xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 75372d75a4e23783583998ed99d5009d555850da)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS("DMA_BUF");
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 	case AMDGPU_PL_MMIO_REMAP:
127 		placement->num_placement = 0;
128 		return;
129 
130 	case TTM_PL_VRAM:
131 		if (!adev->mman.buffer_funcs_enabled) {
132 			/* Move to system memory */
133 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
134 
135 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
136 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
137 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
138 
139 			/* Try evicting to the CPU inaccessible part of VRAM
140 			 * first, but only set GTT as busy placement, so this
141 			 * BO will be evicted to GTT rather than causing other
142 			 * BOs to be evicted from VRAM
143 			 */
144 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
145 							AMDGPU_GEM_DOMAIN_GTT |
146 							AMDGPU_GEM_DOMAIN_CPU);
147 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
148 			abo->placements[0].lpfn = 0;
149 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
150 		} else {
151 			/* Move to GTT memory */
152 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
153 							AMDGPU_GEM_DOMAIN_CPU);
154 		}
155 		break;
156 	case TTM_PL_TT:
157 	case AMDGPU_PL_PREEMPT:
158 	default:
159 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
160 		break;
161 	}
162 	*placement = abo->placement;
163 }
164 
165 static struct dma_fence *
166 amdgpu_ttm_job_submit(struct amdgpu_device *adev, struct amdgpu_job *job, u32 num_dw)
167 {
168 	struct amdgpu_ring *ring;
169 
170 	ring = adev->mman.buffer_funcs_ring;
171 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
172 	WARN_ON(job->ibs[0].length_dw > num_dw);
173 
174 	return amdgpu_job_submit(job);
175 }
176 
177 /**
178  * amdgpu_ttm_map_buffer - Map memory into the GART windows
179  * @entity: entity to run the window setup job
180  * @bo: buffer object to map
181  * @mem: memory object to map
182  * @mm_cur: range to map
183  * @window: which GART window to use
184  * @tmz: if we should setup a TMZ enabled mapping
185  * @size: in number of bytes to map, out number of bytes mapped
186  * @addr: resulting address inside the MC address space
187  *
188  * Setup one of the GART windows to access a specific piece of memory or return
189  * the physical address for local memory.
190  */
191 static int amdgpu_ttm_map_buffer(struct amdgpu_ttm_buffer_entity *entity,
192 				 struct ttm_buffer_object *bo,
193 				 struct ttm_resource *mem,
194 				 struct amdgpu_res_cursor *mm_cur,
195 				 unsigned int window,
196 				 bool tmz, uint64_t *size, uint64_t *addr)
197 {
198 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
199 	unsigned int offset, num_pages, num_dw, num_bytes;
200 	uint64_t src_addr, dst_addr;
201 	struct amdgpu_job *job;
202 	void *cpu_addr;
203 	uint64_t flags;
204 	int r;
205 
206 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
207 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
208 
209 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
210 		return -EINVAL;
211 
212 	/* Map only what can't be accessed directly */
213 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
214 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
215 			mm_cur->start;
216 		return 0;
217 	}
218 
219 
220 	/*
221 	 * If start begins at an offset inside the page, then adjust the size
222 	 * and addr accordingly
223 	 */
224 	offset = mm_cur->start & ~PAGE_MASK;
225 
226 	num_pages = PFN_UP(*size + offset);
227 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
228 
229 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
230 
231 	*addr = adev->gmc.gart_start;
232 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
233 		AMDGPU_GPU_PAGE_SIZE;
234 	*addr += offset;
235 
236 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
237 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
238 
239 	r = amdgpu_job_alloc_with_ib(adev, &entity->base,
240 				     AMDGPU_FENCE_OWNER_UNDEFINED,
241 				     num_dw * 4 + num_bytes,
242 				     AMDGPU_IB_POOL_DELAYED, &job,
243 				     AMDGPU_KERNEL_JOB_ID_TTM_MAP_BUFFER);
244 	if (r)
245 		return r;
246 
247 	src_addr = num_dw * 4;
248 	src_addr += job->ibs[0].gpu_addr;
249 
250 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
251 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
252 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
253 				dst_addr, num_bytes, 0);
254 
255 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
256 	if (tmz)
257 		flags |= AMDGPU_PTE_TMZ;
258 
259 	cpu_addr = &job->ibs[0].ptr[num_dw];
260 
261 	if (mem->mem_type == TTM_PL_TT) {
262 		dma_addr_t *dma_addr;
263 
264 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
265 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
266 	} else {
267 		u64 pa = mm_cur->start + adev->vm_manager.vram_base_offset;
268 
269 		amdgpu_gart_map_vram_range(adev, pa, 0, num_pages, flags, cpu_addr);
270 	}
271 
272 	dma_fence_put(amdgpu_ttm_job_submit(adev, job, num_dw));
273 	return 0;
274 }
275 
276 /**
277  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
278  * @adev: amdgpu device
279  * @entity: entity to run the jobs
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
292 __attribute__((nonnull))
293 static int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
294 				      struct amdgpu_ttm_buffer_entity *entity,
295 				      const struct amdgpu_copy_mem *src,
296 				      const struct amdgpu_copy_mem *dst,
297 				      uint64_t size, bool tmz,
298 				      struct dma_resv *resv,
299 				      struct dma_fence **f)
300 {
301 	struct amdgpu_res_cursor src_mm, dst_mm;
302 	struct dma_fence *fence = NULL;
303 	int r = 0;
304 	uint32_t copy_flags = 0;
305 	struct amdgpu_bo *abo_src, *abo_dst;
306 
307 	if (!adev->mman.buffer_funcs_enabled) {
308 		dev_err(adev->dev,
309 			"Trying to move memory with ring turned off.\n");
310 		return -EINVAL;
311 	}
312 
313 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
314 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
315 
316 	mutex_lock(&adev->mman.gtt_window_lock);
317 	while (src_mm.remaining) {
318 		uint64_t from, to, cur_size, tiling_flags;
319 		uint32_t num_type, data_format, max_com, write_compress_disable;
320 		struct dma_fence *next;
321 
322 		/* Never copy more than 256MiB at once to avoid a timeout */
323 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
324 
325 		/* Map src to window 0 and dst to window 1. */
326 		r = amdgpu_ttm_map_buffer(entity, src->bo, src->mem, &src_mm,
327 					  0, tmz, &cur_size, &from);
328 		if (r)
329 			goto error;
330 
331 		r = amdgpu_ttm_map_buffer(entity, dst->bo, dst->mem, &dst_mm,
332 					  1, tmz, &cur_size, &to);
333 		if (r)
334 			goto error;
335 
336 		abo_src = ttm_to_amdgpu_bo(src->bo);
337 		abo_dst = ttm_to_amdgpu_bo(dst->bo);
338 		if (tmz)
339 			copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
340 		if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
341 		    (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
342 			copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
343 		if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
344 		    (dst->mem->mem_type == TTM_PL_VRAM)) {
345 			copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
346 			amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
347 			max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
348 			num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
349 			data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
350 			write_compress_disable =
351 				AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE);
352 			copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
353 				       AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
354 				       AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) |
355 				       AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE,
356 							     write_compress_disable));
357 		}
358 
359 		r = amdgpu_copy_buffer(adev, entity, from, to, cur_size, resv,
360 				       &next, true, copy_flags);
361 		if (r)
362 			goto error;
363 
364 		dma_fence_put(fence);
365 		fence = next;
366 
367 		amdgpu_res_next(&src_mm, cur_size);
368 		amdgpu_res_next(&dst_mm, cur_size);
369 	}
370 error:
371 	mutex_unlock(&adev->mman.gtt_window_lock);
372 	*f = fence;
373 	return r;
374 }
375 
376 /*
377  * amdgpu_move_blit - Copy an entire buffer to another buffer
378  *
379  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
380  * help move buffers to and from VRAM.
381  */
382 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
383 			    bool evict,
384 			    struct ttm_resource *new_mem,
385 			    struct ttm_resource *old_mem)
386 {
387 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
388 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
389 	struct amdgpu_copy_mem src, dst;
390 	struct dma_fence *fence = NULL;
391 	int r;
392 
393 	src.bo = bo;
394 	dst.bo = bo;
395 	src.mem = old_mem;
396 	dst.mem = new_mem;
397 	src.offset = 0;
398 	dst.offset = 0;
399 
400 	r = amdgpu_ttm_copy_mem_to_mem(adev,
401 				       &adev->mman.move_entity,
402 				       &src, &dst,
403 				       new_mem->size,
404 				       amdgpu_bo_encrypted(abo),
405 				       bo->base.resv, &fence);
406 	if (r)
407 		goto error;
408 
409 	/* clear the space being freed */
410 	if (old_mem->mem_type == TTM_PL_VRAM &&
411 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
412 		struct dma_fence *wipe_fence = NULL;
413 
414 		r = amdgpu_fill_buffer(&adev->mman.move_entity,
415 				       abo, 0, NULL, &wipe_fence,
416 				       AMDGPU_KERNEL_JOB_ID_MOVE_BLIT);
417 		if (r) {
418 			goto error;
419 		} else if (wipe_fence) {
420 			amdgpu_vram_mgr_set_cleared(bo->resource);
421 			dma_fence_put(fence);
422 			fence = wipe_fence;
423 		}
424 	}
425 
426 	/* Always block for VM page tables before committing the new location */
427 	if (bo->type == ttm_bo_type_kernel)
428 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
429 	else
430 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
431 	dma_fence_put(fence);
432 	return r;
433 
434 error:
435 	if (fence)
436 		dma_fence_wait(fence, false);
437 	dma_fence_put(fence);
438 	return r;
439 }
440 
441 /**
442  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
443  * @adev: amdgpu device
444  * @res: the resource to check
445  *
446  * Returns: true if the full resource is CPU visible, false otherwise.
447  */
448 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
449 			    struct ttm_resource *res)
450 {
451 	struct amdgpu_res_cursor cursor;
452 
453 	if (!res)
454 		return false;
455 
456 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
457 	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL ||
458 	    res->mem_type == AMDGPU_PL_MMIO_REMAP)
459 		return true;
460 
461 	if (res->mem_type != TTM_PL_VRAM)
462 		return false;
463 
464 	amdgpu_res_first(res, 0, res->size, &cursor);
465 	while (cursor.remaining) {
466 		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
467 			return false;
468 		amdgpu_res_next(&cursor, cursor.size);
469 	}
470 
471 	return true;
472 }
473 
474 /*
475  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
476  *
477  * Called by amdgpu_bo_move()
478  */
479 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
480 				struct ttm_resource *mem)
481 {
482 	if (!amdgpu_res_cpu_visible(adev, mem))
483 		return false;
484 
485 	/* ttm_resource_ioremap only supports contiguous memory */
486 	if (mem->mem_type == TTM_PL_VRAM &&
487 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
488 		return false;
489 
490 	return true;
491 }
492 
493 /*
494  * amdgpu_bo_move - Move a buffer object to a new memory location
495  *
496  * Called by ttm_bo_handle_move_mem()
497  */
498 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
499 			  struct ttm_operation_ctx *ctx,
500 			  struct ttm_resource *new_mem,
501 			  struct ttm_place *hop)
502 {
503 	struct amdgpu_device *adev;
504 	struct amdgpu_bo *abo;
505 	struct ttm_resource *old_mem = bo->resource;
506 	int r;
507 
508 	if (new_mem->mem_type == TTM_PL_TT ||
509 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
510 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
511 		if (r)
512 			return r;
513 	}
514 
515 	abo = ttm_to_amdgpu_bo(bo);
516 	adev = amdgpu_ttm_adev(bo->bdev);
517 
518 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
519 			 bo->ttm == NULL)) {
520 		amdgpu_bo_move_notify(bo, evict, new_mem);
521 		ttm_bo_move_null(bo, new_mem);
522 		return 0;
523 	}
524 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
525 	    (new_mem->mem_type == TTM_PL_TT ||
526 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
527 		amdgpu_bo_move_notify(bo, evict, new_mem);
528 		ttm_bo_move_null(bo, new_mem);
529 		return 0;
530 	}
531 	if ((old_mem->mem_type == TTM_PL_TT ||
532 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
533 	    new_mem->mem_type == TTM_PL_SYSTEM) {
534 		r = ttm_bo_wait_ctx(bo, ctx);
535 		if (r)
536 			return r;
537 
538 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
539 		amdgpu_bo_move_notify(bo, evict, new_mem);
540 		ttm_resource_free(bo, &bo->resource);
541 		ttm_bo_assign_mem(bo, new_mem);
542 		return 0;
543 	}
544 
545 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
546 	    old_mem->mem_type == AMDGPU_PL_GWS ||
547 	    old_mem->mem_type == AMDGPU_PL_OA ||
548 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
549 	    old_mem->mem_type == AMDGPU_PL_MMIO_REMAP ||
550 	    new_mem->mem_type == AMDGPU_PL_GDS ||
551 	    new_mem->mem_type == AMDGPU_PL_GWS ||
552 	    new_mem->mem_type == AMDGPU_PL_OA ||
553 	    new_mem->mem_type == AMDGPU_PL_DOORBELL ||
554 	    new_mem->mem_type == AMDGPU_PL_MMIO_REMAP) {
555 		/* Nothing to save here */
556 		amdgpu_bo_move_notify(bo, evict, new_mem);
557 		ttm_bo_move_null(bo, new_mem);
558 		return 0;
559 	}
560 
561 	if (bo->type == ttm_bo_type_device &&
562 	    new_mem->mem_type == TTM_PL_VRAM &&
563 	    old_mem->mem_type != TTM_PL_VRAM) {
564 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
565 		 * accesses the BO after it's moved.
566 		 */
567 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
568 	}
569 
570 	if (adev->mman.buffer_funcs_enabled &&
571 	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
572 	      new_mem->mem_type == TTM_PL_VRAM) ||
573 	     (old_mem->mem_type == TTM_PL_VRAM &&
574 	      new_mem->mem_type == TTM_PL_SYSTEM))) {
575 		hop->fpfn = 0;
576 		hop->lpfn = 0;
577 		hop->mem_type = TTM_PL_TT;
578 		hop->flags = TTM_PL_FLAG_TEMPORARY;
579 		return -EMULTIHOP;
580 	}
581 
582 	amdgpu_bo_move_notify(bo, evict, new_mem);
583 	if (adev->mman.buffer_funcs_enabled)
584 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
585 	else
586 		r = -ENODEV;
587 
588 	if (r) {
589 		/* Check that all memory is CPU accessible */
590 		if (!amdgpu_res_copyable(adev, old_mem) ||
591 		    !amdgpu_res_copyable(adev, new_mem)) {
592 			pr_err("Move buffer fallback to memcpy unavailable\n");
593 			return r;
594 		}
595 
596 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
597 		if (r)
598 			return r;
599 	}
600 
601 	/* update statistics after the move */
602 	if (evict)
603 		atomic64_inc(&adev->num_evictions);
604 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
605 	return 0;
606 }
607 
608 /*
609  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
610  *
611  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
612  */
613 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
614 				     struct ttm_resource *mem)
615 {
616 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
617 
618 	switch (mem->mem_type) {
619 	case TTM_PL_SYSTEM:
620 		/* system memory */
621 		return 0;
622 	case TTM_PL_TT:
623 	case AMDGPU_PL_PREEMPT:
624 		break;
625 	case TTM_PL_VRAM:
626 		mem->bus.offset = mem->start << PAGE_SHIFT;
627 
628 		if (adev->mman.aper_base_kaddr &&
629 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
630 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
631 					mem->bus.offset;
632 
633 		mem->bus.offset += adev->gmc.aper_base;
634 		mem->bus.is_iomem = true;
635 		break;
636 	case AMDGPU_PL_DOORBELL:
637 		mem->bus.offset = mem->start << PAGE_SHIFT;
638 		mem->bus.offset += adev->doorbell.base;
639 		mem->bus.is_iomem = true;
640 		mem->bus.caching = ttm_uncached;
641 		break;
642 	case AMDGPU_PL_MMIO_REMAP:
643 		mem->bus.offset = mem->start << PAGE_SHIFT;
644 		mem->bus.offset += adev->rmmio_remap.bus_addr;
645 		mem->bus.is_iomem = true;
646 		mem->bus.caching = ttm_uncached;
647 		break;
648 	default:
649 		return -EINVAL;
650 	}
651 	return 0;
652 }
653 
654 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
655 					   unsigned long page_offset)
656 {
657 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
658 	struct amdgpu_res_cursor cursor;
659 
660 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
661 			 &cursor);
662 
663 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
664 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
665 	else if (bo->resource->mem_type == AMDGPU_PL_MMIO_REMAP)
666 		return ((uint64_t)(adev->rmmio_remap.bus_addr + cursor.start)) >> PAGE_SHIFT;
667 
668 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
669 }
670 
671 /**
672  * amdgpu_ttm_domain_start - Returns GPU start address
673  * @adev: amdgpu device object
674  * @type: type of the memory
675  *
676  * Returns:
677  * GPU start address of a memory domain
678  */
679 
680 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
681 {
682 	switch (type) {
683 	case TTM_PL_TT:
684 		return adev->gmc.gart_start;
685 	case TTM_PL_VRAM:
686 		return adev->gmc.vram_start;
687 	}
688 
689 	return 0;
690 }
691 
692 /*
693  * TTM backend functions.
694  */
695 struct amdgpu_ttm_tt {
696 	struct ttm_tt	ttm;
697 	struct drm_gem_object	*gobj;
698 	u64			offset;
699 	uint64_t		userptr;
700 	struct task_struct	*usertask;
701 	uint32_t		userflags;
702 	bool			bound;
703 	int32_t			pool_id;
704 };
705 
706 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
707 
708 #ifdef CONFIG_DRM_AMDGPU_USERPTR
709 /*
710  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
711  * memory and start HMM tracking CPU page table update
712  *
713  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
714  * once afterwards to stop HMM tracking. Its the caller responsibility to ensure
715  * that range is a valid memory and it is freed too.
716  */
717 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo,
718 				 struct amdgpu_hmm_range *range)
719 {
720 	struct ttm_tt *ttm = bo->tbo.ttm;
721 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
722 	unsigned long start = gtt->userptr;
723 	struct vm_area_struct *vma;
724 	struct mm_struct *mm;
725 	bool readonly;
726 	int r = 0;
727 
728 	mm = bo->notifier.mm;
729 	if (unlikely(!mm)) {
730 		DRM_DEBUG_DRIVER("BO is not registered?\n");
731 		return -EFAULT;
732 	}
733 
734 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
735 		return -ESRCH;
736 
737 	mmap_read_lock(mm);
738 	vma = vma_lookup(mm, start);
739 	if (unlikely(!vma)) {
740 		r = -EFAULT;
741 		goto out_unlock;
742 	}
743 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
744 		vma->vm_file)) {
745 		r = -EPERM;
746 		goto out_unlock;
747 	}
748 
749 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
750 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
751 				       readonly, NULL, range);
752 out_unlock:
753 	mmap_read_unlock(mm);
754 	if (r)
755 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
756 
757 	mmput(mm);
758 
759 	return r;
760 }
761 
762 #endif
763 
764 /*
765  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
766  *
767  * Called by amdgpu_cs_list_validate(). This creates the page list
768  * that backs user memory and will ultimately be mapped into the device
769  * address space.
770  */
771 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct amdgpu_hmm_range *range)
772 {
773 	unsigned long i;
774 
775 	for (i = 0; i < ttm->num_pages; ++i)
776 		ttm->pages[i] = range ? hmm_pfn_to_page(range->hmm_range.hmm_pfns[i]) : NULL;
777 }
778 
779 /*
780  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
781  *
782  * Called by amdgpu_ttm_backend_bind()
783  **/
784 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
785 				     struct ttm_tt *ttm)
786 {
787 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
788 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
789 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
790 	enum dma_data_direction direction = write ?
791 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
792 	int r;
793 
794 	/* Allocate an SG array and squash pages into it */
795 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
796 				      (u64)ttm->num_pages << PAGE_SHIFT,
797 				      GFP_KERNEL);
798 	if (r)
799 		goto release_sg;
800 
801 	/* Map SG to device */
802 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
803 	if (r)
804 		goto release_sg_table;
805 
806 	/* convert SG to linear array of pages and dma addresses */
807 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
808 				       ttm->num_pages);
809 
810 	return 0;
811 
812 release_sg_table:
813 	sg_free_table(ttm->sg);
814 release_sg:
815 	kfree(ttm->sg);
816 	ttm->sg = NULL;
817 	return r;
818 }
819 
820 /*
821  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
822  */
823 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
824 					struct ttm_tt *ttm)
825 {
826 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
827 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
828 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
829 	enum dma_data_direction direction = write ?
830 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
831 
832 	/* double check that we don't free the table twice */
833 	if (!ttm->sg || !ttm->sg->sgl)
834 		return;
835 
836 	/* unmap the pages mapped to the device */
837 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
838 	sg_free_table(ttm->sg);
839 }
840 
841 /*
842  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
843  * MQDn+CtrlStackn where n is the number of XCCs per partition.
844  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
845  * and uses memory type default, UC. The rest of pages_per_xcc are
846  * Ctrl stack and modify their memory type to NC.
847  */
848 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
849 				struct ttm_tt *ttm, uint64_t flags)
850 {
851 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
852 	uint64_t total_pages = ttm->num_pages;
853 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
854 	uint64_t page_idx, pages_per_xcc;
855 	int i;
856 	uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
857 
858 	pages_per_xcc = total_pages;
859 	do_div(pages_per_xcc, num_xcc);
860 
861 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
862 		/* MQD page: use default flags */
863 		amdgpu_gart_bind(adev,
864 				gtt->offset + (page_idx << PAGE_SHIFT),
865 				1, &gtt->ttm.dma_address[page_idx], flags);
866 		/*
867 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
868 		 * the second page of the BO onward.
869 		 */
870 		amdgpu_gart_bind(adev,
871 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
872 				pages_per_xcc - 1,
873 				&gtt->ttm.dma_address[page_idx + 1],
874 				ctrl_flags);
875 	}
876 }
877 
878 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
879 				 struct ttm_buffer_object *tbo,
880 				 uint64_t flags)
881 {
882 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
883 	struct ttm_tt *ttm = tbo->ttm;
884 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
885 
886 	if (amdgpu_bo_encrypted(abo))
887 		flags |= AMDGPU_PTE_TMZ;
888 
889 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
890 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
891 	} else {
892 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
893 				 gtt->ttm.dma_address, flags);
894 	}
895 	gtt->bound = true;
896 }
897 
898 /*
899  * amdgpu_ttm_backend_bind - Bind GTT memory
900  *
901  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
902  * This handles binding GTT memory to the device address space.
903  */
904 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
905 				   struct ttm_tt *ttm,
906 				   struct ttm_resource *bo_mem)
907 {
908 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
909 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
910 	uint64_t flags;
911 	int r;
912 
913 	if (!bo_mem)
914 		return -EINVAL;
915 
916 	if (gtt->bound)
917 		return 0;
918 
919 	if (gtt->userptr) {
920 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
921 		if (r) {
922 			dev_err(adev->dev, "failed to pin userptr\n");
923 			return r;
924 		}
925 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
926 		if (!ttm->sg) {
927 			struct dma_buf_attachment *attach;
928 			struct sg_table *sgt;
929 
930 			attach = gtt->gobj->import_attach;
931 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
932 			if (IS_ERR(sgt))
933 				return PTR_ERR(sgt);
934 
935 			ttm->sg = sgt;
936 		}
937 
938 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
939 					       ttm->num_pages);
940 	}
941 
942 	if (!ttm->num_pages) {
943 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
944 		     ttm->num_pages, bo_mem, ttm);
945 	}
946 
947 	if (bo_mem->mem_type != TTM_PL_TT ||
948 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
949 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
950 		return 0;
951 	}
952 
953 	/* compute PTE flags relevant to this BO memory */
954 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
955 
956 	/* bind pages into GART page tables */
957 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
958 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
959 			 gtt->ttm.dma_address, flags);
960 	gtt->bound = true;
961 	return 0;
962 }
963 
964 /*
965  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
966  * through AGP or GART aperture.
967  *
968  * If bo is accessible through AGP aperture, then use AGP aperture
969  * to access bo; otherwise allocate logical space in GART aperture
970  * and map bo to GART aperture.
971  */
972 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
973 {
974 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
975 	struct ttm_operation_ctx ctx = { false, false };
976 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
977 	struct ttm_placement placement;
978 	struct ttm_place placements;
979 	struct ttm_resource *tmp;
980 	uint64_t addr, flags;
981 	int r;
982 
983 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
984 		return 0;
985 
986 	addr = amdgpu_gmc_agp_addr(bo);
987 	if (addr != AMDGPU_BO_INVALID_OFFSET)
988 		return 0;
989 
990 	/* allocate GART space */
991 	placement.num_placement = 1;
992 	placement.placement = &placements;
993 	placements.fpfn = 0;
994 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
995 	placements.mem_type = TTM_PL_TT;
996 	placements.flags = bo->resource->placement;
997 
998 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
999 	if (unlikely(r))
1000 		return r;
1001 
1002 	/* compute PTE flags for this buffer object */
1003 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1004 
1005 	/* Bind pages */
1006 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1007 	amdgpu_ttm_gart_bind(adev, bo, flags);
1008 	amdgpu_gart_invalidate_tlb(adev);
1009 	ttm_resource_free(bo, &bo->resource);
1010 	ttm_bo_assign_mem(bo, tmp);
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * amdgpu_ttm_recover_gart - Rebind GTT pages
1017  *
1018  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1019  * rebind GTT pages during a GPU reset.
1020  */
1021 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1022 {
1023 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1024 	uint64_t flags;
1025 
1026 	if (!tbo->ttm)
1027 		return;
1028 
1029 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1030 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1031 }
1032 
1033 /*
1034  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1035  *
1036  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1037  * ttm_tt_destroy().
1038  */
1039 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1040 				      struct ttm_tt *ttm)
1041 {
1042 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1043 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1044 
1045 	/* if the pages have userptr pinning then clear that first */
1046 	if (gtt->userptr) {
1047 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1048 	} else if (ttm->sg && drm_gem_is_imported(gtt->gobj)) {
1049 		struct dma_buf_attachment *attach;
1050 
1051 		attach = gtt->gobj->import_attach;
1052 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1053 		ttm->sg = NULL;
1054 	}
1055 
1056 	if (!gtt->bound)
1057 		return;
1058 
1059 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1060 		return;
1061 
1062 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1063 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1064 	gtt->bound = false;
1065 }
1066 
1067 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1068 				       struct ttm_tt *ttm)
1069 {
1070 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1071 
1072 	if (gtt->usertask)
1073 		put_task_struct(gtt->usertask);
1074 
1075 	ttm_tt_fini(&gtt->ttm);
1076 	kfree(gtt);
1077 }
1078 
1079 /**
1080  * amdgpu_ttm_mmio_remap_alloc_sgt - build an sg_table for MMIO_REMAP I/O aperture
1081  * @adev: amdgpu device providing the remap BAR base (adev->rmmio_remap.bus_addr)
1082  * @res:  TTM resource of the BO to export; expected to live in AMDGPU_PL_MMIO_REMAP
1083  * @dev:  importing device to map for (typically @attach->dev in dma-buf paths)
1084  * @dir:  DMA data direction for the importer (passed to dma_map_resource())
1085  * @sgt:  output; on success, set to a newly allocated sg_table describing the I/O span
1086  *
1087  * The HDP flush page (AMDGPU_PL_MMIO_REMAP) is a fixed hardware I/O window in a PCI
1088  * BAR—there are no struct pages to back it. Importers still need a DMA address list,
1089  * so we synthesize a minimal sg_table and populate it from dma_map_resource(), not
1090  * from pages. Using the common amdgpu_res_cursor walker keeps the offset/size math
1091  * consistent with other TTM/manager users.
1092  *
1093  * - @res is assumed to be a small, contiguous I/O region (typically a single 4 KiB
1094  *   page) in AMDGPU_PL_MMIO_REMAP. Callers should validate placement before calling.
1095  * - The sg entry is created with sg_set_page(sg, NULL, …) to reflect I/O space.
1096  * - The mapping uses DMA_ATTR_SKIP_CPU_SYNC because this is MMIO, not cacheable RAM.
1097  * - Peer reachability / p2pdma policy checks must be done by the caller.
1098  *
1099  * Return:
1100  * * 0 on success, with *@sgt set to a valid table that must be freed via
1101  *   amdgpu_ttm_mmio_remap_free_sgt().
1102  * * -ENOMEM if allocation of the sg_table fails.
1103  * * -EIO if dma_map_resource() fails.
1104  *
1105  */
1106 int amdgpu_ttm_mmio_remap_alloc_sgt(struct amdgpu_device *adev,
1107 				    struct ttm_resource *res,
1108 				    struct device *dev,
1109 				    enum dma_data_direction dir,
1110 				    struct sg_table **sgt)
1111 {
1112 	struct amdgpu_res_cursor cur;
1113 	dma_addr_t dma;
1114 	resource_size_t phys;
1115 	struct scatterlist *sg;
1116 	int r;
1117 
1118 	/* Walk the resource once; MMIO_REMAP is expected to be contiguous+small. */
1119 	amdgpu_res_first(res, 0, res->size, &cur);
1120 
1121 	/* Translate byte offset in the remap window into a host physical BAR address. */
1122 	phys = adev->rmmio_remap.bus_addr + cur.start;
1123 
1124 	/* Build a single-entry sg_table mapped as I/O (no struct page backing). */
1125 	*sgt = kzalloc(sizeof(**sgt), GFP_KERNEL);
1126 	if (!*sgt)
1127 		return -ENOMEM;
1128 	r = sg_alloc_table(*sgt, 1, GFP_KERNEL);
1129 	if (r) {
1130 		kfree(*sgt);
1131 		return r;
1132 	}
1133 	sg = (*sgt)->sgl;
1134 	sg_set_page(sg, NULL, cur.size, 0);  /* WHY: I/O space → no pages */
1135 
1136 	dma = dma_map_resource(dev, phys, cur.size, dir, DMA_ATTR_SKIP_CPU_SYNC);
1137 	if (dma_mapping_error(dev, dma)) {
1138 		sg_free_table(*sgt);
1139 		kfree(*sgt);
1140 		return -EIO;
1141 	}
1142 	sg_dma_address(sg) = dma;
1143 	sg_dma_len(sg) = cur.size;
1144 	return 0;
1145 }
1146 
1147 void amdgpu_ttm_mmio_remap_free_sgt(struct device *dev,
1148 				    enum dma_data_direction dir,
1149 				    struct sg_table *sgt)
1150 {
1151 	struct scatterlist *sg = sgt->sgl;
1152 
1153 	dma_unmap_resource(dev, sg_dma_address(sg), sg_dma_len(sg),
1154 			   dir, DMA_ATTR_SKIP_CPU_SYNC);
1155 	sg_free_table(sgt);
1156 	kfree(sgt);
1157 }
1158 
1159 /**
1160  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1161  *
1162  * @bo: The buffer object to create a GTT ttm_tt object around
1163  * @page_flags: Page flags to be added to the ttm_tt object
1164  *
1165  * Called by ttm_tt_create().
1166  */
1167 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1168 					   uint32_t page_flags)
1169 {
1170 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1171 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1172 	struct amdgpu_ttm_tt *gtt;
1173 	enum ttm_caching caching;
1174 
1175 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1176 	if (!gtt)
1177 		return NULL;
1178 
1179 	gtt->gobj = &bo->base;
1180 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1181 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1182 	else
1183 		gtt->pool_id = abo->xcp_id;
1184 
1185 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1186 		caching = ttm_write_combined;
1187 	else
1188 		caching = ttm_cached;
1189 
1190 	/* allocate space for the uninitialized page entries */
1191 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1192 		kfree(gtt);
1193 		return NULL;
1194 	}
1195 	return &gtt->ttm;
1196 }
1197 
1198 /*
1199  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1200  *
1201  * Map the pages of a ttm_tt object to an address space visible
1202  * to the underlying device.
1203  */
1204 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1205 				  struct ttm_tt *ttm,
1206 				  struct ttm_operation_ctx *ctx)
1207 {
1208 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1209 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1210 	struct ttm_pool *pool;
1211 	pgoff_t i;
1212 	int ret;
1213 
1214 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1215 	if (gtt->userptr) {
1216 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1217 		if (!ttm->sg)
1218 			return -ENOMEM;
1219 		return 0;
1220 	}
1221 
1222 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1223 		return 0;
1224 
1225 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1226 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1227 	else
1228 		pool = &adev->mman.bdev.pool;
1229 	ret = ttm_pool_alloc(pool, ttm, ctx);
1230 	if (ret)
1231 		return ret;
1232 
1233 	for (i = 0; i < ttm->num_pages; ++i)
1234 		ttm->pages[i]->mapping = bdev->dev_mapping;
1235 
1236 	return 0;
1237 }
1238 
1239 /*
1240  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1241  *
1242  * Unmaps pages of a ttm_tt object from the device address space and
1243  * unpopulates the page array backing it.
1244  */
1245 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1246 				     struct ttm_tt *ttm)
1247 {
1248 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1249 	struct amdgpu_device *adev;
1250 	struct ttm_pool *pool;
1251 	pgoff_t i;
1252 
1253 	amdgpu_ttm_backend_unbind(bdev, ttm);
1254 
1255 	if (gtt->userptr) {
1256 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1257 		kfree(ttm->sg);
1258 		ttm->sg = NULL;
1259 		return;
1260 	}
1261 
1262 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1263 		return;
1264 
1265 	for (i = 0; i < ttm->num_pages; ++i)
1266 		ttm->pages[i]->mapping = NULL;
1267 
1268 	adev = amdgpu_ttm_adev(bdev);
1269 
1270 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1271 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1272 	else
1273 		pool = &adev->mman.bdev.pool;
1274 
1275 	return ttm_pool_free(pool, ttm);
1276 }
1277 
1278 /**
1279  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1280  * task
1281  *
1282  * @tbo: The ttm_buffer_object that contains the userptr
1283  * @user_addr:  The returned value
1284  */
1285 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1286 			      uint64_t *user_addr)
1287 {
1288 	struct amdgpu_ttm_tt *gtt;
1289 
1290 	if (!tbo->ttm)
1291 		return -EINVAL;
1292 
1293 	gtt = (void *)tbo->ttm;
1294 	*user_addr = gtt->userptr;
1295 	return 0;
1296 }
1297 
1298 /**
1299  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1300  * task
1301  *
1302  * @bo: The ttm_buffer_object to bind this userptr to
1303  * @addr:  The address in the current tasks VM space to use
1304  * @flags: Requirements of userptr object.
1305  *
1306  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1307  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1308  * initialize GPU VM for a KFD process.
1309  */
1310 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1311 			      uint64_t addr, uint32_t flags)
1312 {
1313 	struct amdgpu_ttm_tt *gtt;
1314 
1315 	if (!bo->ttm) {
1316 		/* TODO: We want a separate TTM object type for userptrs */
1317 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1318 		if (bo->ttm == NULL)
1319 			return -ENOMEM;
1320 	}
1321 
1322 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1323 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1324 
1325 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1326 	gtt->userptr = addr;
1327 	gtt->userflags = flags;
1328 
1329 	if (gtt->usertask)
1330 		put_task_struct(gtt->usertask);
1331 	gtt->usertask = current->group_leader;
1332 	get_task_struct(gtt->usertask);
1333 
1334 	return 0;
1335 }
1336 
1337 /*
1338  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1339  */
1340 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1341 {
1342 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1343 
1344 	if (gtt == NULL)
1345 		return NULL;
1346 
1347 	if (gtt->usertask == NULL)
1348 		return NULL;
1349 
1350 	return gtt->usertask->mm;
1351 }
1352 
1353 /*
1354  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1355  * address range for the current task.
1356  *
1357  */
1358 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1359 				  unsigned long end, unsigned long *userptr)
1360 {
1361 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1362 	unsigned long size;
1363 
1364 	if (gtt == NULL || !gtt->userptr)
1365 		return false;
1366 
1367 	/* Return false if no part of the ttm_tt object lies within
1368 	 * the range
1369 	 */
1370 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1371 	if (gtt->userptr > end || gtt->userptr + size <= start)
1372 		return false;
1373 
1374 	if (userptr)
1375 		*userptr = gtt->userptr;
1376 	return true;
1377 }
1378 
1379 /*
1380  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1381  */
1382 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1383 {
1384 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1385 
1386 	if (gtt == NULL || !gtt->userptr)
1387 		return false;
1388 
1389 	return true;
1390 }
1391 
1392 /*
1393  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1394  */
1395 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1396 {
1397 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1398 
1399 	if (gtt == NULL)
1400 		return false;
1401 
1402 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1403 }
1404 
1405 /**
1406  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1407  *
1408  * @ttm: The ttm_tt object to compute the flags for
1409  * @mem: The memory registry backing this ttm_tt object
1410  *
1411  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1412  */
1413 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1414 {
1415 	uint64_t flags = 0;
1416 
1417 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1418 		flags |= AMDGPU_PTE_VALID;
1419 
1420 	if (mem && (mem->mem_type == TTM_PL_TT ||
1421 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1422 		    mem->mem_type == AMDGPU_PL_PREEMPT ||
1423 		    mem->mem_type == AMDGPU_PL_MMIO_REMAP)) {
1424 		flags |= AMDGPU_PTE_SYSTEM;
1425 
1426 		if (ttm && ttm->caching == ttm_cached)
1427 			flags |= AMDGPU_PTE_SNOOPED;
1428 	}
1429 
1430 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1431 			mem->bus.caching == ttm_cached)
1432 		flags |= AMDGPU_PTE_SNOOPED;
1433 
1434 	return flags;
1435 }
1436 
1437 /**
1438  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1439  *
1440  * @adev: amdgpu_device pointer
1441  * @ttm: The ttm_tt object to compute the flags for
1442  * @mem: The memory registry backing this ttm_tt object
1443  *
1444  * Figure out the flags to use for a VM PTE (Page Table Entry).
1445  */
1446 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1447 				 struct ttm_resource *mem)
1448 {
1449 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1450 
1451 	flags |= adev->gart.gart_pte_flags;
1452 	flags |= AMDGPU_PTE_READABLE;
1453 
1454 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1455 		flags |= AMDGPU_PTE_WRITEABLE;
1456 
1457 	return flags;
1458 }
1459 
1460 /*
1461  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1462  * object.
1463  *
1464  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1465  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1466  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1467  * used to clean out a memory space.
1468  */
1469 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1470 					    const struct ttm_place *place)
1471 {
1472 	struct dma_resv_iter resv_cursor;
1473 	struct dma_fence *f;
1474 
1475 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1476 		return ttm_bo_eviction_valuable(bo, place);
1477 
1478 	/* Swapout? */
1479 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1480 		return true;
1481 
1482 	if (bo->type == ttm_bo_type_kernel &&
1483 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1484 		return false;
1485 
1486 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1487 	 * If true, then return false as any KFD process needs all its BOs to
1488 	 * be resident to run successfully
1489 	 */
1490 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1491 				DMA_RESV_USAGE_BOOKKEEP, f) {
1492 		if (amdkfd_fence_check_mm(f, current->mm) &&
1493 		    !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1494 			return false;
1495 	}
1496 
1497 	/* Preemptible BOs don't own system resources managed by the
1498 	 * driver (pages, VRAM, GART space). They point to resources
1499 	 * owned by someone else (e.g. pageable memory in user mode
1500 	 * or a DMABuf). They are used in a preemptible context so we
1501 	 * can guarantee no deadlocks and good QoS in case of MMU
1502 	 * notifiers or DMABuf move notifiers from the resource owner.
1503 	 */
1504 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1505 		return false;
1506 
1507 	if (bo->resource->mem_type == TTM_PL_TT &&
1508 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1509 		return false;
1510 
1511 	return ttm_bo_eviction_valuable(bo, place);
1512 }
1513 
1514 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1515 				      void *buf, size_t size, bool write)
1516 {
1517 	while (size) {
1518 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1519 		uint64_t bytes = 4 - (pos & 0x3);
1520 		uint32_t shift = (pos & 0x3) * 8;
1521 		uint32_t mask = 0xffffffff << shift;
1522 		uint32_t value = 0;
1523 
1524 		if (size < bytes) {
1525 			mask &= 0xffffffff >> (bytes - size) * 8;
1526 			bytes = size;
1527 		}
1528 
1529 		if (mask != 0xffffffff) {
1530 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1531 			if (write) {
1532 				value &= ~mask;
1533 				value |= (*(uint32_t *)buf << shift) & mask;
1534 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1535 			} else {
1536 				value = (value & mask) >> shift;
1537 				memcpy(buf, &value, bytes);
1538 			}
1539 		} else {
1540 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1541 		}
1542 
1543 		pos += bytes;
1544 		buf += bytes;
1545 		size -= bytes;
1546 	}
1547 }
1548 
1549 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1550 					unsigned long offset, void *buf,
1551 					int len, int write)
1552 {
1553 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1554 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1555 	struct amdgpu_res_cursor src_mm;
1556 	struct amdgpu_job *job;
1557 	struct dma_fence *fence;
1558 	uint64_t src_addr, dst_addr;
1559 	unsigned int num_dw;
1560 	int r, idx;
1561 
1562 	if (len != PAGE_SIZE)
1563 		return -EINVAL;
1564 
1565 	if (!adev->mman.sdma_access_ptr)
1566 		return -EACCES;
1567 
1568 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1569 		return -ENODEV;
1570 
1571 	if (write)
1572 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1573 
1574 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1575 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.default_entity.base,
1576 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1577 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1578 				     &job,
1579 				     AMDGPU_KERNEL_JOB_ID_TTM_ACCESS_MEMORY_SDMA);
1580 	if (r)
1581 		goto out;
1582 
1583 	mutex_lock(&adev->mman.gtt_window_lock);
1584 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1585 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1586 		src_mm.start;
1587 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1588 	if (write)
1589 		swap(src_addr, dst_addr);
1590 
1591 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1592 				PAGE_SIZE, 0);
1593 
1594 	fence = amdgpu_ttm_job_submit(adev, job, num_dw);
1595 	mutex_unlock(&adev->mman.gtt_window_lock);
1596 
1597 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1598 		r = -ETIMEDOUT;
1599 	dma_fence_put(fence);
1600 
1601 	if (!(r || write))
1602 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1603 out:
1604 	drm_dev_exit(idx);
1605 	return r;
1606 }
1607 
1608 /**
1609  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1610  *
1611  * @bo:  The buffer object to read/write
1612  * @offset:  Offset into buffer object
1613  * @buf:  Secondary buffer to write/read from
1614  * @len: Length in bytes of access
1615  * @write:  true if writing
1616  *
1617  * This is used to access VRAM that backs a buffer object via MMIO
1618  * access for debugging purposes.
1619  */
1620 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1621 				    unsigned long offset, void *buf, int len,
1622 				    int write)
1623 {
1624 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1625 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1626 	struct amdgpu_res_cursor cursor;
1627 	int ret = 0;
1628 
1629 	if (bo->resource->mem_type != TTM_PL_VRAM)
1630 		return -EIO;
1631 
1632 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1633 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1634 		return len;
1635 
1636 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1637 	while (cursor.remaining) {
1638 		size_t count, size = cursor.size;
1639 		loff_t pos = cursor.start;
1640 
1641 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1642 		size -= count;
1643 		if (size) {
1644 			/* using MM to access rest vram and handle un-aligned address */
1645 			pos += count;
1646 			buf += count;
1647 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1648 		}
1649 
1650 		ret += cursor.size;
1651 		buf += cursor.size;
1652 		amdgpu_res_next(&cursor, cursor.size);
1653 	}
1654 
1655 	return ret;
1656 }
1657 
1658 static void
1659 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1660 {
1661 	amdgpu_bo_move_notify(bo, false, NULL);
1662 }
1663 
1664 static struct ttm_device_funcs amdgpu_bo_driver = {
1665 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1666 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1667 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1668 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1669 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1670 	.evict_flags = &amdgpu_evict_flags,
1671 	.move = &amdgpu_bo_move,
1672 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1673 	.release_notify = &amdgpu_bo_release_notify,
1674 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1675 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1676 	.access_memory = &amdgpu_ttm_access_memory,
1677 };
1678 
1679 /*
1680  * Firmware Reservation functions
1681  */
1682 /**
1683  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1684  *
1685  * @adev: amdgpu_device pointer
1686  *
1687  * free fw reserved vram if it has been reserved.
1688  */
1689 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1690 {
1691 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1692 		NULL, &adev->mman.fw_vram_usage_va);
1693 }
1694 
1695 /*
1696  * Driver Reservation functions
1697  */
1698 /**
1699  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1700  *
1701  * @adev: amdgpu_device pointer
1702  *
1703  * free drv reserved vram if it has been reserved.
1704  */
1705 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1706 {
1707 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1708 						  NULL,
1709 						  &adev->mman.drv_vram_usage_va);
1710 }
1711 
1712 /**
1713  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1714  *
1715  * @adev: amdgpu_device pointer
1716  *
1717  * create bo vram reservation from fw.
1718  */
1719 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1720 {
1721 	uint64_t vram_size = adev->gmc.visible_vram_size;
1722 
1723 	adev->mman.fw_vram_usage_va = NULL;
1724 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1725 
1726 	if (adev->mman.fw_vram_usage_size == 0 ||
1727 	    adev->mman.fw_vram_usage_size > vram_size)
1728 		return 0;
1729 
1730 	return amdgpu_bo_create_kernel_at(adev,
1731 					  adev->mman.fw_vram_usage_start_offset,
1732 					  adev->mman.fw_vram_usage_size,
1733 					  &adev->mman.fw_vram_usage_reserved_bo,
1734 					  &adev->mman.fw_vram_usage_va);
1735 }
1736 
1737 /**
1738  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1739  *
1740  * @adev: amdgpu_device pointer
1741  *
1742  * create bo vram reservation from drv.
1743  */
1744 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1745 {
1746 	u64 vram_size = adev->gmc.visible_vram_size;
1747 
1748 	adev->mman.drv_vram_usage_va = NULL;
1749 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1750 
1751 	if (adev->mman.drv_vram_usage_size == 0 ||
1752 	    adev->mman.drv_vram_usage_size > vram_size)
1753 		return 0;
1754 
1755 	return amdgpu_bo_create_kernel_at(adev,
1756 					  adev->mman.drv_vram_usage_start_offset,
1757 					  adev->mman.drv_vram_usage_size,
1758 					  &adev->mman.drv_vram_usage_reserved_bo,
1759 					  &adev->mman.drv_vram_usage_va);
1760 }
1761 
1762 /*
1763  * Memoy training reservation functions
1764  */
1765 
1766 /**
1767  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1768  *
1769  * @adev: amdgpu_device pointer
1770  *
1771  * free memory training reserved vram if it has been reserved.
1772  */
1773 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1774 {
1775 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1776 
1777 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1778 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1779 	ctx->c2p_bo = NULL;
1780 
1781 	return 0;
1782 }
1783 
1784 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1785 						uint32_t reserve_size)
1786 {
1787 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1788 
1789 	memset(ctx, 0, sizeof(*ctx));
1790 
1791 	ctx->c2p_train_data_offset =
1792 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1793 	ctx->p2c_train_data_offset =
1794 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1795 	ctx->train_data_size =
1796 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1797 
1798 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1799 			ctx->train_data_size,
1800 			ctx->p2c_train_data_offset,
1801 			ctx->c2p_train_data_offset);
1802 }
1803 
1804 /*
1805  * reserve TMR memory at the top of VRAM which holds
1806  * IP Discovery data and is protected by PSP.
1807  */
1808 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1809 {
1810 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1811 	bool mem_train_support = false;
1812 	uint32_t reserve_size = 0;
1813 	int ret;
1814 
1815 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1816 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1817 			mem_train_support = true;
1818 		else
1819 			DRM_DEBUG("memory training does not support!\n");
1820 	}
1821 
1822 	/*
1823 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1824 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1825 	 *
1826 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1827 	 * discovery data and G6 memory training data respectively
1828 	 */
1829 	if (adev->bios)
1830 		reserve_size =
1831 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1832 
1833 	if (!adev->bios &&
1834 	    (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1835 	     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) ||
1836 	     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0)))
1837 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1838 	else if (!adev->bios &&
1839 		 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(12, 1, 0)) {
1840 		if (hweight32(adev->aid_mask) == 1)
1841 			reserve_size = max(reserve_size, (uint32_t)128 << 20);
1842 		else
1843 			reserve_size = max(reserve_size, (uint32_t)144 << 20);
1844 	} else if (!reserve_size)
1845 		reserve_size = DISCOVERY_TMR_OFFSET;
1846 
1847 	if (mem_train_support) {
1848 		/* reserve vram for mem train according to TMR location */
1849 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1850 		ret = amdgpu_bo_create_kernel_at(adev,
1851 						 ctx->c2p_train_data_offset,
1852 						 ctx->train_data_size,
1853 						 &ctx->c2p_bo,
1854 						 NULL);
1855 		if (ret) {
1856 			dev_err(adev->dev, "alloc c2p_bo failed(%d)!\n", ret);
1857 			amdgpu_ttm_training_reserve_vram_fini(adev);
1858 			return ret;
1859 		}
1860 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1861 	}
1862 
1863 	ret = amdgpu_bo_create_kernel_at(
1864 		adev, adev->gmc.real_vram_size - reserve_size, reserve_size,
1865 		&adev->mman.fw_reserved_memory, NULL);
1866 	if (ret) {
1867 		dev_err(adev->dev, "alloc tmr failed(%d)!\n", ret);
1868 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
1869 				      NULL);
1870 		return ret;
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1877 {
1878 	int i;
1879 
1880 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1881 		return 0;
1882 
1883 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1884 				       sizeof(*adev->mman.ttm_pools),
1885 				       GFP_KERNEL);
1886 	if (!adev->mman.ttm_pools)
1887 		return -ENOMEM;
1888 
1889 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1890 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1891 			      adev->gmc.mem_partitions[i].numa.node,
1892 			      TTM_ALLOCATION_POOL_BENEFICIAL_ORDER(get_order(SZ_2M)));
1893 	}
1894 	return 0;
1895 }
1896 
1897 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1898 {
1899 	int i;
1900 
1901 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1902 		return;
1903 
1904 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1905 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1906 
1907 	kfree(adev->mman.ttm_pools);
1908 	adev->mman.ttm_pools = NULL;
1909 }
1910 
1911 /**
1912  * amdgpu_ttm_mmio_remap_bo_init - Allocate the singleton MMIO_REMAP BO
1913  * @adev: amdgpu device
1914  *
1915  * Allocates a global BO with backing AMDGPU_PL_MMIO_REMAP when the
1916  * hardware exposes a remap base (adev->rmmio_remap.bus_addr) and the host
1917  * PAGE_SIZE is <= AMDGPU_GPU_PAGE_SIZE (4K). The BO is created as a regular
1918  * GEM object (amdgpu_bo_create).
1919  *
1920  * Return:
1921  *  * 0 on success or intentional skip (feature not present/unsupported)
1922  *  * negative errno on allocation failure
1923  */
1924 static int amdgpu_ttm_alloc_mmio_remap_bo(struct amdgpu_device *adev)
1925 {
1926 	struct ttm_operation_ctx ctx = { false, false };
1927 	struct ttm_placement placement;
1928 	struct ttm_buffer_object *tbo;
1929 	struct ttm_place placements;
1930 	struct amdgpu_bo_param bp;
1931 	struct ttm_resource *tmp;
1932 	int r;
1933 
1934 	/* Skip if HW doesn't expose remap, or if PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE (4K). */
1935 	if (!adev->rmmio_remap.bus_addr || PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE)
1936 		return 0;
1937 
1938 	/*
1939 	 * Allocate a BO first and then move it to AMDGPU_PL_MMIO_REMAP.
1940 	 * The initial TTM resource assigned by amdgpu_bo_create() is
1941 	 * replaced below with a fixed MMIO_REMAP placement.
1942 	 */
1943 	memset(&bp, 0, sizeof(bp));
1944 	bp.type        = ttm_bo_type_device;
1945 	bp.size        = AMDGPU_GPU_PAGE_SIZE;
1946 	bp.byte_align  = AMDGPU_GPU_PAGE_SIZE;
1947 	bp.domain      = 0;
1948 	bp.flags       = 0;
1949 	bp.resv        = NULL;
1950 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
1951 	r = amdgpu_bo_create(adev, &bp, &adev->rmmio_remap.bo);
1952 	if (r)
1953 		return r;
1954 
1955 	r = amdgpu_bo_reserve(adev->rmmio_remap.bo, true);
1956 	if (r)
1957 		goto err_unref;
1958 
1959 	tbo = &adev->rmmio_remap.bo->tbo;
1960 
1961 	/*
1962 	 * MMIO_REMAP is a fixed I/O placement (AMDGPU_PL_MMIO_REMAP).
1963 	 */
1964 	placement.num_placement = 1;
1965 	placement.placement = &placements;
1966 	placements.fpfn = 0;
1967 	placements.lpfn = 0;
1968 	placements.mem_type = AMDGPU_PL_MMIO_REMAP;
1969 	placements.flags = 0;
1970 	/* Force the BO into the fixed MMIO_REMAP placement */
1971 	r = ttm_bo_mem_space(tbo, &placement, &tmp, &ctx);
1972 	if (unlikely(r))
1973 		goto err_unlock;
1974 
1975 	ttm_resource_free(tbo, &tbo->resource);
1976 	ttm_bo_assign_mem(tbo, tmp);
1977 	ttm_bo_pin(tbo);
1978 
1979 	amdgpu_bo_unreserve(adev->rmmio_remap.bo);
1980 	return 0;
1981 
1982 err_unlock:
1983 	amdgpu_bo_unreserve(adev->rmmio_remap.bo);
1984 
1985 err_unref:
1986 	amdgpu_bo_unref(&adev->rmmio_remap.bo);
1987 	adev->rmmio_remap.bo = NULL;
1988 	return r;
1989 }
1990 
1991 /**
1992  * amdgpu_ttm_free_mmio_remap_bo - Free the singleton MMIO_REMAP BO
1993  * @adev: amdgpu device
1994  *
1995  * Frees the kernel-owned MMIO_REMAP BO if it was allocated by
1996  * amdgpu_ttm_mmio_remap_bo_init().
1997  */
1998 static void amdgpu_ttm_free_mmio_remap_bo(struct amdgpu_device *adev)
1999 {
2000 	if (!adev->rmmio_remap.bo)
2001 		return;
2002 
2003 	if (!amdgpu_bo_reserve(adev->rmmio_remap.bo, true)) {
2004 		ttm_bo_unpin(&adev->rmmio_remap.bo->tbo);
2005 		amdgpu_bo_unreserve(adev->rmmio_remap.bo);
2006 	}
2007 
2008     /*
2009      * At this point we rely on normal DRM teardown ordering:
2010      * no new user ioctls can access the global MMIO_REMAP BO
2011      * once TTM teardown begins.
2012      */
2013 	amdgpu_bo_unref(&adev->rmmio_remap.bo);
2014 	adev->rmmio_remap.bo = NULL;
2015 }
2016 
2017 /*
2018  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
2019  * gtt/vram related fields.
2020  *
2021  * This initializes all of the memory space pools that the TTM layer
2022  * will need such as the GTT space (system memory mapped to the device),
2023  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
2024  * can be mapped per VMID.
2025  */
2026 int amdgpu_ttm_init(struct amdgpu_device *adev)
2027 {
2028 	uint64_t gtt_size;
2029 	int r;
2030 
2031 	mutex_init(&adev->mman.gtt_window_lock);
2032 
2033 	dma_set_max_seg_size(adev->dev, UINT_MAX);
2034 	/* No others user of address space so set it to 0 */
2035 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
2036 			       adev_to_drm(adev)->anon_inode->i_mapping,
2037 			       adev_to_drm(adev)->vma_offset_manager,
2038 			       (adev->need_swiotlb ?
2039 				TTM_ALLOCATION_POOL_USE_DMA_ALLOC : 0) |
2040 			       (dma_addressing_limited(adev->dev) ?
2041 				TTM_ALLOCATION_POOL_USE_DMA32 : 0) |
2042 			       TTM_ALLOCATION_POOL_BENEFICIAL_ORDER(get_order(SZ_2M)));
2043 	if (r) {
2044 		dev_err(adev->dev,
2045 			"failed initializing buffer object driver(%d).\n", r);
2046 		return r;
2047 	}
2048 
2049 	r = amdgpu_ttm_pools_init(adev);
2050 	if (r) {
2051 		dev_err(adev->dev, "failed to init ttm pools(%d).\n", r);
2052 		return r;
2053 	}
2054 	adev->mman.initialized = true;
2055 
2056 	if (!adev->gmc.is_app_apu) {
2057 		/* Initialize VRAM pool with all of VRAM divided into pages */
2058 		r = amdgpu_vram_mgr_init(adev);
2059 		if (r) {
2060 			dev_err(adev->dev, "Failed initializing VRAM heap.\n");
2061 			return r;
2062 		}
2063 	}
2064 
2065 	/* Change the size here instead of the init above so only lpfn is affected */
2066 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
2067 #ifdef CONFIG_64BIT
2068 #ifdef CONFIG_X86
2069 	if (adev->gmc.xgmi.connected_to_cpu)
2070 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
2071 				adev->gmc.visible_vram_size);
2072 
2073 	else if (adev->gmc.is_app_apu)
2074 		DRM_DEBUG_DRIVER(
2075 			"No need to ioremap when real vram size is 0\n");
2076 	else
2077 #endif
2078 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
2079 				adev->gmc.visible_vram_size);
2080 #endif
2081 
2082 	/*
2083 	 *The reserved vram for firmware must be pinned to the specified
2084 	 *place on the VRAM, so reserve it early.
2085 	 */
2086 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
2087 	if (r)
2088 		return r;
2089 
2090 	/*
2091 	 * The reserved VRAM for the driver must be pinned to a specific
2092 	 * location in VRAM, so reserve it early.
2093 	 */
2094 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
2095 	if (r)
2096 		return r;
2097 
2098 	/*
2099 	 * only NAVI10 and later ASICs support IP discovery.
2100 	 * If IP discovery is enabled, a block of memory should be
2101 	 * reserved for it.
2102 	 */
2103 	if (adev->discovery.reserve_tmr) {
2104 		r = amdgpu_ttm_reserve_tmr(adev);
2105 		if (r)
2106 			return r;
2107 	}
2108 
2109 	/* allocate memory as required for VGA
2110 	 * This is used for VGA emulation and pre-OS scanout buffers to
2111 	 * avoid display artifacts while transitioning between pre-OS
2112 	 * and driver.
2113 	 */
2114 	if (!adev->gmc.is_app_apu) {
2115 		r = amdgpu_bo_create_kernel_at(adev, 0,
2116 					       adev->mman.stolen_vga_size,
2117 					       &adev->mman.stolen_vga_memory,
2118 					       NULL);
2119 		if (r)
2120 			return r;
2121 
2122 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
2123 					       adev->mman.stolen_extended_size,
2124 					       &adev->mman.stolen_extended_memory,
2125 					       NULL);
2126 
2127 		if (r)
2128 			return r;
2129 
2130 		r = amdgpu_bo_create_kernel_at(adev,
2131 					       adev->mman.stolen_reserved_offset,
2132 					       adev->mman.stolen_reserved_size,
2133 					       &adev->mman.stolen_reserved_memory,
2134 					       NULL);
2135 		if (r)
2136 			return r;
2137 	} else {
2138 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
2139 	}
2140 
2141 	dev_info(adev->dev, " %uM of VRAM memory ready\n",
2142 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
2143 
2144 	/* Compute GTT size, either based on TTM limit
2145 	 * or whatever the user passed on module init.
2146 	 */
2147 	gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
2148 	if (amdgpu_gtt_size != -1) {
2149 		uint64_t configured_size = (uint64_t)amdgpu_gtt_size << 20;
2150 
2151 		drm_warn(&adev->ddev,
2152 			"Configuring gttsize via module parameter is deprecated, please use ttm.pages_limit\n");
2153 		if (gtt_size != configured_size)
2154 			drm_warn(&adev->ddev,
2155 				"GTT size has been set as %llu but TTM size has been set as %llu, this is unusual\n",
2156 				configured_size, gtt_size);
2157 
2158 		gtt_size = configured_size;
2159 	}
2160 
2161 	/* Initialize GTT memory pool */
2162 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
2163 	if (r) {
2164 		dev_err(adev->dev, "Failed initializing GTT heap.\n");
2165 		return r;
2166 	}
2167 	dev_info(adev->dev, " %uM of GTT memory ready.\n",
2168 		 (unsigned int)(gtt_size / (1024 * 1024)));
2169 
2170 	if (adev->flags & AMD_IS_APU) {
2171 		if (adev->gmc.real_vram_size < gtt_size)
2172 			adev->apu_prefer_gtt = true;
2173 	}
2174 
2175 	/* Initialize doorbell pool on PCI BAR */
2176 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
2177 	if (r) {
2178 		dev_err(adev->dev, "Failed initializing doorbell heap.\n");
2179 		return r;
2180 	}
2181 
2182 	/* Create a boorbell page for kernel usages */
2183 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
2184 	if (r) {
2185 		dev_err(adev->dev, "Failed to initialize kernel doorbells.\n");
2186 		return r;
2187 	}
2188 
2189 	/* Initialize MMIO-remap pool (single page 4K) */
2190 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_MMIO_REMAP, 1);
2191 	if (r) {
2192 		dev_err(adev->dev, "Failed initializing MMIO-remap heap.\n");
2193 		return r;
2194 	}
2195 
2196 	/* Allocate the singleton MMIO_REMAP BO if supported */
2197 	r = amdgpu_ttm_alloc_mmio_remap_bo(adev);
2198 	if (r)
2199 		return r;
2200 
2201 	/* Initialize preemptible memory pool */
2202 	r = amdgpu_preempt_mgr_init(adev);
2203 	if (r) {
2204 		dev_err(adev->dev, "Failed initializing PREEMPT heap.\n");
2205 		return r;
2206 	}
2207 
2208 	/* Initialize various on-chip memory pools */
2209 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2210 	if (r) {
2211 		dev_err(adev->dev, "Failed initializing GDS heap.\n");
2212 		return r;
2213 	}
2214 
2215 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2216 	if (r) {
2217 		dev_err(adev->dev, "Failed initializing gws heap.\n");
2218 		return r;
2219 	}
2220 
2221 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2222 	if (r) {
2223 		dev_err(adev->dev, "Failed initializing oa heap.\n");
2224 		return r;
2225 	}
2226 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2227 				AMDGPU_GEM_DOMAIN_GTT,
2228 				&adev->mman.sdma_access_bo, NULL,
2229 				&adev->mman.sdma_access_ptr))
2230 		drm_warn(adev_to_drm(adev),
2231 				"Debug VRAM access will use slowpath MM access\n");
2232 
2233 	return 0;
2234 }
2235 
2236 /*
2237  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2238  */
2239 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2240 {
2241 	int idx;
2242 
2243 	if (!adev->mman.initialized)
2244 		return;
2245 
2246 	amdgpu_ttm_pools_fini(adev);
2247 
2248 	amdgpu_ttm_training_reserve_vram_fini(adev);
2249 	/* return the stolen vga memory back to VRAM */
2250 	if (!adev->gmc.is_app_apu) {
2251 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2252 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2253 		/* return the FW reserved memory back to VRAM */
2254 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2255 				      NULL);
2256 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory_extend, NULL,
2257 				      NULL);
2258 		if (adev->mman.stolen_reserved_size)
2259 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2260 					      NULL, NULL);
2261 	}
2262 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2263 					&adev->mman.sdma_access_ptr);
2264 
2265 	amdgpu_ttm_free_mmio_remap_bo(adev);
2266 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2267 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2268 
2269 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2270 
2271 		if (adev->mman.aper_base_kaddr)
2272 			iounmap(adev->mman.aper_base_kaddr);
2273 		adev->mman.aper_base_kaddr = NULL;
2274 
2275 		drm_dev_exit(idx);
2276 	}
2277 
2278 	if (!adev->gmc.is_app_apu)
2279 		amdgpu_vram_mgr_fini(adev);
2280 	amdgpu_gtt_mgr_fini(adev);
2281 	amdgpu_preempt_mgr_fini(adev);
2282 	amdgpu_doorbell_fini(adev);
2283 
2284 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2285 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2286 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2287 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL);
2288 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_MMIO_REMAP);
2289 	ttm_device_fini(&adev->mman.bdev);
2290 	adev->mman.initialized = false;
2291 	dev_info(adev->dev, " ttm finalized\n");
2292 }
2293 
2294 /**
2295  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2296  *
2297  * @adev: amdgpu_device pointer
2298  * @enable: true when we can use buffer functions.
2299  *
2300  * Enable/disable use of buffer functions during suspend/resume. This should
2301  * only be called at bootup or when userspace isn't running.
2302  */
2303 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2304 {
2305 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2306 	uint64_t size;
2307 	int r;
2308 
2309 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2310 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2311 		return;
2312 
2313 	if (enable) {
2314 		struct amdgpu_ring *ring;
2315 		struct drm_gpu_scheduler *sched;
2316 
2317 		ring = adev->mman.buffer_funcs_ring;
2318 		sched = &ring->sched;
2319 		r = drm_sched_entity_init(&adev->mman.default_entity.base,
2320 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2321 					  1, NULL);
2322 		if (r) {
2323 			dev_err(adev->dev,
2324 				"Failed setting up TTM BO move entity (%d)\n",
2325 				r);
2326 			return;
2327 		}
2328 
2329 		r = drm_sched_entity_init(&adev->mman.clear_entity.base,
2330 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2331 					  1, NULL);
2332 		if (r) {
2333 			dev_err(adev->dev,
2334 				"Failed setting up TTM BO clear entity (%d)\n",
2335 				r);
2336 			goto error_free_entity;
2337 		}
2338 
2339 		r = drm_sched_entity_init(&adev->mman.move_entity.base,
2340 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2341 					  1, NULL);
2342 		if (r) {
2343 			dev_err(adev->dev,
2344 				"Failed setting up TTM BO move entity (%d)\n",
2345 				r);
2346 			drm_sched_entity_destroy(&adev->mman.clear_entity.base);
2347 			goto error_free_entity;
2348 		}
2349 	} else {
2350 		drm_sched_entity_destroy(&adev->mman.default_entity.base);
2351 		drm_sched_entity_destroy(&adev->mman.clear_entity.base);
2352 		drm_sched_entity_destroy(&adev->mman.move_entity.base);
2353 		/* Drop all the old fences since re-creating the scheduler entities
2354 		 * will allocate new contexts.
2355 		 */
2356 		ttm_resource_manager_cleanup(man);
2357 	}
2358 
2359 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2360 	if (enable)
2361 		size = adev->gmc.real_vram_size;
2362 	else
2363 		size = adev->gmc.visible_vram_size;
2364 	man->size = size;
2365 	adev->mman.buffer_funcs_enabled = enable;
2366 
2367 	return;
2368 
2369 error_free_entity:
2370 	drm_sched_entity_destroy(&adev->mman.default_entity.base);
2371 }
2372 
2373 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2374 				  struct amdgpu_ttm_buffer_entity *entity,
2375 				  unsigned int num_dw,
2376 				  struct dma_resv *resv,
2377 				  bool vm_needs_flush,
2378 				  struct amdgpu_job **job,
2379 				  u64 k_job_id)
2380 {
2381 	enum amdgpu_ib_pool_type pool = AMDGPU_IB_POOL_DELAYED;
2382 	int r;
2383 	r = amdgpu_job_alloc_with_ib(adev, &entity->base,
2384 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2385 				     num_dw * 4, pool, job, k_job_id);
2386 	if (r)
2387 		return r;
2388 
2389 	if (vm_needs_flush) {
2390 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2391 							adev->gmc.pdb0_bo :
2392 							adev->gart.bo);
2393 		(*job)->vm_needs_flush = true;
2394 	}
2395 	if (!resv)
2396 		return 0;
2397 
2398 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2399 						   DMA_RESV_USAGE_BOOKKEEP);
2400 }
2401 
2402 int amdgpu_copy_buffer(struct amdgpu_device *adev,
2403 		       struct amdgpu_ttm_buffer_entity *entity,
2404 		       uint64_t src_offset,
2405 		       uint64_t dst_offset, uint32_t byte_count,
2406 		       struct dma_resv *resv,
2407 		       struct dma_fence **fence,
2408 		       bool vm_needs_flush, uint32_t copy_flags)
2409 {
2410 	unsigned int num_loops, num_dw;
2411 	struct amdgpu_ring *ring;
2412 	struct amdgpu_job *job;
2413 	uint32_t max_bytes;
2414 	unsigned int i;
2415 	int r;
2416 
2417 	ring = adev->mman.buffer_funcs_ring;
2418 
2419 	if (!ring->sched.ready) {
2420 		dev_err(adev->dev,
2421 			"Trying to move memory with ring turned off.\n");
2422 		return -EINVAL;
2423 	}
2424 
2425 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2426 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2427 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2428 	r = amdgpu_ttm_prepare_job(adev, entity, num_dw,
2429 				   resv, vm_needs_flush, &job,
2430 				   AMDGPU_KERNEL_JOB_ID_TTM_COPY_BUFFER);
2431 	if (r)
2432 		goto error_free;
2433 
2434 	for (i = 0; i < num_loops; i++) {
2435 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2436 
2437 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2438 					dst_offset, cur_size_in_bytes, copy_flags);
2439 		src_offset += cur_size_in_bytes;
2440 		dst_offset += cur_size_in_bytes;
2441 		byte_count -= cur_size_in_bytes;
2442 	}
2443 
2444 	*fence = amdgpu_ttm_job_submit(adev, job, num_dw);
2445 
2446 	return 0;
2447 
2448 error_free:
2449 	amdgpu_job_free(job);
2450 	dev_err(adev->dev, "Error scheduling IBs (%d)\n", r);
2451 	return r;
2452 }
2453 
2454 static int amdgpu_ttm_fill_mem(struct amdgpu_device *adev,
2455 			       struct amdgpu_ttm_buffer_entity *entity,
2456 			       uint32_t src_data,
2457 			       uint64_t dst_addr, uint32_t byte_count,
2458 			       struct dma_resv *resv,
2459 			       struct dma_fence **fence,
2460 			       bool vm_needs_flush,
2461 			       u64 k_job_id)
2462 {
2463 	unsigned int num_loops, num_dw;
2464 	struct amdgpu_job *job;
2465 	uint32_t max_bytes;
2466 	unsigned int i;
2467 	int r;
2468 
2469 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2470 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2471 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2472 	r = amdgpu_ttm_prepare_job(adev, entity, num_dw, resv,
2473 				   vm_needs_flush, &job, k_job_id);
2474 	if (r)
2475 		return r;
2476 
2477 	for (i = 0; i < num_loops; i++) {
2478 		uint32_t cur_size = min(byte_count, max_bytes);
2479 
2480 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2481 					cur_size);
2482 
2483 		dst_addr += cur_size;
2484 		byte_count -= cur_size;
2485 	}
2486 
2487 	*fence = amdgpu_ttm_job_submit(adev, job, num_dw);
2488 	return 0;
2489 }
2490 
2491 /**
2492  * amdgpu_ttm_clear_buffer - clear memory buffers
2493  * @bo: amdgpu buffer object
2494  * @resv: reservation object
2495  * @fence: dma_fence associated with the operation
2496  *
2497  * Clear the memory buffer resource.
2498  *
2499  * Returns:
2500  * 0 for success or a negative error code on failure.
2501  */
2502 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2503 			    struct dma_resv *resv,
2504 			    struct dma_fence **fence)
2505 {
2506 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2507 	struct amdgpu_res_cursor cursor;
2508 	u64 addr;
2509 	int r = 0;
2510 
2511 	if (!adev->mman.buffer_funcs_enabled)
2512 		return -EINVAL;
2513 
2514 	if (!fence)
2515 		return -EINVAL;
2516 
2517 	*fence = dma_fence_get_stub();
2518 
2519 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2520 
2521 	mutex_lock(&adev->mman.gtt_window_lock);
2522 	while (cursor.remaining) {
2523 		struct dma_fence *next = NULL;
2524 		u64 size;
2525 
2526 		if (amdgpu_res_cleared(&cursor)) {
2527 			amdgpu_res_next(&cursor, cursor.size);
2528 			continue;
2529 		}
2530 
2531 		/* Never clear more than 256MiB at once to avoid timeouts */
2532 		size = min(cursor.size, 256ULL << 20);
2533 
2534 		r = amdgpu_ttm_map_buffer(&adev->mman.clear_entity,
2535 					  &bo->tbo, bo->tbo.resource, &cursor,
2536 					  1, false, &size, &addr);
2537 		if (r)
2538 			goto err;
2539 
2540 		r = amdgpu_ttm_fill_mem(adev, &adev->mman.clear_entity, 0, addr, size, resv,
2541 					&next, true,
2542 					AMDGPU_KERNEL_JOB_ID_TTM_CLEAR_BUFFER);
2543 		if (r)
2544 			goto err;
2545 
2546 		dma_fence_put(*fence);
2547 		*fence = next;
2548 
2549 		amdgpu_res_next(&cursor, size);
2550 	}
2551 err:
2552 	mutex_unlock(&adev->mman.gtt_window_lock);
2553 
2554 	return r;
2555 }
2556 
2557 int amdgpu_fill_buffer(struct amdgpu_ttm_buffer_entity *entity,
2558 		       struct amdgpu_bo *bo,
2559 		       uint32_t src_data,
2560 		       struct dma_resv *resv,
2561 		       struct dma_fence **f,
2562 		       u64 k_job_id)
2563 {
2564 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2565 	struct dma_fence *fence = NULL;
2566 	struct amdgpu_res_cursor dst;
2567 	int r;
2568 
2569 	if (!adev->mman.buffer_funcs_enabled) {
2570 		dev_err(adev->dev,
2571 			"Trying to clear memory with ring turned off.\n");
2572 		return -EINVAL;
2573 	}
2574 
2575 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2576 
2577 	mutex_lock(&adev->mman.gtt_window_lock);
2578 	while (dst.remaining) {
2579 		struct dma_fence *next;
2580 		uint64_t cur_size, to;
2581 
2582 		/* Never fill more than 256MiB at once to avoid timeouts */
2583 		cur_size = min(dst.size, 256ULL << 20);
2584 
2585 		r = amdgpu_ttm_map_buffer(entity, &bo->tbo, bo->tbo.resource, &dst,
2586 					  1, false, &cur_size, &to);
2587 		if (r)
2588 			goto error;
2589 
2590 		r = amdgpu_ttm_fill_mem(adev, entity,
2591 					src_data, to, cur_size, resv,
2592 					&next, true, k_job_id);
2593 		if (r)
2594 			goto error;
2595 
2596 		dma_fence_put(fence);
2597 		fence = next;
2598 
2599 		amdgpu_res_next(&dst, cur_size);
2600 	}
2601 error:
2602 	mutex_unlock(&adev->mman.gtt_window_lock);
2603 	if (f)
2604 		*f = dma_fence_get(fence);
2605 	dma_fence_put(fence);
2606 	return r;
2607 }
2608 
2609 /**
2610  * amdgpu_ttm_evict_resources - evict memory buffers
2611  * @adev: amdgpu device object
2612  * @mem_type: evicted BO's memory type
2613  *
2614  * Evicts all @mem_type buffers on the lru list of the memory type.
2615  *
2616  * Returns:
2617  * 0 for success or a negative error code on failure.
2618  */
2619 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2620 {
2621 	struct ttm_resource_manager *man;
2622 
2623 	switch (mem_type) {
2624 	case TTM_PL_VRAM:
2625 	case TTM_PL_TT:
2626 	case AMDGPU_PL_GWS:
2627 	case AMDGPU_PL_GDS:
2628 	case AMDGPU_PL_OA:
2629 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2630 		break;
2631 	default:
2632 		dev_err(adev->dev, "Trying to evict invalid memory type\n");
2633 		return -EINVAL;
2634 	}
2635 
2636 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2637 }
2638 
2639 #if defined(CONFIG_DEBUG_FS)
2640 
2641 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2642 {
2643 	struct amdgpu_device *adev = m->private;
2644 
2645 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2646 }
2647 
2648 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2649 
2650 /*
2651  * amdgpu_ttm_vram_read - Linear read access to VRAM
2652  *
2653  * Accesses VRAM via MMIO for debugging purposes.
2654  */
2655 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2656 				    size_t size, loff_t *pos)
2657 {
2658 	struct amdgpu_device *adev = file_inode(f)->i_private;
2659 	ssize_t result = 0;
2660 
2661 	if (size & 0x3 || *pos & 0x3)
2662 		return -EINVAL;
2663 
2664 	if (*pos >= adev->gmc.mc_vram_size)
2665 		return -ENXIO;
2666 
2667 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2668 	while (size) {
2669 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2670 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2671 
2672 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2673 		if (copy_to_user(buf, value, bytes))
2674 			return -EFAULT;
2675 
2676 		result += bytes;
2677 		buf += bytes;
2678 		*pos += bytes;
2679 		size -= bytes;
2680 	}
2681 
2682 	return result;
2683 }
2684 
2685 /*
2686  * amdgpu_ttm_vram_write - Linear write access to VRAM
2687  *
2688  * Accesses VRAM via MMIO for debugging purposes.
2689  */
2690 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2691 				    size_t size, loff_t *pos)
2692 {
2693 	struct amdgpu_device *adev = file_inode(f)->i_private;
2694 	ssize_t result = 0;
2695 	int r;
2696 
2697 	if (size & 0x3 || *pos & 0x3)
2698 		return -EINVAL;
2699 
2700 	if (*pos >= adev->gmc.mc_vram_size)
2701 		return -ENXIO;
2702 
2703 	while (size) {
2704 		uint32_t value;
2705 
2706 		if (*pos >= adev->gmc.mc_vram_size)
2707 			return result;
2708 
2709 		r = get_user(value, (uint32_t *)buf);
2710 		if (r)
2711 			return r;
2712 
2713 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2714 
2715 		result += 4;
2716 		buf += 4;
2717 		*pos += 4;
2718 		size -= 4;
2719 	}
2720 
2721 	return result;
2722 }
2723 
2724 static const struct file_operations amdgpu_ttm_vram_fops = {
2725 	.owner = THIS_MODULE,
2726 	.read = amdgpu_ttm_vram_read,
2727 	.write = amdgpu_ttm_vram_write,
2728 	.llseek = default_llseek,
2729 };
2730 
2731 /*
2732  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2733  *
2734  * This function is used to read memory that has been mapped to the
2735  * GPU and the known addresses are not physical addresses but instead
2736  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2737  */
2738 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2739 				 size_t size, loff_t *pos)
2740 {
2741 	struct amdgpu_device *adev = file_inode(f)->i_private;
2742 	struct iommu_domain *dom;
2743 	ssize_t result = 0;
2744 	int r;
2745 
2746 	/* retrieve the IOMMU domain if any for this device */
2747 	dom = iommu_get_domain_for_dev(adev->dev);
2748 
2749 	while (size) {
2750 		phys_addr_t addr = *pos & PAGE_MASK;
2751 		loff_t off = *pos & ~PAGE_MASK;
2752 		size_t bytes = PAGE_SIZE - off;
2753 		unsigned long pfn;
2754 		struct page *p;
2755 		void *ptr;
2756 
2757 		bytes = min(bytes, size);
2758 
2759 		/* Translate the bus address to a physical address.  If
2760 		 * the domain is NULL it means there is no IOMMU active
2761 		 * and the address translation is the identity
2762 		 */
2763 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2764 
2765 		pfn = addr >> PAGE_SHIFT;
2766 		if (!pfn_valid(pfn))
2767 			return -EPERM;
2768 
2769 		p = pfn_to_page(pfn);
2770 		if (p->mapping != adev->mman.bdev.dev_mapping)
2771 			return -EPERM;
2772 
2773 		ptr = kmap_local_page(p);
2774 		r = copy_to_user(buf, ptr + off, bytes);
2775 		kunmap_local(ptr);
2776 		if (r)
2777 			return -EFAULT;
2778 
2779 		size -= bytes;
2780 		*pos += bytes;
2781 		result += bytes;
2782 	}
2783 
2784 	return result;
2785 }
2786 
2787 /*
2788  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2789  *
2790  * This function is used to write memory that has been mapped to the
2791  * GPU and the known addresses are not physical addresses but instead
2792  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2793  */
2794 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2795 				 size_t size, loff_t *pos)
2796 {
2797 	struct amdgpu_device *adev = file_inode(f)->i_private;
2798 	struct iommu_domain *dom;
2799 	ssize_t result = 0;
2800 	int r;
2801 
2802 	dom = iommu_get_domain_for_dev(adev->dev);
2803 
2804 	while (size) {
2805 		phys_addr_t addr = *pos & PAGE_MASK;
2806 		loff_t off = *pos & ~PAGE_MASK;
2807 		size_t bytes = PAGE_SIZE - off;
2808 		unsigned long pfn;
2809 		struct page *p;
2810 		void *ptr;
2811 
2812 		bytes = min(bytes, size);
2813 
2814 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2815 
2816 		pfn = addr >> PAGE_SHIFT;
2817 		if (!pfn_valid(pfn))
2818 			return -EPERM;
2819 
2820 		p = pfn_to_page(pfn);
2821 		if (p->mapping != adev->mman.bdev.dev_mapping)
2822 			return -EPERM;
2823 
2824 		ptr = kmap_local_page(p);
2825 		r = copy_from_user(ptr + off, buf, bytes);
2826 		kunmap_local(ptr);
2827 		if (r)
2828 			return -EFAULT;
2829 
2830 		size -= bytes;
2831 		*pos += bytes;
2832 		result += bytes;
2833 	}
2834 
2835 	return result;
2836 }
2837 
2838 static const struct file_operations amdgpu_ttm_iomem_fops = {
2839 	.owner = THIS_MODULE,
2840 	.read = amdgpu_iomem_read,
2841 	.write = amdgpu_iomem_write,
2842 	.llseek = default_llseek
2843 };
2844 
2845 #endif
2846 
2847 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2848 {
2849 #if defined(CONFIG_DEBUG_FS)
2850 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2851 	struct dentry *root = minor->debugfs_root;
2852 
2853 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2854 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2855 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2856 			    &amdgpu_ttm_iomem_fops);
2857 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2858 			    &amdgpu_ttm_page_pool_fops);
2859 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2860 							     TTM_PL_VRAM),
2861 					    root, "amdgpu_vram_mm");
2862 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2863 							     TTM_PL_TT),
2864 					    root, "amdgpu_gtt_mm");
2865 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2866 							     AMDGPU_PL_GDS),
2867 					    root, "amdgpu_gds_mm");
2868 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2869 							     AMDGPU_PL_GWS),
2870 					    root, "amdgpu_gws_mm");
2871 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2872 							     AMDGPU_PL_OA),
2873 					    root, "amdgpu_oa_mm");
2874 
2875 #endif
2876 }
2877