev->dev); 2594 2595 while (size) { 2596 phys_addr_t addr = *pos & PAGE_MASK; 2597 loff_t off = *pos & ~PAGE_MASK; 2598 size_t bytes = PAGE_SIZE - off; 2599 unsigned long pfn; 2600 struct page *p; 2601 void *ptr; 2602 2603 bytes = min(bytes, size); 2604 2605 /* Translate the bus address to a physical address. If 2606 * the domain is NULL it means there is no IOMMU active 2607 * and the address translation is the identity 2608 */ 2609 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2610 2611 pfn = addr >> PAGE_SHIFT; 2612 if (!pfn_valid(pfn)) 2613 return -EPERM; 2614 2615 p = pfn_to_page(pfn); 2616 if (p->mapping != adev->mman.bdev.dev_mapping) 2617 return -EPERM; 2618 2619 ptr = kmap_local_page(p); 2620 r = copy_to_user(buf, ptr + off, bytes); 2621 kunmap_local(ptr); 2622 if (r) 2623 return -EFAULT; 2624 2625 size -= bytes; 2626 *pos += bytes; 2627 result += bytes; 2628 } 2629 2630 return result; 2631 } 2632 2633 /* 2634 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2635 * 2636 * This function is used to write memory that has been mapped to the 2637 * GPU and the known addresses are not physical addresses but instead 2638 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2639 */ 2640 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2641 size_t size, loff_t *pos) 2642 { 2643 struct amdgpu_device *adev = file_inode(f)->i_private; 2644 struct iommu_domain *dom; 2645 ssize_t result = 0; 2646 int r; 2647 2648 dom = iommu_get_domain_for_dev(adev->dev); 2649 2650 while (size) { 2651 phys_addr_t addr = *pos & PAGE_MASK; 2652 loff_t off = *pos & ~PAGE_MASK; 2653 size_t bytes = PAGE_SIZE - off; 2654 unsigned long pfn; 2655 struct page *p; 2656 void *ptr; 2657 2658 bytes = min(bytes, size); 2659 2660 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2661 2662 pfn = addr >> PAGE_SHIFT; 2663 if (!pfn_valid(pfn)) 2664 return -EPERM; 2665 2666 p = pfn_to_page(pfn); 2667 if (p->mapping != adev->mman.bdev.dev_mapping) 2668 return -EPERM; 2669 2670 ptr = kmap_local_page(p); 2671 r = copy_from_user(ptr + off, buf, bytes); 2672 kunmap_local(ptr); 2673 if (r) 2674 return -EFAULT; 2675 2676 size -= bytes; 2677 *pos += bytes; 2678 result += bytes; 2679 } 2680 2681 return result; 2682 } 2683 2684 static const struct file_operations amdgpu_ttm_iomem_fops = { 2685 .owner = THIS_MODULE, 2686 .read = amdgpu_iomem_read, 2687 .write = amdgpu_iomem_write, 2688 .llseek = default_llseek 2689 }; 2690 2691 #endif 2692 2693 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2694 { 2695 #if defined(CONFIG_DEBUG_FS) 2696 struct drm_minor *minor = adev_to_drm(adev)->primary; 2697 struct dentry *root = minor->debugfs_root; 2698 2699 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2700 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2701 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2702 &amdgpu_ttm_iomem_fops); 2703 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2704 &amdgpu_ttm_page_pool_fops); 2705 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2706 TTM_PL_VRAM), 2707 root, "amdgpu_vram_mm"); 2708 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2709 TTM_PL_TT), 2710 root, "amdgpu_gtt_mm"); 2711 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2712 AMDGPU_PL_GDS), 2713 root, "amdgpu_gds_mm"); 2714 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2715 AMDGPU_PL_GWS), 2716 root, "amdgpu_gws_mm"); 2717 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2718 AMDGPU_PL_OA), 2719 root, "amdgpu_oa_mm"); 2720 2721 #endif 2722 } 2723