1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, 0); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 uint32_t copy_flags = 0; 299 struct amdgpu_bo *abo_src, *abo_dst; 300 301 if (!adev->mman.buffer_funcs_enabled) { 302 DRM_ERROR("Trying to move memory with ring turned off.\n"); 303 return -EINVAL; 304 } 305 306 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 308 309 mutex_lock(&adev->mman.gtt_window_lock); 310 while (src_mm.remaining) { 311 uint64_t from, to, cur_size; 312 struct dma_fence *next; 313 314 /* Never copy more than 256MiB at once to avoid a timeout */ 315 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 316 317 /* Map src to window 0 and dst to window 1. */ 318 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 319 0, ring, tmz, &cur_size, &from); 320 if (r) 321 goto error; 322 323 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 324 1, ring, tmz, &cur_size, &to); 325 if (r) 326 goto error; 327 328 abo_src = ttm_to_amdgpu_bo(src->bo); 329 abo_dst = ttm_to_amdgpu_bo(dst->bo); 330 if (tmz) 331 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 332 if (abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) 333 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED; 334 if (abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) 335 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED; 336 337 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 338 &next, false, true, copy_flags); 339 if (r) 340 goto error; 341 342 dma_fence_put(fence); 343 fence = next; 344 345 amdgpu_res_next(&src_mm, cur_size); 346 amdgpu_res_next(&dst_mm, cur_size); 347 } 348 error: 349 mutex_unlock(&adev->mman.gtt_window_lock); 350 if (f) 351 *f = dma_fence_get(fence); 352 dma_fence_put(fence); 353 return r; 354 } 355 356 /* 357 * amdgpu_move_blit - Copy an entire buffer to another buffer 358 * 359 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 360 * help move buffers to and from VRAM. 361 */ 362 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 363 bool evict, 364 struct ttm_resource *new_mem, 365 struct ttm_resource *old_mem) 366 { 367 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 368 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 369 struct amdgpu_copy_mem src, dst; 370 struct dma_fence *fence = NULL; 371 int r; 372 373 src.bo = bo; 374 dst.bo = bo; 375 src.mem = old_mem; 376 dst.mem = new_mem; 377 src.offset = 0; 378 dst.offset = 0; 379 380 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 381 new_mem->size, 382 amdgpu_bo_encrypted(abo), 383 bo->base.resv, &fence); 384 if (r) 385 goto error; 386 387 /* clear the space being freed */ 388 if (old_mem->mem_type == TTM_PL_VRAM && 389 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 390 struct dma_fence *wipe_fence = NULL; 391 392 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 393 false); 394 if (r) { 395 goto error; 396 } else if (wipe_fence) { 397 amdgpu_vram_mgr_set_cleared(bo->resource); 398 dma_fence_put(fence); 399 fence = wipe_fence; 400 } 401 } 402 403 /* Always block for VM page tables before committing the new location */ 404 if (bo->type == ttm_bo_type_kernel) 405 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 406 else 407 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 408 dma_fence_put(fence); 409 return r; 410 411 error: 412 if (fence) 413 dma_fence_wait(fence, false); 414 dma_fence_put(fence); 415 return r; 416 } 417 418 /** 419 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 420 * @adev: amdgpu device 421 * @res: the resource to check 422 * 423 * Returns: true if the full resource is CPU visible, false otherwise. 424 */ 425 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 426 struct ttm_resource *res) 427 { 428 struct amdgpu_res_cursor cursor; 429 430 if (!res) 431 return false; 432 433 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 434 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 435 return true; 436 437 if (res->mem_type != TTM_PL_VRAM) 438 return false; 439 440 amdgpu_res_first(res, 0, res->size, &cursor); 441 while (cursor.remaining) { 442 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 443 return false; 444 amdgpu_res_next(&cursor, cursor.size); 445 } 446 447 return true; 448 } 449 450 /* 451 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 452 * 453 * Called by amdgpu_bo_move() 454 */ 455 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 456 struct ttm_resource *mem) 457 { 458 if (!amdgpu_res_cpu_visible(adev, mem)) 459 return false; 460 461 /* ttm_resource_ioremap only supports contiguous memory */ 462 if (mem->mem_type == TTM_PL_VRAM && 463 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 464 return false; 465 466 return true; 467 } 468 469 /* 470 * amdgpu_bo_move - Move a buffer object to a new memory location 471 * 472 * Called by ttm_bo_handle_move_mem() 473 */ 474 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 475 struct ttm_operation_ctx *ctx, 476 struct ttm_resource *new_mem, 477 struct ttm_place *hop) 478 { 479 struct amdgpu_device *adev; 480 struct amdgpu_bo *abo; 481 struct ttm_resource *old_mem = bo->resource; 482 int r; 483 484 if (new_mem->mem_type == TTM_PL_TT || 485 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 486 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 487 if (r) 488 return r; 489 } 490 491 abo = ttm_to_amdgpu_bo(bo); 492 adev = amdgpu_ttm_adev(bo->bdev); 493 494 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 495 bo->ttm == NULL)) { 496 amdgpu_bo_move_notify(bo, evict, new_mem); 497 ttm_bo_move_null(bo, new_mem); 498 return 0; 499 } 500 if (old_mem->mem_type == TTM_PL_SYSTEM && 501 (new_mem->mem_type == TTM_PL_TT || 502 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 503 amdgpu_bo_move_notify(bo, evict, new_mem); 504 ttm_bo_move_null(bo, new_mem); 505 return 0; 506 } 507 if ((old_mem->mem_type == TTM_PL_TT || 508 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 509 new_mem->mem_type == TTM_PL_SYSTEM) { 510 r = ttm_bo_wait_ctx(bo, ctx); 511 if (r) 512 return r; 513 514 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 515 amdgpu_bo_move_notify(bo, evict, new_mem); 516 ttm_resource_free(bo, &bo->resource); 517 ttm_bo_assign_mem(bo, new_mem); 518 return 0; 519 } 520 521 if (old_mem->mem_type == AMDGPU_PL_GDS || 522 old_mem->mem_type == AMDGPU_PL_GWS || 523 old_mem->mem_type == AMDGPU_PL_OA || 524 old_mem->mem_type == AMDGPU_PL_DOORBELL || 525 new_mem->mem_type == AMDGPU_PL_GDS || 526 new_mem->mem_type == AMDGPU_PL_GWS || 527 new_mem->mem_type == AMDGPU_PL_OA || 528 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 529 /* Nothing to save here */ 530 amdgpu_bo_move_notify(bo, evict, new_mem); 531 ttm_bo_move_null(bo, new_mem); 532 return 0; 533 } 534 535 if (bo->type == ttm_bo_type_device && 536 new_mem->mem_type == TTM_PL_VRAM && 537 old_mem->mem_type != TTM_PL_VRAM) { 538 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 539 * accesses the BO after it's moved. 540 */ 541 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 542 } 543 544 if (adev->mman.buffer_funcs_enabled && 545 ((old_mem->mem_type == TTM_PL_SYSTEM && 546 new_mem->mem_type == TTM_PL_VRAM) || 547 (old_mem->mem_type == TTM_PL_VRAM && 548 new_mem->mem_type == TTM_PL_SYSTEM))) { 549 hop->fpfn = 0; 550 hop->lpfn = 0; 551 hop->mem_type = TTM_PL_TT; 552 hop->flags = TTM_PL_FLAG_TEMPORARY; 553 return -EMULTIHOP; 554 } 555 556 amdgpu_bo_move_notify(bo, evict, new_mem); 557 if (adev->mman.buffer_funcs_enabled) 558 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 559 else 560 r = -ENODEV; 561 562 if (r) { 563 /* Check that all memory is CPU accessible */ 564 if (!amdgpu_res_copyable(adev, old_mem) || 565 !amdgpu_res_copyable(adev, new_mem)) { 566 pr_err("Move buffer fallback to memcpy unavailable\n"); 567 return r; 568 } 569 570 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 571 if (r) 572 return r; 573 } 574 575 /* update statistics after the move */ 576 if (evict) 577 atomic64_inc(&adev->num_evictions); 578 atomic64_add(bo->base.size, &adev->num_bytes_moved); 579 return 0; 580 } 581 582 /* 583 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 584 * 585 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 586 */ 587 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 588 struct ttm_resource *mem) 589 { 590 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 591 592 switch (mem->mem_type) { 593 case TTM_PL_SYSTEM: 594 /* system memory */ 595 return 0; 596 case TTM_PL_TT: 597 case AMDGPU_PL_PREEMPT: 598 break; 599 case TTM_PL_VRAM: 600 mem->bus.offset = mem->start << PAGE_SHIFT; 601 602 if (adev->mman.aper_base_kaddr && 603 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 604 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 605 mem->bus.offset; 606 607 mem->bus.offset += adev->gmc.aper_base; 608 mem->bus.is_iomem = true; 609 break; 610 case AMDGPU_PL_DOORBELL: 611 mem->bus.offset = mem->start << PAGE_SHIFT; 612 mem->bus.offset += adev->doorbell.base; 613 mem->bus.is_iomem = true; 614 mem->bus.caching = ttm_uncached; 615 break; 616 default: 617 return -EINVAL; 618 } 619 return 0; 620 } 621 622 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 623 unsigned long page_offset) 624 { 625 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 626 struct amdgpu_res_cursor cursor; 627 628 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 629 &cursor); 630 631 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 632 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 633 634 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 635 } 636 637 /** 638 * amdgpu_ttm_domain_start - Returns GPU start address 639 * @adev: amdgpu device object 640 * @type: type of the memory 641 * 642 * Returns: 643 * GPU start address of a memory domain 644 */ 645 646 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 647 { 648 switch (type) { 649 case TTM_PL_TT: 650 return adev->gmc.gart_start; 651 case TTM_PL_VRAM: 652 return adev->gmc.vram_start; 653 } 654 655 return 0; 656 } 657 658 /* 659 * TTM backend functions. 660 */ 661 struct amdgpu_ttm_tt { 662 struct ttm_tt ttm; 663 struct drm_gem_object *gobj; 664 u64 offset; 665 uint64_t userptr; 666 struct task_struct *usertask; 667 uint32_t userflags; 668 bool bound; 669 int32_t pool_id; 670 }; 671 672 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 673 674 #ifdef CONFIG_DRM_AMDGPU_USERPTR 675 /* 676 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 677 * memory and start HMM tracking CPU page table update 678 * 679 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 680 * once afterwards to stop HMM tracking 681 */ 682 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 683 struct hmm_range **range) 684 { 685 struct ttm_tt *ttm = bo->tbo.ttm; 686 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 687 unsigned long start = gtt->userptr; 688 struct vm_area_struct *vma; 689 struct mm_struct *mm; 690 bool readonly; 691 int r = 0; 692 693 /* Make sure get_user_pages_done() can cleanup gracefully */ 694 *range = NULL; 695 696 mm = bo->notifier.mm; 697 if (unlikely(!mm)) { 698 DRM_DEBUG_DRIVER("BO is not registered?\n"); 699 return -EFAULT; 700 } 701 702 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 703 return -ESRCH; 704 705 mmap_read_lock(mm); 706 vma = vma_lookup(mm, start); 707 if (unlikely(!vma)) { 708 r = -EFAULT; 709 goto out_unlock; 710 } 711 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 712 vma->vm_file)) { 713 r = -EPERM; 714 goto out_unlock; 715 } 716 717 readonly = amdgpu_ttm_tt_is_readonly(ttm); 718 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 719 readonly, NULL, pages, range); 720 out_unlock: 721 mmap_read_unlock(mm); 722 if (r) 723 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 724 725 mmput(mm); 726 727 return r; 728 } 729 730 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 731 */ 732 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 733 struct hmm_range *range) 734 { 735 struct amdgpu_ttm_tt *gtt = (void *)ttm; 736 737 if (gtt && gtt->userptr && range) 738 amdgpu_hmm_range_get_pages_done(range); 739 } 740 741 /* 742 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 743 * Check if the pages backing this ttm range have been invalidated 744 * 745 * Returns: true if pages are still valid 746 */ 747 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 748 struct hmm_range *range) 749 { 750 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 751 752 if (!gtt || !gtt->userptr || !range) 753 return false; 754 755 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 756 gtt->userptr, ttm->num_pages); 757 758 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 759 760 return !amdgpu_hmm_range_get_pages_done(range); 761 } 762 #endif 763 764 /* 765 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 766 * 767 * Called by amdgpu_cs_list_validate(). This creates the page list 768 * that backs user memory and will ultimately be mapped into the device 769 * address space. 770 */ 771 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 772 { 773 unsigned long i; 774 775 for (i = 0; i < ttm->num_pages; ++i) 776 ttm->pages[i] = pages ? pages[i] : NULL; 777 } 778 779 /* 780 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 781 * 782 * Called by amdgpu_ttm_backend_bind() 783 **/ 784 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 785 struct ttm_tt *ttm) 786 { 787 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 788 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 789 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 790 enum dma_data_direction direction = write ? 791 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 792 int r; 793 794 /* Allocate an SG array and squash pages into it */ 795 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 796 (u64)ttm->num_pages << PAGE_SHIFT, 797 GFP_KERNEL); 798 if (r) 799 goto release_sg; 800 801 /* Map SG to device */ 802 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 803 if (r) 804 goto release_sg; 805 806 /* convert SG to linear array of pages and dma addresses */ 807 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 808 ttm->num_pages); 809 810 return 0; 811 812 release_sg: 813 kfree(ttm->sg); 814 ttm->sg = NULL; 815 return r; 816 } 817 818 /* 819 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 820 */ 821 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 822 struct ttm_tt *ttm) 823 { 824 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 825 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 826 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 827 enum dma_data_direction direction = write ? 828 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 829 830 /* double check that we don't free the table twice */ 831 if (!ttm->sg || !ttm->sg->sgl) 832 return; 833 834 /* unmap the pages mapped to the device */ 835 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 836 sg_free_table(ttm->sg); 837 } 838 839 /* 840 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 841 * MQDn+CtrlStackn where n is the number of XCCs per partition. 842 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 843 * and uses memory type default, UC. The rest of pages_per_xcc are 844 * Ctrl stack and modify their memory type to NC. 845 */ 846 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 847 struct ttm_tt *ttm, uint64_t flags) 848 { 849 struct amdgpu_ttm_tt *gtt = (void *)ttm; 850 uint64_t total_pages = ttm->num_pages; 851 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 852 uint64_t page_idx, pages_per_xcc; 853 int i; 854 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC); 855 856 pages_per_xcc = total_pages; 857 do_div(pages_per_xcc, num_xcc); 858 859 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 860 /* MQD page: use default flags */ 861 amdgpu_gart_bind(adev, 862 gtt->offset + (page_idx << PAGE_SHIFT), 863 1, >t->ttm.dma_address[page_idx], flags); 864 /* 865 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 866 * the second page of the BO onward. 867 */ 868 amdgpu_gart_bind(adev, 869 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 870 pages_per_xcc - 1, 871 >t->ttm.dma_address[page_idx + 1], 872 ctrl_flags); 873 } 874 } 875 876 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 877 struct ttm_buffer_object *tbo, 878 uint64_t flags) 879 { 880 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 881 struct ttm_tt *ttm = tbo->ttm; 882 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 883 884 if (amdgpu_bo_encrypted(abo)) 885 flags |= AMDGPU_PTE_TMZ; 886 887 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 888 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 889 } else { 890 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 891 gtt->ttm.dma_address, flags); 892 } 893 gtt->bound = true; 894 } 895 896 /* 897 * amdgpu_ttm_backend_bind - Bind GTT memory 898 * 899 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 900 * This handles binding GTT memory to the device address space. 901 */ 902 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 903 struct ttm_tt *ttm, 904 struct ttm_resource *bo_mem) 905 { 906 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 907 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 908 uint64_t flags; 909 int r; 910 911 if (!bo_mem) 912 return -EINVAL; 913 914 if (gtt->bound) 915 return 0; 916 917 if (gtt->userptr) { 918 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 919 if (r) { 920 DRM_ERROR("failed to pin userptr\n"); 921 return r; 922 } 923 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 924 if (!ttm->sg) { 925 struct dma_buf_attachment *attach; 926 struct sg_table *sgt; 927 928 attach = gtt->gobj->import_attach; 929 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 930 if (IS_ERR(sgt)) 931 return PTR_ERR(sgt); 932 933 ttm->sg = sgt; 934 } 935 936 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 937 ttm->num_pages); 938 } 939 940 if (!ttm->num_pages) { 941 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 942 ttm->num_pages, bo_mem, ttm); 943 } 944 945 if (bo_mem->mem_type != TTM_PL_TT || 946 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 947 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 948 return 0; 949 } 950 951 /* compute PTE flags relevant to this BO memory */ 952 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 953 954 /* bind pages into GART page tables */ 955 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 956 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 957 gtt->ttm.dma_address, flags); 958 gtt->bound = true; 959 return 0; 960 } 961 962 /* 963 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 964 * through AGP or GART aperture. 965 * 966 * If bo is accessible through AGP aperture, then use AGP aperture 967 * to access bo; otherwise allocate logical space in GART aperture 968 * and map bo to GART aperture. 969 */ 970 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 971 { 972 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 973 struct ttm_operation_ctx ctx = { false, false }; 974 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 975 struct ttm_placement placement; 976 struct ttm_place placements; 977 struct ttm_resource *tmp; 978 uint64_t addr, flags; 979 int r; 980 981 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 982 return 0; 983 984 addr = amdgpu_gmc_agp_addr(bo); 985 if (addr != AMDGPU_BO_INVALID_OFFSET) 986 return 0; 987 988 /* allocate GART space */ 989 placement.num_placement = 1; 990 placement.placement = &placements; 991 placements.fpfn = 0; 992 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 993 placements.mem_type = TTM_PL_TT; 994 placements.flags = bo->resource->placement; 995 996 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 997 if (unlikely(r)) 998 return r; 999 1000 /* compute PTE flags for this buffer object */ 1001 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 1002 1003 /* Bind pages */ 1004 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1005 amdgpu_ttm_gart_bind(adev, bo, flags); 1006 amdgpu_gart_invalidate_tlb(adev); 1007 ttm_resource_free(bo, &bo->resource); 1008 ttm_bo_assign_mem(bo, tmp); 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * amdgpu_ttm_recover_gart - Rebind GTT pages 1015 * 1016 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1017 * rebind GTT pages during a GPU reset. 1018 */ 1019 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1020 { 1021 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1022 uint64_t flags; 1023 1024 if (!tbo->ttm) 1025 return; 1026 1027 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1028 amdgpu_ttm_gart_bind(adev, tbo, flags); 1029 } 1030 1031 /* 1032 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1033 * 1034 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1035 * ttm_tt_destroy(). 1036 */ 1037 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1038 struct ttm_tt *ttm) 1039 { 1040 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1041 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1042 1043 /* if the pages have userptr pinning then clear that first */ 1044 if (gtt->userptr) { 1045 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1046 } else if (ttm->sg && gtt->gobj->import_attach) { 1047 struct dma_buf_attachment *attach; 1048 1049 attach = gtt->gobj->import_attach; 1050 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1051 ttm->sg = NULL; 1052 } 1053 1054 if (!gtt->bound) 1055 return; 1056 1057 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1058 return; 1059 1060 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1061 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1062 gtt->bound = false; 1063 } 1064 1065 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1066 struct ttm_tt *ttm) 1067 { 1068 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1069 1070 if (gtt->usertask) 1071 put_task_struct(gtt->usertask); 1072 1073 ttm_tt_fini(>t->ttm); 1074 kfree(gtt); 1075 } 1076 1077 /** 1078 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1079 * 1080 * @bo: The buffer object to create a GTT ttm_tt object around 1081 * @page_flags: Page flags to be added to the ttm_tt object 1082 * 1083 * Called by ttm_tt_create(). 1084 */ 1085 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1086 uint32_t page_flags) 1087 { 1088 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1089 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1090 struct amdgpu_ttm_tt *gtt; 1091 enum ttm_caching caching; 1092 1093 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1094 if (!gtt) 1095 return NULL; 1096 1097 gtt->gobj = &bo->base; 1098 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1099 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1100 else 1101 gtt->pool_id = abo->xcp_id; 1102 1103 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1104 caching = ttm_write_combined; 1105 else 1106 caching = ttm_cached; 1107 1108 /* allocate space for the uninitialized page entries */ 1109 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1110 kfree(gtt); 1111 return NULL; 1112 } 1113 return >t->ttm; 1114 } 1115 1116 /* 1117 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1118 * 1119 * Map the pages of a ttm_tt object to an address space visible 1120 * to the underlying device. 1121 */ 1122 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1123 struct ttm_tt *ttm, 1124 struct ttm_operation_ctx *ctx) 1125 { 1126 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1127 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1128 struct ttm_pool *pool; 1129 pgoff_t i; 1130 int ret; 1131 1132 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1133 if (gtt->userptr) { 1134 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1135 if (!ttm->sg) 1136 return -ENOMEM; 1137 return 0; 1138 } 1139 1140 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1141 return 0; 1142 1143 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1144 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1145 else 1146 pool = &adev->mman.bdev.pool; 1147 ret = ttm_pool_alloc(pool, ttm, ctx); 1148 if (ret) 1149 return ret; 1150 1151 for (i = 0; i < ttm->num_pages; ++i) 1152 ttm->pages[i]->mapping = bdev->dev_mapping; 1153 1154 return 0; 1155 } 1156 1157 /* 1158 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1159 * 1160 * Unmaps pages of a ttm_tt object from the device address space and 1161 * unpopulates the page array backing it. 1162 */ 1163 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1164 struct ttm_tt *ttm) 1165 { 1166 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1167 struct amdgpu_device *adev; 1168 struct ttm_pool *pool; 1169 pgoff_t i; 1170 1171 amdgpu_ttm_backend_unbind(bdev, ttm); 1172 1173 if (gtt->userptr) { 1174 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1175 kfree(ttm->sg); 1176 ttm->sg = NULL; 1177 return; 1178 } 1179 1180 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1181 return; 1182 1183 for (i = 0; i < ttm->num_pages; ++i) 1184 ttm->pages[i]->mapping = NULL; 1185 1186 adev = amdgpu_ttm_adev(bdev); 1187 1188 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1189 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1190 else 1191 pool = &adev->mman.bdev.pool; 1192 1193 return ttm_pool_free(pool, ttm); 1194 } 1195 1196 /** 1197 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1198 * task 1199 * 1200 * @tbo: The ttm_buffer_object that contains the userptr 1201 * @user_addr: The returned value 1202 */ 1203 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1204 uint64_t *user_addr) 1205 { 1206 struct amdgpu_ttm_tt *gtt; 1207 1208 if (!tbo->ttm) 1209 return -EINVAL; 1210 1211 gtt = (void *)tbo->ttm; 1212 *user_addr = gtt->userptr; 1213 return 0; 1214 } 1215 1216 /** 1217 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1218 * task 1219 * 1220 * @bo: The ttm_buffer_object to bind this userptr to 1221 * @addr: The address in the current tasks VM space to use 1222 * @flags: Requirements of userptr object. 1223 * 1224 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1225 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1226 * initialize GPU VM for a KFD process. 1227 */ 1228 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1229 uint64_t addr, uint32_t flags) 1230 { 1231 struct amdgpu_ttm_tt *gtt; 1232 1233 if (!bo->ttm) { 1234 /* TODO: We want a separate TTM object type for userptrs */ 1235 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1236 if (bo->ttm == NULL) 1237 return -ENOMEM; 1238 } 1239 1240 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1241 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1242 1243 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1244 gtt->userptr = addr; 1245 gtt->userflags = flags; 1246 1247 if (gtt->usertask) 1248 put_task_struct(gtt->usertask); 1249 gtt->usertask = current->group_leader; 1250 get_task_struct(gtt->usertask); 1251 1252 return 0; 1253 } 1254 1255 /* 1256 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1257 */ 1258 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1259 { 1260 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1261 1262 if (gtt == NULL) 1263 return NULL; 1264 1265 if (gtt->usertask == NULL) 1266 return NULL; 1267 1268 return gtt->usertask->mm; 1269 } 1270 1271 /* 1272 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1273 * address range for the current task. 1274 * 1275 */ 1276 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1277 unsigned long end, unsigned long *userptr) 1278 { 1279 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1280 unsigned long size; 1281 1282 if (gtt == NULL || !gtt->userptr) 1283 return false; 1284 1285 /* Return false if no part of the ttm_tt object lies within 1286 * the range 1287 */ 1288 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1289 if (gtt->userptr > end || gtt->userptr + size <= start) 1290 return false; 1291 1292 if (userptr) 1293 *userptr = gtt->userptr; 1294 return true; 1295 } 1296 1297 /* 1298 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1299 */ 1300 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1301 { 1302 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1303 1304 if (gtt == NULL || !gtt->userptr) 1305 return false; 1306 1307 return true; 1308 } 1309 1310 /* 1311 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1312 */ 1313 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1314 { 1315 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1316 1317 if (gtt == NULL) 1318 return false; 1319 1320 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1321 } 1322 1323 /** 1324 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1325 * 1326 * @ttm: The ttm_tt object to compute the flags for 1327 * @mem: The memory registry backing this ttm_tt object 1328 * 1329 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1330 */ 1331 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1332 { 1333 uint64_t flags = 0; 1334 1335 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1336 flags |= AMDGPU_PTE_VALID; 1337 1338 if (mem && (mem->mem_type == TTM_PL_TT || 1339 mem->mem_type == AMDGPU_PL_DOORBELL || 1340 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1341 flags |= AMDGPU_PTE_SYSTEM; 1342 1343 if (ttm->caching == ttm_cached) 1344 flags |= AMDGPU_PTE_SNOOPED; 1345 } 1346 1347 if (mem && mem->mem_type == TTM_PL_VRAM && 1348 mem->bus.caching == ttm_cached) 1349 flags |= AMDGPU_PTE_SNOOPED; 1350 1351 return flags; 1352 } 1353 1354 /** 1355 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1356 * 1357 * @adev: amdgpu_device pointer 1358 * @ttm: The ttm_tt object to compute the flags for 1359 * @mem: The memory registry backing this ttm_tt object 1360 * 1361 * Figure out the flags to use for a VM PTE (Page Table Entry). 1362 */ 1363 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1364 struct ttm_resource *mem) 1365 { 1366 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1367 1368 flags |= adev->gart.gart_pte_flags; 1369 flags |= AMDGPU_PTE_READABLE; 1370 1371 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1372 flags |= AMDGPU_PTE_WRITEABLE; 1373 1374 return flags; 1375 } 1376 1377 /* 1378 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1379 * object. 1380 * 1381 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1382 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1383 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1384 * used to clean out a memory space. 1385 */ 1386 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1387 const struct ttm_place *place) 1388 { 1389 struct dma_resv_iter resv_cursor; 1390 struct dma_fence *f; 1391 1392 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1393 return ttm_bo_eviction_valuable(bo, place); 1394 1395 /* Swapout? */ 1396 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1397 return true; 1398 1399 if (bo->type == ttm_bo_type_kernel && 1400 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1401 return false; 1402 1403 /* If bo is a KFD BO, check if the bo belongs to the current process. 1404 * If true, then return false as any KFD process needs all its BOs to 1405 * be resident to run successfully 1406 */ 1407 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1408 DMA_RESV_USAGE_BOOKKEEP, f) { 1409 if (amdkfd_fence_check_mm(f, current->mm) && 1410 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1411 return false; 1412 } 1413 1414 /* Preemptible BOs don't own system resources managed by the 1415 * driver (pages, VRAM, GART space). They point to resources 1416 * owned by someone else (e.g. pageable memory in user mode 1417 * or a DMABuf). They are used in a preemptible context so we 1418 * can guarantee no deadlocks and good QoS in case of MMU 1419 * notifiers or DMABuf move notifiers from the resource owner. 1420 */ 1421 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1422 return false; 1423 1424 if (bo->resource->mem_type == TTM_PL_TT && 1425 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1426 return false; 1427 1428 return ttm_bo_eviction_valuable(bo, place); 1429 } 1430 1431 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1432 void *buf, size_t size, bool write) 1433 { 1434 while (size) { 1435 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1436 uint64_t bytes = 4 - (pos & 0x3); 1437 uint32_t shift = (pos & 0x3) * 8; 1438 uint32_t mask = 0xffffffff << shift; 1439 uint32_t value = 0; 1440 1441 if (size < bytes) { 1442 mask &= 0xffffffff >> (bytes - size) * 8; 1443 bytes = size; 1444 } 1445 1446 if (mask != 0xffffffff) { 1447 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1448 if (write) { 1449 value &= ~mask; 1450 value |= (*(uint32_t *)buf << shift) & mask; 1451 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1452 } else { 1453 value = (value & mask) >> shift; 1454 memcpy(buf, &value, bytes); 1455 } 1456 } else { 1457 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1458 } 1459 1460 pos += bytes; 1461 buf += bytes; 1462 size -= bytes; 1463 } 1464 } 1465 1466 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1467 unsigned long offset, void *buf, 1468 int len, int write) 1469 { 1470 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1471 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1472 struct amdgpu_res_cursor src_mm; 1473 struct amdgpu_job *job; 1474 struct dma_fence *fence; 1475 uint64_t src_addr, dst_addr; 1476 unsigned int num_dw; 1477 int r, idx; 1478 1479 if (len != PAGE_SIZE) 1480 return -EINVAL; 1481 1482 if (!adev->mman.sdma_access_ptr) 1483 return -EACCES; 1484 1485 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1486 return -ENODEV; 1487 1488 if (write) 1489 memcpy(adev->mman.sdma_access_ptr, buf, len); 1490 1491 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1492 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1493 AMDGPU_FENCE_OWNER_UNDEFINED, 1494 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1495 &job); 1496 if (r) 1497 goto out; 1498 1499 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1500 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1501 src_mm.start; 1502 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1503 if (write) 1504 swap(src_addr, dst_addr); 1505 1506 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1507 PAGE_SIZE, 0); 1508 1509 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1510 WARN_ON(job->ibs[0].length_dw > num_dw); 1511 1512 fence = amdgpu_job_submit(job); 1513 1514 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1515 r = -ETIMEDOUT; 1516 dma_fence_put(fence); 1517 1518 if (!(r || write)) 1519 memcpy(buf, adev->mman.sdma_access_ptr, len); 1520 out: 1521 drm_dev_exit(idx); 1522 return r; 1523 } 1524 1525 /** 1526 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1527 * 1528 * @bo: The buffer object to read/write 1529 * @offset: Offset into buffer object 1530 * @buf: Secondary buffer to write/read from 1531 * @len: Length in bytes of access 1532 * @write: true if writing 1533 * 1534 * This is used to access VRAM that backs a buffer object via MMIO 1535 * access for debugging purposes. 1536 */ 1537 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1538 unsigned long offset, void *buf, int len, 1539 int write) 1540 { 1541 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1542 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1543 struct amdgpu_res_cursor cursor; 1544 int ret = 0; 1545 1546 if (bo->resource->mem_type != TTM_PL_VRAM) 1547 return -EIO; 1548 1549 if (amdgpu_device_has_timeouts_enabled(adev) && 1550 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1551 return len; 1552 1553 amdgpu_res_first(bo->resource, offset, len, &cursor); 1554 while (cursor.remaining) { 1555 size_t count, size = cursor.size; 1556 loff_t pos = cursor.start; 1557 1558 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1559 size -= count; 1560 if (size) { 1561 /* using MM to access rest vram and handle un-aligned address */ 1562 pos += count; 1563 buf += count; 1564 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1565 } 1566 1567 ret += cursor.size; 1568 buf += cursor.size; 1569 amdgpu_res_next(&cursor, cursor.size); 1570 } 1571 1572 return ret; 1573 } 1574 1575 static void 1576 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1577 { 1578 amdgpu_bo_move_notify(bo, false, NULL); 1579 } 1580 1581 static struct ttm_device_funcs amdgpu_bo_driver = { 1582 .ttm_tt_create = &amdgpu_ttm_tt_create, 1583 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1584 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1585 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1586 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1587 .evict_flags = &amdgpu_evict_flags, 1588 .move = &amdgpu_bo_move, 1589 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1590 .release_notify = &amdgpu_bo_release_notify, 1591 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1592 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1593 .access_memory = &amdgpu_ttm_access_memory, 1594 }; 1595 1596 /* 1597 * Firmware Reservation functions 1598 */ 1599 /** 1600 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1601 * 1602 * @adev: amdgpu_device pointer 1603 * 1604 * free fw reserved vram if it has been reserved. 1605 */ 1606 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1607 { 1608 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1609 NULL, &adev->mman.fw_vram_usage_va); 1610 } 1611 1612 /* 1613 * Driver Reservation functions 1614 */ 1615 /** 1616 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1617 * 1618 * @adev: amdgpu_device pointer 1619 * 1620 * free drv reserved vram if it has been reserved. 1621 */ 1622 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1623 { 1624 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1625 NULL, 1626 &adev->mman.drv_vram_usage_va); 1627 } 1628 1629 /** 1630 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1631 * 1632 * @adev: amdgpu_device pointer 1633 * 1634 * create bo vram reservation from fw. 1635 */ 1636 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1637 { 1638 uint64_t vram_size = adev->gmc.visible_vram_size; 1639 1640 adev->mman.fw_vram_usage_va = NULL; 1641 adev->mman.fw_vram_usage_reserved_bo = NULL; 1642 1643 if (adev->mman.fw_vram_usage_size == 0 || 1644 adev->mman.fw_vram_usage_size > vram_size) 1645 return 0; 1646 1647 return amdgpu_bo_create_kernel_at(adev, 1648 adev->mman.fw_vram_usage_start_offset, 1649 adev->mman.fw_vram_usage_size, 1650 &adev->mman.fw_vram_usage_reserved_bo, 1651 &adev->mman.fw_vram_usage_va); 1652 } 1653 1654 /** 1655 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1656 * 1657 * @adev: amdgpu_device pointer 1658 * 1659 * create bo vram reservation from drv. 1660 */ 1661 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1662 { 1663 u64 vram_size = adev->gmc.visible_vram_size; 1664 1665 adev->mman.drv_vram_usage_va = NULL; 1666 adev->mman.drv_vram_usage_reserved_bo = NULL; 1667 1668 if (adev->mman.drv_vram_usage_size == 0 || 1669 adev->mman.drv_vram_usage_size > vram_size) 1670 return 0; 1671 1672 return amdgpu_bo_create_kernel_at(adev, 1673 adev->mman.drv_vram_usage_start_offset, 1674 adev->mman.drv_vram_usage_size, 1675 &adev->mman.drv_vram_usage_reserved_bo, 1676 &adev->mman.drv_vram_usage_va); 1677 } 1678 1679 /* 1680 * Memoy training reservation functions 1681 */ 1682 1683 /** 1684 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1685 * 1686 * @adev: amdgpu_device pointer 1687 * 1688 * free memory training reserved vram if it has been reserved. 1689 */ 1690 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1691 { 1692 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1693 1694 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1695 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1696 ctx->c2p_bo = NULL; 1697 1698 return 0; 1699 } 1700 1701 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1702 uint32_t reserve_size) 1703 { 1704 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1705 1706 memset(ctx, 0, sizeof(*ctx)); 1707 1708 ctx->c2p_train_data_offset = 1709 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1710 ctx->p2c_train_data_offset = 1711 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1712 ctx->train_data_size = 1713 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1714 1715 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1716 ctx->train_data_size, 1717 ctx->p2c_train_data_offset, 1718 ctx->c2p_train_data_offset); 1719 } 1720 1721 /* 1722 * reserve TMR memory at the top of VRAM which holds 1723 * IP Discovery data and is protected by PSP. 1724 */ 1725 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1726 { 1727 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1728 bool mem_train_support = false; 1729 uint32_t reserve_size = 0; 1730 int ret; 1731 1732 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1733 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1734 mem_train_support = true; 1735 else 1736 DRM_DEBUG("memory training does not support!\n"); 1737 } 1738 1739 /* 1740 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1741 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1742 * 1743 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1744 * discovery data and G6 memory training data respectively 1745 */ 1746 if (adev->bios) 1747 reserve_size = 1748 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1749 1750 if (!adev->bios && 1751 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1752 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4))) 1753 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1754 else if (!reserve_size) 1755 reserve_size = DISCOVERY_TMR_OFFSET; 1756 1757 if (mem_train_support) { 1758 /* reserve vram for mem train according to TMR location */ 1759 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1760 ret = amdgpu_bo_create_kernel_at(adev, 1761 ctx->c2p_train_data_offset, 1762 ctx->train_data_size, 1763 &ctx->c2p_bo, 1764 NULL); 1765 if (ret) { 1766 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1767 amdgpu_ttm_training_reserve_vram_fini(adev); 1768 return ret; 1769 } 1770 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1771 } 1772 1773 if (!adev->gmc.is_app_apu) { 1774 ret = amdgpu_bo_create_kernel_at( 1775 adev, adev->gmc.real_vram_size - reserve_size, 1776 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1777 if (ret) { 1778 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1779 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1780 NULL, NULL); 1781 return ret; 1782 } 1783 } else { 1784 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1785 } 1786 1787 return 0; 1788 } 1789 1790 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1791 { 1792 int i; 1793 1794 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1795 return 0; 1796 1797 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1798 sizeof(*adev->mman.ttm_pools), 1799 GFP_KERNEL); 1800 if (!adev->mman.ttm_pools) 1801 return -ENOMEM; 1802 1803 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1804 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1805 adev->gmc.mem_partitions[i].numa.node, 1806 false, false); 1807 } 1808 return 0; 1809 } 1810 1811 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1812 { 1813 int i; 1814 1815 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1816 return; 1817 1818 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1819 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1820 1821 kfree(adev->mman.ttm_pools); 1822 adev->mman.ttm_pools = NULL; 1823 } 1824 1825 /* 1826 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1827 * gtt/vram related fields. 1828 * 1829 * This initializes all of the memory space pools that the TTM layer 1830 * will need such as the GTT space (system memory mapped to the device), 1831 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1832 * can be mapped per VMID. 1833 */ 1834 int amdgpu_ttm_init(struct amdgpu_device *adev) 1835 { 1836 uint64_t gtt_size; 1837 int r; 1838 1839 mutex_init(&adev->mman.gtt_window_lock); 1840 1841 /* No others user of address space so set it to 0 */ 1842 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1843 adev_to_drm(adev)->anon_inode->i_mapping, 1844 adev_to_drm(adev)->vma_offset_manager, 1845 adev->need_swiotlb, 1846 dma_addressing_limited(adev->dev)); 1847 if (r) { 1848 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1849 return r; 1850 } 1851 1852 r = amdgpu_ttm_pools_init(adev); 1853 if (r) { 1854 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1855 return r; 1856 } 1857 adev->mman.initialized = true; 1858 1859 /* Initialize VRAM pool with all of VRAM divided into pages */ 1860 r = amdgpu_vram_mgr_init(adev); 1861 if (r) { 1862 DRM_ERROR("Failed initializing VRAM heap.\n"); 1863 return r; 1864 } 1865 1866 /* Change the size here instead of the init above so only lpfn is affected */ 1867 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1868 #ifdef CONFIG_64BIT 1869 #ifdef CONFIG_X86 1870 if (adev->gmc.xgmi.connected_to_cpu) 1871 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1872 adev->gmc.visible_vram_size); 1873 1874 else if (adev->gmc.is_app_apu) 1875 DRM_DEBUG_DRIVER( 1876 "No need to ioremap when real vram size is 0\n"); 1877 else 1878 #endif 1879 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1880 adev->gmc.visible_vram_size); 1881 #endif 1882 1883 /* 1884 *The reserved vram for firmware must be pinned to the specified 1885 *place on the VRAM, so reserve it early. 1886 */ 1887 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1888 if (r) 1889 return r; 1890 1891 /* 1892 *The reserved vram for driver must be pinned to the specified 1893 *place on the VRAM, so reserve it early. 1894 */ 1895 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1896 if (r) 1897 return r; 1898 1899 /* 1900 * only NAVI10 and onwards ASIC support for IP discovery. 1901 * If IP discovery enabled, a block of memory should be 1902 * reserved for IP discovey. 1903 */ 1904 if (adev->mman.discovery_bin) { 1905 r = amdgpu_ttm_reserve_tmr(adev); 1906 if (r) 1907 return r; 1908 } 1909 1910 /* allocate memory as required for VGA 1911 * This is used for VGA emulation and pre-OS scanout buffers to 1912 * avoid display artifacts while transitioning between pre-OS 1913 * and driver. 1914 */ 1915 if (!adev->gmc.is_app_apu) { 1916 r = amdgpu_bo_create_kernel_at(adev, 0, 1917 adev->mman.stolen_vga_size, 1918 &adev->mman.stolen_vga_memory, 1919 NULL); 1920 if (r) 1921 return r; 1922 1923 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1924 adev->mman.stolen_extended_size, 1925 &adev->mman.stolen_extended_memory, 1926 NULL); 1927 1928 if (r) 1929 return r; 1930 1931 r = amdgpu_bo_create_kernel_at(adev, 1932 adev->mman.stolen_reserved_offset, 1933 adev->mman.stolen_reserved_size, 1934 &adev->mman.stolen_reserved_memory, 1935 NULL); 1936 if (r) 1937 return r; 1938 } else { 1939 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1940 } 1941 1942 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1943 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1944 1945 /* Compute GTT size, either based on TTM limit 1946 * or whatever the user passed on module init. 1947 */ 1948 if (amdgpu_gtt_size == -1) 1949 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1950 else 1951 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1952 1953 /* Initialize GTT memory pool */ 1954 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1955 if (r) { 1956 DRM_ERROR("Failed initializing GTT heap.\n"); 1957 return r; 1958 } 1959 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1960 (unsigned int)(gtt_size / (1024 * 1024))); 1961 1962 /* Initiailize doorbell pool on PCI BAR */ 1963 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1964 if (r) { 1965 DRM_ERROR("Failed initializing doorbell heap.\n"); 1966 return r; 1967 } 1968 1969 /* Create a boorbell page for kernel usages */ 1970 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1971 if (r) { 1972 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1973 return r; 1974 } 1975 1976 /* Initialize preemptible memory pool */ 1977 r = amdgpu_preempt_mgr_init(adev); 1978 if (r) { 1979 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1980 return r; 1981 } 1982 1983 /* Initialize various on-chip memory pools */ 1984 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1985 if (r) { 1986 DRM_ERROR("Failed initializing GDS heap.\n"); 1987 return r; 1988 } 1989 1990 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1991 if (r) { 1992 DRM_ERROR("Failed initializing gws heap.\n"); 1993 return r; 1994 } 1995 1996 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1997 if (r) { 1998 DRM_ERROR("Failed initializing oa heap.\n"); 1999 return r; 2000 } 2001 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2002 AMDGPU_GEM_DOMAIN_GTT, 2003 &adev->mman.sdma_access_bo, NULL, 2004 &adev->mman.sdma_access_ptr)) 2005 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2006 2007 return 0; 2008 } 2009 2010 /* 2011 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2012 */ 2013 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2014 { 2015 int idx; 2016 2017 if (!adev->mman.initialized) 2018 return; 2019 2020 amdgpu_ttm_pools_fini(adev); 2021 2022 amdgpu_ttm_training_reserve_vram_fini(adev); 2023 /* return the stolen vga memory back to VRAM */ 2024 if (!adev->gmc.is_app_apu) { 2025 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2026 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2027 /* return the FW reserved memory back to VRAM */ 2028 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2029 NULL); 2030 if (adev->mman.stolen_reserved_size) 2031 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2032 NULL, NULL); 2033 } 2034 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2035 &adev->mman.sdma_access_ptr); 2036 amdgpu_ttm_fw_reserve_vram_fini(adev); 2037 amdgpu_ttm_drv_reserve_vram_fini(adev); 2038 2039 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2040 2041 if (adev->mman.aper_base_kaddr) 2042 iounmap(adev->mman.aper_base_kaddr); 2043 adev->mman.aper_base_kaddr = NULL; 2044 2045 drm_dev_exit(idx); 2046 } 2047 2048 amdgpu_vram_mgr_fini(adev); 2049 amdgpu_gtt_mgr_fini(adev); 2050 amdgpu_preempt_mgr_fini(adev); 2051 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2052 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2053 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2054 ttm_device_fini(&adev->mman.bdev); 2055 adev->mman.initialized = false; 2056 DRM_INFO("amdgpu: ttm finalized\n"); 2057 } 2058 2059 /** 2060 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2061 * 2062 * @adev: amdgpu_device pointer 2063 * @enable: true when we can use buffer functions. 2064 * 2065 * Enable/disable use of buffer functions during suspend/resume. This should 2066 * only be called at bootup or when userspace isn't running. 2067 */ 2068 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2069 { 2070 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2071 uint64_t size; 2072 int r; 2073 2074 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2075 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2076 return; 2077 2078 if (enable) { 2079 struct amdgpu_ring *ring; 2080 struct drm_gpu_scheduler *sched; 2081 2082 ring = adev->mman.buffer_funcs_ring; 2083 sched = &ring->sched; 2084 r = drm_sched_entity_init(&adev->mman.high_pr, 2085 DRM_SCHED_PRIORITY_KERNEL, &sched, 2086 1, NULL); 2087 if (r) { 2088 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2089 r); 2090 return; 2091 } 2092 2093 r = drm_sched_entity_init(&adev->mman.low_pr, 2094 DRM_SCHED_PRIORITY_NORMAL, &sched, 2095 1, NULL); 2096 if (r) { 2097 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2098 r); 2099 goto error_free_entity; 2100 } 2101 } else { 2102 drm_sched_entity_destroy(&adev->mman.high_pr); 2103 drm_sched_entity_destroy(&adev->mman.low_pr); 2104 dma_fence_put(man->move); 2105 man->move = NULL; 2106 } 2107 2108 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2109 if (enable) 2110 size = adev->gmc.real_vram_size; 2111 else 2112 size = adev->gmc.visible_vram_size; 2113 man->size = size; 2114 adev->mman.buffer_funcs_enabled = enable; 2115 2116 return; 2117 2118 error_free_entity: 2119 drm_sched_entity_destroy(&adev->mman.high_pr); 2120 } 2121 2122 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2123 bool direct_submit, 2124 unsigned int num_dw, 2125 struct dma_resv *resv, 2126 bool vm_needs_flush, 2127 struct amdgpu_job **job, 2128 bool delayed) 2129 { 2130 enum amdgpu_ib_pool_type pool = direct_submit ? 2131 AMDGPU_IB_POOL_DIRECT : 2132 AMDGPU_IB_POOL_DELAYED; 2133 int r; 2134 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2135 &adev->mman.high_pr; 2136 r = amdgpu_job_alloc_with_ib(adev, entity, 2137 AMDGPU_FENCE_OWNER_UNDEFINED, 2138 num_dw * 4, pool, job); 2139 if (r) 2140 return r; 2141 2142 if (vm_needs_flush) { 2143 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2144 adev->gmc.pdb0_bo : 2145 adev->gart.bo); 2146 (*job)->vm_needs_flush = true; 2147 } 2148 if (!resv) 2149 return 0; 2150 2151 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2152 DMA_RESV_USAGE_BOOKKEEP); 2153 } 2154 2155 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2156 uint64_t dst_offset, uint32_t byte_count, 2157 struct dma_resv *resv, 2158 struct dma_fence **fence, bool direct_submit, 2159 bool vm_needs_flush, uint32_t copy_flags) 2160 { 2161 struct amdgpu_device *adev = ring->adev; 2162 unsigned int num_loops, num_dw; 2163 struct amdgpu_job *job; 2164 uint32_t max_bytes; 2165 unsigned int i; 2166 int r; 2167 2168 if (!direct_submit && !ring->sched.ready) { 2169 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2170 return -EINVAL; 2171 } 2172 2173 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2174 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2175 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2176 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2177 resv, vm_needs_flush, &job, false); 2178 if (r) 2179 return r; 2180 2181 for (i = 0; i < num_loops; i++) { 2182 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2183 2184 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2185 dst_offset, cur_size_in_bytes, copy_flags); 2186 src_offset += cur_size_in_bytes; 2187 dst_offset += cur_size_in_bytes; 2188 byte_count -= cur_size_in_bytes; 2189 } 2190 2191 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2192 WARN_ON(job->ibs[0].length_dw > num_dw); 2193 if (direct_submit) 2194 r = amdgpu_job_submit_direct(job, ring, fence); 2195 else 2196 *fence = amdgpu_job_submit(job); 2197 if (r) 2198 goto error_free; 2199 2200 return r; 2201 2202 error_free: 2203 amdgpu_job_free(job); 2204 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2205 return r; 2206 } 2207 2208 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2209 uint64_t dst_addr, uint32_t byte_count, 2210 struct dma_resv *resv, 2211 struct dma_fence **fence, 2212 bool vm_needs_flush, bool delayed) 2213 { 2214 struct amdgpu_device *adev = ring->adev; 2215 unsigned int num_loops, num_dw; 2216 struct amdgpu_job *job; 2217 uint32_t max_bytes; 2218 unsigned int i; 2219 int r; 2220 2221 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2222 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2223 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2224 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2225 &job, delayed); 2226 if (r) 2227 return r; 2228 2229 for (i = 0; i < num_loops; i++) { 2230 uint32_t cur_size = min(byte_count, max_bytes); 2231 2232 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2233 cur_size); 2234 2235 dst_addr += cur_size; 2236 byte_count -= cur_size; 2237 } 2238 2239 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2240 WARN_ON(job->ibs[0].length_dw > num_dw); 2241 *fence = amdgpu_job_submit(job); 2242 return 0; 2243 } 2244 2245 /** 2246 * amdgpu_ttm_clear_buffer - clear memory buffers 2247 * @bo: amdgpu buffer object 2248 * @resv: reservation object 2249 * @fence: dma_fence associated with the operation 2250 * 2251 * Clear the memory buffer resource. 2252 * 2253 * Returns: 2254 * 0 for success or a negative error code on failure. 2255 */ 2256 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2257 struct dma_resv *resv, 2258 struct dma_fence **fence) 2259 { 2260 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2261 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2262 struct amdgpu_res_cursor cursor; 2263 u64 addr; 2264 int r; 2265 2266 if (!adev->mman.buffer_funcs_enabled) 2267 return -EINVAL; 2268 2269 if (!fence) 2270 return -EINVAL; 2271 2272 *fence = dma_fence_get_stub(); 2273 2274 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2275 2276 mutex_lock(&adev->mman.gtt_window_lock); 2277 while (cursor.remaining) { 2278 struct dma_fence *next = NULL; 2279 u64 size; 2280 2281 if (amdgpu_res_cleared(&cursor)) { 2282 amdgpu_res_next(&cursor, cursor.size); 2283 continue; 2284 } 2285 2286 /* Never clear more than 256MiB at once to avoid timeouts */ 2287 size = min(cursor.size, 256ULL << 20); 2288 2289 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2290 1, ring, false, &size, &addr); 2291 if (r) 2292 goto err; 2293 2294 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2295 &next, true, true); 2296 if (r) 2297 goto err; 2298 2299 dma_fence_put(*fence); 2300 *fence = next; 2301 2302 amdgpu_res_next(&cursor, size); 2303 } 2304 err: 2305 mutex_unlock(&adev->mman.gtt_window_lock); 2306 2307 return r; 2308 } 2309 2310 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2311 uint32_t src_data, 2312 struct dma_resv *resv, 2313 struct dma_fence **f, 2314 bool delayed) 2315 { 2316 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2317 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2318 struct dma_fence *fence = NULL; 2319 struct amdgpu_res_cursor dst; 2320 int r; 2321 2322 if (!adev->mman.buffer_funcs_enabled) { 2323 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2324 return -EINVAL; 2325 } 2326 2327 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2328 2329 mutex_lock(&adev->mman.gtt_window_lock); 2330 while (dst.remaining) { 2331 struct dma_fence *next; 2332 uint64_t cur_size, to; 2333 2334 /* Never fill more than 256MiB at once to avoid timeouts */ 2335 cur_size = min(dst.size, 256ULL << 20); 2336 2337 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2338 1, ring, false, &cur_size, &to); 2339 if (r) 2340 goto error; 2341 2342 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2343 &next, true, delayed); 2344 if (r) 2345 goto error; 2346 2347 dma_fence_put(fence); 2348 fence = next; 2349 2350 amdgpu_res_next(&dst, cur_size); 2351 } 2352 error: 2353 mutex_unlock(&adev->mman.gtt_window_lock); 2354 if (f) 2355 *f = dma_fence_get(fence); 2356 dma_fence_put(fence); 2357 return r; 2358 } 2359 2360 /** 2361 * amdgpu_ttm_evict_resources - evict memory buffers 2362 * @adev: amdgpu device object 2363 * @mem_type: evicted BO's memory type 2364 * 2365 * Evicts all @mem_type buffers on the lru list of the memory type. 2366 * 2367 * Returns: 2368 * 0 for success or a negative error code on failure. 2369 */ 2370 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2371 { 2372 struct ttm_resource_manager *man; 2373 2374 switch (mem_type) { 2375 case TTM_PL_VRAM: 2376 case TTM_PL_TT: 2377 case AMDGPU_PL_GWS: 2378 case AMDGPU_PL_GDS: 2379 case AMDGPU_PL_OA: 2380 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2381 break; 2382 default: 2383 DRM_ERROR("Trying to evict invalid memory type\n"); 2384 return -EINVAL; 2385 } 2386 2387 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2388 } 2389 2390 #if defined(CONFIG_DEBUG_FS) 2391 2392 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2393 { 2394 struct amdgpu_device *adev = m->private; 2395 2396 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2397 } 2398 2399 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2400 2401 /* 2402 * amdgpu_ttm_vram_read - Linear read access to VRAM 2403 * 2404 * Accesses VRAM via MMIO for debugging purposes. 2405 */ 2406 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2407 size_t size, loff_t *pos) 2408 { 2409 struct amdgpu_device *adev = file_inode(f)->i_private; 2410 ssize_t result = 0; 2411 2412 if (size & 0x3 || *pos & 0x3) 2413 return -EINVAL; 2414 2415 if (*pos >= adev->gmc.mc_vram_size) 2416 return -ENXIO; 2417 2418 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2419 while (size) { 2420 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2421 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2422 2423 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2424 if (copy_to_user(buf, value, bytes)) 2425 return -EFAULT; 2426 2427 result += bytes; 2428 buf += bytes; 2429 *pos += bytes; 2430 size -= bytes; 2431 } 2432 2433 return result; 2434 } 2435 2436 /* 2437 * amdgpu_ttm_vram_write - Linear write access to VRAM 2438 * 2439 * Accesses VRAM via MMIO for debugging purposes. 2440 */ 2441 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2442 size_t size, loff_t *pos) 2443 { 2444 struct amdgpu_device *adev = file_inode(f)->i_private; 2445 ssize_t result = 0; 2446 int r; 2447 2448 if (size & 0x3 || *pos & 0x3) 2449 return -EINVAL; 2450 2451 if (*pos >= adev->gmc.mc_vram_size) 2452 return -ENXIO; 2453 2454 while (size) { 2455 uint32_t value; 2456 2457 if (*pos >= adev->gmc.mc_vram_size) 2458 return result; 2459 2460 r = get_user(value, (uint32_t *)buf); 2461 if (r) 2462 return r; 2463 2464 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2465 2466 result += 4; 2467 buf += 4; 2468 *pos += 4; 2469 size -= 4; 2470 } 2471 2472 return result; 2473 } 2474 2475 static const struct file_operations amdgpu_ttm_vram_fops = { 2476 .owner = THIS_MODULE, 2477 .read = amdgpu_ttm_vram_read, 2478 .write = amdgpu_ttm_vram_write, 2479 .llseek = default_llseek, 2480 }; 2481 2482 /* 2483 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2484 * 2485 * This function is used to read memory that has been mapped to the 2486 * GPU and the known addresses are not physical addresses but instead 2487 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2488 */ 2489 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2490 size_t size, loff_t *pos) 2491 { 2492 struct amdgpu_device *adev = file_inode(f)->i_private; 2493 struct iommu_domain *dom; 2494 ssize_t result = 0; 2495 int r; 2496 2497 /* retrieve the IOMMU domain if any for this device */ 2498 dom = iommu_get_domain_for_dev(adev->dev); 2499 2500 while (size) { 2501 phys_addr_t addr = *pos & PAGE_MASK; 2502 loff_t off = *pos & ~PAGE_MASK; 2503 size_t bytes = PAGE_SIZE - off; 2504 unsigned long pfn; 2505 struct page *p; 2506 void *ptr; 2507 2508 bytes = min(bytes, size); 2509 2510 /* Translate the bus address to a physical address. If 2511 * the domain is NULL it means there is no IOMMU active 2512 * and the address translation is the identity 2513 */ 2514 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2515 2516 pfn = addr >> PAGE_SHIFT; 2517 if (!pfn_valid(pfn)) 2518 return -EPERM; 2519 2520 p = pfn_to_page(pfn); 2521 if (p->mapping != adev->mman.bdev.dev_mapping) 2522 return -EPERM; 2523 2524 ptr = kmap_local_page(p); 2525 r = copy_to_user(buf, ptr + off, bytes); 2526 kunmap_local(ptr); 2527 if (r) 2528 return -EFAULT; 2529 2530 size -= bytes; 2531 *pos += bytes; 2532 result += bytes; 2533 } 2534 2535 return result; 2536 } 2537 2538 /* 2539 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2540 * 2541 * This function is used to write memory that has been mapped to the 2542 * GPU and the known addresses are not physical addresses but instead 2543 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2544 */ 2545 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2546 size_t size, loff_t *pos) 2547 { 2548 struct amdgpu_device *adev = file_inode(f)->i_private; 2549 struct iommu_domain *dom; 2550 ssize_t result = 0; 2551 int r; 2552 2553 dom = iommu_get_domain_for_dev(adev->dev); 2554 2555 while (size) { 2556 phys_addr_t addr = *pos & PAGE_MASK; 2557 loff_t off = *pos & ~PAGE_MASK; 2558 size_t bytes = PAGE_SIZE - off; 2559 unsigned long pfn; 2560 struct page *p; 2561 void *ptr; 2562 2563 bytes = min(bytes, size); 2564 2565 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2566 2567 pfn = addr >> PAGE_SHIFT; 2568 if (!pfn_valid(pfn)) 2569 return -EPERM; 2570 2571 p = pfn_to_page(pfn); 2572 if (p->mapping != adev->mman.bdev.dev_mapping) 2573 return -EPERM; 2574 2575 ptr = kmap_local_page(p); 2576 r = copy_from_user(ptr + off, buf, bytes); 2577 kunmap_local(ptr); 2578 if (r) 2579 return -EFAULT; 2580 2581 size -= bytes; 2582 *pos += bytes; 2583 result += bytes; 2584 } 2585 2586 return result; 2587 } 2588 2589 static const struct file_operations amdgpu_ttm_iomem_fops = { 2590 .owner = THIS_MODULE, 2591 .read = amdgpu_iomem_read, 2592 .write = amdgpu_iomem_write, 2593 .llseek = default_llseek 2594 }; 2595 2596 #endif 2597 2598 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2599 { 2600 #if defined(CONFIG_DEBUG_FS) 2601 struct drm_minor *minor = adev_to_drm(adev)->primary; 2602 struct dentry *root = minor->debugfs_root; 2603 2604 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2605 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2606 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2607 &amdgpu_ttm_iomem_fops); 2608 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2609 &amdgpu_ttm_page_pool_fops); 2610 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2611 TTM_PL_VRAM), 2612 root, "amdgpu_vram_mm"); 2613 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2614 TTM_PL_TT), 2615 root, "amdgpu_gtt_mm"); 2616 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2617 AMDGPU_PL_GDS), 2618 root, "amdgpu_gds_mm"); 2619 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2620 AMDGPU_PL_GWS), 2621 root, "amdgpu_gws_mm"); 2622 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2623 AMDGPU_PL_OA), 2624 root, "amdgpu_oa_mm"); 2625 2626 #endif 2627 } 2628