xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 8c69d0298fb56f603e694cf0188e25b58dfe8b7e)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 
49 #include <drm/amdgpu_drm.h>
50 
51 #include "amdgpu.h"
52 #include "amdgpu_object.h"
53 #include "amdgpu_trace.h"
54 #include "amdgpu_amdkfd.h"
55 #include "amdgpu_sdma.h"
56 #include "amdgpu_ras.h"
57 #include "amdgpu_atomfirmware.h"
58 #include "amdgpu_res_cursor.h"
59 #include "bif/bif_4_1_d.h"
60 
61 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
62 
63 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
64 				   struct ttm_tt *ttm,
65 				   struct ttm_resource *bo_mem);
66 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
67 				      struct ttm_tt *ttm);
68 
69 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
70 				    unsigned int type,
71 				    uint64_t size_in_page)
72 {
73 	return ttm_range_man_init(&adev->mman.bdev, type,
74 				  false, size_in_page);
75 }
76 
77 /**
78  * amdgpu_evict_flags - Compute placement flags
79  *
80  * @bo: The buffer object to evict
81  * @placement: Possible destination(s) for evicted BO
82  *
83  * Fill in placement data when ttm_bo_evict() is called
84  */
85 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
86 				struct ttm_placement *placement)
87 {
88 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
89 	struct amdgpu_bo *abo;
90 	static const struct ttm_place placements = {
91 		.fpfn = 0,
92 		.lpfn = 0,
93 		.mem_type = TTM_PL_SYSTEM,
94 		.flags = 0
95 	};
96 
97 	/* Don't handle scatter gather BOs */
98 	if (bo->type == ttm_bo_type_sg) {
99 		placement->num_placement = 0;
100 		placement->num_busy_placement = 0;
101 		return;
102 	}
103 
104 	/* Object isn't an AMDGPU object so ignore */
105 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
106 		placement->placement = &placements;
107 		placement->busy_placement = &placements;
108 		placement->num_placement = 1;
109 		placement->num_busy_placement = 1;
110 		return;
111 	}
112 
113 	abo = ttm_to_amdgpu_bo(bo);
114 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
115 		struct dma_fence *fence;
116 		struct dma_resv *resv = &bo->base._resv;
117 
118 		rcu_read_lock();
119 		fence = rcu_dereference(resv->fence_excl);
120 		if (fence && !fence->ops->signaled)
121 			dma_fence_enable_sw_signaling(fence);
122 
123 		placement->num_placement = 0;
124 		placement->num_busy_placement = 0;
125 		rcu_read_unlock();
126 		return;
127 	}
128 
129 	switch (bo->resource->mem_type) {
130 	case AMDGPU_PL_GDS:
131 	case AMDGPU_PL_GWS:
132 	case AMDGPU_PL_OA:
133 		placement->num_placement = 0;
134 		placement->num_busy_placement = 0;
135 		return;
136 
137 	case TTM_PL_VRAM:
138 		if (!adev->mman.buffer_funcs_enabled) {
139 			/* Move to system memory */
140 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
141 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
142 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
143 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
144 
145 			/* Try evicting to the CPU inaccessible part of VRAM
146 			 * first, but only set GTT as busy placement, so this
147 			 * BO will be evicted to GTT rather than causing other
148 			 * BOs to be evicted from VRAM
149 			 */
150 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
151 							 AMDGPU_GEM_DOMAIN_GTT);
152 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
153 			abo->placements[0].lpfn = 0;
154 			abo->placement.busy_placement = &abo->placements[1];
155 			abo->placement.num_busy_placement = 1;
156 		} else {
157 			/* Move to GTT memory */
158 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
159 		}
160 		break;
161 	case TTM_PL_TT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @num_pages: number of pages to map
175  * @window: which GART window to use
176  * @ring: DMA ring to use for the copy
177  * @tmz: if we should setup a TMZ enabled mapping
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned num_pages, unsigned window,
187 				 struct amdgpu_ring *ring, bool tmz,
188 				 uint64_t *addr)
189 {
190 	struct amdgpu_device *adev = ring->adev;
191 	struct amdgpu_job *job;
192 	unsigned num_dw, num_bytes;
193 	struct dma_fence *fence;
194 	uint64_t src_addr, dst_addr;
195 	void *cpu_addr;
196 	uint64_t flags;
197 	unsigned int i;
198 	int r;
199 
200 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
201 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
202 
203 	/* Map only what can't be accessed directly */
204 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
205 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
206 			mm_cur->start;
207 		return 0;
208 	}
209 
210 	*addr = adev->gmc.gart_start;
211 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
212 		AMDGPU_GPU_PAGE_SIZE;
213 	*addr += mm_cur->start & ~PAGE_MASK;
214 
215 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
216 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
217 
218 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
219 				     AMDGPU_IB_POOL_DELAYED, &job);
220 	if (r)
221 		return r;
222 
223 	src_addr = num_dw * 4;
224 	src_addr += job->ibs[0].gpu_addr;
225 
226 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
227 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
228 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
229 				dst_addr, num_bytes, false);
230 
231 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
232 	WARN_ON(job->ibs[0].length_dw > num_dw);
233 
234 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
235 	if (tmz)
236 		flags |= AMDGPU_PTE_TMZ;
237 
238 	cpu_addr = &job->ibs[0].ptr[num_dw];
239 
240 	if (mem->mem_type == TTM_PL_TT) {
241 		dma_addr_t *dma_addr;
242 
243 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
244 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
245 				    cpu_addr);
246 		if (r)
247 			goto error_free;
248 	} else {
249 		dma_addr_t dma_address;
250 
251 		dma_address = mm_cur->start;
252 		dma_address += adev->vm_manager.vram_base_offset;
253 
254 		for (i = 0; i < num_pages; ++i) {
255 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
256 					    &dma_address, flags, cpu_addr);
257 			if (r)
258 				goto error_free;
259 
260 			dma_address += PAGE_SIZE;
261 		}
262 	}
263 
264 	r = amdgpu_job_submit(job, &adev->mman.entity,
265 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
266 	if (r)
267 		goto error_free;
268 
269 	dma_fence_put(fence);
270 
271 	return r;
272 
273 error_free:
274 	amdgpu_job_free(job);
275 	return r;
276 }
277 
278 /**
279  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
280  * @adev: amdgpu device
281  * @src: buffer/address where to read from
282  * @dst: buffer/address where to write to
283  * @size: number of bytes to copy
284  * @tmz: if a secure copy should be used
285  * @resv: resv object to sync to
286  * @f: Returns the last fence if multiple jobs are submitted.
287  *
288  * The function copies @size bytes from {src->mem + src->offset} to
289  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
290  * move and different for a BO to BO copy.
291  *
292  */
293 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
294 			       const struct amdgpu_copy_mem *src,
295 			       const struct amdgpu_copy_mem *dst,
296 			       uint64_t size, bool tmz,
297 			       struct dma_resv *resv,
298 			       struct dma_fence **f)
299 {
300 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
301 					AMDGPU_GPU_PAGE_SIZE);
302 
303 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
304 	struct amdgpu_res_cursor src_mm, dst_mm;
305 	struct dma_fence *fence = NULL;
306 	int r = 0;
307 
308 	if (!adev->mman.buffer_funcs_enabled) {
309 		DRM_ERROR("Trying to move memory with ring turned off.\n");
310 		return -EINVAL;
311 	}
312 
313 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
314 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
315 
316 	mutex_lock(&adev->mman.gtt_window_lock);
317 	while (src_mm.remaining) {
318 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
319 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
320 		struct dma_fence *next;
321 		uint32_t cur_size;
322 		uint64_t from, to;
323 
324 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
325 		 * begins at an offset, then adjust the size accordingly
326 		 */
327 		cur_size = max(src_page_offset, dst_page_offset);
328 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
329 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
330 
331 		/* Map src to window 0 and dst to window 1. */
332 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
333 					  PFN_UP(cur_size + src_page_offset),
334 					  0, ring, tmz, &from);
335 		if (r)
336 			goto error;
337 
338 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
339 					  PFN_UP(cur_size + dst_page_offset),
340 					  1, ring, tmz, &to);
341 		if (r)
342 			goto error;
343 
344 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
345 				       resv, &next, false, true, tmz);
346 		if (r)
347 			goto error;
348 
349 		dma_fence_put(fence);
350 		fence = next;
351 
352 		amdgpu_res_next(&src_mm, cur_size);
353 		amdgpu_res_next(&dst_mm, cur_size);
354 	}
355 error:
356 	mutex_unlock(&adev->mman.gtt_window_lock);
357 	if (f)
358 		*f = dma_fence_get(fence);
359 	dma_fence_put(fence);
360 	return r;
361 }
362 
363 /*
364  * amdgpu_move_blit - Copy an entire buffer to another buffer
365  *
366  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
367  * help move buffers to and from VRAM.
368  */
369 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
370 			    bool evict,
371 			    struct ttm_resource *new_mem,
372 			    struct ttm_resource *old_mem)
373 {
374 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
375 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
376 	struct amdgpu_copy_mem src, dst;
377 	struct dma_fence *fence = NULL;
378 	int r;
379 
380 	src.bo = bo;
381 	dst.bo = bo;
382 	src.mem = old_mem;
383 	dst.mem = new_mem;
384 	src.offset = 0;
385 	dst.offset = 0;
386 
387 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
388 				       new_mem->num_pages << PAGE_SHIFT,
389 				       amdgpu_bo_encrypted(abo),
390 				       bo->base.resv, &fence);
391 	if (r)
392 		goto error;
393 
394 	/* clear the space being freed */
395 	if (old_mem->mem_type == TTM_PL_VRAM &&
396 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
397 		struct dma_fence *wipe_fence = NULL;
398 
399 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
400 				       NULL, &wipe_fence);
401 		if (r) {
402 			goto error;
403 		} else if (wipe_fence) {
404 			dma_fence_put(fence);
405 			fence = wipe_fence;
406 		}
407 	}
408 
409 	/* Always block for VM page tables before committing the new location */
410 	if (bo->type == ttm_bo_type_kernel)
411 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
412 	else
413 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
414 	dma_fence_put(fence);
415 	return r;
416 
417 error:
418 	if (fence)
419 		dma_fence_wait(fence, false);
420 	dma_fence_put(fence);
421 	return r;
422 }
423 
424 /*
425  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
426  *
427  * Called by amdgpu_bo_move()
428  */
429 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
430 			       struct ttm_resource *mem)
431 {
432 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
433 	struct amdgpu_res_cursor cursor;
434 
435 	if (mem->mem_type == TTM_PL_SYSTEM ||
436 	    mem->mem_type == TTM_PL_TT)
437 		return true;
438 	if (mem->mem_type != TTM_PL_VRAM)
439 		return false;
440 
441 	amdgpu_res_first(mem, 0, mem_size, &cursor);
442 
443 	/* ttm_resource_ioremap only supports contiguous memory */
444 	if (cursor.size != mem_size)
445 		return false;
446 
447 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
448 }
449 
450 /*
451  * amdgpu_bo_move - Move a buffer object to a new memory location
452  *
453  * Called by ttm_bo_handle_move_mem()
454  */
455 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
456 			  struct ttm_operation_ctx *ctx,
457 			  struct ttm_resource *new_mem,
458 			  struct ttm_place *hop)
459 {
460 	struct amdgpu_device *adev;
461 	struct amdgpu_bo *abo;
462 	struct ttm_resource *old_mem = bo->resource;
463 	int r;
464 
465 	if (new_mem->mem_type == TTM_PL_TT) {
466 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
467 		if (r)
468 			return r;
469 	}
470 
471 	/* Can't move a pinned BO */
472 	abo = ttm_to_amdgpu_bo(bo);
473 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
474 		return -EINVAL;
475 
476 	adev = amdgpu_ttm_adev(bo->bdev);
477 
478 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
479 		ttm_bo_move_null(bo, new_mem);
480 		goto out;
481 	}
482 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
483 	    new_mem->mem_type == TTM_PL_TT) {
484 		ttm_bo_move_null(bo, new_mem);
485 		goto out;
486 	}
487 	if (old_mem->mem_type == TTM_PL_TT &&
488 	    new_mem->mem_type == TTM_PL_SYSTEM) {
489 		r = ttm_bo_wait_ctx(bo, ctx);
490 		if (r)
491 			return r;
492 
493 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
494 		ttm_resource_free(bo, bo->resource);
495 		ttm_bo_assign_mem(bo, new_mem);
496 		goto out;
497 	}
498 
499 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
500 	    old_mem->mem_type == AMDGPU_PL_GWS ||
501 	    old_mem->mem_type == AMDGPU_PL_OA ||
502 	    new_mem->mem_type == AMDGPU_PL_GDS ||
503 	    new_mem->mem_type == AMDGPU_PL_GWS ||
504 	    new_mem->mem_type == AMDGPU_PL_OA) {
505 		/* Nothing to save here */
506 		ttm_bo_move_null(bo, new_mem);
507 		goto out;
508 	}
509 
510 	if (adev->mman.buffer_funcs_enabled) {
511 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
512 		      new_mem->mem_type == TTM_PL_VRAM) ||
513 		     (old_mem->mem_type == TTM_PL_VRAM &&
514 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
515 			hop->fpfn = 0;
516 			hop->lpfn = 0;
517 			hop->mem_type = TTM_PL_TT;
518 			hop->flags = 0;
519 			return -EMULTIHOP;
520 		}
521 
522 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
523 	} else {
524 		r = -ENODEV;
525 	}
526 
527 	if (r) {
528 		/* Check that all memory is CPU accessible */
529 		if (!amdgpu_mem_visible(adev, old_mem) ||
530 		    !amdgpu_mem_visible(adev, new_mem)) {
531 			pr_err("Move buffer fallback to memcpy unavailable\n");
532 			return r;
533 		}
534 
535 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
536 		if (r)
537 			return r;
538 	}
539 
540 	if (bo->type == ttm_bo_type_device &&
541 	    new_mem->mem_type == TTM_PL_VRAM &&
542 	    old_mem->mem_type != TTM_PL_VRAM) {
543 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
544 		 * accesses the BO after it's moved.
545 		 */
546 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
547 	}
548 
549 out:
550 	/* update statistics */
551 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
552 	amdgpu_bo_move_notify(bo, evict, new_mem);
553 	return 0;
554 }
555 
556 /*
557  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
558  *
559  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
560  */
561 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
562 				     struct ttm_resource *mem)
563 {
564 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
565 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
566 
567 	switch (mem->mem_type) {
568 	case TTM_PL_SYSTEM:
569 		/* system memory */
570 		return 0;
571 	case TTM_PL_TT:
572 		break;
573 	case TTM_PL_VRAM:
574 		mem->bus.offset = mem->start << PAGE_SHIFT;
575 		/* check if it's visible */
576 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
577 			return -EINVAL;
578 
579 		if (adev->mman.aper_base_kaddr &&
580 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
581 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
582 					mem->bus.offset;
583 
584 		mem->bus.offset += adev->gmc.aper_base;
585 		mem->bus.is_iomem = true;
586 		if (adev->gmc.xgmi.connected_to_cpu)
587 			mem->bus.caching = ttm_cached;
588 		else
589 			mem->bus.caching = ttm_write_combined;
590 		break;
591 	default:
592 		return -EINVAL;
593 	}
594 	return 0;
595 }
596 
597 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
598 					   unsigned long page_offset)
599 {
600 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
601 	struct amdgpu_res_cursor cursor;
602 
603 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
604 			 &cursor);
605 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
606 }
607 
608 /**
609  * amdgpu_ttm_domain_start - Returns GPU start address
610  * @adev: amdgpu device object
611  * @type: type of the memory
612  *
613  * Returns:
614  * GPU start address of a memory domain
615  */
616 
617 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
618 {
619 	switch (type) {
620 	case TTM_PL_TT:
621 		return adev->gmc.gart_start;
622 	case TTM_PL_VRAM:
623 		return adev->gmc.vram_start;
624 	}
625 
626 	return 0;
627 }
628 
629 /*
630  * TTM backend functions.
631  */
632 struct amdgpu_ttm_tt {
633 	struct ttm_tt	ttm;
634 	struct drm_gem_object	*gobj;
635 	u64			offset;
636 	uint64_t		userptr;
637 	struct task_struct	*usertask;
638 	uint32_t		userflags;
639 	bool			bound;
640 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
641 	struct hmm_range	*range;
642 #endif
643 };
644 
645 #ifdef CONFIG_DRM_AMDGPU_USERPTR
646 /*
647  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
648  * memory and start HMM tracking CPU page table update
649  *
650  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
651  * once afterwards to stop HMM tracking
652  */
653 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
654 {
655 	struct ttm_tt *ttm = bo->tbo.ttm;
656 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
657 	unsigned long start = gtt->userptr;
658 	struct vm_area_struct *vma;
659 	struct mm_struct *mm;
660 	bool readonly;
661 	int r = 0;
662 
663 	mm = bo->notifier.mm;
664 	if (unlikely(!mm)) {
665 		DRM_DEBUG_DRIVER("BO is not registered?\n");
666 		return -EFAULT;
667 	}
668 
669 	/* Another get_user_pages is running at the same time?? */
670 	if (WARN_ON(gtt->range))
671 		return -EFAULT;
672 
673 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
674 		return -ESRCH;
675 
676 	mmap_read_lock(mm);
677 	vma = find_vma(mm, start);
678 	mmap_read_unlock(mm);
679 	if (unlikely(!vma || start < vma->vm_start)) {
680 		r = -EFAULT;
681 		goto out_putmm;
682 	}
683 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
684 		vma->vm_file)) {
685 		r = -EPERM;
686 		goto out_putmm;
687 	}
688 
689 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
690 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
691 				       ttm->num_pages, &gtt->range, readonly,
692 				       false);
693 out_putmm:
694 	mmput(mm);
695 
696 	return r;
697 }
698 
699 /*
700  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
701  * Check if the pages backing this ttm range have been invalidated
702  *
703  * Returns: true if pages are still valid
704  */
705 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
706 {
707 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
708 	bool r = false;
709 
710 	if (!gtt || !gtt->userptr)
711 		return false;
712 
713 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
714 		gtt->userptr, ttm->num_pages);
715 
716 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
717 		"No user pages to check\n");
718 
719 	if (gtt->range) {
720 		/*
721 		 * FIXME: Must always hold notifier_lock for this, and must
722 		 * not ignore the return code.
723 		 */
724 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
725 		gtt->range = NULL;
726 	}
727 
728 	return !r;
729 }
730 #endif
731 
732 /*
733  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
734  *
735  * Called by amdgpu_cs_list_validate(). This creates the page list
736  * that backs user memory and will ultimately be mapped into the device
737  * address space.
738  */
739 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
740 {
741 	unsigned long i;
742 
743 	for (i = 0; i < ttm->num_pages; ++i)
744 		ttm->pages[i] = pages ? pages[i] : NULL;
745 }
746 
747 /*
748  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
749  *
750  * Called by amdgpu_ttm_backend_bind()
751  **/
752 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
753 				     struct ttm_tt *ttm)
754 {
755 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
756 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
757 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
758 	enum dma_data_direction direction = write ?
759 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
760 	int r;
761 
762 	/* Allocate an SG array and squash pages into it */
763 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
764 				      (u64)ttm->num_pages << PAGE_SHIFT,
765 				      GFP_KERNEL);
766 	if (r)
767 		goto release_sg;
768 
769 	/* Map SG to device */
770 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
771 	if (r)
772 		goto release_sg;
773 
774 	/* convert SG to linear array of pages and dma addresses */
775 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
776 				       ttm->num_pages);
777 
778 	return 0;
779 
780 release_sg:
781 	kfree(ttm->sg);
782 	ttm->sg = NULL;
783 	return r;
784 }
785 
786 /*
787  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
788  */
789 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
790 					struct ttm_tt *ttm)
791 {
792 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
793 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
794 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
795 	enum dma_data_direction direction = write ?
796 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
797 
798 	/* double check that we don't free the table twice */
799 	if (!ttm->sg || !ttm->sg->sgl)
800 		return;
801 
802 	/* unmap the pages mapped to the device */
803 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
804 	sg_free_table(ttm->sg);
805 
806 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
807 	if (gtt->range) {
808 		unsigned long i;
809 
810 		for (i = 0; i < ttm->num_pages; i++) {
811 			if (ttm->pages[i] !=
812 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
813 				break;
814 		}
815 
816 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
817 	}
818 #endif
819 }
820 
821 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
822 				struct ttm_buffer_object *tbo,
823 				uint64_t flags)
824 {
825 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
826 	struct ttm_tt *ttm = tbo->ttm;
827 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
828 	int r;
829 
830 	if (amdgpu_bo_encrypted(abo))
831 		flags |= AMDGPU_PTE_TMZ;
832 
833 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
834 		uint64_t page_idx = 1;
835 
836 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
837 				ttm->pages, gtt->ttm.dma_address, flags);
838 		if (r)
839 			goto gart_bind_fail;
840 
841 		/* The memory type of the first page defaults to UC. Now
842 		 * modify the memory type to NC from the second page of
843 		 * the BO onward.
844 		 */
845 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
846 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
847 
848 		r = amdgpu_gart_bind(adev,
849 				gtt->offset + (page_idx << PAGE_SHIFT),
850 				ttm->num_pages - page_idx,
851 				&ttm->pages[page_idx],
852 				&(gtt->ttm.dma_address[page_idx]), flags);
853 	} else {
854 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
855 				     ttm->pages, gtt->ttm.dma_address, flags);
856 	}
857 
858 gart_bind_fail:
859 	if (r)
860 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
861 			  ttm->num_pages, gtt->offset);
862 
863 	return r;
864 }
865 
866 /*
867  * amdgpu_ttm_backend_bind - Bind GTT memory
868  *
869  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
870  * This handles binding GTT memory to the device address space.
871  */
872 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
873 				   struct ttm_tt *ttm,
874 				   struct ttm_resource *bo_mem)
875 {
876 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
877 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
878 	uint64_t flags;
879 	int r = 0;
880 
881 	if (!bo_mem)
882 		return -EINVAL;
883 
884 	if (gtt->bound)
885 		return 0;
886 
887 	if (gtt->userptr) {
888 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
889 		if (r) {
890 			DRM_ERROR("failed to pin userptr\n");
891 			return r;
892 		}
893 	} else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
894 		if (!ttm->sg) {
895 			struct dma_buf_attachment *attach;
896 			struct sg_table *sgt;
897 
898 			attach = gtt->gobj->import_attach;
899 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
900 			if (IS_ERR(sgt))
901 				return PTR_ERR(sgt);
902 
903 			ttm->sg = sgt;
904 		}
905 
906 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
907 					       ttm->num_pages);
908 	}
909 
910 	if (!ttm->num_pages) {
911 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
912 		     ttm->num_pages, bo_mem, ttm);
913 	}
914 
915 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
916 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
917 	    bo_mem->mem_type == AMDGPU_PL_OA)
918 		return -EINVAL;
919 
920 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
921 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
922 		return 0;
923 	}
924 
925 	/* compute PTE flags relevant to this BO memory */
926 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
927 
928 	/* bind pages into GART page tables */
929 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
930 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
931 		ttm->pages, gtt->ttm.dma_address, flags);
932 
933 	if (r)
934 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
935 			  ttm->num_pages, gtt->offset);
936 	gtt->bound = true;
937 	return r;
938 }
939 
940 /*
941  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
942  * through AGP or GART aperture.
943  *
944  * If bo is accessible through AGP aperture, then use AGP aperture
945  * to access bo; otherwise allocate logical space in GART aperture
946  * and map bo to GART aperture.
947  */
948 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
949 {
950 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
951 	struct ttm_operation_ctx ctx = { false, false };
952 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
953 	struct ttm_resource tmp;
954 	struct ttm_placement placement;
955 	struct ttm_place placements;
956 	uint64_t addr, flags;
957 	int r;
958 
959 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
960 		return 0;
961 
962 	addr = amdgpu_gmc_agp_addr(bo);
963 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
964 		bo->resource->start = addr >> PAGE_SHIFT;
965 	} else {
966 
967 		/* allocate GART space */
968 		placement.num_placement = 1;
969 		placement.placement = &placements;
970 		placement.num_busy_placement = 1;
971 		placement.busy_placement = &placements;
972 		placements.fpfn = 0;
973 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
974 		placements.mem_type = TTM_PL_TT;
975 		placements.flags = bo->resource->placement;
976 
977 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
978 		if (unlikely(r))
979 			return r;
980 
981 		/* compute PTE flags for this buffer object */
982 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
983 
984 		/* Bind pages */
985 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
986 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
987 		if (unlikely(r)) {
988 			ttm_resource_free(bo, &tmp);
989 			return r;
990 		}
991 
992 		ttm_resource_free(bo, bo->resource);
993 		ttm_bo_assign_mem(bo, &tmp);
994 	}
995 
996 	return 0;
997 }
998 
999 /*
1000  * amdgpu_ttm_recover_gart - Rebind GTT pages
1001  *
1002  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1003  * rebind GTT pages during a GPU reset.
1004  */
1005 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1006 {
1007 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1008 	uint64_t flags;
1009 	int r;
1010 
1011 	if (!tbo->ttm)
1012 		return 0;
1013 
1014 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1015 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1016 
1017 	return r;
1018 }
1019 
1020 /*
1021  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1022  *
1023  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1024  * ttm_tt_destroy().
1025  */
1026 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1027 				      struct ttm_tt *ttm)
1028 {
1029 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1030 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1031 	int r;
1032 
1033 	/* if the pages have userptr pinning then clear that first */
1034 	if (gtt->userptr) {
1035 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1036 	} else if (ttm->sg && gtt->gobj->import_attach) {
1037 		struct dma_buf_attachment *attach;
1038 
1039 		attach = gtt->gobj->import_attach;
1040 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1041 		ttm->sg = NULL;
1042 	}
1043 
1044 	if (!gtt->bound)
1045 		return;
1046 
1047 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1048 		return;
1049 
1050 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1051 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1052 	if (r)
1053 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1054 			  gtt->ttm.num_pages, gtt->offset);
1055 	gtt->bound = false;
1056 }
1057 
1058 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1059 				       struct ttm_tt *ttm)
1060 {
1061 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1062 
1063 	amdgpu_ttm_backend_unbind(bdev, ttm);
1064 	ttm_tt_destroy_common(bdev, ttm);
1065 	if (gtt->usertask)
1066 		put_task_struct(gtt->usertask);
1067 
1068 	ttm_tt_fini(&gtt->ttm);
1069 	kfree(gtt);
1070 }
1071 
1072 /**
1073  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1074  *
1075  * @bo: The buffer object to create a GTT ttm_tt object around
1076  * @page_flags: Page flags to be added to the ttm_tt object
1077  *
1078  * Called by ttm_tt_create().
1079  */
1080 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1081 					   uint32_t page_flags)
1082 {
1083 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1084 	struct amdgpu_ttm_tt *gtt;
1085 	enum ttm_caching caching;
1086 
1087 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1088 	if (gtt == NULL) {
1089 		return NULL;
1090 	}
1091 	gtt->gobj = &bo->base;
1092 
1093 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1094 		caching = ttm_write_combined;
1095 	else
1096 		caching = ttm_cached;
1097 
1098 	/* allocate space for the uninitialized page entries */
1099 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1100 		kfree(gtt);
1101 		return NULL;
1102 	}
1103 	return &gtt->ttm;
1104 }
1105 
1106 /*
1107  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1108  *
1109  * Map the pages of a ttm_tt object to an address space visible
1110  * to the underlying device.
1111  */
1112 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1113 				  struct ttm_tt *ttm,
1114 				  struct ttm_operation_ctx *ctx)
1115 {
1116 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1117 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1118 
1119 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1120 	if (gtt && gtt->userptr) {
1121 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1122 		if (!ttm->sg)
1123 			return -ENOMEM;
1124 
1125 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1126 		return 0;
1127 	}
1128 
1129 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1130 		return 0;
1131 
1132 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1133 }
1134 
1135 /*
1136  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1137  *
1138  * Unmaps pages of a ttm_tt object from the device address space and
1139  * unpopulates the page array backing it.
1140  */
1141 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1142 				     struct ttm_tt *ttm)
1143 {
1144 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1145 	struct amdgpu_device *adev;
1146 
1147 	if (gtt && gtt->userptr) {
1148 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1149 		kfree(ttm->sg);
1150 		ttm->sg = NULL;
1151 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1152 		return;
1153 	}
1154 
1155 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1156 		return;
1157 
1158 	adev = amdgpu_ttm_adev(bdev);
1159 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1160 }
1161 
1162 /**
1163  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1164  * task
1165  *
1166  * @bo: The ttm_buffer_object to bind this userptr to
1167  * @addr:  The address in the current tasks VM space to use
1168  * @flags: Requirements of userptr object.
1169  *
1170  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1171  * to current task
1172  */
1173 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1174 			      uint64_t addr, uint32_t flags)
1175 {
1176 	struct amdgpu_ttm_tt *gtt;
1177 
1178 	if (!bo->ttm) {
1179 		/* TODO: We want a separate TTM object type for userptrs */
1180 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1181 		if (bo->ttm == NULL)
1182 			return -ENOMEM;
1183 	}
1184 
1185 	gtt = (void *)bo->ttm;
1186 	gtt->userptr = addr;
1187 	gtt->userflags = flags;
1188 
1189 	if (gtt->usertask)
1190 		put_task_struct(gtt->usertask);
1191 	gtt->usertask = current->group_leader;
1192 	get_task_struct(gtt->usertask);
1193 
1194 	return 0;
1195 }
1196 
1197 /*
1198  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1199  */
1200 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1201 {
1202 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1203 
1204 	if (gtt == NULL)
1205 		return NULL;
1206 
1207 	if (gtt->usertask == NULL)
1208 		return NULL;
1209 
1210 	return gtt->usertask->mm;
1211 }
1212 
1213 /*
1214  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1215  * address range for the current task.
1216  *
1217  */
1218 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1219 				  unsigned long end)
1220 {
1221 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1222 	unsigned long size;
1223 
1224 	if (gtt == NULL || !gtt->userptr)
1225 		return false;
1226 
1227 	/* Return false if no part of the ttm_tt object lies within
1228 	 * the range
1229 	 */
1230 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1231 	if (gtt->userptr > end || gtt->userptr + size <= start)
1232 		return false;
1233 
1234 	return true;
1235 }
1236 
1237 /*
1238  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1239  */
1240 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1241 {
1242 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1243 
1244 	if (gtt == NULL || !gtt->userptr)
1245 		return false;
1246 
1247 	return true;
1248 }
1249 
1250 /*
1251  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1252  */
1253 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1254 {
1255 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1256 
1257 	if (gtt == NULL)
1258 		return false;
1259 
1260 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1261 }
1262 
1263 /**
1264  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1265  *
1266  * @ttm: The ttm_tt object to compute the flags for
1267  * @mem: The memory registry backing this ttm_tt object
1268  *
1269  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1270  */
1271 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1272 {
1273 	uint64_t flags = 0;
1274 
1275 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1276 		flags |= AMDGPU_PTE_VALID;
1277 
1278 	if (mem && mem->mem_type == TTM_PL_TT) {
1279 		flags |= AMDGPU_PTE_SYSTEM;
1280 
1281 		if (ttm->caching == ttm_cached)
1282 			flags |= AMDGPU_PTE_SNOOPED;
1283 	}
1284 
1285 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1286 			mem->bus.caching == ttm_cached)
1287 		flags |= AMDGPU_PTE_SNOOPED;
1288 
1289 	return flags;
1290 }
1291 
1292 /**
1293  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1294  *
1295  * @adev: amdgpu_device pointer
1296  * @ttm: The ttm_tt object to compute the flags for
1297  * @mem: The memory registry backing this ttm_tt object
1298  *
1299  * Figure out the flags to use for a VM PTE (Page Table Entry).
1300  */
1301 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1302 				 struct ttm_resource *mem)
1303 {
1304 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1305 
1306 	flags |= adev->gart.gart_pte_flags;
1307 	flags |= AMDGPU_PTE_READABLE;
1308 
1309 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1310 		flags |= AMDGPU_PTE_WRITEABLE;
1311 
1312 	return flags;
1313 }
1314 
1315 /*
1316  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1317  * object.
1318  *
1319  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1320  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1321  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1322  * used to clean out a memory space.
1323  */
1324 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1325 					    const struct ttm_place *place)
1326 {
1327 	unsigned long num_pages = bo->resource->num_pages;
1328 	struct amdgpu_res_cursor cursor;
1329 	struct dma_resv_list *flist;
1330 	struct dma_fence *f;
1331 	int i;
1332 
1333 	if (bo->type == ttm_bo_type_kernel &&
1334 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1335 		return false;
1336 
1337 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1338 	 * If true, then return false as any KFD process needs all its BOs to
1339 	 * be resident to run successfully
1340 	 */
1341 	flist = dma_resv_get_list(bo->base.resv);
1342 	if (flist) {
1343 		for (i = 0; i < flist->shared_count; ++i) {
1344 			f = rcu_dereference_protected(flist->shared[i],
1345 				dma_resv_held(bo->base.resv));
1346 			if (amdkfd_fence_check_mm(f, current->mm))
1347 				return false;
1348 		}
1349 	}
1350 
1351 	switch (bo->resource->mem_type) {
1352 	case TTM_PL_TT:
1353 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1354 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1355 			return false;
1356 		return true;
1357 
1358 	case TTM_PL_VRAM:
1359 		/* Check each drm MM node individually */
1360 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1361 				 &cursor);
1362 		while (cursor.remaining) {
1363 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1364 			    && !(place->lpfn &&
1365 				 place->lpfn <= PFN_DOWN(cursor.start)))
1366 				return true;
1367 
1368 			amdgpu_res_next(&cursor, cursor.size);
1369 		}
1370 		return false;
1371 
1372 	default:
1373 		break;
1374 	}
1375 
1376 	return ttm_bo_eviction_valuable(bo, place);
1377 }
1378 
1379 /**
1380  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1381  *
1382  * @bo:  The buffer object to read/write
1383  * @offset:  Offset into buffer object
1384  * @buf:  Secondary buffer to write/read from
1385  * @len: Length in bytes of access
1386  * @write:  true if writing
1387  *
1388  * This is used to access VRAM that backs a buffer object via MMIO
1389  * access for debugging purposes.
1390  */
1391 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1392 				    unsigned long offset, void *buf, int len,
1393 				    int write)
1394 {
1395 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1396 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1397 	struct amdgpu_res_cursor cursor;
1398 	unsigned long flags;
1399 	uint32_t value = 0;
1400 	int ret = 0;
1401 
1402 	if (bo->resource->mem_type != TTM_PL_VRAM)
1403 		return -EIO;
1404 
1405 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1406 	while (cursor.remaining) {
1407 		uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1408 		uint64_t bytes = 4 - (cursor.start & 3);
1409 		uint32_t shift = (cursor.start & 3) * 8;
1410 		uint32_t mask = 0xffffffff << shift;
1411 
1412 		if (cursor.size < bytes) {
1413 			mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1414 			bytes = cursor.size;
1415 		}
1416 
1417 		if (mask != 0xffffffff) {
1418 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1419 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1420 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1421 			value = RREG32_NO_KIQ(mmMM_DATA);
1422 			if (write) {
1423 				value &= ~mask;
1424 				value |= (*(uint32_t *)buf << shift) & mask;
1425 				WREG32_NO_KIQ(mmMM_DATA, value);
1426 			}
1427 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1428 			if (!write) {
1429 				value = (value & mask) >> shift;
1430 				memcpy(buf, &value, bytes);
1431 			}
1432 		} else {
1433 			bytes = cursor.size & ~0x3ULL;
1434 			amdgpu_device_vram_access(adev, cursor.start,
1435 						  (uint32_t *)buf, bytes,
1436 						  write);
1437 		}
1438 
1439 		ret += bytes;
1440 		buf = (uint8_t *)buf + bytes;
1441 		amdgpu_res_next(&cursor, bytes);
1442 	}
1443 
1444 	return ret;
1445 }
1446 
1447 static void
1448 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1449 {
1450 	amdgpu_bo_move_notify(bo, false, NULL);
1451 }
1452 
1453 static struct ttm_device_funcs amdgpu_bo_driver = {
1454 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1455 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1456 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1457 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1458 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1459 	.evict_flags = &amdgpu_evict_flags,
1460 	.move = &amdgpu_bo_move,
1461 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1462 	.release_notify = &amdgpu_bo_release_notify,
1463 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1464 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1465 	.access_memory = &amdgpu_ttm_access_memory,
1466 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1467 };
1468 
1469 /*
1470  * Firmware Reservation functions
1471  */
1472 /**
1473  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1474  *
1475  * @adev: amdgpu_device pointer
1476  *
1477  * free fw reserved vram if it has been reserved.
1478  */
1479 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1480 {
1481 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1482 		NULL, &adev->mman.fw_vram_usage_va);
1483 }
1484 
1485 /**
1486  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1487  *
1488  * @adev: amdgpu_device pointer
1489  *
1490  * create bo vram reservation from fw.
1491  */
1492 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1493 {
1494 	uint64_t vram_size = adev->gmc.visible_vram_size;
1495 
1496 	adev->mman.fw_vram_usage_va = NULL;
1497 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1498 
1499 	if (adev->mman.fw_vram_usage_size == 0 ||
1500 	    adev->mman.fw_vram_usage_size > vram_size)
1501 		return 0;
1502 
1503 	return amdgpu_bo_create_kernel_at(adev,
1504 					  adev->mman.fw_vram_usage_start_offset,
1505 					  adev->mman.fw_vram_usage_size,
1506 					  AMDGPU_GEM_DOMAIN_VRAM,
1507 					  &adev->mman.fw_vram_usage_reserved_bo,
1508 					  &adev->mman.fw_vram_usage_va);
1509 }
1510 
1511 /*
1512  * Memoy training reservation functions
1513  */
1514 
1515 /**
1516  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1517  *
1518  * @adev: amdgpu_device pointer
1519  *
1520  * free memory training reserved vram if it has been reserved.
1521  */
1522 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1523 {
1524 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1525 
1526 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1527 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1528 	ctx->c2p_bo = NULL;
1529 
1530 	return 0;
1531 }
1532 
1533 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1534 {
1535 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1536 
1537 	memset(ctx, 0, sizeof(*ctx));
1538 
1539 	ctx->c2p_train_data_offset =
1540 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1541 	ctx->p2c_train_data_offset =
1542 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1543 	ctx->train_data_size =
1544 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1545 
1546 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1547 			ctx->train_data_size,
1548 			ctx->p2c_train_data_offset,
1549 			ctx->c2p_train_data_offset);
1550 }
1551 
1552 /*
1553  * reserve TMR memory at the top of VRAM which holds
1554  * IP Discovery data and is protected by PSP.
1555  */
1556 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1557 {
1558 	int ret;
1559 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1560 	bool mem_train_support = false;
1561 
1562 	if (!amdgpu_sriov_vf(adev)) {
1563 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1564 			mem_train_support = true;
1565 		else
1566 			DRM_DEBUG("memory training does not support!\n");
1567 	}
1568 
1569 	/*
1570 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1571 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1572 	 *
1573 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1574 	 * discovery data and G6 memory training data respectively
1575 	 */
1576 	adev->mman.discovery_tmr_size =
1577 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1578 	if (!adev->mman.discovery_tmr_size)
1579 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1580 
1581 	if (mem_train_support) {
1582 		/* reserve vram for mem train according to TMR location */
1583 		amdgpu_ttm_training_data_block_init(adev);
1584 		ret = amdgpu_bo_create_kernel_at(adev,
1585 					 ctx->c2p_train_data_offset,
1586 					 ctx->train_data_size,
1587 					 AMDGPU_GEM_DOMAIN_VRAM,
1588 					 &ctx->c2p_bo,
1589 					 NULL);
1590 		if (ret) {
1591 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1592 			amdgpu_ttm_training_reserve_vram_fini(adev);
1593 			return ret;
1594 		}
1595 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1596 	}
1597 
1598 	ret = amdgpu_bo_create_kernel_at(adev,
1599 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1600 				adev->mman.discovery_tmr_size,
1601 				AMDGPU_GEM_DOMAIN_VRAM,
1602 				&adev->mman.discovery_memory,
1603 				NULL);
1604 	if (ret) {
1605 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1606 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1607 		return ret;
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 /*
1614  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1615  * gtt/vram related fields.
1616  *
1617  * This initializes all of the memory space pools that the TTM layer
1618  * will need such as the GTT space (system memory mapped to the device),
1619  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1620  * can be mapped per VMID.
1621  */
1622 int amdgpu_ttm_init(struct amdgpu_device *adev)
1623 {
1624 	uint64_t gtt_size;
1625 	int r;
1626 	u64 vis_vram_limit;
1627 
1628 	mutex_init(&adev->mman.gtt_window_lock);
1629 
1630 	/* No others user of address space so set it to 0 */
1631 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1632 			       adev_to_drm(adev)->anon_inode->i_mapping,
1633 			       adev_to_drm(adev)->vma_offset_manager,
1634 			       adev->need_swiotlb,
1635 			       dma_addressing_limited(adev->dev));
1636 	if (r) {
1637 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1638 		return r;
1639 	}
1640 	adev->mman.initialized = true;
1641 
1642 	/* Initialize VRAM pool with all of VRAM divided into pages */
1643 	r = amdgpu_vram_mgr_init(adev);
1644 	if (r) {
1645 		DRM_ERROR("Failed initializing VRAM heap.\n");
1646 		return r;
1647 	}
1648 
1649 	/* Reduce size of CPU-visible VRAM if requested */
1650 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1651 	if (amdgpu_vis_vram_limit > 0 &&
1652 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1653 		adev->gmc.visible_vram_size = vis_vram_limit;
1654 
1655 	/* Change the size here instead of the init above so only lpfn is affected */
1656 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1657 #ifdef CONFIG_64BIT
1658 #ifdef CONFIG_X86
1659 	if (adev->gmc.xgmi.connected_to_cpu)
1660 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1661 				adev->gmc.visible_vram_size);
1662 
1663 	else
1664 #endif
1665 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1666 				adev->gmc.visible_vram_size);
1667 #endif
1668 
1669 	/*
1670 	 *The reserved vram for firmware must be pinned to the specified
1671 	 *place on the VRAM, so reserve it early.
1672 	 */
1673 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1674 	if (r) {
1675 		return r;
1676 	}
1677 
1678 	/*
1679 	 * only NAVI10 and onwards ASIC support for IP discovery.
1680 	 * If IP discovery enabled, a block of memory should be
1681 	 * reserved for IP discovey.
1682 	 */
1683 	if (adev->mman.discovery_bin) {
1684 		r = amdgpu_ttm_reserve_tmr(adev);
1685 		if (r)
1686 			return r;
1687 	}
1688 
1689 	/* allocate memory as required for VGA
1690 	 * This is used for VGA emulation and pre-OS scanout buffers to
1691 	 * avoid display artifacts while transitioning between pre-OS
1692 	 * and driver.  */
1693 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1694 				       AMDGPU_GEM_DOMAIN_VRAM,
1695 				       &adev->mman.stolen_vga_memory,
1696 				       NULL);
1697 	if (r)
1698 		return r;
1699 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1700 				       adev->mman.stolen_extended_size,
1701 				       AMDGPU_GEM_DOMAIN_VRAM,
1702 				       &adev->mman.stolen_extended_memory,
1703 				       NULL);
1704 	if (r)
1705 		return r;
1706 
1707 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1708 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1709 
1710 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1711 	 * or whatever the user passed on module init */
1712 	if (amdgpu_gtt_size == -1) {
1713 		struct sysinfo si;
1714 
1715 		si_meminfo(&si);
1716 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1717 			       adev->gmc.mc_vram_size),
1718 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1719 	}
1720 	else
1721 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1722 
1723 	/* Initialize GTT memory pool */
1724 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1725 	if (r) {
1726 		DRM_ERROR("Failed initializing GTT heap.\n");
1727 		return r;
1728 	}
1729 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1730 		 (unsigned)(gtt_size / (1024 * 1024)));
1731 
1732 	/* Initialize various on-chip memory pools */
1733 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1734 	if (r) {
1735 		DRM_ERROR("Failed initializing GDS heap.\n");
1736 		return r;
1737 	}
1738 
1739 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1740 	if (r) {
1741 		DRM_ERROR("Failed initializing gws heap.\n");
1742 		return r;
1743 	}
1744 
1745 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1746 	if (r) {
1747 		DRM_ERROR("Failed initializing oa heap.\n");
1748 		return r;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 /*
1755  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1756  */
1757 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1758 {
1759 	if (!adev->mman.initialized)
1760 		return;
1761 
1762 	amdgpu_ttm_training_reserve_vram_fini(adev);
1763 	/* return the stolen vga memory back to VRAM */
1764 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1765 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1766 	/* return the IP Discovery TMR memory back to VRAM */
1767 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1768 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1769 
1770 	amdgpu_vram_mgr_fini(adev);
1771 	amdgpu_gtt_mgr_fini(adev);
1772 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1773 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1774 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1775 	ttm_device_fini(&adev->mman.bdev);
1776 	adev->mman.initialized = false;
1777 	DRM_INFO("amdgpu: ttm finalized\n");
1778 }
1779 
1780 /**
1781  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1782  *
1783  * @adev: amdgpu_device pointer
1784  * @enable: true when we can use buffer functions.
1785  *
1786  * Enable/disable use of buffer functions during suspend/resume. This should
1787  * only be called at bootup or when userspace isn't running.
1788  */
1789 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1790 {
1791 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1792 	uint64_t size;
1793 	int r;
1794 
1795 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1796 	    adev->mman.buffer_funcs_enabled == enable)
1797 		return;
1798 
1799 	if (enable) {
1800 		struct amdgpu_ring *ring;
1801 		struct drm_gpu_scheduler *sched;
1802 
1803 		ring = adev->mman.buffer_funcs_ring;
1804 		sched = &ring->sched;
1805 		r = drm_sched_entity_init(&adev->mman.entity,
1806 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1807 					  1, NULL);
1808 		if (r) {
1809 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1810 				  r);
1811 			return;
1812 		}
1813 	} else {
1814 		drm_sched_entity_destroy(&adev->mman.entity);
1815 		dma_fence_put(man->move);
1816 		man->move = NULL;
1817 	}
1818 
1819 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1820 	if (enable)
1821 		size = adev->gmc.real_vram_size;
1822 	else
1823 		size = adev->gmc.visible_vram_size;
1824 	man->size = size >> PAGE_SHIFT;
1825 	adev->mman.buffer_funcs_enabled = enable;
1826 }
1827 
1828 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1829 		       uint64_t dst_offset, uint32_t byte_count,
1830 		       struct dma_resv *resv,
1831 		       struct dma_fence **fence, bool direct_submit,
1832 		       bool vm_needs_flush, bool tmz)
1833 {
1834 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1835 		AMDGPU_IB_POOL_DELAYED;
1836 	struct amdgpu_device *adev = ring->adev;
1837 	struct amdgpu_job *job;
1838 
1839 	uint32_t max_bytes;
1840 	unsigned num_loops, num_dw;
1841 	unsigned i;
1842 	int r;
1843 
1844 	if (direct_submit && !ring->sched.ready) {
1845 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1846 		return -EINVAL;
1847 	}
1848 
1849 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1850 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1851 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1852 
1853 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1854 	if (r)
1855 		return r;
1856 
1857 	if (vm_needs_flush) {
1858 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1859 					adev->gmc.pdb0_bo : adev->gart.bo);
1860 		job->vm_needs_flush = true;
1861 	}
1862 	if (resv) {
1863 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1864 				     AMDGPU_SYNC_ALWAYS,
1865 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1866 		if (r) {
1867 			DRM_ERROR("sync failed (%d).\n", r);
1868 			goto error_free;
1869 		}
1870 	}
1871 
1872 	for (i = 0; i < num_loops; i++) {
1873 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1874 
1875 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1876 					dst_offset, cur_size_in_bytes, tmz);
1877 
1878 		src_offset += cur_size_in_bytes;
1879 		dst_offset += cur_size_in_bytes;
1880 		byte_count -= cur_size_in_bytes;
1881 	}
1882 
1883 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1884 	WARN_ON(job->ibs[0].length_dw > num_dw);
1885 	if (direct_submit)
1886 		r = amdgpu_job_submit_direct(job, ring, fence);
1887 	else
1888 		r = amdgpu_job_submit(job, &adev->mman.entity,
1889 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1890 	if (r)
1891 		goto error_free;
1892 
1893 	return r;
1894 
1895 error_free:
1896 	amdgpu_job_free(job);
1897 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1898 	return r;
1899 }
1900 
1901 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1902 		       uint32_t src_data,
1903 		       struct dma_resv *resv,
1904 		       struct dma_fence **fence)
1905 {
1906 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1907 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1908 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1909 
1910 	struct amdgpu_res_cursor cursor;
1911 	unsigned int num_loops, num_dw;
1912 	uint64_t num_bytes;
1913 
1914 	struct amdgpu_job *job;
1915 	int r;
1916 
1917 	if (!adev->mman.buffer_funcs_enabled) {
1918 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1919 		return -EINVAL;
1920 	}
1921 
1922 	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1923 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1924 		if (r)
1925 			return r;
1926 	}
1927 
1928 	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1929 	num_loops = 0;
1930 
1931 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1932 	while (cursor.remaining) {
1933 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1934 		amdgpu_res_next(&cursor, cursor.size);
1935 	}
1936 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1937 
1938 	/* for IB padding */
1939 	num_dw += 64;
1940 
1941 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1942 				     &job);
1943 	if (r)
1944 		return r;
1945 
1946 	if (resv) {
1947 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1948 				     AMDGPU_SYNC_ALWAYS,
1949 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1950 		if (r) {
1951 			DRM_ERROR("sync failed (%d).\n", r);
1952 			goto error_free;
1953 		}
1954 	}
1955 
1956 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1957 	while (cursor.remaining) {
1958 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
1959 		uint64_t dst_addr = cursor.start;
1960 
1961 		dst_addr += amdgpu_ttm_domain_start(adev,
1962 						    bo->tbo.resource->mem_type);
1963 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
1964 					cur_size);
1965 
1966 		amdgpu_res_next(&cursor, cur_size);
1967 	}
1968 
1969 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1970 	WARN_ON(job->ibs[0].length_dw > num_dw);
1971 	r = amdgpu_job_submit(job, &adev->mman.entity,
1972 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1973 	if (r)
1974 		goto error_free;
1975 
1976 	return 0;
1977 
1978 error_free:
1979 	amdgpu_job_free(job);
1980 	return r;
1981 }
1982 
1983 #if defined(CONFIG_DEBUG_FS)
1984 
1985 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
1986 {
1987 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
1988 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
1989 							    TTM_PL_VRAM);
1990 	struct drm_printer p = drm_seq_file_printer(m);
1991 
1992 	man->func->debug(man, &p);
1993 	return 0;
1994 }
1995 
1996 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
1997 {
1998 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
1999 
2000 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2001 }
2002 
2003 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2004 {
2005 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2006 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2007 							    TTM_PL_TT);
2008 	struct drm_printer p = drm_seq_file_printer(m);
2009 
2010 	man->func->debug(man, &p);
2011 	return 0;
2012 }
2013 
2014 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2015 {
2016 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2017 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2018 							    AMDGPU_PL_GDS);
2019 	struct drm_printer p = drm_seq_file_printer(m);
2020 
2021 	man->func->debug(man, &p);
2022 	return 0;
2023 }
2024 
2025 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2026 {
2027 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2028 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2029 							    AMDGPU_PL_GWS);
2030 	struct drm_printer p = drm_seq_file_printer(m);
2031 
2032 	man->func->debug(man, &p);
2033 	return 0;
2034 }
2035 
2036 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2037 {
2038 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2039 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2040 							    AMDGPU_PL_OA);
2041 	struct drm_printer p = drm_seq_file_printer(m);
2042 
2043 	man->func->debug(man, &p);
2044 	return 0;
2045 }
2046 
2047 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2048 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2049 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2050 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2051 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2052 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2053 
2054 /*
2055  * amdgpu_ttm_vram_read - Linear read access to VRAM
2056  *
2057  * Accesses VRAM via MMIO for debugging purposes.
2058  */
2059 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2060 				    size_t size, loff_t *pos)
2061 {
2062 	struct amdgpu_device *adev = file_inode(f)->i_private;
2063 	ssize_t result = 0;
2064 
2065 	if (size & 0x3 || *pos & 0x3)
2066 		return -EINVAL;
2067 
2068 	if (*pos >= adev->gmc.mc_vram_size)
2069 		return -ENXIO;
2070 
2071 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2072 	while (size) {
2073 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2074 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2075 
2076 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2077 		if (copy_to_user(buf, value, bytes))
2078 			return -EFAULT;
2079 
2080 		result += bytes;
2081 		buf += bytes;
2082 		*pos += bytes;
2083 		size -= bytes;
2084 	}
2085 
2086 	return result;
2087 }
2088 
2089 /*
2090  * amdgpu_ttm_vram_write - Linear write access to VRAM
2091  *
2092  * Accesses VRAM via MMIO for debugging purposes.
2093  */
2094 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2095 				    size_t size, loff_t *pos)
2096 {
2097 	struct amdgpu_device *adev = file_inode(f)->i_private;
2098 	ssize_t result = 0;
2099 	int r;
2100 
2101 	if (size & 0x3 || *pos & 0x3)
2102 		return -EINVAL;
2103 
2104 	if (*pos >= adev->gmc.mc_vram_size)
2105 		return -ENXIO;
2106 
2107 	while (size) {
2108 		unsigned long flags;
2109 		uint32_t value;
2110 
2111 		if (*pos >= adev->gmc.mc_vram_size)
2112 			return result;
2113 
2114 		r = get_user(value, (uint32_t *)buf);
2115 		if (r)
2116 			return r;
2117 
2118 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2119 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2120 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2121 		WREG32_NO_KIQ(mmMM_DATA, value);
2122 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2123 
2124 		result += 4;
2125 		buf += 4;
2126 		*pos += 4;
2127 		size -= 4;
2128 	}
2129 
2130 	return result;
2131 }
2132 
2133 static const struct file_operations amdgpu_ttm_vram_fops = {
2134 	.owner = THIS_MODULE,
2135 	.read = amdgpu_ttm_vram_read,
2136 	.write = amdgpu_ttm_vram_write,
2137 	.llseek = default_llseek,
2138 };
2139 
2140 /*
2141  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2142  *
2143  * This function is used to read memory that has been mapped to the
2144  * GPU and the known addresses are not physical addresses but instead
2145  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2146  */
2147 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2148 				 size_t size, loff_t *pos)
2149 {
2150 	struct amdgpu_device *adev = file_inode(f)->i_private;
2151 	struct iommu_domain *dom;
2152 	ssize_t result = 0;
2153 	int r;
2154 
2155 	/* retrieve the IOMMU domain if any for this device */
2156 	dom = iommu_get_domain_for_dev(adev->dev);
2157 
2158 	while (size) {
2159 		phys_addr_t addr = *pos & PAGE_MASK;
2160 		loff_t off = *pos & ~PAGE_MASK;
2161 		size_t bytes = PAGE_SIZE - off;
2162 		unsigned long pfn;
2163 		struct page *p;
2164 		void *ptr;
2165 
2166 		bytes = bytes < size ? bytes : size;
2167 
2168 		/* Translate the bus address to a physical address.  If
2169 		 * the domain is NULL it means there is no IOMMU active
2170 		 * and the address translation is the identity
2171 		 */
2172 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2173 
2174 		pfn = addr >> PAGE_SHIFT;
2175 		if (!pfn_valid(pfn))
2176 			return -EPERM;
2177 
2178 		p = pfn_to_page(pfn);
2179 		if (p->mapping != adev->mman.bdev.dev_mapping)
2180 			return -EPERM;
2181 
2182 		ptr = kmap(p);
2183 		r = copy_to_user(buf, ptr + off, bytes);
2184 		kunmap(p);
2185 		if (r)
2186 			return -EFAULT;
2187 
2188 		size -= bytes;
2189 		*pos += bytes;
2190 		result += bytes;
2191 	}
2192 
2193 	return result;
2194 }
2195 
2196 /*
2197  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2198  *
2199  * This function is used to write memory that has been mapped to the
2200  * GPU and the known addresses are not physical addresses but instead
2201  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2202  */
2203 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2204 				 size_t size, loff_t *pos)
2205 {
2206 	struct amdgpu_device *adev = file_inode(f)->i_private;
2207 	struct iommu_domain *dom;
2208 	ssize_t result = 0;
2209 	int r;
2210 
2211 	dom = iommu_get_domain_for_dev(adev->dev);
2212 
2213 	while (size) {
2214 		phys_addr_t addr = *pos & PAGE_MASK;
2215 		loff_t off = *pos & ~PAGE_MASK;
2216 		size_t bytes = PAGE_SIZE - off;
2217 		unsigned long pfn;
2218 		struct page *p;
2219 		void *ptr;
2220 
2221 		bytes = bytes < size ? bytes : size;
2222 
2223 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2224 
2225 		pfn = addr >> PAGE_SHIFT;
2226 		if (!pfn_valid(pfn))
2227 			return -EPERM;
2228 
2229 		p = pfn_to_page(pfn);
2230 		if (p->mapping != adev->mman.bdev.dev_mapping)
2231 			return -EPERM;
2232 
2233 		ptr = kmap(p);
2234 		r = copy_from_user(ptr + off, buf, bytes);
2235 		kunmap(p);
2236 		if (r)
2237 			return -EFAULT;
2238 
2239 		size -= bytes;
2240 		*pos += bytes;
2241 		result += bytes;
2242 	}
2243 
2244 	return result;
2245 }
2246 
2247 static const struct file_operations amdgpu_ttm_iomem_fops = {
2248 	.owner = THIS_MODULE,
2249 	.read = amdgpu_iomem_read,
2250 	.write = amdgpu_iomem_write,
2251 	.llseek = default_llseek
2252 };
2253 
2254 #endif
2255 
2256 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2257 {
2258 #if defined(CONFIG_DEBUG_FS)
2259 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2260 	struct dentry *root = minor->debugfs_root;
2261 
2262 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2263 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2264 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2265 			    &amdgpu_ttm_iomem_fops);
2266 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2267 			    &amdgpu_mm_vram_table_fops);
2268 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2269 			    &amdgpu_mm_tt_table_fops);
2270 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2271 			    &amdgpu_mm_gds_table_fops);
2272 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2273 			    &amdgpu_mm_gws_table_fops);
2274 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2275 			    &amdgpu_mm_oa_table_fops);
2276 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2277 			    &amdgpu_ttm_page_pool_fops);
2278 #endif
2279 }
2280