xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 63b3e810eff65fb8587fcb26fa0b56802be12dcf)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_range_manager.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_atomfirmware.h"
60 #include "amdgpu_res_cursor.h"
61 #include "bif/bif_4_1_d.h"
62 
63 MODULE_IMPORT_NS(DMA_BUF);
64 
65 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
66 
67 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
68 				   struct ttm_tt *ttm,
69 				   struct ttm_resource *bo_mem);
70 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
71 				      struct ttm_tt *ttm);
72 
73 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
74 				    unsigned int type,
75 				    uint64_t size_in_page)
76 {
77 	return ttm_range_man_init(&adev->mman.bdev, type,
78 				  false, size_in_page);
79 }
80 
81 /**
82  * amdgpu_evict_flags - Compute placement flags
83  *
84  * @bo: The buffer object to evict
85  * @placement: Possible destination(s) for evicted BO
86  *
87  * Fill in placement data when ttm_bo_evict() is called
88  */
89 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
90 				struct ttm_placement *placement)
91 {
92 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
93 	struct amdgpu_bo *abo;
94 	static const struct ttm_place placements = {
95 		.fpfn = 0,
96 		.lpfn = 0,
97 		.mem_type = TTM_PL_SYSTEM,
98 		.flags = 0
99 	};
100 
101 	/* Don't handle scatter gather BOs */
102 	if (bo->type == ttm_bo_type_sg) {
103 		placement->num_placement = 0;
104 		placement->num_busy_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->busy_placement = &placements;
112 		placement->num_placement = 1;
113 		placement->num_busy_placement = 1;
114 		return;
115 	}
116 
117 	abo = ttm_to_amdgpu_bo(bo);
118 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
119 		struct dma_fence *fence;
120 		struct dma_resv *resv = &bo->base._resv;
121 
122 		rcu_read_lock();
123 		fence = rcu_dereference(resv->fence_excl);
124 		if (fence && !fence->ops->signaled)
125 			dma_fence_enable_sw_signaling(fence);
126 
127 		placement->num_placement = 0;
128 		placement->num_busy_placement = 0;
129 		rcu_read_unlock();
130 		return;
131 	}
132 
133 	switch (bo->resource->mem_type) {
134 	case AMDGPU_PL_GDS:
135 	case AMDGPU_PL_GWS:
136 	case AMDGPU_PL_OA:
137 		placement->num_placement = 0;
138 		placement->num_busy_placement = 0;
139 		return;
140 
141 	case TTM_PL_VRAM:
142 		if (!adev->mman.buffer_funcs_enabled) {
143 			/* Move to system memory */
144 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
145 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
146 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
147 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
148 
149 			/* Try evicting to the CPU inaccessible part of VRAM
150 			 * first, but only set GTT as busy placement, so this
151 			 * BO will be evicted to GTT rather than causing other
152 			 * BOs to be evicted from VRAM
153 			 */
154 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
155 							AMDGPU_GEM_DOMAIN_GTT |
156 							AMDGPU_GEM_DOMAIN_CPU);
157 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
158 			abo->placements[0].lpfn = 0;
159 			abo->placement.busy_placement = &abo->placements[1];
160 			abo->placement.num_busy_placement = 1;
161 		} else {
162 			/* Move to GTT memory */
163 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
164 							AMDGPU_GEM_DOMAIN_CPU);
165 		}
166 		break;
167 	case TTM_PL_TT:
168 	case AMDGPU_PL_PREEMPT:
169 	default:
170 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
171 		break;
172 	}
173 	*placement = abo->placement;
174 }
175 
176 /**
177  * amdgpu_ttm_map_buffer - Map memory into the GART windows
178  * @bo: buffer object to map
179  * @mem: memory object to map
180  * @mm_cur: range to map
181  * @num_pages: number of pages to map
182  * @window: which GART window to use
183  * @ring: DMA ring to use for the copy
184  * @tmz: if we should setup a TMZ enabled mapping
185  * @addr: resulting address inside the MC address space
186  *
187  * Setup one of the GART windows to access a specific piece of memory or return
188  * the physical address for local memory.
189  */
190 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
191 				 struct ttm_resource *mem,
192 				 struct amdgpu_res_cursor *mm_cur,
193 				 unsigned num_pages, unsigned window,
194 				 struct amdgpu_ring *ring, bool tmz,
195 				 uint64_t *addr)
196 {
197 	struct amdgpu_device *adev = ring->adev;
198 	struct amdgpu_job *job;
199 	unsigned num_dw, num_bytes;
200 	struct dma_fence *fence;
201 	uint64_t src_addr, dst_addr;
202 	void *cpu_addr;
203 	uint64_t flags;
204 	unsigned int i;
205 	int r;
206 
207 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
208 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
209 	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
210 
211 	/* Map only what can't be accessed directly */
212 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
213 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
214 			mm_cur->start;
215 		return 0;
216 	}
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += mm_cur->start & ~PAGE_MASK;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
227 				     AMDGPU_IB_POOL_DELAYED, &job);
228 	if (r)
229 		return r;
230 
231 	src_addr = num_dw * 4;
232 	src_addr += job->ibs[0].gpu_addr;
233 
234 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
235 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
236 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
237 				dst_addr, num_bytes, false);
238 
239 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
240 	WARN_ON(job->ibs[0].length_dw > num_dw);
241 
242 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
243 	if (tmz)
244 		flags |= AMDGPU_PTE_TMZ;
245 
246 	cpu_addr = &job->ibs[0].ptr[num_dw];
247 
248 	if (mem->mem_type == TTM_PL_TT) {
249 		dma_addr_t *dma_addr;
250 
251 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
252 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
253 				    cpu_addr);
254 		if (r)
255 			goto error_free;
256 	} else {
257 		dma_addr_t dma_address;
258 
259 		dma_address = mm_cur->start;
260 		dma_address += adev->vm_manager.vram_base_offset;
261 
262 		for (i = 0; i < num_pages; ++i) {
263 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
264 					    &dma_address, flags, cpu_addr);
265 			if (r)
266 				goto error_free;
267 
268 			dma_address += PAGE_SIZE;
269 		}
270 	}
271 
272 	r = amdgpu_job_submit(job, &adev->mman.entity,
273 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 	if (r)
275 		goto error_free;
276 
277 	dma_fence_put(fence);
278 
279 	return r;
280 
281 error_free:
282 	amdgpu_job_free(job);
283 	return r;
284 }
285 
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 			       const struct amdgpu_copy_mem *src,
303 			       const struct amdgpu_copy_mem *dst,
304 			       uint64_t size, bool tmz,
305 			       struct dma_resv *resv,
306 			       struct dma_fence **f)
307 {
308 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
309 					AMDGPU_GPU_PAGE_SIZE);
310 
311 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
312 	struct amdgpu_res_cursor src_mm, dst_mm;
313 	struct dma_fence *fence = NULL;
314 	int r = 0;
315 
316 	if (!adev->mman.buffer_funcs_enabled) {
317 		DRM_ERROR("Trying to move memory with ring turned off.\n");
318 		return -EINVAL;
319 	}
320 
321 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
322 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
323 
324 	mutex_lock(&adev->mman.gtt_window_lock);
325 	while (src_mm.remaining) {
326 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
327 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
328 		struct dma_fence *next;
329 		uint32_t cur_size;
330 		uint64_t from, to;
331 
332 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
333 		 * begins at an offset, then adjust the size accordingly
334 		 */
335 		cur_size = max(src_page_offset, dst_page_offset);
336 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
337 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
338 
339 		/* Map src to window 0 and dst to window 1. */
340 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
341 					  PFN_UP(cur_size + src_page_offset),
342 					  0, ring, tmz, &from);
343 		if (r)
344 			goto error;
345 
346 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
347 					  PFN_UP(cur_size + dst_page_offset),
348 					  1, ring, tmz, &to);
349 		if (r)
350 			goto error;
351 
352 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
353 				       resv, &next, false, true, tmz);
354 		if (r)
355 			goto error;
356 
357 		dma_fence_put(fence);
358 		fence = next;
359 
360 		amdgpu_res_next(&src_mm, cur_size);
361 		amdgpu_res_next(&dst_mm, cur_size);
362 	}
363 error:
364 	mutex_unlock(&adev->mman.gtt_window_lock);
365 	if (f)
366 		*f = dma_fence_get(fence);
367 	dma_fence_put(fence);
368 	return r;
369 }
370 
371 /*
372  * amdgpu_move_blit - Copy an entire buffer to another buffer
373  *
374  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
375  * help move buffers to and from VRAM.
376  */
377 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
378 			    bool evict,
379 			    struct ttm_resource *new_mem,
380 			    struct ttm_resource *old_mem)
381 {
382 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
383 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
384 	struct amdgpu_copy_mem src, dst;
385 	struct dma_fence *fence = NULL;
386 	int r;
387 
388 	src.bo = bo;
389 	dst.bo = bo;
390 	src.mem = old_mem;
391 	dst.mem = new_mem;
392 	src.offset = 0;
393 	dst.offset = 0;
394 
395 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
396 				       new_mem->num_pages << PAGE_SHIFT,
397 				       amdgpu_bo_encrypted(abo),
398 				       bo->base.resv, &fence);
399 	if (r)
400 		goto error;
401 
402 	/* clear the space being freed */
403 	if (old_mem->mem_type == TTM_PL_VRAM &&
404 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
405 		struct dma_fence *wipe_fence = NULL;
406 
407 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
408 				       NULL, &wipe_fence);
409 		if (r) {
410 			goto error;
411 		} else if (wipe_fence) {
412 			dma_fence_put(fence);
413 			fence = wipe_fence;
414 		}
415 	}
416 
417 	/* Always block for VM page tables before committing the new location */
418 	if (bo->type == ttm_bo_type_kernel)
419 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
420 	else
421 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
422 	dma_fence_put(fence);
423 	return r;
424 
425 error:
426 	if (fence)
427 		dma_fence_wait(fence, false);
428 	dma_fence_put(fence);
429 	return r;
430 }
431 
432 /*
433  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
434  *
435  * Called by amdgpu_bo_move()
436  */
437 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
438 			       struct ttm_resource *mem)
439 {
440 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
441 	struct amdgpu_res_cursor cursor;
442 
443 	if (mem->mem_type == TTM_PL_SYSTEM ||
444 	    mem->mem_type == TTM_PL_TT)
445 		return true;
446 	if (mem->mem_type != TTM_PL_VRAM)
447 		return false;
448 
449 	amdgpu_res_first(mem, 0, mem_size, &cursor);
450 
451 	/* ttm_resource_ioremap only supports contiguous memory */
452 	if (cursor.size != mem_size)
453 		return false;
454 
455 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
456 }
457 
458 /*
459  * amdgpu_bo_move - Move a buffer object to a new memory location
460  *
461  * Called by ttm_bo_handle_move_mem()
462  */
463 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
464 			  struct ttm_operation_ctx *ctx,
465 			  struct ttm_resource *new_mem,
466 			  struct ttm_place *hop)
467 {
468 	struct amdgpu_device *adev;
469 	struct amdgpu_bo *abo;
470 	struct ttm_resource *old_mem = bo->resource;
471 	int r;
472 
473 	if (new_mem->mem_type == TTM_PL_TT ||
474 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
475 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
476 		if (r)
477 			return r;
478 	}
479 
480 	/* Can't move a pinned BO */
481 	abo = ttm_to_amdgpu_bo(bo);
482 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
483 		return -EINVAL;
484 
485 	adev = amdgpu_ttm_adev(bo->bdev);
486 
487 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
488 		ttm_bo_move_null(bo, new_mem);
489 		goto out;
490 	}
491 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
492 	    (new_mem->mem_type == TTM_PL_TT ||
493 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
494 		ttm_bo_move_null(bo, new_mem);
495 		goto out;
496 	}
497 	if ((old_mem->mem_type == TTM_PL_TT ||
498 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
499 	    new_mem->mem_type == TTM_PL_SYSTEM) {
500 		r = ttm_bo_wait_ctx(bo, ctx);
501 		if (r)
502 			return r;
503 
504 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
505 		ttm_resource_free(bo, &bo->resource);
506 		ttm_bo_assign_mem(bo, new_mem);
507 		goto out;
508 	}
509 
510 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
511 	    old_mem->mem_type == AMDGPU_PL_GWS ||
512 	    old_mem->mem_type == AMDGPU_PL_OA ||
513 	    new_mem->mem_type == AMDGPU_PL_GDS ||
514 	    new_mem->mem_type == AMDGPU_PL_GWS ||
515 	    new_mem->mem_type == AMDGPU_PL_OA) {
516 		/* Nothing to save here */
517 		ttm_bo_move_null(bo, new_mem);
518 		goto out;
519 	}
520 
521 	if (bo->type == ttm_bo_type_device &&
522 	    new_mem->mem_type == TTM_PL_VRAM &&
523 	    old_mem->mem_type != TTM_PL_VRAM) {
524 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
525 		 * accesses the BO after it's moved.
526 		 */
527 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
528 	}
529 
530 	if (adev->mman.buffer_funcs_enabled) {
531 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
532 		      new_mem->mem_type == TTM_PL_VRAM) ||
533 		     (old_mem->mem_type == TTM_PL_VRAM &&
534 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
535 			hop->fpfn = 0;
536 			hop->lpfn = 0;
537 			hop->mem_type = TTM_PL_TT;
538 			hop->flags = TTM_PL_FLAG_TEMPORARY;
539 			return -EMULTIHOP;
540 		}
541 
542 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
543 	} else {
544 		r = -ENODEV;
545 	}
546 
547 	if (r) {
548 		/* Check that all memory is CPU accessible */
549 		if (!amdgpu_mem_visible(adev, old_mem) ||
550 		    !amdgpu_mem_visible(adev, new_mem)) {
551 			pr_err("Move buffer fallback to memcpy unavailable\n");
552 			return r;
553 		}
554 
555 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
556 		if (r)
557 			return r;
558 	}
559 
560 out:
561 	/* update statistics */
562 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
563 	amdgpu_bo_move_notify(bo, evict, new_mem);
564 	return 0;
565 }
566 
567 /*
568  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
569  *
570  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
571  */
572 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
573 				     struct ttm_resource *mem)
574 {
575 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
576 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
577 
578 	switch (mem->mem_type) {
579 	case TTM_PL_SYSTEM:
580 		/* system memory */
581 		return 0;
582 	case TTM_PL_TT:
583 	case AMDGPU_PL_PREEMPT:
584 		break;
585 	case TTM_PL_VRAM:
586 		mem->bus.offset = mem->start << PAGE_SHIFT;
587 		/* check if it's visible */
588 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
589 			return -EINVAL;
590 
591 		if (adev->mman.aper_base_kaddr &&
592 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
593 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
594 					mem->bus.offset;
595 
596 		mem->bus.offset += adev->gmc.aper_base;
597 		mem->bus.is_iomem = true;
598 		break;
599 	default:
600 		return -EINVAL;
601 	}
602 	return 0;
603 }
604 
605 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
606 					   unsigned long page_offset)
607 {
608 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
609 	struct amdgpu_res_cursor cursor;
610 
611 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
612 			 &cursor);
613 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
614 }
615 
616 /**
617  * amdgpu_ttm_domain_start - Returns GPU start address
618  * @adev: amdgpu device object
619  * @type: type of the memory
620  *
621  * Returns:
622  * GPU start address of a memory domain
623  */
624 
625 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
626 {
627 	switch (type) {
628 	case TTM_PL_TT:
629 		return adev->gmc.gart_start;
630 	case TTM_PL_VRAM:
631 		return adev->gmc.vram_start;
632 	}
633 
634 	return 0;
635 }
636 
637 /*
638  * TTM backend functions.
639  */
640 struct amdgpu_ttm_tt {
641 	struct ttm_tt	ttm;
642 	struct drm_gem_object	*gobj;
643 	u64			offset;
644 	uint64_t		userptr;
645 	struct task_struct	*usertask;
646 	uint32_t		userflags;
647 	bool			bound;
648 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
649 	struct hmm_range	*range;
650 #endif
651 };
652 
653 #ifdef CONFIG_DRM_AMDGPU_USERPTR
654 /*
655  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
656  * memory and start HMM tracking CPU page table update
657  *
658  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
659  * once afterwards to stop HMM tracking
660  */
661 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
662 {
663 	struct ttm_tt *ttm = bo->tbo.ttm;
664 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
665 	unsigned long start = gtt->userptr;
666 	struct vm_area_struct *vma;
667 	struct mm_struct *mm;
668 	bool readonly;
669 	int r = 0;
670 
671 	mm = bo->notifier.mm;
672 	if (unlikely(!mm)) {
673 		DRM_DEBUG_DRIVER("BO is not registered?\n");
674 		return -EFAULT;
675 	}
676 
677 	/* Another get_user_pages is running at the same time?? */
678 	if (WARN_ON(gtt->range))
679 		return -EFAULT;
680 
681 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
682 		return -ESRCH;
683 
684 	mmap_read_lock(mm);
685 	vma = vma_lookup(mm, start);
686 	if (unlikely(!vma)) {
687 		r = -EFAULT;
688 		goto out_unlock;
689 	}
690 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
691 		vma->vm_file)) {
692 		r = -EPERM;
693 		goto out_unlock;
694 	}
695 
696 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
697 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
698 				       ttm->num_pages, &gtt->range, readonly,
699 				       true, NULL);
700 out_unlock:
701 	mmap_read_unlock(mm);
702 	mmput(mm);
703 
704 	return r;
705 }
706 
707 /*
708  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
709  * Check if the pages backing this ttm range have been invalidated
710  *
711  * Returns: true if pages are still valid
712  */
713 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
714 {
715 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
716 	bool r = false;
717 
718 	if (!gtt || !gtt->userptr)
719 		return false;
720 
721 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
722 		gtt->userptr, ttm->num_pages);
723 
724 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
725 		"No user pages to check\n");
726 
727 	if (gtt->range) {
728 		/*
729 		 * FIXME: Must always hold notifier_lock for this, and must
730 		 * not ignore the return code.
731 		 */
732 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
733 		gtt->range = NULL;
734 	}
735 
736 	return !r;
737 }
738 #endif
739 
740 /*
741  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
742  *
743  * Called by amdgpu_cs_list_validate(). This creates the page list
744  * that backs user memory and will ultimately be mapped into the device
745  * address space.
746  */
747 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
748 {
749 	unsigned long i;
750 
751 	for (i = 0; i < ttm->num_pages; ++i)
752 		ttm->pages[i] = pages ? pages[i] : NULL;
753 }
754 
755 /*
756  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
757  *
758  * Called by amdgpu_ttm_backend_bind()
759  **/
760 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
761 				     struct ttm_tt *ttm)
762 {
763 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
764 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
765 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
766 	enum dma_data_direction direction = write ?
767 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
768 	int r;
769 
770 	/* Allocate an SG array and squash pages into it */
771 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
772 				      (u64)ttm->num_pages << PAGE_SHIFT,
773 				      GFP_KERNEL);
774 	if (r)
775 		goto release_sg;
776 
777 	/* Map SG to device */
778 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
779 	if (r)
780 		goto release_sg;
781 
782 	/* convert SG to linear array of pages and dma addresses */
783 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
784 				       ttm->num_pages);
785 
786 	return 0;
787 
788 release_sg:
789 	kfree(ttm->sg);
790 	ttm->sg = NULL;
791 	return r;
792 }
793 
794 /*
795  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
796  */
797 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
798 					struct ttm_tt *ttm)
799 {
800 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
801 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
802 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
803 	enum dma_data_direction direction = write ?
804 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
805 
806 	/* double check that we don't free the table twice */
807 	if (!ttm->sg || !ttm->sg->sgl)
808 		return;
809 
810 	/* unmap the pages mapped to the device */
811 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
812 	sg_free_table(ttm->sg);
813 
814 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
815 	if (gtt->range) {
816 		unsigned long i;
817 
818 		for (i = 0; i < ttm->num_pages; i++) {
819 			if (ttm->pages[i] !=
820 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
821 				break;
822 		}
823 
824 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
825 	}
826 #endif
827 }
828 
829 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
830 				struct ttm_buffer_object *tbo,
831 				uint64_t flags)
832 {
833 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
834 	struct ttm_tt *ttm = tbo->ttm;
835 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
836 	int r;
837 
838 	if (amdgpu_bo_encrypted(abo))
839 		flags |= AMDGPU_PTE_TMZ;
840 
841 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
842 		uint64_t page_idx = 1;
843 
844 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
845 				gtt->ttm.dma_address, flags);
846 		if (r)
847 			goto gart_bind_fail;
848 
849 		/* The memory type of the first page defaults to UC. Now
850 		 * modify the memory type to NC from the second page of
851 		 * the BO onward.
852 		 */
853 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
854 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
855 
856 		r = amdgpu_gart_bind(adev,
857 				gtt->offset + (page_idx << PAGE_SHIFT),
858 				ttm->num_pages - page_idx,
859 				&(gtt->ttm.dma_address[page_idx]), flags);
860 	} else {
861 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
862 				     gtt->ttm.dma_address, flags);
863 	}
864 
865 gart_bind_fail:
866 	if (r)
867 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
868 			  ttm->num_pages, gtt->offset);
869 
870 	return r;
871 }
872 
873 /*
874  * amdgpu_ttm_backend_bind - Bind GTT memory
875  *
876  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
877  * This handles binding GTT memory to the device address space.
878  */
879 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
880 				   struct ttm_tt *ttm,
881 				   struct ttm_resource *bo_mem)
882 {
883 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
884 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
885 	uint64_t flags;
886 	int r = 0;
887 
888 	if (!bo_mem)
889 		return -EINVAL;
890 
891 	if (gtt->bound)
892 		return 0;
893 
894 	if (gtt->userptr) {
895 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
896 		if (r) {
897 			DRM_ERROR("failed to pin userptr\n");
898 			return r;
899 		}
900 	} else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
901 		if (!ttm->sg) {
902 			struct dma_buf_attachment *attach;
903 			struct sg_table *sgt;
904 
905 			attach = gtt->gobj->import_attach;
906 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
907 			if (IS_ERR(sgt))
908 				return PTR_ERR(sgt);
909 
910 			ttm->sg = sgt;
911 		}
912 
913 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
914 					       ttm->num_pages);
915 	}
916 
917 	if (!ttm->num_pages) {
918 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
919 		     ttm->num_pages, bo_mem, ttm);
920 	}
921 
922 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
923 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
924 	    bo_mem->mem_type == AMDGPU_PL_OA)
925 		return -EINVAL;
926 
927 	if (bo_mem->mem_type != TTM_PL_TT ||
928 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
929 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
930 		return 0;
931 	}
932 
933 	/* compute PTE flags relevant to this BO memory */
934 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
935 
936 	/* bind pages into GART page tables */
937 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
938 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
939 		gtt->ttm.dma_address, flags);
940 
941 	if (r)
942 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
943 			  ttm->num_pages, gtt->offset);
944 	gtt->bound = true;
945 	return r;
946 }
947 
948 /*
949  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
950  * through AGP or GART aperture.
951  *
952  * If bo is accessible through AGP aperture, then use AGP aperture
953  * to access bo; otherwise allocate logical space in GART aperture
954  * and map bo to GART aperture.
955  */
956 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
957 {
958 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
959 	struct ttm_operation_ctx ctx = { false, false };
960 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
961 	struct ttm_placement placement;
962 	struct ttm_place placements;
963 	struct ttm_resource *tmp;
964 	uint64_t addr, flags;
965 	int r;
966 
967 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
968 		return 0;
969 
970 	addr = amdgpu_gmc_agp_addr(bo);
971 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
972 		bo->resource->start = addr >> PAGE_SHIFT;
973 		return 0;
974 	}
975 
976 	/* allocate GART space */
977 	placement.num_placement = 1;
978 	placement.placement = &placements;
979 	placement.num_busy_placement = 1;
980 	placement.busy_placement = &placements;
981 	placements.fpfn = 0;
982 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
983 	placements.mem_type = TTM_PL_TT;
984 	placements.flags = bo->resource->placement;
985 
986 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
987 	if (unlikely(r))
988 		return r;
989 
990 	/* compute PTE flags for this buffer object */
991 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
992 
993 	/* Bind pages */
994 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
995 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
996 	if (unlikely(r)) {
997 		ttm_resource_free(bo, &tmp);
998 		return r;
999 	}
1000 
1001 	amdgpu_gart_invalidate_tlb(adev);
1002 	ttm_resource_free(bo, &bo->resource);
1003 	ttm_bo_assign_mem(bo, tmp);
1004 
1005 	return 0;
1006 }
1007 
1008 /*
1009  * amdgpu_ttm_recover_gart - Rebind GTT pages
1010  *
1011  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1012  * rebind GTT pages during a GPU reset.
1013  */
1014 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1015 {
1016 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1017 	uint64_t flags;
1018 	int r;
1019 
1020 	if (!tbo->ttm)
1021 		return 0;
1022 
1023 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1024 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1025 
1026 	return r;
1027 }
1028 
1029 /*
1030  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1031  *
1032  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1033  * ttm_tt_destroy().
1034  */
1035 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1036 				      struct ttm_tt *ttm)
1037 {
1038 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1039 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1040 	int r;
1041 
1042 	/* if the pages have userptr pinning then clear that first */
1043 	if (gtt->userptr) {
1044 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1045 	} else if (ttm->sg && gtt->gobj->import_attach) {
1046 		struct dma_buf_attachment *attach;
1047 
1048 		attach = gtt->gobj->import_attach;
1049 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1050 		ttm->sg = NULL;
1051 	}
1052 
1053 	if (!gtt->bound)
1054 		return;
1055 
1056 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1057 		return;
1058 
1059 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1060 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1061 	if (r)
1062 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1063 			  gtt->ttm.num_pages, gtt->offset);
1064 	gtt->bound = false;
1065 }
1066 
1067 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1068 				       struct ttm_tt *ttm)
1069 {
1070 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1071 
1072 	amdgpu_ttm_backend_unbind(bdev, ttm);
1073 	ttm_tt_destroy_common(bdev, ttm);
1074 	if (gtt->usertask)
1075 		put_task_struct(gtt->usertask);
1076 
1077 	ttm_tt_fini(&gtt->ttm);
1078 	kfree(gtt);
1079 }
1080 
1081 /**
1082  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1083  *
1084  * @bo: The buffer object to create a GTT ttm_tt object around
1085  * @page_flags: Page flags to be added to the ttm_tt object
1086  *
1087  * Called by ttm_tt_create().
1088  */
1089 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1090 					   uint32_t page_flags)
1091 {
1092 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1093 	struct amdgpu_ttm_tt *gtt;
1094 	enum ttm_caching caching;
1095 
1096 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1097 	if (gtt == NULL) {
1098 		return NULL;
1099 	}
1100 	gtt->gobj = &bo->base;
1101 
1102 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1103 		caching = ttm_write_combined;
1104 	else
1105 		caching = ttm_cached;
1106 
1107 	/* allocate space for the uninitialized page entries */
1108 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1109 		kfree(gtt);
1110 		return NULL;
1111 	}
1112 	return &gtt->ttm;
1113 }
1114 
1115 /*
1116  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1117  *
1118  * Map the pages of a ttm_tt object to an address space visible
1119  * to the underlying device.
1120  */
1121 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1122 				  struct ttm_tt *ttm,
1123 				  struct ttm_operation_ctx *ctx)
1124 {
1125 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1126 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1127 
1128 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1129 	if (gtt->userptr) {
1130 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1131 		if (!ttm->sg)
1132 			return -ENOMEM;
1133 		return 0;
1134 	}
1135 
1136 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1137 		return 0;
1138 
1139 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1140 }
1141 
1142 /*
1143  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1144  *
1145  * Unmaps pages of a ttm_tt object from the device address space and
1146  * unpopulates the page array backing it.
1147  */
1148 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1149 				     struct ttm_tt *ttm)
1150 {
1151 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1152 	struct amdgpu_device *adev;
1153 
1154 	if (gtt->userptr) {
1155 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1156 		kfree(ttm->sg);
1157 		ttm->sg = NULL;
1158 		return;
1159 	}
1160 
1161 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1162 		return;
1163 
1164 	adev = amdgpu_ttm_adev(bdev);
1165 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1166 }
1167 
1168 /**
1169  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1170  * task
1171  *
1172  * @bo: The ttm_buffer_object to bind this userptr to
1173  * @addr:  The address in the current tasks VM space to use
1174  * @flags: Requirements of userptr object.
1175  *
1176  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1177  * to current task
1178  */
1179 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1180 			      uint64_t addr, uint32_t flags)
1181 {
1182 	struct amdgpu_ttm_tt *gtt;
1183 
1184 	if (!bo->ttm) {
1185 		/* TODO: We want a separate TTM object type for userptrs */
1186 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1187 		if (bo->ttm == NULL)
1188 			return -ENOMEM;
1189 	}
1190 
1191 	/* Set TTM_PAGE_FLAG_SG before populate but after create. */
1192 	bo->ttm->page_flags |= TTM_PAGE_FLAG_SG;
1193 
1194 	gtt = (void *)bo->ttm;
1195 	gtt->userptr = addr;
1196 	gtt->userflags = flags;
1197 
1198 	if (gtt->usertask)
1199 		put_task_struct(gtt->usertask);
1200 	gtt->usertask = current->group_leader;
1201 	get_task_struct(gtt->usertask);
1202 
1203 	return 0;
1204 }
1205 
1206 /*
1207  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1208  */
1209 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1210 {
1211 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1212 
1213 	if (gtt == NULL)
1214 		return NULL;
1215 
1216 	if (gtt->usertask == NULL)
1217 		return NULL;
1218 
1219 	return gtt->usertask->mm;
1220 }
1221 
1222 /*
1223  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1224  * address range for the current task.
1225  *
1226  */
1227 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1228 				  unsigned long end)
1229 {
1230 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1231 	unsigned long size;
1232 
1233 	if (gtt == NULL || !gtt->userptr)
1234 		return false;
1235 
1236 	/* Return false if no part of the ttm_tt object lies within
1237 	 * the range
1238 	 */
1239 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1240 	if (gtt->userptr > end || gtt->userptr + size <= start)
1241 		return false;
1242 
1243 	return true;
1244 }
1245 
1246 /*
1247  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1248  */
1249 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1250 {
1251 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1252 
1253 	if (gtt == NULL || !gtt->userptr)
1254 		return false;
1255 
1256 	return true;
1257 }
1258 
1259 /*
1260  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1261  */
1262 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1263 {
1264 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1265 
1266 	if (gtt == NULL)
1267 		return false;
1268 
1269 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1270 }
1271 
1272 /**
1273  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1274  *
1275  * @ttm: The ttm_tt object to compute the flags for
1276  * @mem: The memory registry backing this ttm_tt object
1277  *
1278  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1279  */
1280 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1281 {
1282 	uint64_t flags = 0;
1283 
1284 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1285 		flags |= AMDGPU_PTE_VALID;
1286 
1287 	if (mem && (mem->mem_type == TTM_PL_TT ||
1288 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1289 		flags |= AMDGPU_PTE_SYSTEM;
1290 
1291 		if (ttm->caching == ttm_cached)
1292 			flags |= AMDGPU_PTE_SNOOPED;
1293 	}
1294 
1295 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1296 			mem->bus.caching == ttm_cached)
1297 		flags |= AMDGPU_PTE_SNOOPED;
1298 
1299 	return flags;
1300 }
1301 
1302 /**
1303  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1304  *
1305  * @adev: amdgpu_device pointer
1306  * @ttm: The ttm_tt object to compute the flags for
1307  * @mem: The memory registry backing this ttm_tt object
1308  *
1309  * Figure out the flags to use for a VM PTE (Page Table Entry).
1310  */
1311 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1312 				 struct ttm_resource *mem)
1313 {
1314 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1315 
1316 	flags |= adev->gart.gart_pte_flags;
1317 	flags |= AMDGPU_PTE_READABLE;
1318 
1319 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1320 		flags |= AMDGPU_PTE_WRITEABLE;
1321 
1322 	return flags;
1323 }
1324 
1325 /*
1326  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1327  * object.
1328  *
1329  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1330  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1331  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1332  * used to clean out a memory space.
1333  */
1334 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1335 					    const struct ttm_place *place)
1336 {
1337 	unsigned long num_pages = bo->resource->num_pages;
1338 	struct amdgpu_res_cursor cursor;
1339 	struct dma_resv_list *flist;
1340 	struct dma_fence *f;
1341 	int i;
1342 
1343 	/* Swapout? */
1344 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1345 		return true;
1346 
1347 	if (bo->type == ttm_bo_type_kernel &&
1348 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1349 		return false;
1350 
1351 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1352 	 * If true, then return false as any KFD process needs all its BOs to
1353 	 * be resident to run successfully
1354 	 */
1355 	flist = dma_resv_shared_list(bo->base.resv);
1356 	if (flist) {
1357 		for (i = 0; i < flist->shared_count; ++i) {
1358 			f = rcu_dereference_protected(flist->shared[i],
1359 				dma_resv_held(bo->base.resv));
1360 			if (amdkfd_fence_check_mm(f, current->mm))
1361 				return false;
1362 		}
1363 	}
1364 
1365 	switch (bo->resource->mem_type) {
1366 	case AMDGPU_PL_PREEMPT:
1367 		/* Preemptible BOs don't own system resources managed by the
1368 		 * driver (pages, VRAM, GART space). They point to resources
1369 		 * owned by someone else (e.g. pageable memory in user mode
1370 		 * or a DMABuf). They are used in a preemptible context so we
1371 		 * can guarantee no deadlocks and good QoS in case of MMU
1372 		 * notifiers or DMABuf move notifiers from the resource owner.
1373 		 */
1374 		return false;
1375 	case TTM_PL_TT:
1376 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1377 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1378 			return false;
1379 		return true;
1380 
1381 	case TTM_PL_VRAM:
1382 		/* Check each drm MM node individually */
1383 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1384 				 &cursor);
1385 		while (cursor.remaining) {
1386 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1387 			    && !(place->lpfn &&
1388 				 place->lpfn <= PFN_DOWN(cursor.start)))
1389 				return true;
1390 
1391 			amdgpu_res_next(&cursor, cursor.size);
1392 		}
1393 		return false;
1394 
1395 	default:
1396 		break;
1397 	}
1398 
1399 	return ttm_bo_eviction_valuable(bo, place);
1400 }
1401 
1402 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1403 				      void *buf, size_t size, bool write)
1404 {
1405 	while (size) {
1406 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1407 		uint64_t bytes = 4 - (pos & 0x3);
1408 		uint32_t shift = (pos & 0x3) * 8;
1409 		uint32_t mask = 0xffffffff << shift;
1410 		uint32_t value = 0;
1411 
1412 		if (size < bytes) {
1413 			mask &= 0xffffffff >> (bytes - size) * 8;
1414 			bytes = size;
1415 		}
1416 
1417 		if (mask != 0xffffffff) {
1418 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1419 			if (write) {
1420 				value &= ~mask;
1421 				value |= (*(uint32_t *)buf << shift) & mask;
1422 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1423 			} else {
1424 				value = (value & mask) >> shift;
1425 				memcpy(buf, &value, bytes);
1426 			}
1427 		} else {
1428 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1429 		}
1430 
1431 		pos += bytes;
1432 		buf += bytes;
1433 		size -= bytes;
1434 	}
1435 }
1436 
1437 /**
1438  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1439  *
1440  * @bo:  The buffer object to read/write
1441  * @offset:  Offset into buffer object
1442  * @buf:  Secondary buffer to write/read from
1443  * @len: Length in bytes of access
1444  * @write:  true if writing
1445  *
1446  * This is used to access VRAM that backs a buffer object via MMIO
1447  * access for debugging purposes.
1448  */
1449 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1450 				    unsigned long offset, void *buf, int len,
1451 				    int write)
1452 {
1453 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1454 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1455 	struct amdgpu_res_cursor cursor;
1456 	int ret = 0;
1457 
1458 	if (bo->resource->mem_type != TTM_PL_VRAM)
1459 		return -EIO;
1460 
1461 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1462 	while (cursor.remaining) {
1463 		size_t count, size = cursor.size;
1464 		loff_t pos = cursor.start;
1465 
1466 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1467 		size -= count;
1468 		if (size) {
1469 			/* using MM to access rest vram and handle un-aligned address */
1470 			pos += count;
1471 			buf += count;
1472 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1473 		}
1474 
1475 		ret += cursor.size;
1476 		buf += cursor.size;
1477 		amdgpu_res_next(&cursor, cursor.size);
1478 	}
1479 
1480 	return ret;
1481 }
1482 
1483 static void
1484 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1485 {
1486 	amdgpu_bo_move_notify(bo, false, NULL);
1487 }
1488 
1489 static struct ttm_device_funcs amdgpu_bo_driver = {
1490 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1491 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1492 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1493 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1494 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1495 	.evict_flags = &amdgpu_evict_flags,
1496 	.move = &amdgpu_bo_move,
1497 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1498 	.release_notify = &amdgpu_bo_release_notify,
1499 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1500 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1501 	.access_memory = &amdgpu_ttm_access_memory,
1502 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1503 };
1504 
1505 /*
1506  * Firmware Reservation functions
1507  */
1508 /**
1509  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1510  *
1511  * @adev: amdgpu_device pointer
1512  *
1513  * free fw reserved vram if it has been reserved.
1514  */
1515 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1516 {
1517 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1518 		NULL, &adev->mman.fw_vram_usage_va);
1519 }
1520 
1521 /**
1522  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1523  *
1524  * @adev: amdgpu_device pointer
1525  *
1526  * create bo vram reservation from fw.
1527  */
1528 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1529 {
1530 	uint64_t vram_size = adev->gmc.visible_vram_size;
1531 
1532 	adev->mman.fw_vram_usage_va = NULL;
1533 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1534 
1535 	if (adev->mman.fw_vram_usage_size == 0 ||
1536 	    adev->mman.fw_vram_usage_size > vram_size)
1537 		return 0;
1538 
1539 	return amdgpu_bo_create_kernel_at(adev,
1540 					  adev->mman.fw_vram_usage_start_offset,
1541 					  adev->mman.fw_vram_usage_size,
1542 					  AMDGPU_GEM_DOMAIN_VRAM,
1543 					  &adev->mman.fw_vram_usage_reserved_bo,
1544 					  &adev->mman.fw_vram_usage_va);
1545 }
1546 
1547 /*
1548  * Memoy training reservation functions
1549  */
1550 
1551 /**
1552  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1553  *
1554  * @adev: amdgpu_device pointer
1555  *
1556  * free memory training reserved vram if it has been reserved.
1557  */
1558 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1559 {
1560 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1561 
1562 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1563 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1564 	ctx->c2p_bo = NULL;
1565 
1566 	return 0;
1567 }
1568 
1569 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1570 {
1571 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1572 
1573 	memset(ctx, 0, sizeof(*ctx));
1574 
1575 	ctx->c2p_train_data_offset =
1576 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1577 	ctx->p2c_train_data_offset =
1578 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1579 	ctx->train_data_size =
1580 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1581 
1582 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1583 			ctx->train_data_size,
1584 			ctx->p2c_train_data_offset,
1585 			ctx->c2p_train_data_offset);
1586 }
1587 
1588 /*
1589  * reserve TMR memory at the top of VRAM which holds
1590  * IP Discovery data and is protected by PSP.
1591  */
1592 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1593 {
1594 	int ret;
1595 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1596 	bool mem_train_support = false;
1597 
1598 	if (!amdgpu_sriov_vf(adev)) {
1599 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1600 			mem_train_support = true;
1601 		else
1602 			DRM_DEBUG("memory training does not support!\n");
1603 	}
1604 
1605 	/*
1606 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1607 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1608 	 *
1609 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1610 	 * discovery data and G6 memory training data respectively
1611 	 */
1612 	adev->mman.discovery_tmr_size =
1613 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1614 	if (!adev->mman.discovery_tmr_size)
1615 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1616 
1617 	if (mem_train_support) {
1618 		/* reserve vram for mem train according to TMR location */
1619 		amdgpu_ttm_training_data_block_init(adev);
1620 		ret = amdgpu_bo_create_kernel_at(adev,
1621 					 ctx->c2p_train_data_offset,
1622 					 ctx->train_data_size,
1623 					 AMDGPU_GEM_DOMAIN_VRAM,
1624 					 &ctx->c2p_bo,
1625 					 NULL);
1626 		if (ret) {
1627 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1628 			amdgpu_ttm_training_reserve_vram_fini(adev);
1629 			return ret;
1630 		}
1631 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1632 	}
1633 
1634 	ret = amdgpu_bo_create_kernel_at(adev,
1635 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1636 				adev->mman.discovery_tmr_size,
1637 				AMDGPU_GEM_DOMAIN_VRAM,
1638 				&adev->mman.discovery_memory,
1639 				NULL);
1640 	if (ret) {
1641 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1642 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1643 		return ret;
1644 	}
1645 
1646 	return 0;
1647 }
1648 
1649 /*
1650  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1651  * gtt/vram related fields.
1652  *
1653  * This initializes all of the memory space pools that the TTM layer
1654  * will need such as the GTT space (system memory mapped to the device),
1655  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1656  * can be mapped per VMID.
1657  */
1658 int amdgpu_ttm_init(struct amdgpu_device *adev)
1659 {
1660 	uint64_t gtt_size;
1661 	int r;
1662 	u64 vis_vram_limit;
1663 
1664 	mutex_init(&adev->mman.gtt_window_lock);
1665 
1666 	/* No others user of address space so set it to 0 */
1667 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1668 			       adev_to_drm(adev)->anon_inode->i_mapping,
1669 			       adev_to_drm(adev)->vma_offset_manager,
1670 			       adev->need_swiotlb,
1671 			       dma_addressing_limited(adev->dev));
1672 	if (r) {
1673 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1674 		return r;
1675 	}
1676 	adev->mman.initialized = true;
1677 
1678 	/* Initialize VRAM pool with all of VRAM divided into pages */
1679 	r = amdgpu_vram_mgr_init(adev);
1680 	if (r) {
1681 		DRM_ERROR("Failed initializing VRAM heap.\n");
1682 		return r;
1683 	}
1684 
1685 	/* Reduce size of CPU-visible VRAM if requested */
1686 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1687 	if (amdgpu_vis_vram_limit > 0 &&
1688 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1689 		adev->gmc.visible_vram_size = vis_vram_limit;
1690 
1691 	/* Change the size here instead of the init above so only lpfn is affected */
1692 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1693 #ifdef CONFIG_64BIT
1694 #ifdef CONFIG_X86
1695 	if (adev->gmc.xgmi.connected_to_cpu)
1696 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1697 				adev->gmc.visible_vram_size);
1698 
1699 	else
1700 #endif
1701 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1702 				adev->gmc.visible_vram_size);
1703 #endif
1704 
1705 	/*
1706 	 *The reserved vram for firmware must be pinned to the specified
1707 	 *place on the VRAM, so reserve it early.
1708 	 */
1709 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1710 	if (r) {
1711 		return r;
1712 	}
1713 
1714 	/*
1715 	 * only NAVI10 and onwards ASIC support for IP discovery.
1716 	 * If IP discovery enabled, a block of memory should be
1717 	 * reserved for IP discovey.
1718 	 */
1719 	if (adev->mman.discovery_bin) {
1720 		r = amdgpu_ttm_reserve_tmr(adev);
1721 		if (r)
1722 			return r;
1723 	}
1724 
1725 	/* allocate memory as required for VGA
1726 	 * This is used for VGA emulation and pre-OS scanout buffers to
1727 	 * avoid display artifacts while transitioning between pre-OS
1728 	 * and driver.  */
1729 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1730 				       AMDGPU_GEM_DOMAIN_VRAM,
1731 				       &adev->mman.stolen_vga_memory,
1732 				       NULL);
1733 	if (r)
1734 		return r;
1735 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1736 				       adev->mman.stolen_extended_size,
1737 				       AMDGPU_GEM_DOMAIN_VRAM,
1738 				       &adev->mman.stolen_extended_memory,
1739 				       NULL);
1740 	if (r)
1741 		return r;
1742 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1743 				       adev->mman.stolen_reserved_size,
1744 				       AMDGPU_GEM_DOMAIN_VRAM,
1745 				       &adev->mman.stolen_reserved_memory,
1746 				       NULL);
1747 	if (r)
1748 		return r;
1749 
1750 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1751 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1752 
1753 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1754 	 * or whatever the user passed on module init */
1755 	if (amdgpu_gtt_size == -1) {
1756 		struct sysinfo si;
1757 
1758 		si_meminfo(&si);
1759 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1760 			       adev->gmc.mc_vram_size),
1761 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1762 	}
1763 	else
1764 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1765 
1766 	/* Initialize GTT memory pool */
1767 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1768 	if (r) {
1769 		DRM_ERROR("Failed initializing GTT heap.\n");
1770 		return r;
1771 	}
1772 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1773 		 (unsigned)(gtt_size / (1024 * 1024)));
1774 
1775 	/* Initialize preemptible memory pool */
1776 	r = amdgpu_preempt_mgr_init(adev);
1777 	if (r) {
1778 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1779 		return r;
1780 	}
1781 
1782 	/* Initialize various on-chip memory pools */
1783 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1784 	if (r) {
1785 		DRM_ERROR("Failed initializing GDS heap.\n");
1786 		return r;
1787 	}
1788 
1789 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1790 	if (r) {
1791 		DRM_ERROR("Failed initializing gws heap.\n");
1792 		return r;
1793 	}
1794 
1795 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1796 	if (r) {
1797 		DRM_ERROR("Failed initializing oa heap.\n");
1798 		return r;
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 /*
1805  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1806  */
1807 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1808 {
1809 	if (!adev->mman.initialized)
1810 		return;
1811 
1812 	amdgpu_ttm_training_reserve_vram_fini(adev);
1813 	/* return the stolen vga memory back to VRAM */
1814 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1815 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1816 	/* return the IP Discovery TMR memory back to VRAM */
1817 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1818 	if (adev->mman.stolen_reserved_size)
1819 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1820 				      NULL, NULL);
1821 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1822 
1823 	amdgpu_vram_mgr_fini(adev);
1824 	amdgpu_gtt_mgr_fini(adev);
1825 	amdgpu_preempt_mgr_fini(adev);
1826 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1827 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1828 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1829 	ttm_device_fini(&adev->mman.bdev);
1830 	adev->mman.initialized = false;
1831 	DRM_INFO("amdgpu: ttm finalized\n");
1832 }
1833 
1834 /**
1835  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1836  *
1837  * @adev: amdgpu_device pointer
1838  * @enable: true when we can use buffer functions.
1839  *
1840  * Enable/disable use of buffer functions during suspend/resume. This should
1841  * only be called at bootup or when userspace isn't running.
1842  */
1843 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1844 {
1845 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1846 	uint64_t size;
1847 	int r;
1848 
1849 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1850 	    adev->mman.buffer_funcs_enabled == enable)
1851 		return;
1852 
1853 	if (enable) {
1854 		struct amdgpu_ring *ring;
1855 		struct drm_gpu_scheduler *sched;
1856 
1857 		ring = adev->mman.buffer_funcs_ring;
1858 		sched = &ring->sched;
1859 		r = drm_sched_entity_init(&adev->mman.entity,
1860 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1861 					  1, NULL);
1862 		if (r) {
1863 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1864 				  r);
1865 			return;
1866 		}
1867 	} else {
1868 		drm_sched_entity_destroy(&adev->mman.entity);
1869 		dma_fence_put(man->move);
1870 		man->move = NULL;
1871 	}
1872 
1873 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1874 	if (enable)
1875 		size = adev->gmc.real_vram_size;
1876 	else
1877 		size = adev->gmc.visible_vram_size;
1878 	man->size = size >> PAGE_SHIFT;
1879 	adev->mman.buffer_funcs_enabled = enable;
1880 }
1881 
1882 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1883 		       uint64_t dst_offset, uint32_t byte_count,
1884 		       struct dma_resv *resv,
1885 		       struct dma_fence **fence, bool direct_submit,
1886 		       bool vm_needs_flush, bool tmz)
1887 {
1888 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1889 		AMDGPU_IB_POOL_DELAYED;
1890 	struct amdgpu_device *adev = ring->adev;
1891 	struct amdgpu_job *job;
1892 
1893 	uint32_t max_bytes;
1894 	unsigned num_loops, num_dw;
1895 	unsigned i;
1896 	int r;
1897 
1898 	if (direct_submit && !ring->sched.ready) {
1899 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1900 		return -EINVAL;
1901 	}
1902 
1903 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1904 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1905 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1906 
1907 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1908 	if (r)
1909 		return r;
1910 
1911 	if (vm_needs_flush) {
1912 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1913 					adev->gmc.pdb0_bo : adev->gart.bo);
1914 		job->vm_needs_flush = true;
1915 	}
1916 	if (resv) {
1917 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1918 				     AMDGPU_SYNC_ALWAYS,
1919 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1920 		if (r) {
1921 			DRM_ERROR("sync failed (%d).\n", r);
1922 			goto error_free;
1923 		}
1924 	}
1925 
1926 	for (i = 0; i < num_loops; i++) {
1927 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1928 
1929 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1930 					dst_offset, cur_size_in_bytes, tmz);
1931 
1932 		src_offset += cur_size_in_bytes;
1933 		dst_offset += cur_size_in_bytes;
1934 		byte_count -= cur_size_in_bytes;
1935 	}
1936 
1937 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1938 	WARN_ON(job->ibs[0].length_dw > num_dw);
1939 	if (direct_submit)
1940 		r = amdgpu_job_submit_direct(job, ring, fence);
1941 	else
1942 		r = amdgpu_job_submit(job, &adev->mman.entity,
1943 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1944 	if (r)
1945 		goto error_free;
1946 
1947 	return r;
1948 
1949 error_free:
1950 	amdgpu_job_free(job);
1951 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1952 	return r;
1953 }
1954 
1955 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1956 		       uint32_t src_data,
1957 		       struct dma_resv *resv,
1958 		       struct dma_fence **fence)
1959 {
1960 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1961 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1962 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1963 
1964 	struct amdgpu_res_cursor cursor;
1965 	unsigned int num_loops, num_dw;
1966 	uint64_t num_bytes;
1967 
1968 	struct amdgpu_job *job;
1969 	int r;
1970 
1971 	if (!adev->mman.buffer_funcs_enabled) {
1972 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1973 		return -EINVAL;
1974 	}
1975 
1976 	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1977 		DRM_ERROR("Trying to clear preemptible memory.\n");
1978 		return -EINVAL;
1979 	}
1980 
1981 	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1982 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1983 		if (r)
1984 			return r;
1985 	}
1986 
1987 	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1988 	num_loops = 0;
1989 
1990 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1991 	while (cursor.remaining) {
1992 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1993 		amdgpu_res_next(&cursor, cursor.size);
1994 	}
1995 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1996 
1997 	/* for IB padding */
1998 	num_dw += 64;
1999 
2000 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2001 				     &job);
2002 	if (r)
2003 		return r;
2004 
2005 	if (resv) {
2006 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2007 				     AMDGPU_SYNC_ALWAYS,
2008 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2009 		if (r) {
2010 			DRM_ERROR("sync failed (%d).\n", r);
2011 			goto error_free;
2012 		}
2013 	}
2014 
2015 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2016 	while (cursor.remaining) {
2017 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2018 		uint64_t dst_addr = cursor.start;
2019 
2020 		dst_addr += amdgpu_ttm_domain_start(adev,
2021 						    bo->tbo.resource->mem_type);
2022 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2023 					cur_size);
2024 
2025 		amdgpu_res_next(&cursor, cur_size);
2026 	}
2027 
2028 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2029 	WARN_ON(job->ibs[0].length_dw > num_dw);
2030 	r = amdgpu_job_submit(job, &adev->mman.entity,
2031 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2032 	if (r)
2033 		goto error_free;
2034 
2035 	return 0;
2036 
2037 error_free:
2038 	amdgpu_job_free(job);
2039 	return r;
2040 }
2041 
2042 #if defined(CONFIG_DEBUG_FS)
2043 
2044 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2045 {
2046 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2047 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2048 							    TTM_PL_VRAM);
2049 	struct drm_printer p = drm_seq_file_printer(m);
2050 
2051 	man->func->debug(man, &p);
2052 	return 0;
2053 }
2054 
2055 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2056 {
2057 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2058 
2059 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2060 }
2061 
2062 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2063 {
2064 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2065 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2066 							    TTM_PL_TT);
2067 	struct drm_printer p = drm_seq_file_printer(m);
2068 
2069 	man->func->debug(man, &p);
2070 	return 0;
2071 }
2072 
2073 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2074 {
2075 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2076 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2077 							    AMDGPU_PL_GDS);
2078 	struct drm_printer p = drm_seq_file_printer(m);
2079 
2080 	man->func->debug(man, &p);
2081 	return 0;
2082 }
2083 
2084 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2085 {
2086 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2087 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2088 							    AMDGPU_PL_GWS);
2089 	struct drm_printer p = drm_seq_file_printer(m);
2090 
2091 	man->func->debug(man, &p);
2092 	return 0;
2093 }
2094 
2095 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2096 {
2097 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2098 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2099 							    AMDGPU_PL_OA);
2100 	struct drm_printer p = drm_seq_file_printer(m);
2101 
2102 	man->func->debug(man, &p);
2103 	return 0;
2104 }
2105 
2106 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2107 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2108 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2109 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2110 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2111 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2112 
2113 /*
2114  * amdgpu_ttm_vram_read - Linear read access to VRAM
2115  *
2116  * Accesses VRAM via MMIO for debugging purposes.
2117  */
2118 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2119 				    size_t size, loff_t *pos)
2120 {
2121 	struct amdgpu_device *adev = file_inode(f)->i_private;
2122 	ssize_t result = 0;
2123 
2124 	if (size & 0x3 || *pos & 0x3)
2125 		return -EINVAL;
2126 
2127 	if (*pos >= adev->gmc.mc_vram_size)
2128 		return -ENXIO;
2129 
2130 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2131 	while (size) {
2132 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2133 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2134 
2135 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2136 		if (copy_to_user(buf, value, bytes))
2137 			return -EFAULT;
2138 
2139 		result += bytes;
2140 		buf += bytes;
2141 		*pos += bytes;
2142 		size -= bytes;
2143 	}
2144 
2145 	return result;
2146 }
2147 
2148 /*
2149  * amdgpu_ttm_vram_write - Linear write access to VRAM
2150  *
2151  * Accesses VRAM via MMIO for debugging purposes.
2152  */
2153 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2154 				    size_t size, loff_t *pos)
2155 {
2156 	struct amdgpu_device *adev = file_inode(f)->i_private;
2157 	ssize_t result = 0;
2158 	int r;
2159 
2160 	if (size & 0x3 || *pos & 0x3)
2161 		return -EINVAL;
2162 
2163 	if (*pos >= adev->gmc.mc_vram_size)
2164 		return -ENXIO;
2165 
2166 	while (size) {
2167 		uint32_t value;
2168 
2169 		if (*pos >= adev->gmc.mc_vram_size)
2170 			return result;
2171 
2172 		r = get_user(value, (uint32_t *)buf);
2173 		if (r)
2174 			return r;
2175 
2176 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2177 
2178 		result += 4;
2179 		buf += 4;
2180 		*pos += 4;
2181 		size -= 4;
2182 	}
2183 
2184 	return result;
2185 }
2186 
2187 static const struct file_operations amdgpu_ttm_vram_fops = {
2188 	.owner = THIS_MODULE,
2189 	.read = amdgpu_ttm_vram_read,
2190 	.write = amdgpu_ttm_vram_write,
2191 	.llseek = default_llseek,
2192 };
2193 
2194 /*
2195  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2196  *
2197  * This function is used to read memory that has been mapped to the
2198  * GPU and the known addresses are not physical addresses but instead
2199  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2200  */
2201 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2202 				 size_t size, loff_t *pos)
2203 {
2204 	struct amdgpu_device *adev = file_inode(f)->i_private;
2205 	struct iommu_domain *dom;
2206 	ssize_t result = 0;
2207 	int r;
2208 
2209 	/* retrieve the IOMMU domain if any for this device */
2210 	dom = iommu_get_domain_for_dev(adev->dev);
2211 
2212 	while (size) {
2213 		phys_addr_t addr = *pos & PAGE_MASK;
2214 		loff_t off = *pos & ~PAGE_MASK;
2215 		size_t bytes = PAGE_SIZE - off;
2216 		unsigned long pfn;
2217 		struct page *p;
2218 		void *ptr;
2219 
2220 		bytes = bytes < size ? bytes : size;
2221 
2222 		/* Translate the bus address to a physical address.  If
2223 		 * the domain is NULL it means there is no IOMMU active
2224 		 * and the address translation is the identity
2225 		 */
2226 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2227 
2228 		pfn = addr >> PAGE_SHIFT;
2229 		if (!pfn_valid(pfn))
2230 			return -EPERM;
2231 
2232 		p = pfn_to_page(pfn);
2233 		if (p->mapping != adev->mman.bdev.dev_mapping)
2234 			return -EPERM;
2235 
2236 		ptr = kmap(p);
2237 		r = copy_to_user(buf, ptr + off, bytes);
2238 		kunmap(p);
2239 		if (r)
2240 			return -EFAULT;
2241 
2242 		size -= bytes;
2243 		*pos += bytes;
2244 		result += bytes;
2245 	}
2246 
2247 	return result;
2248 }
2249 
2250 /*
2251  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2252  *
2253  * This function is used to write memory that has been mapped to the
2254  * GPU and the known addresses are not physical addresses but instead
2255  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2256  */
2257 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2258 				 size_t size, loff_t *pos)
2259 {
2260 	struct amdgpu_device *adev = file_inode(f)->i_private;
2261 	struct iommu_domain *dom;
2262 	ssize_t result = 0;
2263 	int r;
2264 
2265 	dom = iommu_get_domain_for_dev(adev->dev);
2266 
2267 	while (size) {
2268 		phys_addr_t addr = *pos & PAGE_MASK;
2269 		loff_t off = *pos & ~PAGE_MASK;
2270 		size_t bytes = PAGE_SIZE - off;
2271 		unsigned long pfn;
2272 		struct page *p;
2273 		void *ptr;
2274 
2275 		bytes = bytes < size ? bytes : size;
2276 
2277 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2278 
2279 		pfn = addr >> PAGE_SHIFT;
2280 		if (!pfn_valid(pfn))
2281 			return -EPERM;
2282 
2283 		p = pfn_to_page(pfn);
2284 		if (p->mapping != adev->mman.bdev.dev_mapping)
2285 			return -EPERM;
2286 
2287 		ptr = kmap(p);
2288 		r = copy_from_user(ptr + off, buf, bytes);
2289 		kunmap(p);
2290 		if (r)
2291 			return -EFAULT;
2292 
2293 		size -= bytes;
2294 		*pos += bytes;
2295 		result += bytes;
2296 	}
2297 
2298 	return result;
2299 }
2300 
2301 static const struct file_operations amdgpu_ttm_iomem_fops = {
2302 	.owner = THIS_MODULE,
2303 	.read = amdgpu_iomem_read,
2304 	.write = amdgpu_iomem_write,
2305 	.llseek = default_llseek
2306 };
2307 
2308 #endif
2309 
2310 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2311 {
2312 #if defined(CONFIG_DEBUG_FS)
2313 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2314 	struct dentry *root = minor->debugfs_root;
2315 
2316 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2317 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2318 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2319 			    &amdgpu_ttm_iomem_fops);
2320 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2321 			    &amdgpu_mm_vram_table_fops);
2322 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2323 			    &amdgpu_mm_tt_table_fops);
2324 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2325 			    &amdgpu_mm_gds_table_fops);
2326 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2327 			    &amdgpu_mm_gws_table_fops);
2328 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2329 			    &amdgpu_mm_oa_table_fops);
2330 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2331 			    &amdgpu_ttm_page_pool_fops);
2332 #endif
2333 }
2334