xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 8431f29d2f1deac06e120a1c5d9afb5d72def319)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 		placement->num_placement = 0;
127 		return;
128 
129 	case TTM_PL_VRAM:
130 		if (!adev->mman.buffer_funcs_enabled) {
131 			/* Move to system memory */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133 
134 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
137 
138 			/* Try evicting to the CPU inaccessible part of VRAM
139 			 * first, but only set GTT as busy placement, so this
140 			 * BO will be evicted to GTT rather than causing other
141 			 * BOs to be evicted from VRAM
142 			 */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 							AMDGPU_GEM_DOMAIN_GTT |
145 							AMDGPU_GEM_DOMAIN_CPU);
146 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 			abo->placements[0].lpfn = 0;
148 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 		} else {
150 			/* Move to GTT memory */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 							AMDGPU_GEM_DOMAIN_CPU);
153 		}
154 		break;
155 	case TTM_PL_TT:
156 	case AMDGPU_PL_PREEMPT:
157 	default:
158 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 		break;
160 	}
161 	*placement = abo->placement;
162 }
163 
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 				 struct ttm_resource *mem,
180 				 struct amdgpu_res_cursor *mm_cur,
181 				 unsigned int window, struct amdgpu_ring *ring,
182 				 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 	struct amdgpu_device *adev = ring->adev;
185 	unsigned int offset, num_pages, num_dw, num_bytes;
186 	uint64_t src_addr, dst_addr;
187 	struct amdgpu_job *job;
188 	void *cpu_addr;
189 	uint64_t flags;
190 	unsigned int i;
191 	int r;
192 
193 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195 
196 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 		return -EINVAL;
198 
199 	/* Map only what can't be accessed directly */
200 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 			mm_cur->start;
203 		return 0;
204 	}
205 
206 
207 	/*
208 	 * If start begins at an offset inside the page, then adjust the size
209 	 * and addr accordingly
210 	 */
211 	offset = mm_cur->start & ~PAGE_MASK;
212 
213 	num_pages = PFN_UP(*size + offset);
214 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215 
216 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += offset;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 				     AMDGPU_FENCE_OWNER_UNDEFINED,
228 				     num_dw * 4 + num_bytes,
229 				     AMDGPU_IB_POOL_DELAYED, &job);
230 	if (r)
231 		return r;
232 
233 	src_addr = num_dw * 4;
234 	src_addr += job->ibs[0].gpu_addr;
235 
236 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 				dst_addr, num_bytes, false);
240 
241 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 	WARN_ON(job->ibs[0].length_dw > num_dw);
243 
244 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 	if (tmz)
246 		flags |= AMDGPU_PTE_TMZ;
247 
248 	cpu_addr = &job->ibs[0].ptr[num_dw];
249 
250 	if (mem->mem_type == TTM_PL_TT) {
251 		dma_addr_t *dma_addr;
252 
253 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 	} else {
256 		dma_addr_t dma_address;
257 
258 		dma_address = mm_cur->start;
259 		dma_address += adev->vm_manager.vram_base_offset;
260 
261 		for (i = 0; i < num_pages; ++i) {
262 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 					flags, cpu_addr);
264 			dma_address += PAGE_SIZE;
265 		}
266 	}
267 
268 	dma_fence_put(amdgpu_job_submit(job));
269 	return 0;
270 }
271 
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 			       const struct amdgpu_copy_mem *src,
289 			       const struct amdgpu_copy_mem *dst,
290 			       uint64_t size, bool tmz,
291 			       struct dma_resv *resv,
292 			       struct dma_fence **f)
293 {
294 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 	struct amdgpu_res_cursor src_mm, dst_mm;
296 	struct dma_fence *fence = NULL;
297 	int r = 0;
298 
299 	if (!adev->mman.buffer_funcs_enabled) {
300 		DRM_ERROR("Trying to move memory with ring turned off.\n");
301 		return -EINVAL;
302 	}
303 
304 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306 
307 	mutex_lock(&adev->mman.gtt_window_lock);
308 	while (src_mm.remaining) {
309 		uint64_t from, to, cur_size;
310 		struct dma_fence *next;
311 
312 		/* Never copy more than 256MiB at once to avoid a timeout */
313 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314 
315 		/* Map src to window 0 and dst to window 1. */
316 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 					  0, ring, tmz, &cur_size, &from);
318 		if (r)
319 			goto error;
320 
321 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 					  1, ring, tmz, &cur_size, &to);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 				       resv, &next, false, true, tmz);
328 		if (r)
329 			goto error;
330 
331 		dma_fence_put(fence);
332 		fence = next;
333 
334 		amdgpu_res_next(&src_mm, cur_size);
335 		amdgpu_res_next(&dst_mm, cur_size);
336 	}
337 error:
338 	mutex_unlock(&adev->mman.gtt_window_lock);
339 	if (f)
340 		*f = dma_fence_get(fence);
341 	dma_fence_put(fence);
342 	return r;
343 }
344 
345 /*
346  * amdgpu_move_blit - Copy an entire buffer to another buffer
347  *
348  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349  * help move buffers to and from VRAM.
350  */
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352 			    bool evict,
353 			    struct ttm_resource *new_mem,
354 			    struct ttm_resource *old_mem)
355 {
356 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 	struct amdgpu_copy_mem src, dst;
359 	struct dma_fence *fence = NULL;
360 	int r;
361 
362 	src.bo = bo;
363 	dst.bo = bo;
364 	src.mem = old_mem;
365 	dst.mem = new_mem;
366 	src.offset = 0;
367 	dst.offset = 0;
368 
369 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370 				       new_mem->size,
371 				       amdgpu_bo_encrypted(abo),
372 				       bo->base.resv, &fence);
373 	if (r)
374 		goto error;
375 
376 	/* clear the space being freed */
377 	if (old_mem->mem_type == TTM_PL_VRAM &&
378 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 		struct dma_fence *wipe_fence = NULL;
380 
381 		r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
382 				       false);
383 		if (r) {
384 			goto error;
385 		} else if (wipe_fence) {
386 			amdgpu_vram_mgr_set_cleared(bo->resource);
387 			dma_fence_put(fence);
388 			fence = wipe_fence;
389 		}
390 	}
391 
392 	/* Always block for VM page tables before committing the new location */
393 	if (bo->type == ttm_bo_type_kernel)
394 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
395 	else
396 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
397 	dma_fence_put(fence);
398 	return r;
399 
400 error:
401 	if (fence)
402 		dma_fence_wait(fence, false);
403 	dma_fence_put(fence);
404 	return r;
405 }
406 
407 /*
408  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
409  *
410  * Called by amdgpu_bo_move()
411  */
412 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
413 			       struct ttm_resource *mem)
414 {
415 	u64 mem_size = (u64)mem->size;
416 	struct amdgpu_res_cursor cursor;
417 	u64 end;
418 
419 	if (mem->mem_type == TTM_PL_SYSTEM ||
420 	    mem->mem_type == TTM_PL_TT)
421 		return true;
422 	if (mem->mem_type != TTM_PL_VRAM)
423 		return false;
424 
425 	amdgpu_res_first(mem, 0, mem_size, &cursor);
426 	end = cursor.start + cursor.size;
427 	while (cursor.remaining) {
428 		amdgpu_res_next(&cursor, cursor.size);
429 
430 		if (!cursor.remaining)
431 			break;
432 
433 		/* ttm_resource_ioremap only supports contiguous memory */
434 		if (end != cursor.start)
435 			return false;
436 
437 		end = cursor.start + cursor.size;
438 	}
439 
440 	return end <= adev->gmc.visible_vram_size;
441 }
442 
443 /*
444  * amdgpu_bo_move - Move a buffer object to a new memory location
445  *
446  * Called by ttm_bo_handle_move_mem()
447  */
448 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
449 			  struct ttm_operation_ctx *ctx,
450 			  struct ttm_resource *new_mem,
451 			  struct ttm_place *hop)
452 {
453 	struct amdgpu_device *adev;
454 	struct amdgpu_bo *abo;
455 	struct ttm_resource *old_mem = bo->resource;
456 	int r;
457 
458 	if (new_mem->mem_type == TTM_PL_TT ||
459 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
460 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
461 		if (r)
462 			return r;
463 	}
464 
465 	abo = ttm_to_amdgpu_bo(bo);
466 	adev = amdgpu_ttm_adev(bo->bdev);
467 
468 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
469 			 bo->ttm == NULL)) {
470 		ttm_bo_move_null(bo, new_mem);
471 		goto out;
472 	}
473 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
474 	    (new_mem->mem_type == TTM_PL_TT ||
475 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
476 		ttm_bo_move_null(bo, new_mem);
477 		goto out;
478 	}
479 	if ((old_mem->mem_type == TTM_PL_TT ||
480 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
481 	    new_mem->mem_type == TTM_PL_SYSTEM) {
482 		r = ttm_bo_wait_ctx(bo, ctx);
483 		if (r)
484 			return r;
485 
486 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
487 		ttm_resource_free(bo, &bo->resource);
488 		ttm_bo_assign_mem(bo, new_mem);
489 		goto out;
490 	}
491 
492 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
493 	    old_mem->mem_type == AMDGPU_PL_GWS ||
494 	    old_mem->mem_type == AMDGPU_PL_OA ||
495 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
496 	    new_mem->mem_type == AMDGPU_PL_GDS ||
497 	    new_mem->mem_type == AMDGPU_PL_GWS ||
498 	    new_mem->mem_type == AMDGPU_PL_OA ||
499 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
500 		/* Nothing to save here */
501 		ttm_bo_move_null(bo, new_mem);
502 		goto out;
503 	}
504 
505 	if (bo->type == ttm_bo_type_device &&
506 	    new_mem->mem_type == TTM_PL_VRAM &&
507 	    old_mem->mem_type != TTM_PL_VRAM) {
508 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
509 		 * accesses the BO after it's moved.
510 		 */
511 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
512 	}
513 
514 	if (adev->mman.buffer_funcs_enabled) {
515 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
516 		      new_mem->mem_type == TTM_PL_VRAM) ||
517 		     (old_mem->mem_type == TTM_PL_VRAM &&
518 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
519 			hop->fpfn = 0;
520 			hop->lpfn = 0;
521 			hop->mem_type = TTM_PL_TT;
522 			hop->flags = TTM_PL_FLAG_TEMPORARY;
523 			return -EMULTIHOP;
524 		}
525 
526 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
527 	} else {
528 		r = -ENODEV;
529 	}
530 
531 	if (r) {
532 		/* Check that all memory is CPU accessible */
533 		if (!amdgpu_mem_visible(adev, old_mem) ||
534 		    !amdgpu_mem_visible(adev, new_mem)) {
535 			pr_err("Move buffer fallback to memcpy unavailable\n");
536 			return r;
537 		}
538 
539 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
540 		if (r)
541 			return r;
542 	}
543 
544 	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
545 out:
546 	/* update statistics */
547 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
548 	amdgpu_bo_move_notify(bo, evict);
549 	return 0;
550 }
551 
552 /*
553  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
554  *
555  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
556  */
557 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
558 				     struct ttm_resource *mem)
559 {
560 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
561 	size_t bus_size = (size_t)mem->size;
562 
563 	switch (mem->mem_type) {
564 	case TTM_PL_SYSTEM:
565 		/* system memory */
566 		return 0;
567 	case TTM_PL_TT:
568 	case AMDGPU_PL_PREEMPT:
569 		break;
570 	case TTM_PL_VRAM:
571 		mem->bus.offset = mem->start << PAGE_SHIFT;
572 		/* check if it's visible */
573 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
574 			return -EINVAL;
575 
576 		if (adev->mman.aper_base_kaddr &&
577 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
578 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
579 					mem->bus.offset;
580 
581 		mem->bus.offset += adev->gmc.aper_base;
582 		mem->bus.is_iomem = true;
583 		break;
584 	case AMDGPU_PL_DOORBELL:
585 		mem->bus.offset = mem->start << PAGE_SHIFT;
586 		mem->bus.offset += adev->doorbell.base;
587 		mem->bus.is_iomem = true;
588 		mem->bus.caching = ttm_uncached;
589 		break;
590 	default:
591 		return -EINVAL;
592 	}
593 	return 0;
594 }
595 
596 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
597 					   unsigned long page_offset)
598 {
599 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
600 	struct amdgpu_res_cursor cursor;
601 
602 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
603 			 &cursor);
604 
605 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
606 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
607 
608 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
609 }
610 
611 /**
612  * amdgpu_ttm_domain_start - Returns GPU start address
613  * @adev: amdgpu device object
614  * @type: type of the memory
615  *
616  * Returns:
617  * GPU start address of a memory domain
618  */
619 
620 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
621 {
622 	switch (type) {
623 	case TTM_PL_TT:
624 		return adev->gmc.gart_start;
625 	case TTM_PL_VRAM:
626 		return adev->gmc.vram_start;
627 	}
628 
629 	return 0;
630 }
631 
632 /*
633  * TTM backend functions.
634  */
635 struct amdgpu_ttm_tt {
636 	struct ttm_tt	ttm;
637 	struct drm_gem_object	*gobj;
638 	u64			offset;
639 	uint64_t		userptr;
640 	struct task_struct	*usertask;
641 	uint32_t		userflags;
642 	bool			bound;
643 	int32_t			pool_id;
644 };
645 
646 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
647 
648 #ifdef CONFIG_DRM_AMDGPU_USERPTR
649 /*
650  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
651  * memory and start HMM tracking CPU page table update
652  *
653  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
654  * once afterwards to stop HMM tracking
655  */
656 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
657 				 struct hmm_range **range)
658 {
659 	struct ttm_tt *ttm = bo->tbo.ttm;
660 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
661 	unsigned long start = gtt->userptr;
662 	struct vm_area_struct *vma;
663 	struct mm_struct *mm;
664 	bool readonly;
665 	int r = 0;
666 
667 	/* Make sure get_user_pages_done() can cleanup gracefully */
668 	*range = NULL;
669 
670 	mm = bo->notifier.mm;
671 	if (unlikely(!mm)) {
672 		DRM_DEBUG_DRIVER("BO is not registered?\n");
673 		return -EFAULT;
674 	}
675 
676 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
677 		return -ESRCH;
678 
679 	mmap_read_lock(mm);
680 	vma = vma_lookup(mm, start);
681 	if (unlikely(!vma)) {
682 		r = -EFAULT;
683 		goto out_unlock;
684 	}
685 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
686 		vma->vm_file)) {
687 		r = -EPERM;
688 		goto out_unlock;
689 	}
690 
691 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
692 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
693 				       readonly, NULL, pages, range);
694 out_unlock:
695 	mmap_read_unlock(mm);
696 	if (r)
697 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
698 
699 	mmput(mm);
700 
701 	return r;
702 }
703 
704 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
705  */
706 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
707 				      struct hmm_range *range)
708 {
709 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
710 
711 	if (gtt && gtt->userptr && range)
712 		amdgpu_hmm_range_get_pages_done(range);
713 }
714 
715 /*
716  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
717  * Check if the pages backing this ttm range have been invalidated
718  *
719  * Returns: true if pages are still valid
720  */
721 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
722 				       struct hmm_range *range)
723 {
724 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
725 
726 	if (!gtt || !gtt->userptr || !range)
727 		return false;
728 
729 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
730 		gtt->userptr, ttm->num_pages);
731 
732 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
733 
734 	return !amdgpu_hmm_range_get_pages_done(range);
735 }
736 #endif
737 
738 /*
739  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
740  *
741  * Called by amdgpu_cs_list_validate(). This creates the page list
742  * that backs user memory and will ultimately be mapped into the device
743  * address space.
744  */
745 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
746 {
747 	unsigned long i;
748 
749 	for (i = 0; i < ttm->num_pages; ++i)
750 		ttm->pages[i] = pages ? pages[i] : NULL;
751 }
752 
753 /*
754  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
755  *
756  * Called by amdgpu_ttm_backend_bind()
757  **/
758 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
759 				     struct ttm_tt *ttm)
760 {
761 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
762 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
763 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
764 	enum dma_data_direction direction = write ?
765 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
766 	int r;
767 
768 	/* Allocate an SG array and squash pages into it */
769 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
770 				      (u64)ttm->num_pages << PAGE_SHIFT,
771 				      GFP_KERNEL);
772 	if (r)
773 		goto release_sg;
774 
775 	/* Map SG to device */
776 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
777 	if (r)
778 		goto release_sg;
779 
780 	/* convert SG to linear array of pages and dma addresses */
781 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
782 				       ttm->num_pages);
783 
784 	return 0;
785 
786 release_sg:
787 	kfree(ttm->sg);
788 	ttm->sg = NULL;
789 	return r;
790 }
791 
792 /*
793  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
794  */
795 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
796 					struct ttm_tt *ttm)
797 {
798 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
799 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
800 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
801 	enum dma_data_direction direction = write ?
802 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
803 
804 	/* double check that we don't free the table twice */
805 	if (!ttm->sg || !ttm->sg->sgl)
806 		return;
807 
808 	/* unmap the pages mapped to the device */
809 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
810 	sg_free_table(ttm->sg);
811 }
812 
813 /*
814  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
815  * MQDn+CtrlStackn where n is the number of XCCs per partition.
816  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
817  * and uses memory type default, UC. The rest of pages_per_xcc are
818  * Ctrl stack and modify their memory type to NC.
819  */
820 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
821 				struct ttm_tt *ttm, uint64_t flags)
822 {
823 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
824 	uint64_t total_pages = ttm->num_pages;
825 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
826 	uint64_t page_idx, pages_per_xcc;
827 	int i;
828 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
829 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
830 
831 	pages_per_xcc = total_pages;
832 	do_div(pages_per_xcc, num_xcc);
833 
834 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
835 		/* MQD page: use default flags */
836 		amdgpu_gart_bind(adev,
837 				gtt->offset + (page_idx << PAGE_SHIFT),
838 				1, &gtt->ttm.dma_address[page_idx], flags);
839 		/*
840 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
841 		 * the second page of the BO onward.
842 		 */
843 		amdgpu_gart_bind(adev,
844 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
845 				pages_per_xcc - 1,
846 				&gtt->ttm.dma_address[page_idx + 1],
847 				ctrl_flags);
848 	}
849 }
850 
851 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
852 				 struct ttm_buffer_object *tbo,
853 				 uint64_t flags)
854 {
855 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
856 	struct ttm_tt *ttm = tbo->ttm;
857 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
858 
859 	if (amdgpu_bo_encrypted(abo))
860 		flags |= AMDGPU_PTE_TMZ;
861 
862 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
863 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
864 	} else {
865 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
866 				 gtt->ttm.dma_address, flags);
867 	}
868 	gtt->bound = true;
869 }
870 
871 /*
872  * amdgpu_ttm_backend_bind - Bind GTT memory
873  *
874  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
875  * This handles binding GTT memory to the device address space.
876  */
877 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
878 				   struct ttm_tt *ttm,
879 				   struct ttm_resource *bo_mem)
880 {
881 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
882 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
883 	uint64_t flags;
884 	int r;
885 
886 	if (!bo_mem)
887 		return -EINVAL;
888 
889 	if (gtt->bound)
890 		return 0;
891 
892 	if (gtt->userptr) {
893 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
894 		if (r) {
895 			DRM_ERROR("failed to pin userptr\n");
896 			return r;
897 		}
898 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
899 		if (!ttm->sg) {
900 			struct dma_buf_attachment *attach;
901 			struct sg_table *sgt;
902 
903 			attach = gtt->gobj->import_attach;
904 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
905 			if (IS_ERR(sgt))
906 				return PTR_ERR(sgt);
907 
908 			ttm->sg = sgt;
909 		}
910 
911 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
912 					       ttm->num_pages);
913 	}
914 
915 	if (!ttm->num_pages) {
916 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
917 		     ttm->num_pages, bo_mem, ttm);
918 	}
919 
920 	if (bo_mem->mem_type != TTM_PL_TT ||
921 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
922 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
923 		return 0;
924 	}
925 
926 	/* compute PTE flags relevant to this BO memory */
927 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
928 
929 	/* bind pages into GART page tables */
930 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
931 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
932 			 gtt->ttm.dma_address, flags);
933 	gtt->bound = true;
934 	return 0;
935 }
936 
937 /*
938  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
939  * through AGP or GART aperture.
940  *
941  * If bo is accessible through AGP aperture, then use AGP aperture
942  * to access bo; otherwise allocate logical space in GART aperture
943  * and map bo to GART aperture.
944  */
945 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
946 {
947 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
948 	struct ttm_operation_ctx ctx = { false, false };
949 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
950 	struct ttm_placement placement;
951 	struct ttm_place placements;
952 	struct ttm_resource *tmp;
953 	uint64_t addr, flags;
954 	int r;
955 
956 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
957 		return 0;
958 
959 	addr = amdgpu_gmc_agp_addr(bo);
960 	if (addr != AMDGPU_BO_INVALID_OFFSET)
961 		return 0;
962 
963 	/* allocate GART space */
964 	placement.num_placement = 1;
965 	placement.placement = &placements;
966 	placements.fpfn = 0;
967 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
968 	placements.mem_type = TTM_PL_TT;
969 	placements.flags = bo->resource->placement;
970 
971 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
972 	if (unlikely(r))
973 		return r;
974 
975 	/* compute PTE flags for this buffer object */
976 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
977 
978 	/* Bind pages */
979 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
980 	amdgpu_ttm_gart_bind(adev, bo, flags);
981 	amdgpu_gart_invalidate_tlb(adev);
982 	ttm_resource_free(bo, &bo->resource);
983 	ttm_bo_assign_mem(bo, tmp);
984 
985 	return 0;
986 }
987 
988 /*
989  * amdgpu_ttm_recover_gart - Rebind GTT pages
990  *
991  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
992  * rebind GTT pages during a GPU reset.
993  */
994 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
995 {
996 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
997 	uint64_t flags;
998 
999 	if (!tbo->ttm)
1000 		return;
1001 
1002 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1003 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1004 }
1005 
1006 /*
1007  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1008  *
1009  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1010  * ttm_tt_destroy().
1011  */
1012 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1013 				      struct ttm_tt *ttm)
1014 {
1015 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1016 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1017 
1018 	/* if the pages have userptr pinning then clear that first */
1019 	if (gtt->userptr) {
1020 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1021 	} else if (ttm->sg && gtt->gobj->import_attach) {
1022 		struct dma_buf_attachment *attach;
1023 
1024 		attach = gtt->gobj->import_attach;
1025 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1026 		ttm->sg = NULL;
1027 	}
1028 
1029 	if (!gtt->bound)
1030 		return;
1031 
1032 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1033 		return;
1034 
1035 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1036 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1037 	gtt->bound = false;
1038 }
1039 
1040 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1041 				       struct ttm_tt *ttm)
1042 {
1043 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1044 
1045 	if (gtt->usertask)
1046 		put_task_struct(gtt->usertask);
1047 
1048 	ttm_tt_fini(&gtt->ttm);
1049 	kfree(gtt);
1050 }
1051 
1052 /**
1053  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1054  *
1055  * @bo: The buffer object to create a GTT ttm_tt object around
1056  * @page_flags: Page flags to be added to the ttm_tt object
1057  *
1058  * Called by ttm_tt_create().
1059  */
1060 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1061 					   uint32_t page_flags)
1062 {
1063 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1064 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1065 	struct amdgpu_ttm_tt *gtt;
1066 	enum ttm_caching caching;
1067 
1068 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1069 	if (!gtt)
1070 		return NULL;
1071 
1072 	gtt->gobj = &bo->base;
1073 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1074 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1075 	else
1076 		gtt->pool_id = abo->xcp_id;
1077 
1078 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1079 		caching = ttm_write_combined;
1080 	else
1081 		caching = ttm_cached;
1082 
1083 	/* allocate space for the uninitialized page entries */
1084 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1085 		kfree(gtt);
1086 		return NULL;
1087 	}
1088 	return &gtt->ttm;
1089 }
1090 
1091 /*
1092  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1093  *
1094  * Map the pages of a ttm_tt object to an address space visible
1095  * to the underlying device.
1096  */
1097 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1098 				  struct ttm_tt *ttm,
1099 				  struct ttm_operation_ctx *ctx)
1100 {
1101 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1102 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1103 	struct ttm_pool *pool;
1104 	pgoff_t i;
1105 	int ret;
1106 
1107 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1108 	if (gtt->userptr) {
1109 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1110 		if (!ttm->sg)
1111 			return -ENOMEM;
1112 		return 0;
1113 	}
1114 
1115 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1116 		return 0;
1117 
1118 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1119 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1120 	else
1121 		pool = &adev->mman.bdev.pool;
1122 	ret = ttm_pool_alloc(pool, ttm, ctx);
1123 	if (ret)
1124 		return ret;
1125 
1126 	for (i = 0; i < ttm->num_pages; ++i)
1127 		ttm->pages[i]->mapping = bdev->dev_mapping;
1128 
1129 	return 0;
1130 }
1131 
1132 /*
1133  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1134  *
1135  * Unmaps pages of a ttm_tt object from the device address space and
1136  * unpopulates the page array backing it.
1137  */
1138 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1139 				     struct ttm_tt *ttm)
1140 {
1141 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1142 	struct amdgpu_device *adev;
1143 	struct ttm_pool *pool;
1144 	pgoff_t i;
1145 
1146 	amdgpu_ttm_backend_unbind(bdev, ttm);
1147 
1148 	if (gtt->userptr) {
1149 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1150 		kfree(ttm->sg);
1151 		ttm->sg = NULL;
1152 		return;
1153 	}
1154 
1155 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1156 		return;
1157 
1158 	for (i = 0; i < ttm->num_pages; ++i)
1159 		ttm->pages[i]->mapping = NULL;
1160 
1161 	adev = amdgpu_ttm_adev(bdev);
1162 
1163 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1164 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1165 	else
1166 		pool = &adev->mman.bdev.pool;
1167 
1168 	return ttm_pool_free(pool, ttm);
1169 }
1170 
1171 /**
1172  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1173  * task
1174  *
1175  * @tbo: The ttm_buffer_object that contains the userptr
1176  * @user_addr:  The returned value
1177  */
1178 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1179 			      uint64_t *user_addr)
1180 {
1181 	struct amdgpu_ttm_tt *gtt;
1182 
1183 	if (!tbo->ttm)
1184 		return -EINVAL;
1185 
1186 	gtt = (void *)tbo->ttm;
1187 	*user_addr = gtt->userptr;
1188 	return 0;
1189 }
1190 
1191 /**
1192  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1193  * task
1194  *
1195  * @bo: The ttm_buffer_object to bind this userptr to
1196  * @addr:  The address in the current tasks VM space to use
1197  * @flags: Requirements of userptr object.
1198  *
1199  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1200  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1201  * initialize GPU VM for a KFD process.
1202  */
1203 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1204 			      uint64_t addr, uint32_t flags)
1205 {
1206 	struct amdgpu_ttm_tt *gtt;
1207 
1208 	if (!bo->ttm) {
1209 		/* TODO: We want a separate TTM object type for userptrs */
1210 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1211 		if (bo->ttm == NULL)
1212 			return -ENOMEM;
1213 	}
1214 
1215 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1216 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1217 
1218 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1219 	gtt->userptr = addr;
1220 	gtt->userflags = flags;
1221 
1222 	if (gtt->usertask)
1223 		put_task_struct(gtt->usertask);
1224 	gtt->usertask = current->group_leader;
1225 	get_task_struct(gtt->usertask);
1226 
1227 	return 0;
1228 }
1229 
1230 /*
1231  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1232  */
1233 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1234 {
1235 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1236 
1237 	if (gtt == NULL)
1238 		return NULL;
1239 
1240 	if (gtt->usertask == NULL)
1241 		return NULL;
1242 
1243 	return gtt->usertask->mm;
1244 }
1245 
1246 /*
1247  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1248  * address range for the current task.
1249  *
1250  */
1251 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1252 				  unsigned long end, unsigned long *userptr)
1253 {
1254 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1255 	unsigned long size;
1256 
1257 	if (gtt == NULL || !gtt->userptr)
1258 		return false;
1259 
1260 	/* Return false if no part of the ttm_tt object lies within
1261 	 * the range
1262 	 */
1263 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1264 	if (gtt->userptr > end || gtt->userptr + size <= start)
1265 		return false;
1266 
1267 	if (userptr)
1268 		*userptr = gtt->userptr;
1269 	return true;
1270 }
1271 
1272 /*
1273  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1274  */
1275 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1276 {
1277 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1278 
1279 	if (gtt == NULL || !gtt->userptr)
1280 		return false;
1281 
1282 	return true;
1283 }
1284 
1285 /*
1286  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1287  */
1288 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1289 {
1290 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1291 
1292 	if (gtt == NULL)
1293 		return false;
1294 
1295 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1296 }
1297 
1298 /**
1299  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1300  *
1301  * @ttm: The ttm_tt object to compute the flags for
1302  * @mem: The memory registry backing this ttm_tt object
1303  *
1304  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1305  */
1306 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1307 {
1308 	uint64_t flags = 0;
1309 
1310 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1311 		flags |= AMDGPU_PTE_VALID;
1312 
1313 	if (mem && (mem->mem_type == TTM_PL_TT ||
1314 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1315 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1316 		flags |= AMDGPU_PTE_SYSTEM;
1317 
1318 		if (ttm->caching == ttm_cached)
1319 			flags |= AMDGPU_PTE_SNOOPED;
1320 	}
1321 
1322 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1323 			mem->bus.caching == ttm_cached)
1324 		flags |= AMDGPU_PTE_SNOOPED;
1325 
1326 	return flags;
1327 }
1328 
1329 /**
1330  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1331  *
1332  * @adev: amdgpu_device pointer
1333  * @ttm: The ttm_tt object to compute the flags for
1334  * @mem: The memory registry backing this ttm_tt object
1335  *
1336  * Figure out the flags to use for a VM PTE (Page Table Entry).
1337  */
1338 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1339 				 struct ttm_resource *mem)
1340 {
1341 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1342 
1343 	flags |= adev->gart.gart_pte_flags;
1344 	flags |= AMDGPU_PTE_READABLE;
1345 
1346 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1347 		flags |= AMDGPU_PTE_WRITEABLE;
1348 
1349 	return flags;
1350 }
1351 
1352 /*
1353  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1354  * object.
1355  *
1356  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1357  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1358  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1359  * used to clean out a memory space.
1360  */
1361 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1362 					    const struct ttm_place *place)
1363 {
1364 	struct dma_resv_iter resv_cursor;
1365 	struct dma_fence *f;
1366 
1367 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1368 		return ttm_bo_eviction_valuable(bo, place);
1369 
1370 	/* Swapout? */
1371 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1372 		return true;
1373 
1374 	if (bo->type == ttm_bo_type_kernel &&
1375 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1376 		return false;
1377 
1378 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1379 	 * If true, then return false as any KFD process needs all its BOs to
1380 	 * be resident to run successfully
1381 	 */
1382 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1383 				DMA_RESV_USAGE_BOOKKEEP, f) {
1384 		if (amdkfd_fence_check_mm(f, current->mm))
1385 			return false;
1386 	}
1387 
1388 	/* Preemptible BOs don't own system resources managed by the
1389 	 * driver (pages, VRAM, GART space). They point to resources
1390 	 * owned by someone else (e.g. pageable memory in user mode
1391 	 * or a DMABuf). They are used in a preemptible context so we
1392 	 * can guarantee no deadlocks and good QoS in case of MMU
1393 	 * notifiers or DMABuf move notifiers from the resource owner.
1394 	 */
1395 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1396 		return false;
1397 
1398 	if (bo->resource->mem_type == TTM_PL_TT &&
1399 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1400 		return false;
1401 
1402 	return ttm_bo_eviction_valuable(bo, place);
1403 }
1404 
1405 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1406 				      void *buf, size_t size, bool write)
1407 {
1408 	while (size) {
1409 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1410 		uint64_t bytes = 4 - (pos & 0x3);
1411 		uint32_t shift = (pos & 0x3) * 8;
1412 		uint32_t mask = 0xffffffff << shift;
1413 		uint32_t value = 0;
1414 
1415 		if (size < bytes) {
1416 			mask &= 0xffffffff >> (bytes - size) * 8;
1417 			bytes = size;
1418 		}
1419 
1420 		if (mask != 0xffffffff) {
1421 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1422 			if (write) {
1423 				value &= ~mask;
1424 				value |= (*(uint32_t *)buf << shift) & mask;
1425 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1426 			} else {
1427 				value = (value & mask) >> shift;
1428 				memcpy(buf, &value, bytes);
1429 			}
1430 		} else {
1431 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1432 		}
1433 
1434 		pos += bytes;
1435 		buf += bytes;
1436 		size -= bytes;
1437 	}
1438 }
1439 
1440 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1441 					unsigned long offset, void *buf,
1442 					int len, int write)
1443 {
1444 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1445 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1446 	struct amdgpu_res_cursor src_mm;
1447 	struct amdgpu_job *job;
1448 	struct dma_fence *fence;
1449 	uint64_t src_addr, dst_addr;
1450 	unsigned int num_dw;
1451 	int r, idx;
1452 
1453 	if (len != PAGE_SIZE)
1454 		return -EINVAL;
1455 
1456 	if (!adev->mman.sdma_access_ptr)
1457 		return -EACCES;
1458 
1459 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1460 		return -ENODEV;
1461 
1462 	if (write)
1463 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1464 
1465 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1466 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1467 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1468 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1469 				     &job);
1470 	if (r)
1471 		goto out;
1472 
1473 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1474 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1475 		src_mm.start;
1476 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1477 	if (write)
1478 		swap(src_addr, dst_addr);
1479 
1480 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1481 				PAGE_SIZE, false);
1482 
1483 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1484 	WARN_ON(job->ibs[0].length_dw > num_dw);
1485 
1486 	fence = amdgpu_job_submit(job);
1487 
1488 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1489 		r = -ETIMEDOUT;
1490 	dma_fence_put(fence);
1491 
1492 	if (!(r || write))
1493 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1494 out:
1495 	drm_dev_exit(idx);
1496 	return r;
1497 }
1498 
1499 /**
1500  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1501  *
1502  * @bo:  The buffer object to read/write
1503  * @offset:  Offset into buffer object
1504  * @buf:  Secondary buffer to write/read from
1505  * @len: Length in bytes of access
1506  * @write:  true if writing
1507  *
1508  * This is used to access VRAM that backs a buffer object via MMIO
1509  * access for debugging purposes.
1510  */
1511 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1512 				    unsigned long offset, void *buf, int len,
1513 				    int write)
1514 {
1515 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1516 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1517 	struct amdgpu_res_cursor cursor;
1518 	int ret = 0;
1519 
1520 	if (bo->resource->mem_type != TTM_PL_VRAM)
1521 		return -EIO;
1522 
1523 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1524 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1525 		return len;
1526 
1527 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1528 	while (cursor.remaining) {
1529 		size_t count, size = cursor.size;
1530 		loff_t pos = cursor.start;
1531 
1532 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1533 		size -= count;
1534 		if (size) {
1535 			/* using MM to access rest vram and handle un-aligned address */
1536 			pos += count;
1537 			buf += count;
1538 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1539 		}
1540 
1541 		ret += cursor.size;
1542 		buf += cursor.size;
1543 		amdgpu_res_next(&cursor, cursor.size);
1544 	}
1545 
1546 	return ret;
1547 }
1548 
1549 static void
1550 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1551 {
1552 	amdgpu_bo_move_notify(bo, false);
1553 }
1554 
1555 static struct ttm_device_funcs amdgpu_bo_driver = {
1556 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1557 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1558 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1559 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1560 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1561 	.evict_flags = &amdgpu_evict_flags,
1562 	.move = &amdgpu_bo_move,
1563 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1564 	.release_notify = &amdgpu_bo_release_notify,
1565 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1566 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1567 	.access_memory = &amdgpu_ttm_access_memory,
1568 };
1569 
1570 /*
1571  * Firmware Reservation functions
1572  */
1573 /**
1574  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1575  *
1576  * @adev: amdgpu_device pointer
1577  *
1578  * free fw reserved vram if it has been reserved.
1579  */
1580 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1581 {
1582 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1583 		NULL, &adev->mman.fw_vram_usage_va);
1584 }
1585 
1586 /*
1587  * Driver Reservation functions
1588  */
1589 /**
1590  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1591  *
1592  * @adev: amdgpu_device pointer
1593  *
1594  * free drv reserved vram if it has been reserved.
1595  */
1596 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1597 {
1598 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1599 						  NULL,
1600 						  &adev->mman.drv_vram_usage_va);
1601 }
1602 
1603 /**
1604  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1605  *
1606  * @adev: amdgpu_device pointer
1607  *
1608  * create bo vram reservation from fw.
1609  */
1610 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1611 {
1612 	uint64_t vram_size = adev->gmc.visible_vram_size;
1613 
1614 	adev->mman.fw_vram_usage_va = NULL;
1615 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1616 
1617 	if (adev->mman.fw_vram_usage_size == 0 ||
1618 	    adev->mman.fw_vram_usage_size > vram_size)
1619 		return 0;
1620 
1621 	return amdgpu_bo_create_kernel_at(adev,
1622 					  adev->mman.fw_vram_usage_start_offset,
1623 					  adev->mman.fw_vram_usage_size,
1624 					  &adev->mman.fw_vram_usage_reserved_bo,
1625 					  &adev->mman.fw_vram_usage_va);
1626 }
1627 
1628 /**
1629  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1630  *
1631  * @adev: amdgpu_device pointer
1632  *
1633  * create bo vram reservation from drv.
1634  */
1635 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1636 {
1637 	u64 vram_size = adev->gmc.visible_vram_size;
1638 
1639 	adev->mman.drv_vram_usage_va = NULL;
1640 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1641 
1642 	if (adev->mman.drv_vram_usage_size == 0 ||
1643 	    adev->mman.drv_vram_usage_size > vram_size)
1644 		return 0;
1645 
1646 	return amdgpu_bo_create_kernel_at(adev,
1647 					  adev->mman.drv_vram_usage_start_offset,
1648 					  adev->mman.drv_vram_usage_size,
1649 					  &adev->mman.drv_vram_usage_reserved_bo,
1650 					  &adev->mman.drv_vram_usage_va);
1651 }
1652 
1653 /*
1654  * Memoy training reservation functions
1655  */
1656 
1657 /**
1658  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1659  *
1660  * @adev: amdgpu_device pointer
1661  *
1662  * free memory training reserved vram if it has been reserved.
1663  */
1664 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1665 {
1666 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1667 
1668 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1669 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1670 	ctx->c2p_bo = NULL;
1671 
1672 	return 0;
1673 }
1674 
1675 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1676 						uint32_t reserve_size)
1677 {
1678 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1679 
1680 	memset(ctx, 0, sizeof(*ctx));
1681 
1682 	ctx->c2p_train_data_offset =
1683 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1684 	ctx->p2c_train_data_offset =
1685 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1686 	ctx->train_data_size =
1687 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1688 
1689 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1690 			ctx->train_data_size,
1691 			ctx->p2c_train_data_offset,
1692 			ctx->c2p_train_data_offset);
1693 }
1694 
1695 /*
1696  * reserve TMR memory at the top of VRAM which holds
1697  * IP Discovery data and is protected by PSP.
1698  */
1699 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1700 {
1701 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1702 	bool mem_train_support = false;
1703 	uint32_t reserve_size = 0;
1704 	int ret;
1705 
1706 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1707 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1708 			mem_train_support = true;
1709 		else
1710 			DRM_DEBUG("memory training does not support!\n");
1711 	}
1712 
1713 	/*
1714 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1715 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1716 	 *
1717 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1718 	 * discovery data and G6 memory training data respectively
1719 	 */
1720 	if (adev->bios)
1721 		reserve_size =
1722 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1723 
1724 	if (!adev->bios &&
1725 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1726 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1727 	else if (!reserve_size)
1728 		reserve_size = DISCOVERY_TMR_OFFSET;
1729 
1730 	if (mem_train_support) {
1731 		/* reserve vram for mem train according to TMR location */
1732 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1733 		ret = amdgpu_bo_create_kernel_at(adev,
1734 						 ctx->c2p_train_data_offset,
1735 						 ctx->train_data_size,
1736 						 &ctx->c2p_bo,
1737 						 NULL);
1738 		if (ret) {
1739 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1740 			amdgpu_ttm_training_reserve_vram_fini(adev);
1741 			return ret;
1742 		}
1743 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1744 	}
1745 
1746 	if (!adev->gmc.is_app_apu) {
1747 		ret = amdgpu_bo_create_kernel_at(
1748 			adev, adev->gmc.real_vram_size - reserve_size,
1749 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1750 		if (ret) {
1751 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1752 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1753 					      NULL, NULL);
1754 			return ret;
1755 		}
1756 	} else {
1757 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1764 {
1765 	int i;
1766 
1767 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1768 		return 0;
1769 
1770 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1771 				       sizeof(*adev->mman.ttm_pools),
1772 				       GFP_KERNEL);
1773 	if (!adev->mman.ttm_pools)
1774 		return -ENOMEM;
1775 
1776 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1777 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1778 			      adev->gmc.mem_partitions[i].numa.node,
1779 			      false, false);
1780 	}
1781 	return 0;
1782 }
1783 
1784 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1785 {
1786 	int i;
1787 
1788 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1789 		return;
1790 
1791 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1792 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1793 
1794 	kfree(adev->mman.ttm_pools);
1795 	adev->mman.ttm_pools = NULL;
1796 }
1797 
1798 /*
1799  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1800  * gtt/vram related fields.
1801  *
1802  * This initializes all of the memory space pools that the TTM layer
1803  * will need such as the GTT space (system memory mapped to the device),
1804  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1805  * can be mapped per VMID.
1806  */
1807 int amdgpu_ttm_init(struct amdgpu_device *adev)
1808 {
1809 	uint64_t gtt_size;
1810 	int r;
1811 
1812 	mutex_init(&adev->mman.gtt_window_lock);
1813 
1814 	/* No others user of address space so set it to 0 */
1815 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1816 			       adev_to_drm(adev)->anon_inode->i_mapping,
1817 			       adev_to_drm(adev)->vma_offset_manager,
1818 			       adev->need_swiotlb,
1819 			       dma_addressing_limited(adev->dev));
1820 	if (r) {
1821 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1822 		return r;
1823 	}
1824 
1825 	r = amdgpu_ttm_pools_init(adev);
1826 	if (r) {
1827 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1828 		return r;
1829 	}
1830 	adev->mman.initialized = true;
1831 
1832 	/* Initialize VRAM pool with all of VRAM divided into pages */
1833 	r = amdgpu_vram_mgr_init(adev);
1834 	if (r) {
1835 		DRM_ERROR("Failed initializing VRAM heap.\n");
1836 		return r;
1837 	}
1838 
1839 	/* Change the size here instead of the init above so only lpfn is affected */
1840 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1841 #ifdef CONFIG_64BIT
1842 #ifdef CONFIG_X86
1843 	if (adev->gmc.xgmi.connected_to_cpu)
1844 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1845 				adev->gmc.visible_vram_size);
1846 
1847 	else if (adev->gmc.is_app_apu)
1848 		DRM_DEBUG_DRIVER(
1849 			"No need to ioremap when real vram size is 0\n");
1850 	else
1851 #endif
1852 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1853 				adev->gmc.visible_vram_size);
1854 #endif
1855 
1856 	/*
1857 	 *The reserved vram for firmware must be pinned to the specified
1858 	 *place on the VRAM, so reserve it early.
1859 	 */
1860 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1861 	if (r)
1862 		return r;
1863 
1864 	/*
1865 	 *The reserved vram for driver must be pinned to the specified
1866 	 *place on the VRAM, so reserve it early.
1867 	 */
1868 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1869 	if (r)
1870 		return r;
1871 
1872 	/*
1873 	 * only NAVI10 and onwards ASIC support for IP discovery.
1874 	 * If IP discovery enabled, a block of memory should be
1875 	 * reserved for IP discovey.
1876 	 */
1877 	if (adev->mman.discovery_bin) {
1878 		r = amdgpu_ttm_reserve_tmr(adev);
1879 		if (r)
1880 			return r;
1881 	}
1882 
1883 	/* allocate memory as required for VGA
1884 	 * This is used for VGA emulation and pre-OS scanout buffers to
1885 	 * avoid display artifacts while transitioning between pre-OS
1886 	 * and driver.
1887 	 */
1888 	if (!adev->gmc.is_app_apu) {
1889 		r = amdgpu_bo_create_kernel_at(adev, 0,
1890 					       adev->mman.stolen_vga_size,
1891 					       &adev->mman.stolen_vga_memory,
1892 					       NULL);
1893 		if (r)
1894 			return r;
1895 
1896 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1897 					       adev->mman.stolen_extended_size,
1898 					       &adev->mman.stolen_extended_memory,
1899 					       NULL);
1900 
1901 		if (r)
1902 			return r;
1903 
1904 		r = amdgpu_bo_create_kernel_at(adev,
1905 					       adev->mman.stolen_reserved_offset,
1906 					       adev->mman.stolen_reserved_size,
1907 					       &adev->mman.stolen_reserved_memory,
1908 					       NULL);
1909 		if (r)
1910 			return r;
1911 	} else {
1912 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1913 	}
1914 
1915 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1916 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1917 
1918 	/* Compute GTT size, either based on TTM limit
1919 	 * or whatever the user passed on module init.
1920 	 */
1921 	if (amdgpu_gtt_size == -1)
1922 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1923 	else
1924 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1925 
1926 	/* Initialize GTT memory pool */
1927 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1928 	if (r) {
1929 		DRM_ERROR("Failed initializing GTT heap.\n");
1930 		return r;
1931 	}
1932 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1933 		 (unsigned int)(gtt_size / (1024 * 1024)));
1934 
1935 	/* Initiailize doorbell pool on PCI BAR */
1936 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1937 	if (r) {
1938 		DRM_ERROR("Failed initializing doorbell heap.\n");
1939 		return r;
1940 	}
1941 
1942 	/* Create a boorbell page for kernel usages */
1943 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1944 	if (r) {
1945 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1946 		return r;
1947 	}
1948 
1949 	/* Initialize preemptible memory pool */
1950 	r = amdgpu_preempt_mgr_init(adev);
1951 	if (r) {
1952 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1953 		return r;
1954 	}
1955 
1956 	/* Initialize various on-chip memory pools */
1957 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1958 	if (r) {
1959 		DRM_ERROR("Failed initializing GDS heap.\n");
1960 		return r;
1961 	}
1962 
1963 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1964 	if (r) {
1965 		DRM_ERROR("Failed initializing gws heap.\n");
1966 		return r;
1967 	}
1968 
1969 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1970 	if (r) {
1971 		DRM_ERROR("Failed initializing oa heap.\n");
1972 		return r;
1973 	}
1974 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1975 				AMDGPU_GEM_DOMAIN_GTT,
1976 				&adev->mman.sdma_access_bo, NULL,
1977 				&adev->mman.sdma_access_ptr))
1978 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1979 
1980 	return 0;
1981 }
1982 
1983 /*
1984  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1985  */
1986 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1987 {
1988 	int idx;
1989 
1990 	if (!adev->mman.initialized)
1991 		return;
1992 
1993 	amdgpu_ttm_pools_fini(adev);
1994 
1995 	amdgpu_ttm_training_reserve_vram_fini(adev);
1996 	/* return the stolen vga memory back to VRAM */
1997 	if (!adev->gmc.is_app_apu) {
1998 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1999 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2000 		/* return the FW reserved memory back to VRAM */
2001 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2002 				      NULL);
2003 		if (adev->mman.stolen_reserved_size)
2004 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2005 					      NULL, NULL);
2006 	}
2007 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2008 					&adev->mman.sdma_access_ptr);
2009 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2010 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2011 
2012 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2013 
2014 		if (adev->mman.aper_base_kaddr)
2015 			iounmap(adev->mman.aper_base_kaddr);
2016 		adev->mman.aper_base_kaddr = NULL;
2017 
2018 		drm_dev_exit(idx);
2019 	}
2020 
2021 	amdgpu_vram_mgr_fini(adev);
2022 	amdgpu_gtt_mgr_fini(adev);
2023 	amdgpu_preempt_mgr_fini(adev);
2024 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2025 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2026 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2027 	ttm_device_fini(&adev->mman.bdev);
2028 	adev->mman.initialized = false;
2029 	DRM_INFO("amdgpu: ttm finalized\n");
2030 }
2031 
2032 /**
2033  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2034  *
2035  * @adev: amdgpu_device pointer
2036  * @enable: true when we can use buffer functions.
2037  *
2038  * Enable/disable use of buffer functions during suspend/resume. This should
2039  * only be called at bootup or when userspace isn't running.
2040  */
2041 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2042 {
2043 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2044 	uint64_t size;
2045 	int r;
2046 
2047 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2048 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2049 		return;
2050 
2051 	if (enable) {
2052 		struct amdgpu_ring *ring;
2053 		struct drm_gpu_scheduler *sched;
2054 
2055 		ring = adev->mman.buffer_funcs_ring;
2056 		sched = &ring->sched;
2057 		r = drm_sched_entity_init(&adev->mman.high_pr,
2058 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2059 					  1, NULL);
2060 		if (r) {
2061 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2062 				  r);
2063 			return;
2064 		}
2065 
2066 		r = drm_sched_entity_init(&adev->mman.low_pr,
2067 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2068 					  1, NULL);
2069 		if (r) {
2070 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2071 				  r);
2072 			goto error_free_entity;
2073 		}
2074 	} else {
2075 		drm_sched_entity_destroy(&adev->mman.high_pr);
2076 		drm_sched_entity_destroy(&adev->mman.low_pr);
2077 		dma_fence_put(man->move);
2078 		man->move = NULL;
2079 	}
2080 
2081 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2082 	if (enable)
2083 		size = adev->gmc.real_vram_size;
2084 	else
2085 		size = adev->gmc.visible_vram_size;
2086 	man->size = size;
2087 	adev->mman.buffer_funcs_enabled = enable;
2088 
2089 	return;
2090 
2091 error_free_entity:
2092 	drm_sched_entity_destroy(&adev->mman.high_pr);
2093 }
2094 
2095 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2096 				  bool direct_submit,
2097 				  unsigned int num_dw,
2098 				  struct dma_resv *resv,
2099 				  bool vm_needs_flush,
2100 				  struct amdgpu_job **job,
2101 				  bool delayed)
2102 {
2103 	enum amdgpu_ib_pool_type pool = direct_submit ?
2104 		AMDGPU_IB_POOL_DIRECT :
2105 		AMDGPU_IB_POOL_DELAYED;
2106 	int r;
2107 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2108 						    &adev->mman.high_pr;
2109 	r = amdgpu_job_alloc_with_ib(adev, entity,
2110 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2111 				     num_dw * 4, pool, job);
2112 	if (r)
2113 		return r;
2114 
2115 	if (vm_needs_flush) {
2116 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2117 							adev->gmc.pdb0_bo :
2118 							adev->gart.bo);
2119 		(*job)->vm_needs_flush = true;
2120 	}
2121 	if (!resv)
2122 		return 0;
2123 
2124 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2125 						   DMA_RESV_USAGE_BOOKKEEP);
2126 }
2127 
2128 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2129 		       uint64_t dst_offset, uint32_t byte_count,
2130 		       struct dma_resv *resv,
2131 		       struct dma_fence **fence, bool direct_submit,
2132 		       bool vm_needs_flush, bool tmz)
2133 {
2134 	struct amdgpu_device *adev = ring->adev;
2135 	unsigned int num_loops, num_dw;
2136 	struct amdgpu_job *job;
2137 	uint32_t max_bytes;
2138 	unsigned int i;
2139 	int r;
2140 
2141 	if (!direct_submit && !ring->sched.ready) {
2142 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2143 		return -EINVAL;
2144 	}
2145 
2146 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2147 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2148 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2149 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2150 				   resv, vm_needs_flush, &job, false);
2151 	if (r)
2152 		return r;
2153 
2154 	for (i = 0; i < num_loops; i++) {
2155 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2156 
2157 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2158 					dst_offset, cur_size_in_bytes, tmz);
2159 
2160 		src_offset += cur_size_in_bytes;
2161 		dst_offset += cur_size_in_bytes;
2162 		byte_count -= cur_size_in_bytes;
2163 	}
2164 
2165 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2166 	WARN_ON(job->ibs[0].length_dw > num_dw);
2167 	if (direct_submit)
2168 		r = amdgpu_job_submit_direct(job, ring, fence);
2169 	else
2170 		*fence = amdgpu_job_submit(job);
2171 	if (r)
2172 		goto error_free;
2173 
2174 	return r;
2175 
2176 error_free:
2177 	amdgpu_job_free(job);
2178 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2179 	return r;
2180 }
2181 
2182 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2183 			       uint64_t dst_addr, uint32_t byte_count,
2184 			       struct dma_resv *resv,
2185 			       struct dma_fence **fence,
2186 			       bool vm_needs_flush, bool delayed)
2187 {
2188 	struct amdgpu_device *adev = ring->adev;
2189 	unsigned int num_loops, num_dw;
2190 	struct amdgpu_job *job;
2191 	uint32_t max_bytes;
2192 	unsigned int i;
2193 	int r;
2194 
2195 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2196 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2197 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2198 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2199 				   &job, delayed);
2200 	if (r)
2201 		return r;
2202 
2203 	for (i = 0; i < num_loops; i++) {
2204 		uint32_t cur_size = min(byte_count, max_bytes);
2205 
2206 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2207 					cur_size);
2208 
2209 		dst_addr += cur_size;
2210 		byte_count -= cur_size;
2211 	}
2212 
2213 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2214 	WARN_ON(job->ibs[0].length_dw > num_dw);
2215 	*fence = amdgpu_job_submit(job);
2216 	return 0;
2217 }
2218 
2219 /**
2220  * amdgpu_ttm_clear_buffer - clear memory buffers
2221  * @bo: amdgpu buffer object
2222  * @resv: reservation object
2223  * @fence: dma_fence associated with the operation
2224  *
2225  * Clear the memory buffer resource.
2226  *
2227  * Returns:
2228  * 0 for success or a negative error code on failure.
2229  */
2230 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2231 			    struct dma_resv *resv,
2232 			    struct dma_fence **fence)
2233 {
2234 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2235 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2236 	struct amdgpu_res_cursor cursor;
2237 	u64 addr;
2238 	int r;
2239 
2240 	if (!adev->mman.buffer_funcs_enabled)
2241 		return -EINVAL;
2242 
2243 	if (!fence)
2244 		return -EINVAL;
2245 
2246 	*fence = dma_fence_get_stub();
2247 
2248 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2249 
2250 	mutex_lock(&adev->mman.gtt_window_lock);
2251 	while (cursor.remaining) {
2252 		struct dma_fence *next = NULL;
2253 		u64 size;
2254 
2255 		if (amdgpu_res_cleared(&cursor)) {
2256 			amdgpu_res_next(&cursor, cursor.size);
2257 			continue;
2258 		}
2259 
2260 		/* Never clear more than 256MiB at once to avoid timeouts */
2261 		size = min(cursor.size, 256ULL << 20);
2262 
2263 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2264 					  1, ring, false, &size, &addr);
2265 		if (r)
2266 			goto err;
2267 
2268 		r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2269 					&next, true, true);
2270 		if (r)
2271 			goto err;
2272 
2273 		dma_fence_put(*fence);
2274 		*fence = next;
2275 
2276 		amdgpu_res_next(&cursor, size);
2277 	}
2278 err:
2279 	mutex_unlock(&adev->mman.gtt_window_lock);
2280 
2281 	return r;
2282 }
2283 
2284 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2285 			uint32_t src_data,
2286 			struct dma_resv *resv,
2287 			struct dma_fence **f,
2288 			bool delayed)
2289 {
2290 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2291 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2292 	struct dma_fence *fence = NULL;
2293 	struct amdgpu_res_cursor dst;
2294 	int r;
2295 
2296 	if (!adev->mman.buffer_funcs_enabled) {
2297 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2298 		return -EINVAL;
2299 	}
2300 
2301 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2302 
2303 	mutex_lock(&adev->mman.gtt_window_lock);
2304 	while (dst.remaining) {
2305 		struct dma_fence *next;
2306 		uint64_t cur_size, to;
2307 
2308 		/* Never fill more than 256MiB at once to avoid timeouts */
2309 		cur_size = min(dst.size, 256ULL << 20);
2310 
2311 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2312 					  1, ring, false, &cur_size, &to);
2313 		if (r)
2314 			goto error;
2315 
2316 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2317 					&next, true, delayed);
2318 		if (r)
2319 			goto error;
2320 
2321 		dma_fence_put(fence);
2322 		fence = next;
2323 
2324 		amdgpu_res_next(&dst, cur_size);
2325 	}
2326 error:
2327 	mutex_unlock(&adev->mman.gtt_window_lock);
2328 	if (f)
2329 		*f = dma_fence_get(fence);
2330 	dma_fence_put(fence);
2331 	return r;
2332 }
2333 
2334 /**
2335  * amdgpu_ttm_evict_resources - evict memory buffers
2336  * @adev: amdgpu device object
2337  * @mem_type: evicted BO's memory type
2338  *
2339  * Evicts all @mem_type buffers on the lru list of the memory type.
2340  *
2341  * Returns:
2342  * 0 for success or a negative error code on failure.
2343  */
2344 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2345 {
2346 	struct ttm_resource_manager *man;
2347 
2348 	switch (mem_type) {
2349 	case TTM_PL_VRAM:
2350 	case TTM_PL_TT:
2351 	case AMDGPU_PL_GWS:
2352 	case AMDGPU_PL_GDS:
2353 	case AMDGPU_PL_OA:
2354 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2355 		break;
2356 	default:
2357 		DRM_ERROR("Trying to evict invalid memory type\n");
2358 		return -EINVAL;
2359 	}
2360 
2361 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2362 }
2363 
2364 #if defined(CONFIG_DEBUG_FS)
2365 
2366 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2367 {
2368 	struct amdgpu_device *adev = m->private;
2369 
2370 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2371 }
2372 
2373 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2374 
2375 /*
2376  * amdgpu_ttm_vram_read - Linear read access to VRAM
2377  *
2378  * Accesses VRAM via MMIO for debugging purposes.
2379  */
2380 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2381 				    size_t size, loff_t *pos)
2382 {
2383 	struct amdgpu_device *adev = file_inode(f)->i_private;
2384 	ssize_t result = 0;
2385 
2386 	if (size & 0x3 || *pos & 0x3)
2387 		return -EINVAL;
2388 
2389 	if (*pos >= adev->gmc.mc_vram_size)
2390 		return -ENXIO;
2391 
2392 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2393 	while (size) {
2394 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2395 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2396 
2397 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2398 		if (copy_to_user(buf, value, bytes))
2399 			return -EFAULT;
2400 
2401 		result += bytes;
2402 		buf += bytes;
2403 		*pos += bytes;
2404 		size -= bytes;
2405 	}
2406 
2407 	return result;
2408 }
2409 
2410 /*
2411  * amdgpu_ttm_vram_write - Linear write access to VRAM
2412  *
2413  * Accesses VRAM via MMIO for debugging purposes.
2414  */
2415 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2416 				    size_t size, loff_t *pos)
2417 {
2418 	struct amdgpu_device *adev = file_inode(f)->i_private;
2419 	ssize_t result = 0;
2420 	int r;
2421 
2422 	if (size & 0x3 || *pos & 0x3)
2423 		return -EINVAL;
2424 
2425 	if (*pos >= adev->gmc.mc_vram_size)
2426 		return -ENXIO;
2427 
2428 	while (size) {
2429 		uint32_t value;
2430 
2431 		if (*pos >= adev->gmc.mc_vram_size)
2432 			return result;
2433 
2434 		r = get_user(value, (uint32_t *)buf);
2435 		if (r)
2436 			return r;
2437 
2438 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2439 
2440 		result += 4;
2441 		buf += 4;
2442 		*pos += 4;
2443 		size -= 4;
2444 	}
2445 
2446 	return result;
2447 }
2448 
2449 static const struct file_operations amdgpu_ttm_vram_fops = {
2450 	.owner = THIS_MODULE,
2451 	.read = amdgpu_ttm_vram_read,
2452 	.write = amdgpu_ttm_vram_write,
2453 	.llseek = default_llseek,
2454 };
2455 
2456 /*
2457  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2458  *
2459  * This function is used to read memory that has been mapped to the
2460  * GPU and the known addresses are not physical addresses but instead
2461  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2462  */
2463 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2464 				 size_t size, loff_t *pos)
2465 {
2466 	struct amdgpu_device *adev = file_inode(f)->i_private;
2467 	struct iommu_domain *dom;
2468 	ssize_t result = 0;
2469 	int r;
2470 
2471 	/* retrieve the IOMMU domain if any for this device */
2472 	dom = iommu_get_domain_for_dev(adev->dev);
2473 
2474 	while (size) {
2475 		phys_addr_t addr = *pos & PAGE_MASK;
2476 		loff_t off = *pos & ~PAGE_MASK;
2477 		size_t bytes = PAGE_SIZE - off;
2478 		unsigned long pfn;
2479 		struct page *p;
2480 		void *ptr;
2481 
2482 		bytes = min(bytes, size);
2483 
2484 		/* Translate the bus address to a physical address.  If
2485 		 * the domain is NULL it means there is no IOMMU active
2486 		 * and the address translation is the identity
2487 		 */
2488 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2489 
2490 		pfn = addr >> PAGE_SHIFT;
2491 		if (!pfn_valid(pfn))
2492 			return -EPERM;
2493 
2494 		p = pfn_to_page(pfn);
2495 		if (p->mapping != adev->mman.bdev.dev_mapping)
2496 			return -EPERM;
2497 
2498 		ptr = kmap_local_page(p);
2499 		r = copy_to_user(buf, ptr + off, bytes);
2500 		kunmap_local(ptr);
2501 		if (r)
2502 			return -EFAULT;
2503 
2504 		size -= bytes;
2505 		*pos += bytes;
2506 		result += bytes;
2507 	}
2508 
2509 	return result;
2510 }
2511 
2512 /*
2513  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2514  *
2515  * This function is used to write memory that has been mapped to the
2516  * GPU and the known addresses are not physical addresses but instead
2517  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2518  */
2519 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2520 				 size_t size, loff_t *pos)
2521 {
2522 	struct amdgpu_device *adev = file_inode(f)->i_private;
2523 	struct iommu_domain *dom;
2524 	ssize_t result = 0;
2525 	int r;
2526 
2527 	dom = iommu_get_domain_for_dev(adev->dev);
2528 
2529 	while (size) {
2530 		phys_addr_t addr = *pos & PAGE_MASK;
2531 		loff_t off = *pos & ~PAGE_MASK;
2532 		size_t bytes = PAGE_SIZE - off;
2533 		unsigned long pfn;
2534 		struct page *p;
2535 		void *ptr;
2536 
2537 		bytes = min(bytes, size);
2538 
2539 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2540 
2541 		pfn = addr >> PAGE_SHIFT;
2542 		if (!pfn_valid(pfn))
2543 			return -EPERM;
2544 
2545 		p = pfn_to_page(pfn);
2546 		if (p->mapping != adev->mman.bdev.dev_mapping)
2547 			return -EPERM;
2548 
2549 		ptr = kmap_local_page(p);
2550 		r = copy_from_user(ptr + off, buf, bytes);
2551 		kunmap_local(ptr);
2552 		if (r)
2553 			return -EFAULT;
2554 
2555 		size -= bytes;
2556 		*pos += bytes;
2557 		result += bytes;
2558 	}
2559 
2560 	return result;
2561 }
2562 
2563 static const struct file_operations amdgpu_ttm_iomem_fops = {
2564 	.owner = THIS_MODULE,
2565 	.read = amdgpu_iomem_read,
2566 	.write = amdgpu_iomem_write,
2567 	.llseek = default_llseek
2568 };
2569 
2570 #endif
2571 
2572 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2573 {
2574 #if defined(CONFIG_DEBUG_FS)
2575 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2576 	struct dentry *root = minor->debugfs_root;
2577 
2578 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2579 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2580 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2581 			    &amdgpu_ttm_iomem_fops);
2582 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2583 			    &amdgpu_ttm_page_pool_fops);
2584 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2585 							     TTM_PL_VRAM),
2586 					    root, "amdgpu_vram_mm");
2587 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2588 							     TTM_PL_TT),
2589 					    root, "amdgpu_gtt_mm");
2590 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2591 							     AMDGPU_PL_GDS),
2592 					    root, "amdgpu_gds_mm");
2593 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2594 							     AMDGPU_PL_GWS),
2595 					    root, "amdgpu_gws_mm");
2596 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2597 							     AMDGPU_PL_OA),
2598 					    root, "amdgpu_oa_mm");
2599 
2600 #endif
2601 }
2602