1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS("DMA_BUF"); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job, 230 AMDGPU_KERNEL_JOB_ID_TTM_MAP_BUFFER); 231 if (r) 232 return r; 233 234 src_addr = num_dw * 4; 235 src_addr += job->ibs[0].gpu_addr; 236 237 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 238 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 239 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 240 dst_addr, num_bytes, 0); 241 242 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 243 WARN_ON(job->ibs[0].length_dw > num_dw); 244 245 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 246 if (tmz) 247 flags |= AMDGPU_PTE_TMZ; 248 249 cpu_addr = &job->ibs[0].ptr[num_dw]; 250 251 if (mem->mem_type == TTM_PL_TT) { 252 dma_addr_t *dma_addr; 253 254 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 255 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 256 } else { 257 dma_addr_t dma_address; 258 259 dma_address = mm_cur->start; 260 dma_address += adev->vm_manager.vram_base_offset; 261 262 for (i = 0; i < num_pages; ++i) { 263 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 264 flags, cpu_addr); 265 dma_address += PAGE_SIZE; 266 } 267 } 268 269 dma_fence_put(amdgpu_job_submit(job)); 270 return 0; 271 } 272 273 /** 274 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 275 * @adev: amdgpu device 276 * @src: buffer/address where to read from 277 * @dst: buffer/address where to write to 278 * @size: number of bytes to copy 279 * @tmz: if a secure copy should be used 280 * @resv: resv object to sync to 281 * @f: Returns the last fence if multiple jobs are submitted. 282 * 283 * The function copies @size bytes from {src->mem + src->offset} to 284 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 285 * move and different for a BO to BO copy. 286 * 287 */ 288 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 289 const struct amdgpu_copy_mem *src, 290 const struct amdgpu_copy_mem *dst, 291 uint64_t size, bool tmz, 292 struct dma_resv *resv, 293 struct dma_fence **f) 294 { 295 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 296 struct amdgpu_res_cursor src_mm, dst_mm; 297 struct dma_fence *fence = NULL; 298 int r = 0; 299 uint32_t copy_flags = 0; 300 struct amdgpu_bo *abo_src, *abo_dst; 301 302 if (!adev->mman.buffer_funcs_enabled) { 303 dev_err(adev->dev, 304 "Trying to move memory with ring turned off.\n"); 305 return -EINVAL; 306 } 307 308 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 309 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 310 311 mutex_lock(&adev->mman.gtt_window_lock); 312 while (src_mm.remaining) { 313 uint64_t from, to, cur_size, tiling_flags; 314 uint32_t num_type, data_format, max_com, write_compress_disable; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 abo_src = ttm_to_amdgpu_bo(src->bo); 332 abo_dst = ttm_to_amdgpu_bo(dst->bo); 333 if (tmz) 334 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 335 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 336 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM)) 337 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED; 338 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 339 (dst->mem->mem_type == TTM_PL_VRAM)) { 340 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED; 341 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags); 342 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK); 343 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE); 344 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT); 345 write_compress_disable = 346 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE); 347 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) | 348 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) | 349 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) | 350 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE, 351 write_compress_disable)); 352 } 353 354 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 355 &next, false, true, copy_flags); 356 if (r) 357 goto error; 358 359 dma_fence_put(fence); 360 fence = next; 361 362 amdgpu_res_next(&src_mm, cur_size); 363 amdgpu_res_next(&dst_mm, cur_size); 364 } 365 error: 366 mutex_unlock(&adev->mman.gtt_window_lock); 367 if (f) 368 *f = dma_fence_get(fence); 369 dma_fence_put(fence); 370 return r; 371 } 372 373 /* 374 * amdgpu_move_blit - Copy an entire buffer to another buffer 375 * 376 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 377 * help move buffers to and from VRAM. 378 */ 379 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 380 bool evict, 381 struct ttm_resource *new_mem, 382 struct ttm_resource *old_mem) 383 { 384 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 385 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 386 struct amdgpu_copy_mem src, dst; 387 struct dma_fence *fence = NULL; 388 int r; 389 390 src.bo = bo; 391 dst.bo = bo; 392 src.mem = old_mem; 393 dst.mem = new_mem; 394 src.offset = 0; 395 dst.offset = 0; 396 397 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 398 new_mem->size, 399 amdgpu_bo_encrypted(abo), 400 bo->base.resv, &fence); 401 if (r) 402 goto error; 403 404 /* clear the space being freed */ 405 if (old_mem->mem_type == TTM_PL_VRAM && 406 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 407 struct dma_fence *wipe_fence = NULL; 408 409 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 410 false, AMDGPU_KERNEL_JOB_ID_MOVE_BLIT); 411 if (r) { 412 goto error; 413 } else if (wipe_fence) { 414 amdgpu_vram_mgr_set_cleared(bo->resource); 415 dma_fence_put(fence); 416 fence = wipe_fence; 417 } 418 } 419 420 /* Always block for VM page tables before committing the new location */ 421 if (bo->type == ttm_bo_type_kernel) 422 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 423 else 424 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 425 dma_fence_put(fence); 426 return r; 427 428 error: 429 if (fence) 430 dma_fence_wait(fence, false); 431 dma_fence_put(fence); 432 return r; 433 } 434 435 /** 436 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 437 * @adev: amdgpu device 438 * @res: the resource to check 439 * 440 * Returns: true if the full resource is CPU visible, false otherwise. 441 */ 442 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 443 struct ttm_resource *res) 444 { 445 struct amdgpu_res_cursor cursor; 446 447 if (!res) 448 return false; 449 450 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 451 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 452 return true; 453 454 if (res->mem_type != TTM_PL_VRAM) 455 return false; 456 457 amdgpu_res_first(res, 0, res->size, &cursor); 458 while (cursor.remaining) { 459 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 460 return false; 461 amdgpu_res_next(&cursor, cursor.size); 462 } 463 464 return true; 465 } 466 467 /* 468 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 469 * 470 * Called by amdgpu_bo_move() 471 */ 472 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 473 struct ttm_resource *mem) 474 { 475 if (!amdgpu_res_cpu_visible(adev, mem)) 476 return false; 477 478 /* ttm_resource_ioremap only supports contiguous memory */ 479 if (mem->mem_type == TTM_PL_VRAM && 480 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 481 return false; 482 483 return true; 484 } 485 486 /* 487 * amdgpu_bo_move - Move a buffer object to a new memory location 488 * 489 * Called by ttm_bo_handle_move_mem() 490 */ 491 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 492 struct ttm_operation_ctx *ctx, 493 struct ttm_resource *new_mem, 494 struct ttm_place *hop) 495 { 496 struct amdgpu_device *adev; 497 struct amdgpu_bo *abo; 498 struct ttm_resource *old_mem = bo->resource; 499 int r; 500 501 if (new_mem->mem_type == TTM_PL_TT || 502 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 503 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 504 if (r) 505 return r; 506 } 507 508 abo = ttm_to_amdgpu_bo(bo); 509 adev = amdgpu_ttm_adev(bo->bdev); 510 511 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 512 bo->ttm == NULL)) { 513 amdgpu_bo_move_notify(bo, evict, new_mem); 514 ttm_bo_move_null(bo, new_mem); 515 return 0; 516 } 517 if (old_mem->mem_type == TTM_PL_SYSTEM && 518 (new_mem->mem_type == TTM_PL_TT || 519 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 520 amdgpu_bo_move_notify(bo, evict, new_mem); 521 ttm_bo_move_null(bo, new_mem); 522 return 0; 523 } 524 if ((old_mem->mem_type == TTM_PL_TT || 525 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 526 new_mem->mem_type == TTM_PL_SYSTEM) { 527 r = ttm_bo_wait_ctx(bo, ctx); 528 if (r) 529 return r; 530 531 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 532 amdgpu_bo_move_notify(bo, evict, new_mem); 533 ttm_resource_free(bo, &bo->resource); 534 ttm_bo_assign_mem(bo, new_mem); 535 return 0; 536 } 537 538 if (old_mem->mem_type == AMDGPU_PL_GDS || 539 old_mem->mem_type == AMDGPU_PL_GWS || 540 old_mem->mem_type == AMDGPU_PL_OA || 541 old_mem->mem_type == AMDGPU_PL_DOORBELL || 542 new_mem->mem_type == AMDGPU_PL_GDS || 543 new_mem->mem_type == AMDGPU_PL_GWS || 544 new_mem->mem_type == AMDGPU_PL_OA || 545 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 546 /* Nothing to save here */ 547 amdgpu_bo_move_notify(bo, evict, new_mem); 548 ttm_bo_move_null(bo, new_mem); 549 return 0; 550 } 551 552 if (bo->type == ttm_bo_type_device && 553 new_mem->mem_type == TTM_PL_VRAM && 554 old_mem->mem_type != TTM_PL_VRAM) { 555 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 556 * accesses the BO after it's moved. 557 */ 558 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 559 } 560 561 if (adev->mman.buffer_funcs_enabled && 562 ((old_mem->mem_type == TTM_PL_SYSTEM && 563 new_mem->mem_type == TTM_PL_VRAM) || 564 (old_mem->mem_type == TTM_PL_VRAM && 565 new_mem->mem_type == TTM_PL_SYSTEM))) { 566 hop->fpfn = 0; 567 hop->lpfn = 0; 568 hop->mem_type = TTM_PL_TT; 569 hop->flags = TTM_PL_FLAG_TEMPORARY; 570 return -EMULTIHOP; 571 } 572 573 amdgpu_bo_move_notify(bo, evict, new_mem); 574 if (adev->mman.buffer_funcs_enabled) 575 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 576 else 577 r = -ENODEV; 578 579 if (r) { 580 /* Check that all memory is CPU accessible */ 581 if (!amdgpu_res_copyable(adev, old_mem) || 582 !amdgpu_res_copyable(adev, new_mem)) { 583 pr_err("Move buffer fallback to memcpy unavailable\n"); 584 return r; 585 } 586 587 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 588 if (r) 589 return r; 590 } 591 592 /* update statistics after the move */ 593 if (evict) 594 atomic64_inc(&adev->num_evictions); 595 atomic64_add(bo->base.size, &adev->num_bytes_moved); 596 return 0; 597 } 598 599 /* 600 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 601 * 602 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 603 */ 604 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 605 struct ttm_resource *mem) 606 { 607 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 608 609 switch (mem->mem_type) { 610 case TTM_PL_SYSTEM: 611 /* system memory */ 612 return 0; 613 case TTM_PL_TT: 614 case AMDGPU_PL_PREEMPT: 615 break; 616 case TTM_PL_VRAM: 617 mem->bus.offset = mem->start << PAGE_SHIFT; 618 619 if (adev->mman.aper_base_kaddr && 620 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 621 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 622 mem->bus.offset; 623 624 mem->bus.offset += adev->gmc.aper_base; 625 mem->bus.is_iomem = true; 626 break; 627 case AMDGPU_PL_DOORBELL: 628 mem->bus.offset = mem->start << PAGE_SHIFT; 629 mem->bus.offset += adev->doorbell.base; 630 mem->bus.is_iomem = true; 631 mem->bus.caching = ttm_uncached; 632 break; 633 default: 634 return -EINVAL; 635 } 636 return 0; 637 } 638 639 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 640 unsigned long page_offset) 641 { 642 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 643 struct amdgpu_res_cursor cursor; 644 645 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 646 &cursor); 647 648 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 649 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 650 651 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 652 } 653 654 /** 655 * amdgpu_ttm_domain_start - Returns GPU start address 656 * @adev: amdgpu device object 657 * @type: type of the memory 658 * 659 * Returns: 660 * GPU start address of a memory domain 661 */ 662 663 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 664 { 665 switch (type) { 666 case TTM_PL_TT: 667 return adev->gmc.gart_start; 668 case TTM_PL_VRAM: 669 return adev->gmc.vram_start; 670 } 671 672 return 0; 673 } 674 675 /* 676 * TTM backend functions. 677 */ 678 struct amdgpu_ttm_tt { 679 struct ttm_tt ttm; 680 struct drm_gem_object *gobj; 681 u64 offset; 682 uint64_t userptr; 683 struct task_struct *usertask; 684 uint32_t userflags; 685 bool bound; 686 int32_t pool_id; 687 }; 688 689 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 690 691 #ifdef CONFIG_DRM_AMDGPU_USERPTR 692 /* 693 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 694 * memory and start HMM tracking CPU page table update 695 * 696 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 697 * once afterwards to stop HMM tracking 698 */ 699 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 700 struct hmm_range **range) 701 { 702 struct ttm_tt *ttm = bo->tbo.ttm; 703 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 704 unsigned long start = gtt->userptr; 705 struct vm_area_struct *vma; 706 struct mm_struct *mm; 707 bool readonly; 708 int r = 0; 709 710 /* Make sure get_user_pages_done() can cleanup gracefully */ 711 *range = NULL; 712 713 mm = bo->notifier.mm; 714 if (unlikely(!mm)) { 715 DRM_DEBUG_DRIVER("BO is not registered?\n"); 716 return -EFAULT; 717 } 718 719 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 720 return -ESRCH; 721 722 mmap_read_lock(mm); 723 vma = vma_lookup(mm, start); 724 if (unlikely(!vma)) { 725 r = -EFAULT; 726 goto out_unlock; 727 } 728 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 729 vma->vm_file)) { 730 r = -EPERM; 731 goto out_unlock; 732 } 733 734 readonly = amdgpu_ttm_tt_is_readonly(ttm); 735 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 736 readonly, NULL, pages, range); 737 out_unlock: 738 mmap_read_unlock(mm); 739 if (r) 740 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 741 742 mmput(mm); 743 744 return r; 745 } 746 747 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 748 */ 749 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 750 struct hmm_range *range) 751 { 752 struct amdgpu_ttm_tt *gtt = (void *)ttm; 753 754 if (gtt && gtt->userptr && range) 755 amdgpu_hmm_range_get_pages_done(range); 756 } 757 758 /* 759 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 760 * Check if the pages backing this ttm range have been invalidated 761 * 762 * Returns: true if pages are still valid 763 */ 764 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 765 struct hmm_range *range) 766 { 767 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 768 769 if (!gtt || !gtt->userptr || !range) 770 return false; 771 772 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 773 gtt->userptr, ttm->num_pages); 774 775 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 776 777 return !amdgpu_hmm_range_get_pages_done(range); 778 } 779 #endif 780 781 /* 782 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 783 * 784 * Called by amdgpu_cs_list_validate(). This creates the page list 785 * that backs user memory and will ultimately be mapped into the device 786 * address space. 787 */ 788 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 789 { 790 unsigned long i; 791 792 for (i = 0; i < ttm->num_pages; ++i) 793 ttm->pages[i] = pages ? pages[i] : NULL; 794 } 795 796 /* 797 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 798 * 799 * Called by amdgpu_ttm_backend_bind() 800 **/ 801 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 802 struct ttm_tt *ttm) 803 { 804 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 805 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 806 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 807 enum dma_data_direction direction = write ? 808 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 809 int r; 810 811 /* Allocate an SG array and squash pages into it */ 812 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 813 (u64)ttm->num_pages << PAGE_SHIFT, 814 GFP_KERNEL); 815 if (r) 816 goto release_sg; 817 818 /* Map SG to device */ 819 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 820 if (r) 821 goto release_sg_table; 822 823 /* convert SG to linear array of pages and dma addresses */ 824 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 825 ttm->num_pages); 826 827 return 0; 828 829 release_sg_table: 830 sg_free_table(ttm->sg); 831 release_sg: 832 kfree(ttm->sg); 833 ttm->sg = NULL; 834 return r; 835 } 836 837 /* 838 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 839 */ 840 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 841 struct ttm_tt *ttm) 842 { 843 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 844 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 845 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 846 enum dma_data_direction direction = write ? 847 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 848 849 /* double check that we don't free the table twice */ 850 if (!ttm->sg || !ttm->sg->sgl) 851 return; 852 853 /* unmap the pages mapped to the device */ 854 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 855 sg_free_table(ttm->sg); 856 } 857 858 /* 859 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 860 * MQDn+CtrlStackn where n is the number of XCCs per partition. 861 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 862 * and uses memory type default, UC. The rest of pages_per_xcc are 863 * Ctrl stack and modify their memory type to NC. 864 */ 865 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 866 struct ttm_tt *ttm, uint64_t flags) 867 { 868 struct amdgpu_ttm_tt *gtt = (void *)ttm; 869 uint64_t total_pages = ttm->num_pages; 870 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 871 uint64_t page_idx, pages_per_xcc; 872 int i; 873 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC); 874 875 pages_per_xcc = total_pages; 876 do_div(pages_per_xcc, num_xcc); 877 878 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 879 /* MQD page: use default flags */ 880 amdgpu_gart_bind(adev, 881 gtt->offset + (page_idx << PAGE_SHIFT), 882 1, >t->ttm.dma_address[page_idx], flags); 883 /* 884 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 885 * the second page of the BO onward. 886 */ 887 amdgpu_gart_bind(adev, 888 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 889 pages_per_xcc - 1, 890 >t->ttm.dma_address[page_idx + 1], 891 ctrl_flags); 892 } 893 } 894 895 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 896 struct ttm_buffer_object *tbo, 897 uint64_t flags) 898 { 899 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 900 struct ttm_tt *ttm = tbo->ttm; 901 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 902 903 if (amdgpu_bo_encrypted(abo)) 904 flags |= AMDGPU_PTE_TMZ; 905 906 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 907 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 908 } else { 909 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 910 gtt->ttm.dma_address, flags); 911 } 912 gtt->bound = true; 913 } 914 915 /* 916 * amdgpu_ttm_backend_bind - Bind GTT memory 917 * 918 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 919 * This handles binding GTT memory to the device address space. 920 */ 921 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 922 struct ttm_tt *ttm, 923 struct ttm_resource *bo_mem) 924 { 925 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 926 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 927 uint64_t flags; 928 int r; 929 930 if (!bo_mem) 931 return -EINVAL; 932 933 if (gtt->bound) 934 return 0; 935 936 if (gtt->userptr) { 937 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 938 if (r) { 939 dev_err(adev->dev, "failed to pin userptr\n"); 940 return r; 941 } 942 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 943 if (!ttm->sg) { 944 struct dma_buf_attachment *attach; 945 struct sg_table *sgt; 946 947 attach = gtt->gobj->import_attach; 948 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 949 if (IS_ERR(sgt)) 950 return PTR_ERR(sgt); 951 952 ttm->sg = sgt; 953 } 954 955 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 956 ttm->num_pages); 957 } 958 959 if (!ttm->num_pages) { 960 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 961 ttm->num_pages, bo_mem, ttm); 962 } 963 964 if (bo_mem->mem_type != TTM_PL_TT || 965 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 966 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 967 return 0; 968 } 969 970 /* compute PTE flags relevant to this BO memory */ 971 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 972 973 /* bind pages into GART page tables */ 974 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 975 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 976 gtt->ttm.dma_address, flags); 977 gtt->bound = true; 978 return 0; 979 } 980 981 /* 982 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 983 * through AGP or GART aperture. 984 * 985 * If bo is accessible through AGP aperture, then use AGP aperture 986 * to access bo; otherwise allocate logical space in GART aperture 987 * and map bo to GART aperture. 988 */ 989 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 990 { 991 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 992 struct ttm_operation_ctx ctx = { false, false }; 993 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 994 struct ttm_placement placement; 995 struct ttm_place placements; 996 struct ttm_resource *tmp; 997 uint64_t addr, flags; 998 int r; 999 1000 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 1001 return 0; 1002 1003 addr = amdgpu_gmc_agp_addr(bo); 1004 if (addr != AMDGPU_BO_INVALID_OFFSET) 1005 return 0; 1006 1007 /* allocate GART space */ 1008 placement.num_placement = 1; 1009 placement.placement = &placements; 1010 placements.fpfn = 0; 1011 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1012 placements.mem_type = TTM_PL_TT; 1013 placements.flags = bo->resource->placement; 1014 1015 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1016 if (unlikely(r)) 1017 return r; 1018 1019 /* compute PTE flags for this buffer object */ 1020 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 1021 1022 /* Bind pages */ 1023 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1024 amdgpu_ttm_gart_bind(adev, bo, flags); 1025 amdgpu_gart_invalidate_tlb(adev); 1026 ttm_resource_free(bo, &bo->resource); 1027 ttm_bo_assign_mem(bo, tmp); 1028 1029 return 0; 1030 } 1031 1032 /* 1033 * amdgpu_ttm_recover_gart - Rebind GTT pages 1034 * 1035 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1036 * rebind GTT pages during a GPU reset. 1037 */ 1038 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1039 { 1040 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1041 uint64_t flags; 1042 1043 if (!tbo->ttm) 1044 return; 1045 1046 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1047 amdgpu_ttm_gart_bind(adev, tbo, flags); 1048 } 1049 1050 /* 1051 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1052 * 1053 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1054 * ttm_tt_destroy(). 1055 */ 1056 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1057 struct ttm_tt *ttm) 1058 { 1059 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1060 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1061 1062 /* if the pages have userptr pinning then clear that first */ 1063 if (gtt->userptr) { 1064 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1065 } else if (ttm->sg && drm_gem_is_imported(gtt->gobj)) { 1066 struct dma_buf_attachment *attach; 1067 1068 attach = gtt->gobj->import_attach; 1069 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1070 ttm->sg = NULL; 1071 } 1072 1073 if (!gtt->bound) 1074 return; 1075 1076 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1077 return; 1078 1079 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1080 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1081 gtt->bound = false; 1082 } 1083 1084 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1085 struct ttm_tt *ttm) 1086 { 1087 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1088 1089 if (gtt->usertask) 1090 put_task_struct(gtt->usertask); 1091 1092 ttm_tt_fini(>t->ttm); 1093 kfree(gtt); 1094 } 1095 1096 /** 1097 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1098 * 1099 * @bo: The buffer object to create a GTT ttm_tt object around 1100 * @page_flags: Page flags to be added to the ttm_tt object 1101 * 1102 * Called by ttm_tt_create(). 1103 */ 1104 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1105 uint32_t page_flags) 1106 { 1107 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1108 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1109 struct amdgpu_ttm_tt *gtt; 1110 enum ttm_caching caching; 1111 1112 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1113 if (!gtt) 1114 return NULL; 1115 1116 gtt->gobj = &bo->base; 1117 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1118 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1119 else 1120 gtt->pool_id = abo->xcp_id; 1121 1122 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1123 caching = ttm_write_combined; 1124 else 1125 caching = ttm_cached; 1126 1127 /* allocate space for the uninitialized page entries */ 1128 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1129 kfree(gtt); 1130 return NULL; 1131 } 1132 return >t->ttm; 1133 } 1134 1135 /* 1136 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1137 * 1138 * Map the pages of a ttm_tt object to an address space visible 1139 * to the underlying device. 1140 */ 1141 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1142 struct ttm_tt *ttm, 1143 struct ttm_operation_ctx *ctx) 1144 { 1145 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1146 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1147 struct ttm_pool *pool; 1148 pgoff_t i; 1149 int ret; 1150 1151 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1152 if (gtt->userptr) { 1153 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1154 if (!ttm->sg) 1155 return -ENOMEM; 1156 return 0; 1157 } 1158 1159 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1160 return 0; 1161 1162 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1163 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1164 else 1165 pool = &adev->mman.bdev.pool; 1166 ret = ttm_pool_alloc(pool, ttm, ctx); 1167 if (ret) 1168 return ret; 1169 1170 for (i = 0; i < ttm->num_pages; ++i) 1171 ttm->pages[i]->mapping = bdev->dev_mapping; 1172 1173 return 0; 1174 } 1175 1176 /* 1177 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1178 * 1179 * Unmaps pages of a ttm_tt object from the device address space and 1180 * unpopulates the page array backing it. 1181 */ 1182 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1183 struct ttm_tt *ttm) 1184 { 1185 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1186 struct amdgpu_device *adev; 1187 struct ttm_pool *pool; 1188 pgoff_t i; 1189 1190 amdgpu_ttm_backend_unbind(bdev, ttm); 1191 1192 if (gtt->userptr) { 1193 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1194 kfree(ttm->sg); 1195 ttm->sg = NULL; 1196 return; 1197 } 1198 1199 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1200 return; 1201 1202 for (i = 0; i < ttm->num_pages; ++i) 1203 ttm->pages[i]->mapping = NULL; 1204 1205 adev = amdgpu_ttm_adev(bdev); 1206 1207 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1208 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1209 else 1210 pool = &adev->mman.bdev.pool; 1211 1212 return ttm_pool_free(pool, ttm); 1213 } 1214 1215 /** 1216 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1217 * task 1218 * 1219 * @tbo: The ttm_buffer_object that contains the userptr 1220 * @user_addr: The returned value 1221 */ 1222 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1223 uint64_t *user_addr) 1224 { 1225 struct amdgpu_ttm_tt *gtt; 1226 1227 if (!tbo->ttm) 1228 return -EINVAL; 1229 1230 gtt = (void *)tbo->ttm; 1231 *user_addr = gtt->userptr; 1232 return 0; 1233 } 1234 1235 /** 1236 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1237 * task 1238 * 1239 * @bo: The ttm_buffer_object to bind this userptr to 1240 * @addr: The address in the current tasks VM space to use 1241 * @flags: Requirements of userptr object. 1242 * 1243 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1244 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1245 * initialize GPU VM for a KFD process. 1246 */ 1247 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1248 uint64_t addr, uint32_t flags) 1249 { 1250 struct amdgpu_ttm_tt *gtt; 1251 1252 if (!bo->ttm) { 1253 /* TODO: We want a separate TTM object type for userptrs */ 1254 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1255 if (bo->ttm == NULL) 1256 return -ENOMEM; 1257 } 1258 1259 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1260 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1261 1262 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1263 gtt->userptr = addr; 1264 gtt->userflags = flags; 1265 1266 if (gtt->usertask) 1267 put_task_struct(gtt->usertask); 1268 gtt->usertask = current->group_leader; 1269 get_task_struct(gtt->usertask); 1270 1271 return 0; 1272 } 1273 1274 /* 1275 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1276 */ 1277 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1278 { 1279 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1280 1281 if (gtt == NULL) 1282 return NULL; 1283 1284 if (gtt->usertask == NULL) 1285 return NULL; 1286 1287 return gtt->usertask->mm; 1288 } 1289 1290 /* 1291 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1292 * address range for the current task. 1293 * 1294 */ 1295 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1296 unsigned long end, unsigned long *userptr) 1297 { 1298 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1299 unsigned long size; 1300 1301 if (gtt == NULL || !gtt->userptr) 1302 return false; 1303 1304 /* Return false if no part of the ttm_tt object lies within 1305 * the range 1306 */ 1307 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1308 if (gtt->userptr > end || gtt->userptr + size <= start) 1309 return false; 1310 1311 if (userptr) 1312 *userptr = gtt->userptr; 1313 return true; 1314 } 1315 1316 /* 1317 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1318 */ 1319 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1320 { 1321 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1322 1323 if (gtt == NULL || !gtt->userptr) 1324 return false; 1325 1326 return true; 1327 } 1328 1329 /* 1330 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1331 */ 1332 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1333 { 1334 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1335 1336 if (gtt == NULL) 1337 return false; 1338 1339 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1340 } 1341 1342 /** 1343 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1344 * 1345 * @ttm: The ttm_tt object to compute the flags for 1346 * @mem: The memory registry backing this ttm_tt object 1347 * 1348 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1349 */ 1350 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1351 { 1352 uint64_t flags = 0; 1353 1354 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1355 flags |= AMDGPU_PTE_VALID; 1356 1357 if (mem && (mem->mem_type == TTM_PL_TT || 1358 mem->mem_type == AMDGPU_PL_DOORBELL || 1359 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1360 flags |= AMDGPU_PTE_SYSTEM; 1361 1362 if (ttm->caching == ttm_cached) 1363 flags |= AMDGPU_PTE_SNOOPED; 1364 } 1365 1366 if (mem && mem->mem_type == TTM_PL_VRAM && 1367 mem->bus.caching == ttm_cached) 1368 flags |= AMDGPU_PTE_SNOOPED; 1369 1370 return flags; 1371 } 1372 1373 /** 1374 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1375 * 1376 * @adev: amdgpu_device pointer 1377 * @ttm: The ttm_tt object to compute the flags for 1378 * @mem: The memory registry backing this ttm_tt object 1379 * 1380 * Figure out the flags to use for a VM PTE (Page Table Entry). 1381 */ 1382 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1383 struct ttm_resource *mem) 1384 { 1385 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1386 1387 flags |= adev->gart.gart_pte_flags; 1388 flags |= AMDGPU_PTE_READABLE; 1389 1390 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1391 flags |= AMDGPU_PTE_WRITEABLE; 1392 1393 return flags; 1394 } 1395 1396 /* 1397 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1398 * object. 1399 * 1400 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1401 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1402 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1403 * used to clean out a memory space. 1404 */ 1405 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1406 const struct ttm_place *place) 1407 { 1408 struct dma_resv_iter resv_cursor; 1409 struct dma_fence *f; 1410 1411 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1412 return ttm_bo_eviction_valuable(bo, place); 1413 1414 /* Swapout? */ 1415 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1416 return true; 1417 1418 if (bo->type == ttm_bo_type_kernel && 1419 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1420 return false; 1421 1422 /* If bo is a KFD BO, check if the bo belongs to the current process. 1423 * If true, then return false as any KFD process needs all its BOs to 1424 * be resident to run successfully 1425 */ 1426 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1427 DMA_RESV_USAGE_BOOKKEEP, f) { 1428 if (amdkfd_fence_check_mm(f, current->mm) && 1429 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1430 return false; 1431 } 1432 1433 /* Preemptible BOs don't own system resources managed by the 1434 * driver (pages, VRAM, GART space). They point to resources 1435 * owned by someone else (e.g. pageable memory in user mode 1436 * or a DMABuf). They are used in a preemptible context so we 1437 * can guarantee no deadlocks and good QoS in case of MMU 1438 * notifiers or DMABuf move notifiers from the resource owner. 1439 */ 1440 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1441 return false; 1442 1443 if (bo->resource->mem_type == TTM_PL_TT && 1444 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1445 return false; 1446 1447 return ttm_bo_eviction_valuable(bo, place); 1448 } 1449 1450 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1451 void *buf, size_t size, bool write) 1452 { 1453 while (size) { 1454 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1455 uint64_t bytes = 4 - (pos & 0x3); 1456 uint32_t shift = (pos & 0x3) * 8; 1457 uint32_t mask = 0xffffffff << shift; 1458 uint32_t value = 0; 1459 1460 if (size < bytes) { 1461 mask &= 0xffffffff >> (bytes - size) * 8; 1462 bytes = size; 1463 } 1464 1465 if (mask != 0xffffffff) { 1466 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1467 if (write) { 1468 value &= ~mask; 1469 value |= (*(uint32_t *)buf << shift) & mask; 1470 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1471 } else { 1472 value = (value & mask) >> shift; 1473 memcpy(buf, &value, bytes); 1474 } 1475 } else { 1476 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1477 } 1478 1479 pos += bytes; 1480 buf += bytes; 1481 size -= bytes; 1482 } 1483 } 1484 1485 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1486 unsigned long offset, void *buf, 1487 int len, int write) 1488 { 1489 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1490 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1491 struct amdgpu_res_cursor src_mm; 1492 struct amdgpu_job *job; 1493 struct dma_fence *fence; 1494 uint64_t src_addr, dst_addr; 1495 unsigned int num_dw; 1496 int r, idx; 1497 1498 if (len != PAGE_SIZE) 1499 return -EINVAL; 1500 1501 if (!adev->mman.sdma_access_ptr) 1502 return -EACCES; 1503 1504 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1505 return -ENODEV; 1506 1507 if (write) 1508 memcpy(adev->mman.sdma_access_ptr, buf, len); 1509 1510 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1511 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1512 AMDGPU_FENCE_OWNER_UNDEFINED, 1513 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1514 &job, 1515 AMDGPU_KERNEL_JOB_ID_TTM_ACCESS_MEMORY_SDMA); 1516 if (r) 1517 goto out; 1518 1519 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1520 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1521 src_mm.start; 1522 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1523 if (write) 1524 swap(src_addr, dst_addr); 1525 1526 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1527 PAGE_SIZE, 0); 1528 1529 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1530 WARN_ON(job->ibs[0].length_dw > num_dw); 1531 1532 fence = amdgpu_job_submit(job); 1533 1534 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1535 r = -ETIMEDOUT; 1536 dma_fence_put(fence); 1537 1538 if (!(r || write)) 1539 memcpy(buf, adev->mman.sdma_access_ptr, len); 1540 out: 1541 drm_dev_exit(idx); 1542 return r; 1543 } 1544 1545 /** 1546 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1547 * 1548 * @bo: The buffer object to read/write 1549 * @offset: Offset into buffer object 1550 * @buf: Secondary buffer to write/read from 1551 * @len: Length in bytes of access 1552 * @write: true if writing 1553 * 1554 * This is used to access VRAM that backs a buffer object via MMIO 1555 * access for debugging purposes. 1556 */ 1557 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1558 unsigned long offset, void *buf, int len, 1559 int write) 1560 { 1561 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1562 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1563 struct amdgpu_res_cursor cursor; 1564 int ret = 0; 1565 1566 if (bo->resource->mem_type != TTM_PL_VRAM) 1567 return -EIO; 1568 1569 if (amdgpu_device_has_timeouts_enabled(adev) && 1570 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1571 return len; 1572 1573 amdgpu_res_first(bo->resource, offset, len, &cursor); 1574 while (cursor.remaining) { 1575 size_t count, size = cursor.size; 1576 loff_t pos = cursor.start; 1577 1578 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1579 size -= count; 1580 if (size) { 1581 /* using MM to access rest vram and handle un-aligned address */ 1582 pos += count; 1583 buf += count; 1584 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1585 } 1586 1587 ret += cursor.size; 1588 buf += cursor.size; 1589 amdgpu_res_next(&cursor, cursor.size); 1590 } 1591 1592 return ret; 1593 } 1594 1595 static void 1596 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1597 { 1598 amdgpu_bo_move_notify(bo, false, NULL); 1599 } 1600 1601 static struct ttm_device_funcs amdgpu_bo_driver = { 1602 .ttm_tt_create = &amdgpu_ttm_tt_create, 1603 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1604 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1605 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1606 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1607 .evict_flags = &amdgpu_evict_flags, 1608 .move = &amdgpu_bo_move, 1609 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1610 .release_notify = &amdgpu_bo_release_notify, 1611 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1612 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1613 .access_memory = &amdgpu_ttm_access_memory, 1614 }; 1615 1616 /* 1617 * Firmware Reservation functions 1618 */ 1619 /** 1620 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1621 * 1622 * @adev: amdgpu_device pointer 1623 * 1624 * free fw reserved vram if it has been reserved. 1625 */ 1626 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1627 { 1628 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1629 NULL, &adev->mman.fw_vram_usage_va); 1630 } 1631 1632 /* 1633 * Driver Reservation functions 1634 */ 1635 /** 1636 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1637 * 1638 * @adev: amdgpu_device pointer 1639 * 1640 * free drv reserved vram if it has been reserved. 1641 */ 1642 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1643 { 1644 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1645 NULL, 1646 &adev->mman.drv_vram_usage_va); 1647 } 1648 1649 /** 1650 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1651 * 1652 * @adev: amdgpu_device pointer 1653 * 1654 * create bo vram reservation from fw. 1655 */ 1656 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1657 { 1658 uint64_t vram_size = adev->gmc.visible_vram_size; 1659 1660 adev->mman.fw_vram_usage_va = NULL; 1661 adev->mman.fw_vram_usage_reserved_bo = NULL; 1662 1663 if (adev->mman.fw_vram_usage_size == 0 || 1664 adev->mman.fw_vram_usage_size > vram_size) 1665 return 0; 1666 1667 return amdgpu_bo_create_kernel_at(adev, 1668 adev->mman.fw_vram_usage_start_offset, 1669 adev->mman.fw_vram_usage_size, 1670 &adev->mman.fw_vram_usage_reserved_bo, 1671 &adev->mman.fw_vram_usage_va); 1672 } 1673 1674 /** 1675 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1676 * 1677 * @adev: amdgpu_device pointer 1678 * 1679 * create bo vram reservation from drv. 1680 */ 1681 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1682 { 1683 u64 vram_size = adev->gmc.visible_vram_size; 1684 1685 adev->mman.drv_vram_usage_va = NULL; 1686 adev->mman.drv_vram_usage_reserved_bo = NULL; 1687 1688 if (adev->mman.drv_vram_usage_size == 0 || 1689 adev->mman.drv_vram_usage_size > vram_size) 1690 return 0; 1691 1692 return amdgpu_bo_create_kernel_at(adev, 1693 adev->mman.drv_vram_usage_start_offset, 1694 adev->mman.drv_vram_usage_size, 1695 &adev->mman.drv_vram_usage_reserved_bo, 1696 &adev->mman.drv_vram_usage_va); 1697 } 1698 1699 /* 1700 * Memoy training reservation functions 1701 */ 1702 1703 /** 1704 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1705 * 1706 * @adev: amdgpu_device pointer 1707 * 1708 * free memory training reserved vram if it has been reserved. 1709 */ 1710 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1711 { 1712 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1713 1714 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1715 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1716 ctx->c2p_bo = NULL; 1717 1718 return 0; 1719 } 1720 1721 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1722 uint32_t reserve_size) 1723 { 1724 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1725 1726 memset(ctx, 0, sizeof(*ctx)); 1727 1728 ctx->c2p_train_data_offset = 1729 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1730 ctx->p2c_train_data_offset = 1731 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1732 ctx->train_data_size = 1733 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1734 1735 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1736 ctx->train_data_size, 1737 ctx->p2c_train_data_offset, 1738 ctx->c2p_train_data_offset); 1739 } 1740 1741 /* 1742 * reserve TMR memory at the top of VRAM which holds 1743 * IP Discovery data and is protected by PSP. 1744 */ 1745 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1746 { 1747 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1748 bool mem_train_support = false; 1749 uint32_t reserve_size = 0; 1750 int ret; 1751 1752 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1753 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1754 mem_train_support = true; 1755 else 1756 DRM_DEBUG("memory training does not support!\n"); 1757 } 1758 1759 /* 1760 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1761 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1762 * 1763 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1764 * discovery data and G6 memory training data respectively 1765 */ 1766 if (adev->bios) 1767 reserve_size = 1768 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1769 1770 if (!adev->bios && 1771 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1772 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) || 1773 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0))) 1774 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1775 else if (!reserve_size) 1776 reserve_size = DISCOVERY_TMR_OFFSET; 1777 1778 if (mem_train_support) { 1779 /* reserve vram for mem train according to TMR location */ 1780 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1781 ret = amdgpu_bo_create_kernel_at(adev, 1782 ctx->c2p_train_data_offset, 1783 ctx->train_data_size, 1784 &ctx->c2p_bo, 1785 NULL); 1786 if (ret) { 1787 dev_err(adev->dev, "alloc c2p_bo failed(%d)!\n", ret); 1788 amdgpu_ttm_training_reserve_vram_fini(adev); 1789 return ret; 1790 } 1791 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1792 } 1793 1794 if (!adev->gmc.is_app_apu) { 1795 ret = amdgpu_bo_create_kernel_at( 1796 adev, adev->gmc.real_vram_size - reserve_size, 1797 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1798 if (ret) { 1799 dev_err(adev->dev, "alloc tmr failed(%d)!\n", ret); 1800 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1801 NULL, NULL); 1802 return ret; 1803 } 1804 } else { 1805 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1806 } 1807 1808 return 0; 1809 } 1810 1811 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1812 { 1813 int i; 1814 1815 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1816 return 0; 1817 1818 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1819 sizeof(*adev->mman.ttm_pools), 1820 GFP_KERNEL); 1821 if (!adev->mman.ttm_pools) 1822 return -ENOMEM; 1823 1824 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1825 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1826 adev->gmc.mem_partitions[i].numa.node, 1827 false, false); 1828 } 1829 return 0; 1830 } 1831 1832 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1833 { 1834 int i; 1835 1836 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1837 return; 1838 1839 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1840 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1841 1842 kfree(adev->mman.ttm_pools); 1843 adev->mman.ttm_pools = NULL; 1844 } 1845 1846 /* 1847 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1848 * gtt/vram related fields. 1849 * 1850 * This initializes all of the memory space pools that the TTM layer 1851 * will need such as the GTT space (system memory mapped to the device), 1852 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1853 * can be mapped per VMID. 1854 */ 1855 int amdgpu_ttm_init(struct amdgpu_device *adev) 1856 { 1857 uint64_t gtt_size; 1858 int r; 1859 1860 mutex_init(&adev->mman.gtt_window_lock); 1861 1862 dma_set_max_seg_size(adev->dev, UINT_MAX); 1863 /* No others user of address space so set it to 0 */ 1864 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1865 adev_to_drm(adev)->anon_inode->i_mapping, 1866 adev_to_drm(adev)->vma_offset_manager, 1867 adev->need_swiotlb, 1868 dma_addressing_limited(adev->dev)); 1869 if (r) { 1870 dev_err(adev->dev, 1871 "failed initializing buffer object driver(%d).\n", r); 1872 return r; 1873 } 1874 1875 r = amdgpu_ttm_pools_init(adev); 1876 if (r) { 1877 dev_err(adev->dev, "failed to init ttm pools(%d).\n", r); 1878 return r; 1879 } 1880 adev->mman.initialized = true; 1881 1882 /* Initialize VRAM pool with all of VRAM divided into pages */ 1883 r = amdgpu_vram_mgr_init(adev); 1884 if (r) { 1885 dev_err(adev->dev, "Failed initializing VRAM heap.\n"); 1886 return r; 1887 } 1888 1889 /* Change the size here instead of the init above so only lpfn is affected */ 1890 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1891 #ifdef CONFIG_64BIT 1892 #ifdef CONFIG_X86 1893 if (adev->gmc.xgmi.connected_to_cpu) 1894 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1895 adev->gmc.visible_vram_size); 1896 1897 else if (adev->gmc.is_app_apu) 1898 DRM_DEBUG_DRIVER( 1899 "No need to ioremap when real vram size is 0\n"); 1900 else 1901 #endif 1902 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1903 adev->gmc.visible_vram_size); 1904 #endif 1905 1906 /* 1907 *The reserved vram for firmware must be pinned to the specified 1908 *place on the VRAM, so reserve it early. 1909 */ 1910 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1911 if (r) 1912 return r; 1913 1914 /* 1915 *The reserved vram for driver must be pinned to the specified 1916 *place on the VRAM, so reserve it early. 1917 */ 1918 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1919 if (r) 1920 return r; 1921 1922 /* 1923 * only NAVI10 and onwards ASIC support for IP discovery. 1924 * If IP discovery enabled, a block of memory should be 1925 * reserved for IP discovey. 1926 */ 1927 if (adev->mman.discovery_bin) { 1928 r = amdgpu_ttm_reserve_tmr(adev); 1929 if (r) 1930 return r; 1931 } 1932 1933 /* allocate memory as required for VGA 1934 * This is used for VGA emulation and pre-OS scanout buffers to 1935 * avoid display artifacts while transitioning between pre-OS 1936 * and driver. 1937 */ 1938 if (!adev->gmc.is_app_apu) { 1939 r = amdgpu_bo_create_kernel_at(adev, 0, 1940 adev->mman.stolen_vga_size, 1941 &adev->mman.stolen_vga_memory, 1942 NULL); 1943 if (r) 1944 return r; 1945 1946 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1947 adev->mman.stolen_extended_size, 1948 &adev->mman.stolen_extended_memory, 1949 NULL); 1950 1951 if (r) 1952 return r; 1953 1954 r = amdgpu_bo_create_kernel_at(adev, 1955 adev->mman.stolen_reserved_offset, 1956 adev->mman.stolen_reserved_size, 1957 &adev->mman.stolen_reserved_memory, 1958 NULL); 1959 if (r) 1960 return r; 1961 } else { 1962 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1963 } 1964 1965 dev_info(adev->dev, "amdgpu: %uM of VRAM memory ready\n", 1966 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1967 1968 /* Compute GTT size, either based on TTM limit 1969 * or whatever the user passed on module init. 1970 */ 1971 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1972 if (amdgpu_gtt_size != -1) { 1973 uint64_t configured_size = (uint64_t)amdgpu_gtt_size << 20; 1974 1975 drm_warn(&adev->ddev, 1976 "Configuring gttsize via module parameter is deprecated, please use ttm.pages_limit\n"); 1977 if (gtt_size != configured_size) 1978 drm_warn(&adev->ddev, 1979 "GTT size has been set as %llu but TTM size has been set as %llu, this is unusual\n", 1980 configured_size, gtt_size); 1981 1982 gtt_size = configured_size; 1983 } 1984 1985 /* Initialize GTT memory pool */ 1986 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1987 if (r) { 1988 dev_err(adev->dev, "Failed initializing GTT heap.\n"); 1989 return r; 1990 } 1991 dev_info(adev->dev, "amdgpu: %uM of GTT memory ready.\n", 1992 (unsigned int)(gtt_size / (1024 * 1024))); 1993 1994 if (adev->flags & AMD_IS_APU) { 1995 if (adev->gmc.real_vram_size < gtt_size) 1996 adev->apu_prefer_gtt = true; 1997 } 1998 1999 /* Initialize doorbell pool on PCI BAR */ 2000 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 2001 if (r) { 2002 dev_err(adev->dev, "Failed initializing doorbell heap.\n"); 2003 return r; 2004 } 2005 2006 /* Create a boorbell page for kernel usages */ 2007 r = amdgpu_doorbell_create_kernel_doorbells(adev); 2008 if (r) { 2009 dev_err(adev->dev, "Failed to initialize kernel doorbells.\n"); 2010 return r; 2011 } 2012 2013 /* Initialize preemptible memory pool */ 2014 r = amdgpu_preempt_mgr_init(adev); 2015 if (r) { 2016 dev_err(adev->dev, "Failed initializing PREEMPT heap.\n"); 2017 return r; 2018 } 2019 2020 /* Initialize various on-chip memory pools */ 2021 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 2022 if (r) { 2023 dev_err(adev->dev, "Failed initializing GDS heap.\n"); 2024 return r; 2025 } 2026 2027 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 2028 if (r) { 2029 dev_err(adev->dev, "Failed initializing gws heap.\n"); 2030 return r; 2031 } 2032 2033 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 2034 if (r) { 2035 dev_err(adev->dev, "Failed initializing oa heap.\n"); 2036 return r; 2037 } 2038 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2039 AMDGPU_GEM_DOMAIN_GTT, 2040 &adev->mman.sdma_access_bo, NULL, 2041 &adev->mman.sdma_access_ptr)) 2042 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2043 2044 return 0; 2045 } 2046 2047 /* 2048 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2049 */ 2050 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2051 { 2052 int idx; 2053 2054 if (!adev->mman.initialized) 2055 return; 2056 2057 amdgpu_ttm_pools_fini(adev); 2058 2059 amdgpu_ttm_training_reserve_vram_fini(adev); 2060 /* return the stolen vga memory back to VRAM */ 2061 if (!adev->gmc.is_app_apu) { 2062 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2063 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2064 /* return the FW reserved memory back to VRAM */ 2065 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2066 NULL); 2067 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory_extend, NULL, 2068 NULL); 2069 if (adev->mman.stolen_reserved_size) 2070 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2071 NULL, NULL); 2072 } 2073 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2074 &adev->mman.sdma_access_ptr); 2075 amdgpu_ttm_fw_reserve_vram_fini(adev); 2076 amdgpu_ttm_drv_reserve_vram_fini(adev); 2077 2078 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2079 2080 if (adev->mman.aper_base_kaddr) 2081 iounmap(adev->mman.aper_base_kaddr); 2082 adev->mman.aper_base_kaddr = NULL; 2083 2084 drm_dev_exit(idx); 2085 } 2086 2087 amdgpu_vram_mgr_fini(adev); 2088 amdgpu_gtt_mgr_fini(adev); 2089 amdgpu_preempt_mgr_fini(adev); 2090 amdgpu_doorbell_fini(adev); 2091 2092 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2093 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2094 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2095 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL); 2096 ttm_device_fini(&adev->mman.bdev); 2097 adev->mman.initialized = false; 2098 dev_info(adev->dev, "amdgpu: ttm finalized\n"); 2099 } 2100 2101 /** 2102 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2103 * 2104 * @adev: amdgpu_device pointer 2105 * @enable: true when we can use buffer functions. 2106 * 2107 * Enable/disable use of buffer functions during suspend/resume. This should 2108 * only be called at bootup or when userspace isn't running. 2109 */ 2110 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2111 { 2112 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2113 uint64_t size; 2114 int r; 2115 2116 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2117 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2118 return; 2119 2120 if (enable) { 2121 struct amdgpu_ring *ring; 2122 struct drm_gpu_scheduler *sched; 2123 2124 ring = adev->mman.buffer_funcs_ring; 2125 sched = &ring->sched; 2126 r = drm_sched_entity_init(&adev->mman.high_pr, 2127 DRM_SCHED_PRIORITY_KERNEL, &sched, 2128 1, NULL); 2129 if (r) { 2130 dev_err(adev->dev, 2131 "Failed setting up TTM BO move entity (%d)\n", 2132 r); 2133 return; 2134 } 2135 2136 r = drm_sched_entity_init(&adev->mman.low_pr, 2137 DRM_SCHED_PRIORITY_NORMAL, &sched, 2138 1, NULL); 2139 if (r) { 2140 dev_err(adev->dev, 2141 "Failed setting up TTM BO move entity (%d)\n", 2142 r); 2143 goto error_free_entity; 2144 } 2145 } else { 2146 drm_sched_entity_destroy(&adev->mman.high_pr); 2147 drm_sched_entity_destroy(&adev->mman.low_pr); 2148 dma_fence_put(man->move); 2149 man->move = NULL; 2150 } 2151 2152 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2153 if (enable) 2154 size = adev->gmc.real_vram_size; 2155 else 2156 size = adev->gmc.visible_vram_size; 2157 man->size = size; 2158 adev->mman.buffer_funcs_enabled = enable; 2159 2160 return; 2161 2162 error_free_entity: 2163 drm_sched_entity_destroy(&adev->mman.high_pr); 2164 } 2165 2166 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2167 bool direct_submit, 2168 unsigned int num_dw, 2169 struct dma_resv *resv, 2170 bool vm_needs_flush, 2171 struct amdgpu_job **job, 2172 bool delayed, u64 k_job_id) 2173 { 2174 enum amdgpu_ib_pool_type pool = direct_submit ? 2175 AMDGPU_IB_POOL_DIRECT : 2176 AMDGPU_IB_POOL_DELAYED; 2177 int r; 2178 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2179 &adev->mman.high_pr; 2180 r = amdgpu_job_alloc_with_ib(adev, entity, 2181 AMDGPU_FENCE_OWNER_UNDEFINED, 2182 num_dw * 4, pool, job, k_job_id); 2183 if (r) 2184 return r; 2185 2186 if (vm_needs_flush) { 2187 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2188 adev->gmc.pdb0_bo : 2189 adev->gart.bo); 2190 (*job)->vm_needs_flush = true; 2191 } 2192 if (!resv) 2193 return 0; 2194 2195 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2196 DMA_RESV_USAGE_BOOKKEEP); 2197 } 2198 2199 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2200 uint64_t dst_offset, uint32_t byte_count, 2201 struct dma_resv *resv, 2202 struct dma_fence **fence, bool direct_submit, 2203 bool vm_needs_flush, uint32_t copy_flags) 2204 { 2205 struct amdgpu_device *adev = ring->adev; 2206 unsigned int num_loops, num_dw; 2207 struct amdgpu_job *job; 2208 uint32_t max_bytes; 2209 unsigned int i; 2210 int r; 2211 2212 if (!direct_submit && !ring->sched.ready) { 2213 dev_err(adev->dev, 2214 "Trying to move memory with ring turned off.\n"); 2215 return -EINVAL; 2216 } 2217 2218 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2219 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2220 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2221 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2222 resv, vm_needs_flush, &job, false, 2223 AMDGPU_KERNEL_JOB_ID_TTM_COPY_BUFFER); 2224 if (r) 2225 return r; 2226 2227 for (i = 0; i < num_loops; i++) { 2228 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2229 2230 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2231 dst_offset, cur_size_in_bytes, copy_flags); 2232 src_offset += cur_size_in_bytes; 2233 dst_offset += cur_size_in_bytes; 2234 byte_count -= cur_size_in_bytes; 2235 } 2236 2237 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2238 WARN_ON(job->ibs[0].length_dw > num_dw); 2239 if (direct_submit) 2240 r = amdgpu_job_submit_direct(job, ring, fence); 2241 else 2242 *fence = amdgpu_job_submit(job); 2243 if (r) 2244 goto error_free; 2245 2246 return r; 2247 2248 error_free: 2249 amdgpu_job_free(job); 2250 dev_err(adev->dev, "Error scheduling IBs (%d)\n", r); 2251 return r; 2252 } 2253 2254 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2255 uint64_t dst_addr, uint32_t byte_count, 2256 struct dma_resv *resv, 2257 struct dma_fence **fence, 2258 bool vm_needs_flush, bool delayed, 2259 u64 k_job_id) 2260 { 2261 struct amdgpu_device *adev = ring->adev; 2262 unsigned int num_loops, num_dw; 2263 struct amdgpu_job *job; 2264 uint32_t max_bytes; 2265 unsigned int i; 2266 int r; 2267 2268 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2269 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2270 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2271 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2272 &job, delayed, k_job_id); 2273 if (r) 2274 return r; 2275 2276 for (i = 0; i < num_loops; i++) { 2277 uint32_t cur_size = min(byte_count, max_bytes); 2278 2279 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2280 cur_size); 2281 2282 dst_addr += cur_size; 2283 byte_count -= cur_size; 2284 } 2285 2286 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2287 WARN_ON(job->ibs[0].length_dw > num_dw); 2288 *fence = amdgpu_job_submit(job); 2289 return 0; 2290 } 2291 2292 /** 2293 * amdgpu_ttm_clear_buffer - clear memory buffers 2294 * @bo: amdgpu buffer object 2295 * @resv: reservation object 2296 * @fence: dma_fence associated with the operation 2297 * 2298 * Clear the memory buffer resource. 2299 * 2300 * Returns: 2301 * 0 for success or a negative error code on failure. 2302 */ 2303 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2304 struct dma_resv *resv, 2305 struct dma_fence **fence) 2306 { 2307 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2308 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2309 struct amdgpu_res_cursor cursor; 2310 u64 addr; 2311 int r = 0; 2312 2313 if (!adev->mman.buffer_funcs_enabled) 2314 return -EINVAL; 2315 2316 if (!fence) 2317 return -EINVAL; 2318 2319 *fence = dma_fence_get_stub(); 2320 2321 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2322 2323 mutex_lock(&adev->mman.gtt_window_lock); 2324 while (cursor.remaining) { 2325 struct dma_fence *next = NULL; 2326 u64 size; 2327 2328 if (amdgpu_res_cleared(&cursor)) { 2329 amdgpu_res_next(&cursor, cursor.size); 2330 continue; 2331 } 2332 2333 /* Never clear more than 256MiB at once to avoid timeouts */ 2334 size = min(cursor.size, 256ULL << 20); 2335 2336 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2337 1, ring, false, &size, &addr); 2338 if (r) 2339 goto err; 2340 2341 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2342 &next, true, true, 2343 AMDGPU_KERNEL_JOB_ID_TTM_CLEAR_BUFFER); 2344 if (r) 2345 goto err; 2346 2347 dma_fence_put(*fence); 2348 *fence = next; 2349 2350 amdgpu_res_next(&cursor, size); 2351 } 2352 err: 2353 mutex_unlock(&adev->mman.gtt_window_lock); 2354 2355 return r; 2356 } 2357 2358 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2359 uint32_t src_data, 2360 struct dma_resv *resv, 2361 struct dma_fence **f, 2362 bool delayed, 2363 u64 k_job_id) 2364 { 2365 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2366 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2367 struct dma_fence *fence = NULL; 2368 struct amdgpu_res_cursor dst; 2369 int r; 2370 2371 if (!adev->mman.buffer_funcs_enabled) { 2372 dev_err(adev->dev, 2373 "Trying to clear memory with ring turned off.\n"); 2374 return -EINVAL; 2375 } 2376 2377 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2378 2379 mutex_lock(&adev->mman.gtt_window_lock); 2380 while (dst.remaining) { 2381 struct dma_fence *next; 2382 uint64_t cur_size, to; 2383 2384 /* Never fill more than 256MiB at once to avoid timeouts */ 2385 cur_size = min(dst.size, 256ULL << 20); 2386 2387 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2388 1, ring, false, &cur_size, &to); 2389 if (r) 2390 goto error; 2391 2392 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2393 &next, true, delayed, k_job_id); 2394 if (r) 2395 goto error; 2396 2397 dma_fence_put(fence); 2398 fence = next; 2399 2400 amdgpu_res_next(&dst, cur_size); 2401 } 2402 error: 2403 mutex_unlock(&adev->mman.gtt_window_lock); 2404 if (f) 2405 *f = dma_fence_get(fence); 2406 dma_fence_put(fence); 2407 return r; 2408 } 2409 2410 /** 2411 * amdgpu_ttm_evict_resources - evict memory buffers 2412 * @adev: amdgpu device object 2413 * @mem_type: evicted BO's memory type 2414 * 2415 * Evicts all @mem_type buffers on the lru list of the memory type. 2416 * 2417 * Returns: 2418 * 0 for success or a negative error code on failure. 2419 */ 2420 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2421 { 2422 struct ttm_resource_manager *man; 2423 2424 switch (mem_type) { 2425 case TTM_PL_VRAM: 2426 case TTM_PL_TT: 2427 case AMDGPU_PL_GWS: 2428 case AMDGPU_PL_GDS: 2429 case AMDGPU_PL_OA: 2430 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2431 break; 2432 default: 2433 dev_err(adev->dev, "Trying to evict invalid memory type\n"); 2434 return -EINVAL; 2435 } 2436 2437 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2438 } 2439 2440 #if defined(CONFIG_DEBUG_FS) 2441 2442 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2443 { 2444 struct amdgpu_device *adev = m->private; 2445 2446 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2447 } 2448 2449 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2450 2451 /* 2452 * amdgpu_ttm_vram_read - Linear read access to VRAM 2453 * 2454 * Accesses VRAM via MMIO for debugging purposes. 2455 */ 2456 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2457 size_t size, loff_t *pos) 2458 { 2459 struct amdgpu_device *adev = file_inode(f)->i_private; 2460 ssize_t result = 0; 2461 2462 if (size & 0x3 || *pos & 0x3) 2463 return -EINVAL; 2464 2465 if (*pos >= adev->gmc.mc_vram_size) 2466 return -ENXIO; 2467 2468 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2469 while (size) { 2470 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2471 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2472 2473 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2474 if (copy_to_user(buf, value, bytes)) 2475 return -EFAULT; 2476 2477 result += bytes; 2478 buf += bytes; 2479 *pos += bytes; 2480 size -= bytes; 2481 } 2482 2483 return result; 2484 } 2485 2486 /* 2487 * amdgpu_ttm_vram_write - Linear write access to VRAM 2488 * 2489 * Accesses VRAM via MMIO for debugging purposes. 2490 */ 2491 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2492 size_t size, loff_t *pos) 2493 { 2494 struct amdgpu_device *adev = file_inode(f)->i_private; 2495 ssize_t result = 0; 2496 int r; 2497 2498 if (size & 0x3 || *pos & 0x3) 2499 return -EINVAL; 2500 2501 if (*pos >= adev->gmc.mc_vram_size) 2502 return -ENXIO; 2503 2504 while (size) { 2505 uint32_t value; 2506 2507 if (*pos >= adev->gmc.mc_vram_size) 2508 return result; 2509 2510 r = get_user(value, (uint32_t *)buf); 2511 if (r) 2512 return r; 2513 2514 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2515 2516 result += 4; 2517 buf += 4; 2518 *pos += 4; 2519 size -= 4; 2520 } 2521 2522 return result; 2523 } 2524 2525 static const struct file_operations amdgpu_ttm_vram_fops = { 2526 .owner = THIS_MODULE, 2527 .read = amdgpu_ttm_vram_read, 2528 .write = amdgpu_ttm_vram_write, 2529 .llseek = default_llseek, 2530 }; 2531 2532 /* 2533 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2534 * 2535 * This function is used to read memory that has been mapped to the 2536 * GPU and the known addresses are not physical addresses but instead 2537 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2538 */ 2539 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2540 size_t size, loff_t *pos) 2541 { 2542 struct amdgpu_device *adev = file_inode(f)->i_private; 2543 struct iommu_domain *dom; 2544 ssize_t result = 0; 2545 int r; 2546 2547 /* retrieve the IOMMU domain if any for this device */ 2548 dom = iommu_get_domain_for_dev(adev->dev); 2549 2550 while (size) { 2551 phys_addr_t addr = *pos & PAGE_MASK; 2552 loff_t off = *pos & ~PAGE_MASK; 2553 size_t bytes = PAGE_SIZE - off; 2554 unsigned long pfn; 2555 struct page *p; 2556 void *ptr; 2557 2558 bytes = min(bytes, size); 2559 2560 /* Translate the bus address to a physical address. If 2561 * the domain is NULL it means there is no IOMMU active 2562 * and the address translation is the identity 2563 */ 2564 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2565 2566 pfn = addr >> PAGE_SHIFT; 2567 if (!pfn_valid(pfn)) 2568 return -EPERM; 2569 2570 p = pfn_to_page(pfn); 2571 if (p->mapping != adev->mman.bdev.dev_mapping) 2572 return -EPERM; 2573 2574 ptr = kmap_local_page(p); 2575 r = copy_to_user(buf, ptr + off, bytes); 2576 kunmap_local(ptr); 2577 if (r) 2578 return -EFAULT; 2579 2580 size -= bytes; 2581 *pos += bytes; 2582 result += bytes; 2583 } 2584 2585 return result; 2586 } 2587 2588 /* 2589 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2590 * 2591 * This function is used to write memory that has been mapped to the 2592 * GPU and the known addresses are not physical addresses but instead 2593 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2594 */ 2595 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2596 size_t size, loff_t *pos) 2597 { 2598 struct amdgpu_device *adev = file_inode(f)->i_private; 2599 struct iommu_domain *dom; 2600 ssize_t result = 0; 2601 int r; 2602 2603 dom = iommu_get_domain_for_dev(adev->dev); 2604 2605 while (size) { 2606 phys_addr_t addr = *pos & PAGE_MASK; 2607 loff_t off = *pos & ~PAGE_MASK; 2608 size_t bytes = PAGE_SIZE - off; 2609 unsigned long pfn; 2610 struct page *p; 2611 void *ptr; 2612 2613 bytes = min(bytes, size); 2614 2615 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2616 2617 pfn = addr >> PAGE_SHIFT; 2618 if (!pfn_valid(pfn)) 2619 return -EPERM; 2620 2621 p = pfn_to_page(pfn); 2622 if (p->mapping != adev->mman.bdev.dev_mapping) 2623 return -EPERM; 2624 2625 ptr = kmap_local_page(p); 2626 r = copy_from_user(ptr + off, buf, bytes); 2627 kunmap_local(ptr); 2628 if (r) 2629 return -EFAULT; 2630 2631 size -= bytes; 2632 *pos += bytes; 2633 result += bytes; 2634 } 2635 2636 return result; 2637 } 2638 2639 static const struct file_operations amdgpu_ttm_iomem_fops = { 2640 .owner = THIS_MODULE, 2641 .read = amdgpu_iomem_read, 2642 .write = amdgpu_iomem_write, 2643 .llseek = default_llseek 2644 }; 2645 2646 #endif 2647 2648 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2649 { 2650 #if defined(CONFIG_DEBUG_FS) 2651 struct drm_minor *minor = adev_to_drm(adev)->primary; 2652 struct dentry *root = minor->debugfs_root; 2653 2654 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2655 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2656 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2657 &amdgpu_ttm_iomem_fops); 2658 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2659 &amdgpu_ttm_page_pool_fops); 2660 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2661 TTM_PL_VRAM), 2662 root, "amdgpu_vram_mm"); 2663 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2664 TTM_PL_TT), 2665 root, "amdgpu_gtt_mm"); 2666 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2667 AMDGPU_PL_GDS), 2668 root, "amdgpu_gds_mm"); 2669 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2670 AMDGPU_PL_GWS), 2671 root, "amdgpu_gws_mm"); 2672 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2673 AMDGPU_PL_OA), 2674 root, "amdgpu_oa_mm"); 2675 2676 #endif 2677 } 2678