xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 53ed0af4964229595b60594b35334d006d411ef0)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 		placement->num_placement = 0;
127 		return;
128 
129 	case TTM_PL_VRAM:
130 		if (!adev->mman.buffer_funcs_enabled) {
131 			/* Move to system memory */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133 
134 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
137 
138 			/* Try evicting to the CPU inaccessible part of VRAM
139 			 * first, but only set GTT as busy placement, so this
140 			 * BO will be evicted to GTT rather than causing other
141 			 * BOs to be evicted from VRAM
142 			 */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 							AMDGPU_GEM_DOMAIN_GTT |
145 							AMDGPU_GEM_DOMAIN_CPU);
146 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 			abo->placements[0].lpfn = 0;
148 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 		} else {
150 			/* Move to GTT memory */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 							AMDGPU_GEM_DOMAIN_CPU);
153 		}
154 		break;
155 	case TTM_PL_TT:
156 	case AMDGPU_PL_PREEMPT:
157 	default:
158 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 		break;
160 	}
161 	*placement = abo->placement;
162 }
163 
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 				 struct ttm_resource *mem,
180 				 struct amdgpu_res_cursor *mm_cur,
181 				 unsigned int window, struct amdgpu_ring *ring,
182 				 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 	struct amdgpu_device *adev = ring->adev;
185 	unsigned int offset, num_pages, num_dw, num_bytes;
186 	uint64_t src_addr, dst_addr;
187 	struct amdgpu_job *job;
188 	void *cpu_addr;
189 	uint64_t flags;
190 	unsigned int i;
191 	int r;
192 
193 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195 
196 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 		return -EINVAL;
198 
199 	/* Map only what can't be accessed directly */
200 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 			mm_cur->start;
203 		return 0;
204 	}
205 
206 
207 	/*
208 	 * If start begins at an offset inside the page, then adjust the size
209 	 * and addr accordingly
210 	 */
211 	offset = mm_cur->start & ~PAGE_MASK;
212 
213 	num_pages = PFN_UP(*size + offset);
214 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215 
216 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += offset;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 				     AMDGPU_FENCE_OWNER_UNDEFINED,
228 				     num_dw * 4 + num_bytes,
229 				     AMDGPU_IB_POOL_DELAYED, &job);
230 	if (r)
231 		return r;
232 
233 	src_addr = num_dw * 4;
234 	src_addr += job->ibs[0].gpu_addr;
235 
236 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 				dst_addr, num_bytes, false);
240 
241 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 	WARN_ON(job->ibs[0].length_dw > num_dw);
243 
244 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 	if (tmz)
246 		flags |= AMDGPU_PTE_TMZ;
247 
248 	cpu_addr = &job->ibs[0].ptr[num_dw];
249 
250 	if (mem->mem_type == TTM_PL_TT) {
251 		dma_addr_t *dma_addr;
252 
253 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 	} else {
256 		dma_addr_t dma_address;
257 
258 		dma_address = mm_cur->start;
259 		dma_address += adev->vm_manager.vram_base_offset;
260 
261 		for (i = 0; i < num_pages; ++i) {
262 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 					flags, cpu_addr);
264 			dma_address += PAGE_SIZE;
265 		}
266 	}
267 
268 	dma_fence_put(amdgpu_job_submit(job));
269 	return 0;
270 }
271 
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 			       const struct amdgpu_copy_mem *src,
289 			       const struct amdgpu_copy_mem *dst,
290 			       uint64_t size, bool tmz,
291 			       struct dma_resv *resv,
292 			       struct dma_fence **f)
293 {
294 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 	struct amdgpu_res_cursor src_mm, dst_mm;
296 	struct dma_fence *fence = NULL;
297 	int r = 0;
298 
299 	if (!adev->mman.buffer_funcs_enabled) {
300 		DRM_ERROR("Trying to move memory with ring turned off.\n");
301 		return -EINVAL;
302 	}
303 
304 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306 
307 	mutex_lock(&adev->mman.gtt_window_lock);
308 	while (src_mm.remaining) {
309 		uint64_t from, to, cur_size;
310 		struct dma_fence *next;
311 
312 		/* Never copy more than 256MiB at once to avoid a timeout */
313 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314 
315 		/* Map src to window 0 and dst to window 1. */
316 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 					  0, ring, tmz, &cur_size, &from);
318 		if (r)
319 			goto error;
320 
321 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 					  1, ring, tmz, &cur_size, &to);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 				       resv, &next, false, true, tmz);
328 		if (r)
329 			goto error;
330 
331 		dma_fence_put(fence);
332 		fence = next;
333 
334 		amdgpu_res_next(&src_mm, cur_size);
335 		amdgpu_res_next(&dst_mm, cur_size);
336 	}
337 error:
338 	mutex_unlock(&adev->mman.gtt_window_lock);
339 	if (f)
340 		*f = dma_fence_get(fence);
341 	dma_fence_put(fence);
342 	return r;
343 }
344 
345 /*
346  * amdgpu_move_blit - Copy an entire buffer to another buffer
347  *
348  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349  * help move buffers to and from VRAM.
350  */
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352 			    bool evict,
353 			    struct ttm_resource *new_mem,
354 			    struct ttm_resource *old_mem)
355 {
356 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 	struct amdgpu_copy_mem src, dst;
359 	struct dma_fence *fence = NULL;
360 	int r;
361 
362 	src.bo = bo;
363 	dst.bo = bo;
364 	src.mem = old_mem;
365 	dst.mem = new_mem;
366 	src.offset = 0;
367 	dst.offset = 0;
368 
369 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370 				       new_mem->size,
371 				       amdgpu_bo_encrypted(abo),
372 				       bo->base.resv, &fence);
373 	if (r)
374 		goto error;
375 
376 	/* clear the space being freed */
377 	if (old_mem->mem_type == TTM_PL_VRAM &&
378 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 		struct dma_fence *wipe_fence = NULL;
380 
381 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
382 					false);
383 		if (r) {
384 			goto error;
385 		} else if (wipe_fence) {
386 			dma_fence_put(fence);
387 			fence = wipe_fence;
388 		}
389 	}
390 
391 	/* Always block for VM page tables before committing the new location */
392 	if (bo->type == ttm_bo_type_kernel)
393 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
394 	else
395 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
396 	dma_fence_put(fence);
397 	return r;
398 
399 error:
400 	if (fence)
401 		dma_fence_wait(fence, false);
402 	dma_fence_put(fence);
403 	return r;
404 }
405 
406 /*
407  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
408  *
409  * Called by amdgpu_bo_move()
410  */
411 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
412 			       struct ttm_resource *mem)
413 {
414 	u64 mem_size = (u64)mem->size;
415 	struct amdgpu_res_cursor cursor;
416 	u64 end;
417 
418 	if (mem->mem_type == TTM_PL_SYSTEM ||
419 	    mem->mem_type == TTM_PL_TT)
420 		return true;
421 	if (mem->mem_type != TTM_PL_VRAM)
422 		return false;
423 
424 	amdgpu_res_first(mem, 0, mem_size, &cursor);
425 	end = cursor.start + cursor.size;
426 	while (cursor.remaining) {
427 		amdgpu_res_next(&cursor, cursor.size);
428 
429 		if (!cursor.remaining)
430 			break;
431 
432 		/* ttm_resource_ioremap only supports contiguous memory */
433 		if (end != cursor.start)
434 			return false;
435 
436 		end = cursor.start + cursor.size;
437 	}
438 
439 	return end <= adev->gmc.visible_vram_size;
440 }
441 
442 /*
443  * amdgpu_bo_move - Move a buffer object to a new memory location
444  *
445  * Called by ttm_bo_handle_move_mem()
446  */
447 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
448 			  struct ttm_operation_ctx *ctx,
449 			  struct ttm_resource *new_mem,
450 			  struct ttm_place *hop)
451 {
452 	struct amdgpu_device *adev;
453 	struct amdgpu_bo *abo;
454 	struct ttm_resource *old_mem = bo->resource;
455 	int r;
456 
457 	if (new_mem->mem_type == TTM_PL_TT ||
458 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
459 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
460 		if (r)
461 			return r;
462 	}
463 
464 	abo = ttm_to_amdgpu_bo(bo);
465 	adev = amdgpu_ttm_adev(bo->bdev);
466 
467 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
468 			 bo->ttm == NULL)) {
469 		ttm_bo_move_null(bo, new_mem);
470 		goto out;
471 	}
472 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
473 	    (new_mem->mem_type == TTM_PL_TT ||
474 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
475 		ttm_bo_move_null(bo, new_mem);
476 		goto out;
477 	}
478 	if ((old_mem->mem_type == TTM_PL_TT ||
479 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
480 	    new_mem->mem_type == TTM_PL_SYSTEM) {
481 		r = ttm_bo_wait_ctx(bo, ctx);
482 		if (r)
483 			return r;
484 
485 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
486 		ttm_resource_free(bo, &bo->resource);
487 		ttm_bo_assign_mem(bo, new_mem);
488 		goto out;
489 	}
490 
491 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
492 	    old_mem->mem_type == AMDGPU_PL_GWS ||
493 	    old_mem->mem_type == AMDGPU_PL_OA ||
494 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
495 	    new_mem->mem_type == AMDGPU_PL_GDS ||
496 	    new_mem->mem_type == AMDGPU_PL_GWS ||
497 	    new_mem->mem_type == AMDGPU_PL_OA ||
498 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
499 		/* Nothing to save here */
500 		ttm_bo_move_null(bo, new_mem);
501 		goto out;
502 	}
503 
504 	if (bo->type == ttm_bo_type_device &&
505 	    new_mem->mem_type == TTM_PL_VRAM &&
506 	    old_mem->mem_type != TTM_PL_VRAM) {
507 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
508 		 * accesses the BO after it's moved.
509 		 */
510 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
511 	}
512 
513 	if (adev->mman.buffer_funcs_enabled) {
514 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
515 		      new_mem->mem_type == TTM_PL_VRAM) ||
516 		     (old_mem->mem_type == TTM_PL_VRAM &&
517 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
518 			hop->fpfn = 0;
519 			hop->lpfn = 0;
520 			hop->mem_type = TTM_PL_TT;
521 			hop->flags = TTM_PL_FLAG_TEMPORARY;
522 			return -EMULTIHOP;
523 		}
524 
525 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
526 	} else {
527 		r = -ENODEV;
528 	}
529 
530 	if (r) {
531 		/* Check that all memory is CPU accessible */
532 		if (!amdgpu_mem_visible(adev, old_mem) ||
533 		    !amdgpu_mem_visible(adev, new_mem)) {
534 			pr_err("Move buffer fallback to memcpy unavailable\n");
535 			return r;
536 		}
537 
538 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
539 		if (r)
540 			return r;
541 	}
542 
543 	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
544 out:
545 	/* update statistics */
546 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
547 	amdgpu_bo_move_notify(bo, evict);
548 	return 0;
549 }
550 
551 /*
552  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
553  *
554  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
555  */
556 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
557 				     struct ttm_resource *mem)
558 {
559 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
560 	size_t bus_size = (size_t)mem->size;
561 
562 	switch (mem->mem_type) {
563 	case TTM_PL_SYSTEM:
564 		/* system memory */
565 		return 0;
566 	case TTM_PL_TT:
567 	case AMDGPU_PL_PREEMPT:
568 		break;
569 	case TTM_PL_VRAM:
570 		mem->bus.offset = mem->start << PAGE_SHIFT;
571 		/* check if it's visible */
572 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
573 			return -EINVAL;
574 
575 		if (adev->mman.aper_base_kaddr &&
576 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
577 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
578 					mem->bus.offset;
579 
580 		mem->bus.offset += adev->gmc.aper_base;
581 		mem->bus.is_iomem = true;
582 		break;
583 	case AMDGPU_PL_DOORBELL:
584 		mem->bus.offset = mem->start << PAGE_SHIFT;
585 		mem->bus.offset += adev->doorbell.base;
586 		mem->bus.is_iomem = true;
587 		mem->bus.caching = ttm_uncached;
588 		break;
589 	default:
590 		return -EINVAL;
591 	}
592 	return 0;
593 }
594 
595 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
596 					   unsigned long page_offset)
597 {
598 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
599 	struct amdgpu_res_cursor cursor;
600 
601 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
602 			 &cursor);
603 
604 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
605 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
606 
607 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
608 }
609 
610 /**
611  * amdgpu_ttm_domain_start - Returns GPU start address
612  * @adev: amdgpu device object
613  * @type: type of the memory
614  *
615  * Returns:
616  * GPU start address of a memory domain
617  */
618 
619 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
620 {
621 	switch (type) {
622 	case TTM_PL_TT:
623 		return adev->gmc.gart_start;
624 	case TTM_PL_VRAM:
625 		return adev->gmc.vram_start;
626 	}
627 
628 	return 0;
629 }
630 
631 /*
632  * TTM backend functions.
633  */
634 struct amdgpu_ttm_tt {
635 	struct ttm_tt	ttm;
636 	struct drm_gem_object	*gobj;
637 	u64			offset;
638 	uint64_t		userptr;
639 	struct task_struct	*usertask;
640 	uint32_t		userflags;
641 	bool			bound;
642 	int32_t			pool_id;
643 };
644 
645 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
646 
647 #ifdef CONFIG_DRM_AMDGPU_USERPTR
648 /*
649  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
650  * memory and start HMM tracking CPU page table update
651  *
652  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
653  * once afterwards to stop HMM tracking
654  */
655 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
656 				 struct hmm_range **range)
657 {
658 	struct ttm_tt *ttm = bo->tbo.ttm;
659 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
660 	unsigned long start = gtt->userptr;
661 	struct vm_area_struct *vma;
662 	struct mm_struct *mm;
663 	bool readonly;
664 	int r = 0;
665 
666 	/* Make sure get_user_pages_done() can cleanup gracefully */
667 	*range = NULL;
668 
669 	mm = bo->notifier.mm;
670 	if (unlikely(!mm)) {
671 		DRM_DEBUG_DRIVER("BO is not registered?\n");
672 		return -EFAULT;
673 	}
674 
675 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
676 		return -ESRCH;
677 
678 	mmap_read_lock(mm);
679 	vma = vma_lookup(mm, start);
680 	if (unlikely(!vma)) {
681 		r = -EFAULT;
682 		goto out_unlock;
683 	}
684 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
685 		vma->vm_file)) {
686 		r = -EPERM;
687 		goto out_unlock;
688 	}
689 
690 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
691 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
692 				       readonly, NULL, pages, range);
693 out_unlock:
694 	mmap_read_unlock(mm);
695 	if (r)
696 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
697 
698 	mmput(mm);
699 
700 	return r;
701 }
702 
703 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
704  */
705 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
706 				      struct hmm_range *range)
707 {
708 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
709 
710 	if (gtt && gtt->userptr && range)
711 		amdgpu_hmm_range_get_pages_done(range);
712 }
713 
714 /*
715  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
716  * Check if the pages backing this ttm range have been invalidated
717  *
718  * Returns: true if pages are still valid
719  */
720 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
721 				       struct hmm_range *range)
722 {
723 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
724 
725 	if (!gtt || !gtt->userptr || !range)
726 		return false;
727 
728 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
729 		gtt->userptr, ttm->num_pages);
730 
731 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
732 
733 	return !amdgpu_hmm_range_get_pages_done(range);
734 }
735 #endif
736 
737 /*
738  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
739  *
740  * Called by amdgpu_cs_list_validate(). This creates the page list
741  * that backs user memory and will ultimately be mapped into the device
742  * address space.
743  */
744 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
745 {
746 	unsigned long i;
747 
748 	for (i = 0; i < ttm->num_pages; ++i)
749 		ttm->pages[i] = pages ? pages[i] : NULL;
750 }
751 
752 /*
753  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
754  *
755  * Called by amdgpu_ttm_backend_bind()
756  **/
757 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
758 				     struct ttm_tt *ttm)
759 {
760 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
761 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
762 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
763 	enum dma_data_direction direction = write ?
764 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
765 	int r;
766 
767 	/* Allocate an SG array and squash pages into it */
768 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
769 				      (u64)ttm->num_pages << PAGE_SHIFT,
770 				      GFP_KERNEL);
771 	if (r)
772 		goto release_sg;
773 
774 	/* Map SG to device */
775 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
776 	if (r)
777 		goto release_sg;
778 
779 	/* convert SG to linear array of pages and dma addresses */
780 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
781 				       ttm->num_pages);
782 
783 	return 0;
784 
785 release_sg:
786 	kfree(ttm->sg);
787 	ttm->sg = NULL;
788 	return r;
789 }
790 
791 /*
792  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
793  */
794 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
795 					struct ttm_tt *ttm)
796 {
797 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
798 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
799 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
800 	enum dma_data_direction direction = write ?
801 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
802 
803 	/* double check that we don't free the table twice */
804 	if (!ttm->sg || !ttm->sg->sgl)
805 		return;
806 
807 	/* unmap the pages mapped to the device */
808 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
809 	sg_free_table(ttm->sg);
810 }
811 
812 /*
813  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
814  * MQDn+CtrlStackn where n is the number of XCCs per partition.
815  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
816  * and uses memory type default, UC. The rest of pages_per_xcc are
817  * Ctrl stack and modify their memory type to NC.
818  */
819 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
820 				struct ttm_tt *ttm, uint64_t flags)
821 {
822 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
823 	uint64_t total_pages = ttm->num_pages;
824 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
825 	uint64_t page_idx, pages_per_xcc;
826 	int i;
827 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
828 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
829 
830 	pages_per_xcc = total_pages;
831 	do_div(pages_per_xcc, num_xcc);
832 
833 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
834 		/* MQD page: use default flags */
835 		amdgpu_gart_bind(adev,
836 				gtt->offset + (page_idx << PAGE_SHIFT),
837 				1, &gtt->ttm.dma_address[page_idx], flags);
838 		/*
839 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
840 		 * the second page of the BO onward.
841 		 */
842 		amdgpu_gart_bind(adev,
843 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
844 				pages_per_xcc - 1,
845 				&gtt->ttm.dma_address[page_idx + 1],
846 				ctrl_flags);
847 	}
848 }
849 
850 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
851 				 struct ttm_buffer_object *tbo,
852 				 uint64_t flags)
853 {
854 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
855 	struct ttm_tt *ttm = tbo->ttm;
856 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
857 
858 	if (amdgpu_bo_encrypted(abo))
859 		flags |= AMDGPU_PTE_TMZ;
860 
861 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
862 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
863 	} else {
864 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
865 				 gtt->ttm.dma_address, flags);
866 	}
867 	gtt->bound = true;
868 }
869 
870 /*
871  * amdgpu_ttm_backend_bind - Bind GTT memory
872  *
873  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
874  * This handles binding GTT memory to the device address space.
875  */
876 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
877 				   struct ttm_tt *ttm,
878 				   struct ttm_resource *bo_mem)
879 {
880 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
881 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
882 	uint64_t flags;
883 	int r;
884 
885 	if (!bo_mem)
886 		return -EINVAL;
887 
888 	if (gtt->bound)
889 		return 0;
890 
891 	if (gtt->userptr) {
892 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
893 		if (r) {
894 			DRM_ERROR("failed to pin userptr\n");
895 			return r;
896 		}
897 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
898 		if (!ttm->sg) {
899 			struct dma_buf_attachment *attach;
900 			struct sg_table *sgt;
901 
902 			attach = gtt->gobj->import_attach;
903 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
904 			if (IS_ERR(sgt))
905 				return PTR_ERR(sgt);
906 
907 			ttm->sg = sgt;
908 		}
909 
910 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
911 					       ttm->num_pages);
912 	}
913 
914 	if (!ttm->num_pages) {
915 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
916 		     ttm->num_pages, bo_mem, ttm);
917 	}
918 
919 	if (bo_mem->mem_type != TTM_PL_TT ||
920 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
921 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
922 		return 0;
923 	}
924 
925 	/* compute PTE flags relevant to this BO memory */
926 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
927 
928 	/* bind pages into GART page tables */
929 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
930 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
931 			 gtt->ttm.dma_address, flags);
932 	gtt->bound = true;
933 	return 0;
934 }
935 
936 /*
937  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
938  * through AGP or GART aperture.
939  *
940  * If bo is accessible through AGP aperture, then use AGP aperture
941  * to access bo; otherwise allocate logical space in GART aperture
942  * and map bo to GART aperture.
943  */
944 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
945 {
946 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
947 	struct ttm_operation_ctx ctx = { false, false };
948 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
949 	struct ttm_placement placement;
950 	struct ttm_place placements;
951 	struct ttm_resource *tmp;
952 	uint64_t addr, flags;
953 	int r;
954 
955 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
956 		return 0;
957 
958 	addr = amdgpu_gmc_agp_addr(bo);
959 	if (addr != AMDGPU_BO_INVALID_OFFSET)
960 		return 0;
961 
962 	/* allocate GART space */
963 	placement.num_placement = 1;
964 	placement.placement = &placements;
965 	placements.fpfn = 0;
966 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
967 	placements.mem_type = TTM_PL_TT;
968 	placements.flags = bo->resource->placement;
969 
970 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
971 	if (unlikely(r))
972 		return r;
973 
974 	/* compute PTE flags for this buffer object */
975 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
976 
977 	/* Bind pages */
978 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
979 	amdgpu_ttm_gart_bind(adev, bo, flags);
980 	amdgpu_gart_invalidate_tlb(adev);
981 	ttm_resource_free(bo, &bo->resource);
982 	ttm_bo_assign_mem(bo, tmp);
983 
984 	return 0;
985 }
986 
987 /*
988  * amdgpu_ttm_recover_gart - Rebind GTT pages
989  *
990  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
991  * rebind GTT pages during a GPU reset.
992  */
993 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
994 {
995 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
996 	uint64_t flags;
997 
998 	if (!tbo->ttm)
999 		return;
1000 
1001 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1002 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1003 }
1004 
1005 /*
1006  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1007  *
1008  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1009  * ttm_tt_destroy().
1010  */
1011 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1012 				      struct ttm_tt *ttm)
1013 {
1014 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1015 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1016 
1017 	/* if the pages have userptr pinning then clear that first */
1018 	if (gtt->userptr) {
1019 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1020 	} else if (ttm->sg && gtt->gobj->import_attach) {
1021 		struct dma_buf_attachment *attach;
1022 
1023 		attach = gtt->gobj->import_attach;
1024 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1025 		ttm->sg = NULL;
1026 	}
1027 
1028 	if (!gtt->bound)
1029 		return;
1030 
1031 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1032 		return;
1033 
1034 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1035 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1036 	gtt->bound = false;
1037 }
1038 
1039 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1040 				       struct ttm_tt *ttm)
1041 {
1042 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1043 
1044 	if (gtt->usertask)
1045 		put_task_struct(gtt->usertask);
1046 
1047 	ttm_tt_fini(&gtt->ttm);
1048 	kfree(gtt);
1049 }
1050 
1051 /**
1052  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1053  *
1054  * @bo: The buffer object to create a GTT ttm_tt object around
1055  * @page_flags: Page flags to be added to the ttm_tt object
1056  *
1057  * Called by ttm_tt_create().
1058  */
1059 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1060 					   uint32_t page_flags)
1061 {
1062 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1063 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1064 	struct amdgpu_ttm_tt *gtt;
1065 	enum ttm_caching caching;
1066 
1067 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1068 	if (!gtt)
1069 		return NULL;
1070 
1071 	gtt->gobj = &bo->base;
1072 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1073 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1074 	else
1075 		gtt->pool_id = abo->xcp_id;
1076 
1077 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1078 		caching = ttm_write_combined;
1079 	else
1080 		caching = ttm_cached;
1081 
1082 	/* allocate space for the uninitialized page entries */
1083 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1084 		kfree(gtt);
1085 		return NULL;
1086 	}
1087 	return &gtt->ttm;
1088 }
1089 
1090 /*
1091  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1092  *
1093  * Map the pages of a ttm_tt object to an address space visible
1094  * to the underlying device.
1095  */
1096 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1097 				  struct ttm_tt *ttm,
1098 				  struct ttm_operation_ctx *ctx)
1099 {
1100 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1101 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1102 	struct ttm_pool *pool;
1103 	pgoff_t i;
1104 	int ret;
1105 
1106 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1107 	if (gtt->userptr) {
1108 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1109 		if (!ttm->sg)
1110 			return -ENOMEM;
1111 		return 0;
1112 	}
1113 
1114 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1115 		return 0;
1116 
1117 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1118 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1119 	else
1120 		pool = &adev->mman.bdev.pool;
1121 	ret = ttm_pool_alloc(pool, ttm, ctx);
1122 	if (ret)
1123 		return ret;
1124 
1125 	for (i = 0; i < ttm->num_pages; ++i)
1126 		ttm->pages[i]->mapping = bdev->dev_mapping;
1127 
1128 	return 0;
1129 }
1130 
1131 /*
1132  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1133  *
1134  * Unmaps pages of a ttm_tt object from the device address space and
1135  * unpopulates the page array backing it.
1136  */
1137 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1138 				     struct ttm_tt *ttm)
1139 {
1140 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1141 	struct amdgpu_device *adev;
1142 	struct ttm_pool *pool;
1143 	pgoff_t i;
1144 
1145 	amdgpu_ttm_backend_unbind(bdev, ttm);
1146 
1147 	if (gtt->userptr) {
1148 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1149 		kfree(ttm->sg);
1150 		ttm->sg = NULL;
1151 		return;
1152 	}
1153 
1154 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1155 		return;
1156 
1157 	for (i = 0; i < ttm->num_pages; ++i)
1158 		ttm->pages[i]->mapping = NULL;
1159 
1160 	adev = amdgpu_ttm_adev(bdev);
1161 
1162 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1163 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1164 	else
1165 		pool = &adev->mman.bdev.pool;
1166 
1167 	return ttm_pool_free(pool, ttm);
1168 }
1169 
1170 /**
1171  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1172  * task
1173  *
1174  * @tbo: The ttm_buffer_object that contains the userptr
1175  * @user_addr:  The returned value
1176  */
1177 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1178 			      uint64_t *user_addr)
1179 {
1180 	struct amdgpu_ttm_tt *gtt;
1181 
1182 	if (!tbo->ttm)
1183 		return -EINVAL;
1184 
1185 	gtt = (void *)tbo->ttm;
1186 	*user_addr = gtt->userptr;
1187 	return 0;
1188 }
1189 
1190 /**
1191  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1192  * task
1193  *
1194  * @bo: The ttm_buffer_object to bind this userptr to
1195  * @addr:  The address in the current tasks VM space to use
1196  * @flags: Requirements of userptr object.
1197  *
1198  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1199  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1200  * initialize GPU VM for a KFD process.
1201  */
1202 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1203 			      uint64_t addr, uint32_t flags)
1204 {
1205 	struct amdgpu_ttm_tt *gtt;
1206 
1207 	if (!bo->ttm) {
1208 		/* TODO: We want a separate TTM object type for userptrs */
1209 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1210 		if (bo->ttm == NULL)
1211 			return -ENOMEM;
1212 	}
1213 
1214 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1215 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1216 
1217 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1218 	gtt->userptr = addr;
1219 	gtt->userflags = flags;
1220 
1221 	if (gtt->usertask)
1222 		put_task_struct(gtt->usertask);
1223 	gtt->usertask = current->group_leader;
1224 	get_task_struct(gtt->usertask);
1225 
1226 	return 0;
1227 }
1228 
1229 /*
1230  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1231  */
1232 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1233 {
1234 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1235 
1236 	if (gtt == NULL)
1237 		return NULL;
1238 
1239 	if (gtt->usertask == NULL)
1240 		return NULL;
1241 
1242 	return gtt->usertask->mm;
1243 }
1244 
1245 /*
1246  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1247  * address range for the current task.
1248  *
1249  */
1250 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1251 				  unsigned long end, unsigned long *userptr)
1252 {
1253 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1254 	unsigned long size;
1255 
1256 	if (gtt == NULL || !gtt->userptr)
1257 		return false;
1258 
1259 	/* Return false if no part of the ttm_tt object lies within
1260 	 * the range
1261 	 */
1262 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1263 	if (gtt->userptr > end || gtt->userptr + size <= start)
1264 		return false;
1265 
1266 	if (userptr)
1267 		*userptr = gtt->userptr;
1268 	return true;
1269 }
1270 
1271 /*
1272  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1273  */
1274 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1275 {
1276 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1277 
1278 	if (gtt == NULL || !gtt->userptr)
1279 		return false;
1280 
1281 	return true;
1282 }
1283 
1284 /*
1285  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1286  */
1287 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1288 {
1289 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1290 
1291 	if (gtt == NULL)
1292 		return false;
1293 
1294 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1295 }
1296 
1297 /**
1298  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1299  *
1300  * @ttm: The ttm_tt object to compute the flags for
1301  * @mem: The memory registry backing this ttm_tt object
1302  *
1303  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1304  */
1305 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1306 {
1307 	uint64_t flags = 0;
1308 
1309 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1310 		flags |= AMDGPU_PTE_VALID;
1311 
1312 	if (mem && (mem->mem_type == TTM_PL_TT ||
1313 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1314 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1315 		flags |= AMDGPU_PTE_SYSTEM;
1316 
1317 		if (ttm->caching == ttm_cached)
1318 			flags |= AMDGPU_PTE_SNOOPED;
1319 	}
1320 
1321 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1322 			mem->bus.caching == ttm_cached)
1323 		flags |= AMDGPU_PTE_SNOOPED;
1324 
1325 	return flags;
1326 }
1327 
1328 /**
1329  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1330  *
1331  * @adev: amdgpu_device pointer
1332  * @ttm: The ttm_tt object to compute the flags for
1333  * @mem: The memory registry backing this ttm_tt object
1334  *
1335  * Figure out the flags to use for a VM PTE (Page Table Entry).
1336  */
1337 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1338 				 struct ttm_resource *mem)
1339 {
1340 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1341 
1342 	flags |= adev->gart.gart_pte_flags;
1343 	flags |= AMDGPU_PTE_READABLE;
1344 
1345 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1346 		flags |= AMDGPU_PTE_WRITEABLE;
1347 
1348 	return flags;
1349 }
1350 
1351 /*
1352  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1353  * object.
1354  *
1355  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1356  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1357  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1358  * used to clean out a memory space.
1359  */
1360 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1361 					    const struct ttm_place *place)
1362 {
1363 	struct dma_resv_iter resv_cursor;
1364 	struct dma_fence *f;
1365 
1366 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1367 		return ttm_bo_eviction_valuable(bo, place);
1368 
1369 	/* Swapout? */
1370 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1371 		return true;
1372 
1373 	if (bo->type == ttm_bo_type_kernel &&
1374 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1375 		return false;
1376 
1377 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1378 	 * If true, then return false as any KFD process needs all its BOs to
1379 	 * be resident to run successfully
1380 	 */
1381 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1382 				DMA_RESV_USAGE_BOOKKEEP, f) {
1383 		if (amdkfd_fence_check_mm(f, current->mm))
1384 			return false;
1385 	}
1386 
1387 	/* Preemptible BOs don't own system resources managed by the
1388 	 * driver (pages, VRAM, GART space). They point to resources
1389 	 * owned by someone else (e.g. pageable memory in user mode
1390 	 * or a DMABuf). They are used in a preemptible context so we
1391 	 * can guarantee no deadlocks and good QoS in case of MMU
1392 	 * notifiers or DMABuf move notifiers from the resource owner.
1393 	 */
1394 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1395 		return false;
1396 
1397 	if (bo->resource->mem_type == TTM_PL_TT &&
1398 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1399 		return false;
1400 
1401 	return ttm_bo_eviction_valuable(bo, place);
1402 }
1403 
1404 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1405 				      void *buf, size_t size, bool write)
1406 {
1407 	while (size) {
1408 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1409 		uint64_t bytes = 4 - (pos & 0x3);
1410 		uint32_t shift = (pos & 0x3) * 8;
1411 		uint32_t mask = 0xffffffff << shift;
1412 		uint32_t value = 0;
1413 
1414 		if (size < bytes) {
1415 			mask &= 0xffffffff >> (bytes - size) * 8;
1416 			bytes = size;
1417 		}
1418 
1419 		if (mask != 0xffffffff) {
1420 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1421 			if (write) {
1422 				value &= ~mask;
1423 				value |= (*(uint32_t *)buf << shift) & mask;
1424 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1425 			} else {
1426 				value = (value & mask) >> shift;
1427 				memcpy(buf, &value, bytes);
1428 			}
1429 		} else {
1430 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1431 		}
1432 
1433 		pos += bytes;
1434 		buf += bytes;
1435 		size -= bytes;
1436 	}
1437 }
1438 
1439 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1440 					unsigned long offset, void *buf,
1441 					int len, int write)
1442 {
1443 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1444 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1445 	struct amdgpu_res_cursor src_mm;
1446 	struct amdgpu_job *job;
1447 	struct dma_fence *fence;
1448 	uint64_t src_addr, dst_addr;
1449 	unsigned int num_dw;
1450 	int r, idx;
1451 
1452 	if (len != PAGE_SIZE)
1453 		return -EINVAL;
1454 
1455 	if (!adev->mman.sdma_access_ptr)
1456 		return -EACCES;
1457 
1458 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1459 		return -ENODEV;
1460 
1461 	if (write)
1462 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1463 
1464 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1465 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1466 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1467 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1468 				     &job);
1469 	if (r)
1470 		goto out;
1471 
1472 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1473 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1474 		src_mm.start;
1475 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1476 	if (write)
1477 		swap(src_addr, dst_addr);
1478 
1479 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1480 				PAGE_SIZE, false);
1481 
1482 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1483 	WARN_ON(job->ibs[0].length_dw > num_dw);
1484 
1485 	fence = amdgpu_job_submit(job);
1486 
1487 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1488 		r = -ETIMEDOUT;
1489 	dma_fence_put(fence);
1490 
1491 	if (!(r || write))
1492 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1493 out:
1494 	drm_dev_exit(idx);
1495 	return r;
1496 }
1497 
1498 /**
1499  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1500  *
1501  * @bo:  The buffer object to read/write
1502  * @offset:  Offset into buffer object
1503  * @buf:  Secondary buffer to write/read from
1504  * @len: Length in bytes of access
1505  * @write:  true if writing
1506  *
1507  * This is used to access VRAM that backs a buffer object via MMIO
1508  * access for debugging purposes.
1509  */
1510 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1511 				    unsigned long offset, void *buf, int len,
1512 				    int write)
1513 {
1514 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1515 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1516 	struct amdgpu_res_cursor cursor;
1517 	int ret = 0;
1518 
1519 	if (bo->resource->mem_type != TTM_PL_VRAM)
1520 		return -EIO;
1521 
1522 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1523 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1524 		return len;
1525 
1526 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1527 	while (cursor.remaining) {
1528 		size_t count, size = cursor.size;
1529 		loff_t pos = cursor.start;
1530 
1531 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1532 		size -= count;
1533 		if (size) {
1534 			/* using MM to access rest vram and handle un-aligned address */
1535 			pos += count;
1536 			buf += count;
1537 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1538 		}
1539 
1540 		ret += cursor.size;
1541 		buf += cursor.size;
1542 		amdgpu_res_next(&cursor, cursor.size);
1543 	}
1544 
1545 	return ret;
1546 }
1547 
1548 static void
1549 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1550 {
1551 	amdgpu_bo_move_notify(bo, false);
1552 }
1553 
1554 static struct ttm_device_funcs amdgpu_bo_driver = {
1555 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1556 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1557 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1558 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1559 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1560 	.evict_flags = &amdgpu_evict_flags,
1561 	.move = &amdgpu_bo_move,
1562 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1563 	.release_notify = &amdgpu_bo_release_notify,
1564 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1565 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1566 	.access_memory = &amdgpu_ttm_access_memory,
1567 };
1568 
1569 /*
1570  * Firmware Reservation functions
1571  */
1572 /**
1573  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1574  *
1575  * @adev: amdgpu_device pointer
1576  *
1577  * free fw reserved vram if it has been reserved.
1578  */
1579 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1580 {
1581 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1582 		NULL, &adev->mman.fw_vram_usage_va);
1583 }
1584 
1585 /*
1586  * Driver Reservation functions
1587  */
1588 /**
1589  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1590  *
1591  * @adev: amdgpu_device pointer
1592  *
1593  * free drv reserved vram if it has been reserved.
1594  */
1595 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1596 {
1597 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1598 						  NULL,
1599 						  &adev->mman.drv_vram_usage_va);
1600 }
1601 
1602 /**
1603  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1604  *
1605  * @adev: amdgpu_device pointer
1606  *
1607  * create bo vram reservation from fw.
1608  */
1609 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1610 {
1611 	uint64_t vram_size = adev->gmc.visible_vram_size;
1612 
1613 	adev->mman.fw_vram_usage_va = NULL;
1614 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1615 
1616 	if (adev->mman.fw_vram_usage_size == 0 ||
1617 	    adev->mman.fw_vram_usage_size > vram_size)
1618 		return 0;
1619 
1620 	return amdgpu_bo_create_kernel_at(adev,
1621 					  adev->mman.fw_vram_usage_start_offset,
1622 					  adev->mman.fw_vram_usage_size,
1623 					  &adev->mman.fw_vram_usage_reserved_bo,
1624 					  &adev->mman.fw_vram_usage_va);
1625 }
1626 
1627 /**
1628  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1629  *
1630  * @adev: amdgpu_device pointer
1631  *
1632  * create bo vram reservation from drv.
1633  */
1634 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1635 {
1636 	u64 vram_size = adev->gmc.visible_vram_size;
1637 
1638 	adev->mman.drv_vram_usage_va = NULL;
1639 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1640 
1641 	if (adev->mman.drv_vram_usage_size == 0 ||
1642 	    adev->mman.drv_vram_usage_size > vram_size)
1643 		return 0;
1644 
1645 	return amdgpu_bo_create_kernel_at(adev,
1646 					  adev->mman.drv_vram_usage_start_offset,
1647 					  adev->mman.drv_vram_usage_size,
1648 					  &adev->mman.drv_vram_usage_reserved_bo,
1649 					  &adev->mman.drv_vram_usage_va);
1650 }
1651 
1652 /*
1653  * Memoy training reservation functions
1654  */
1655 
1656 /**
1657  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1658  *
1659  * @adev: amdgpu_device pointer
1660  *
1661  * free memory training reserved vram if it has been reserved.
1662  */
1663 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1664 {
1665 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1666 
1667 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1668 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1669 	ctx->c2p_bo = NULL;
1670 
1671 	return 0;
1672 }
1673 
1674 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1675 						uint32_t reserve_size)
1676 {
1677 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1678 
1679 	memset(ctx, 0, sizeof(*ctx));
1680 
1681 	ctx->c2p_train_data_offset =
1682 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1683 	ctx->p2c_train_data_offset =
1684 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1685 	ctx->train_data_size =
1686 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1687 
1688 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1689 			ctx->train_data_size,
1690 			ctx->p2c_train_data_offset,
1691 			ctx->c2p_train_data_offset);
1692 }
1693 
1694 /*
1695  * reserve TMR memory at the top of VRAM which holds
1696  * IP Discovery data and is protected by PSP.
1697  */
1698 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1699 {
1700 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1701 	bool mem_train_support = false;
1702 	uint32_t reserve_size = 0;
1703 	int ret;
1704 
1705 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1706 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1707 			mem_train_support = true;
1708 		else
1709 			DRM_DEBUG("memory training does not support!\n");
1710 	}
1711 
1712 	/*
1713 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1714 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1715 	 *
1716 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1717 	 * discovery data and G6 memory training data respectively
1718 	 */
1719 	if (adev->bios)
1720 		reserve_size =
1721 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1722 
1723 	if (!adev->bios &&
1724 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1725 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1726 	else if (!reserve_size)
1727 		reserve_size = DISCOVERY_TMR_OFFSET;
1728 
1729 	if (mem_train_support) {
1730 		/* reserve vram for mem train according to TMR location */
1731 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1732 		ret = amdgpu_bo_create_kernel_at(adev,
1733 						 ctx->c2p_train_data_offset,
1734 						 ctx->train_data_size,
1735 						 &ctx->c2p_bo,
1736 						 NULL);
1737 		if (ret) {
1738 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1739 			amdgpu_ttm_training_reserve_vram_fini(adev);
1740 			return ret;
1741 		}
1742 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1743 	}
1744 
1745 	if (!adev->gmc.is_app_apu) {
1746 		ret = amdgpu_bo_create_kernel_at(
1747 			adev, adev->gmc.real_vram_size - reserve_size,
1748 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1749 		if (ret) {
1750 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1751 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1752 					      NULL, NULL);
1753 			return ret;
1754 		}
1755 	} else {
1756 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1763 {
1764 	int i;
1765 
1766 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1767 		return 0;
1768 
1769 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1770 				       sizeof(*adev->mman.ttm_pools),
1771 				       GFP_KERNEL);
1772 	if (!adev->mman.ttm_pools)
1773 		return -ENOMEM;
1774 
1775 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1776 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1777 			      adev->gmc.mem_partitions[i].numa.node,
1778 			      false, false);
1779 	}
1780 	return 0;
1781 }
1782 
1783 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1784 {
1785 	int i;
1786 
1787 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1788 		return;
1789 
1790 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1791 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1792 
1793 	kfree(adev->mman.ttm_pools);
1794 	adev->mman.ttm_pools = NULL;
1795 }
1796 
1797 /*
1798  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1799  * gtt/vram related fields.
1800  *
1801  * This initializes all of the memory space pools that the TTM layer
1802  * will need such as the GTT space (system memory mapped to the device),
1803  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1804  * can be mapped per VMID.
1805  */
1806 int amdgpu_ttm_init(struct amdgpu_device *adev)
1807 {
1808 	uint64_t gtt_size;
1809 	int r;
1810 
1811 	mutex_init(&adev->mman.gtt_window_lock);
1812 
1813 	/* No others user of address space so set it to 0 */
1814 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1815 			       adev_to_drm(adev)->anon_inode->i_mapping,
1816 			       adev_to_drm(adev)->vma_offset_manager,
1817 			       adev->need_swiotlb,
1818 			       dma_addressing_limited(adev->dev));
1819 	if (r) {
1820 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1821 		return r;
1822 	}
1823 
1824 	r = amdgpu_ttm_pools_init(adev);
1825 	if (r) {
1826 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1827 		return r;
1828 	}
1829 	adev->mman.initialized = true;
1830 
1831 	/* Initialize VRAM pool with all of VRAM divided into pages */
1832 	r = amdgpu_vram_mgr_init(adev);
1833 	if (r) {
1834 		DRM_ERROR("Failed initializing VRAM heap.\n");
1835 		return r;
1836 	}
1837 
1838 	/* Change the size here instead of the init above so only lpfn is affected */
1839 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1840 #ifdef CONFIG_64BIT
1841 #ifdef CONFIG_X86
1842 	if (adev->gmc.xgmi.connected_to_cpu)
1843 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1844 				adev->gmc.visible_vram_size);
1845 
1846 	else if (adev->gmc.is_app_apu)
1847 		DRM_DEBUG_DRIVER(
1848 			"No need to ioremap when real vram size is 0\n");
1849 	else
1850 #endif
1851 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1852 				adev->gmc.visible_vram_size);
1853 #endif
1854 
1855 	/*
1856 	 *The reserved vram for firmware must be pinned to the specified
1857 	 *place on the VRAM, so reserve it early.
1858 	 */
1859 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1860 	if (r)
1861 		return r;
1862 
1863 	/*
1864 	 *The reserved vram for driver must be pinned to the specified
1865 	 *place on the VRAM, so reserve it early.
1866 	 */
1867 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1868 	if (r)
1869 		return r;
1870 
1871 	/*
1872 	 * only NAVI10 and onwards ASIC support for IP discovery.
1873 	 * If IP discovery enabled, a block of memory should be
1874 	 * reserved for IP discovey.
1875 	 */
1876 	if (adev->mman.discovery_bin) {
1877 		r = amdgpu_ttm_reserve_tmr(adev);
1878 		if (r)
1879 			return r;
1880 	}
1881 
1882 	/* allocate memory as required for VGA
1883 	 * This is used for VGA emulation and pre-OS scanout buffers to
1884 	 * avoid display artifacts while transitioning between pre-OS
1885 	 * and driver.
1886 	 */
1887 	if (!adev->gmc.is_app_apu) {
1888 		r = amdgpu_bo_create_kernel_at(adev, 0,
1889 					       adev->mman.stolen_vga_size,
1890 					       &adev->mman.stolen_vga_memory,
1891 					       NULL);
1892 		if (r)
1893 			return r;
1894 
1895 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1896 					       adev->mman.stolen_extended_size,
1897 					       &adev->mman.stolen_extended_memory,
1898 					       NULL);
1899 
1900 		if (r)
1901 			return r;
1902 
1903 		r = amdgpu_bo_create_kernel_at(adev,
1904 					       adev->mman.stolen_reserved_offset,
1905 					       adev->mman.stolen_reserved_size,
1906 					       &adev->mman.stolen_reserved_memory,
1907 					       NULL);
1908 		if (r)
1909 			return r;
1910 	} else {
1911 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1912 	}
1913 
1914 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1915 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1916 
1917 	/* Compute GTT size, either based on TTM limit
1918 	 * or whatever the user passed on module init.
1919 	 */
1920 	if (amdgpu_gtt_size == -1)
1921 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1922 	else
1923 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1924 
1925 	/* Initialize GTT memory pool */
1926 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1927 	if (r) {
1928 		DRM_ERROR("Failed initializing GTT heap.\n");
1929 		return r;
1930 	}
1931 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1932 		 (unsigned int)(gtt_size / (1024 * 1024)));
1933 
1934 	/* Initiailize doorbell pool on PCI BAR */
1935 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1936 	if (r) {
1937 		DRM_ERROR("Failed initializing doorbell heap.\n");
1938 		return r;
1939 	}
1940 
1941 	/* Create a boorbell page for kernel usages */
1942 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1943 	if (r) {
1944 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1945 		return r;
1946 	}
1947 
1948 	/* Initialize preemptible memory pool */
1949 	r = amdgpu_preempt_mgr_init(adev);
1950 	if (r) {
1951 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1952 		return r;
1953 	}
1954 
1955 	/* Initialize various on-chip memory pools */
1956 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1957 	if (r) {
1958 		DRM_ERROR("Failed initializing GDS heap.\n");
1959 		return r;
1960 	}
1961 
1962 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1963 	if (r) {
1964 		DRM_ERROR("Failed initializing gws heap.\n");
1965 		return r;
1966 	}
1967 
1968 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1969 	if (r) {
1970 		DRM_ERROR("Failed initializing oa heap.\n");
1971 		return r;
1972 	}
1973 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1974 				AMDGPU_GEM_DOMAIN_GTT,
1975 				&adev->mman.sdma_access_bo, NULL,
1976 				&adev->mman.sdma_access_ptr))
1977 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1978 
1979 	return 0;
1980 }
1981 
1982 /*
1983  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1984  */
1985 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1986 {
1987 	int idx;
1988 
1989 	if (!adev->mman.initialized)
1990 		return;
1991 
1992 	amdgpu_ttm_pools_fini(adev);
1993 
1994 	amdgpu_ttm_training_reserve_vram_fini(adev);
1995 	/* return the stolen vga memory back to VRAM */
1996 	if (!adev->gmc.is_app_apu) {
1997 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1998 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1999 		/* return the FW reserved memory back to VRAM */
2000 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2001 				      NULL);
2002 		if (adev->mman.stolen_reserved_size)
2003 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2004 					      NULL, NULL);
2005 	}
2006 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2007 					&adev->mman.sdma_access_ptr);
2008 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2009 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2010 
2011 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2012 
2013 		if (adev->mman.aper_base_kaddr)
2014 			iounmap(adev->mman.aper_base_kaddr);
2015 		adev->mman.aper_base_kaddr = NULL;
2016 
2017 		drm_dev_exit(idx);
2018 	}
2019 
2020 	amdgpu_vram_mgr_fini(adev);
2021 	amdgpu_gtt_mgr_fini(adev);
2022 	amdgpu_preempt_mgr_fini(adev);
2023 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2024 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2025 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2026 	ttm_device_fini(&adev->mman.bdev);
2027 	adev->mman.initialized = false;
2028 	DRM_INFO("amdgpu: ttm finalized\n");
2029 }
2030 
2031 /**
2032  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2033  *
2034  * @adev: amdgpu_device pointer
2035  * @enable: true when we can use buffer functions.
2036  *
2037  * Enable/disable use of buffer functions during suspend/resume. This should
2038  * only be called at bootup or when userspace isn't running.
2039  */
2040 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2041 {
2042 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2043 	uint64_t size;
2044 	int r;
2045 
2046 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2047 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2048 		return;
2049 
2050 	if (enable) {
2051 		struct amdgpu_ring *ring;
2052 		struct drm_gpu_scheduler *sched;
2053 
2054 		ring = adev->mman.buffer_funcs_ring;
2055 		sched = &ring->sched;
2056 		r = drm_sched_entity_init(&adev->mman.high_pr,
2057 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2058 					  1, NULL);
2059 		if (r) {
2060 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2061 				  r);
2062 			return;
2063 		}
2064 
2065 		r = drm_sched_entity_init(&adev->mman.low_pr,
2066 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2067 					  1, NULL);
2068 		if (r) {
2069 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2070 				  r);
2071 			goto error_free_entity;
2072 		}
2073 	} else {
2074 		drm_sched_entity_destroy(&adev->mman.high_pr);
2075 		drm_sched_entity_destroy(&adev->mman.low_pr);
2076 		dma_fence_put(man->move);
2077 		man->move = NULL;
2078 	}
2079 
2080 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2081 	if (enable)
2082 		size = adev->gmc.real_vram_size;
2083 	else
2084 		size = adev->gmc.visible_vram_size;
2085 	man->size = size;
2086 	adev->mman.buffer_funcs_enabled = enable;
2087 
2088 	return;
2089 
2090 error_free_entity:
2091 	drm_sched_entity_destroy(&adev->mman.high_pr);
2092 }
2093 
2094 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2095 				  bool direct_submit,
2096 				  unsigned int num_dw,
2097 				  struct dma_resv *resv,
2098 				  bool vm_needs_flush,
2099 				  struct amdgpu_job **job,
2100 				  bool delayed)
2101 {
2102 	enum amdgpu_ib_pool_type pool = direct_submit ?
2103 		AMDGPU_IB_POOL_DIRECT :
2104 		AMDGPU_IB_POOL_DELAYED;
2105 	int r;
2106 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2107 						    &adev->mman.high_pr;
2108 	r = amdgpu_job_alloc_with_ib(adev, entity,
2109 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2110 				     num_dw * 4, pool, job);
2111 	if (r)
2112 		return r;
2113 
2114 	if (vm_needs_flush) {
2115 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2116 							adev->gmc.pdb0_bo :
2117 							adev->gart.bo);
2118 		(*job)->vm_needs_flush = true;
2119 	}
2120 	if (!resv)
2121 		return 0;
2122 
2123 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2124 						   DMA_RESV_USAGE_BOOKKEEP);
2125 }
2126 
2127 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2128 		       uint64_t dst_offset, uint32_t byte_count,
2129 		       struct dma_resv *resv,
2130 		       struct dma_fence **fence, bool direct_submit,
2131 		       bool vm_needs_flush, bool tmz)
2132 {
2133 	struct amdgpu_device *adev = ring->adev;
2134 	unsigned int num_loops, num_dw;
2135 	struct amdgpu_job *job;
2136 	uint32_t max_bytes;
2137 	unsigned int i;
2138 	int r;
2139 
2140 	if (!direct_submit && !ring->sched.ready) {
2141 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2142 		return -EINVAL;
2143 	}
2144 
2145 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2146 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2147 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2148 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2149 				   resv, vm_needs_flush, &job, false);
2150 	if (r)
2151 		return r;
2152 
2153 	for (i = 0; i < num_loops; i++) {
2154 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2155 
2156 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2157 					dst_offset, cur_size_in_bytes, tmz);
2158 
2159 		src_offset += cur_size_in_bytes;
2160 		dst_offset += cur_size_in_bytes;
2161 		byte_count -= cur_size_in_bytes;
2162 	}
2163 
2164 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2165 	WARN_ON(job->ibs[0].length_dw > num_dw);
2166 	if (direct_submit)
2167 		r = amdgpu_job_submit_direct(job, ring, fence);
2168 	else
2169 		*fence = amdgpu_job_submit(job);
2170 	if (r)
2171 		goto error_free;
2172 
2173 	return r;
2174 
2175 error_free:
2176 	amdgpu_job_free(job);
2177 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2178 	return r;
2179 }
2180 
2181 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2182 			       uint64_t dst_addr, uint32_t byte_count,
2183 			       struct dma_resv *resv,
2184 			       struct dma_fence **fence,
2185 			       bool vm_needs_flush, bool delayed)
2186 {
2187 	struct amdgpu_device *adev = ring->adev;
2188 	unsigned int num_loops, num_dw;
2189 	struct amdgpu_job *job;
2190 	uint32_t max_bytes;
2191 	unsigned int i;
2192 	int r;
2193 
2194 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2195 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2196 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2197 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2198 				   &job, delayed);
2199 	if (r)
2200 		return r;
2201 
2202 	for (i = 0; i < num_loops; i++) {
2203 		uint32_t cur_size = min(byte_count, max_bytes);
2204 
2205 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2206 					cur_size);
2207 
2208 		dst_addr += cur_size;
2209 		byte_count -= cur_size;
2210 	}
2211 
2212 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2213 	WARN_ON(job->ibs[0].length_dw > num_dw);
2214 	*fence = amdgpu_job_submit(job);
2215 	return 0;
2216 }
2217 
2218 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2219 			uint32_t src_data,
2220 			struct dma_resv *resv,
2221 			struct dma_fence **f,
2222 			bool delayed)
2223 {
2224 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2225 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2226 	struct dma_fence *fence = NULL;
2227 	struct amdgpu_res_cursor dst;
2228 	int r;
2229 
2230 	if (!adev->mman.buffer_funcs_enabled) {
2231 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2232 		return -EINVAL;
2233 	}
2234 
2235 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2236 
2237 	mutex_lock(&adev->mman.gtt_window_lock);
2238 	while (dst.remaining) {
2239 		struct dma_fence *next;
2240 		uint64_t cur_size, to;
2241 
2242 		/* Never fill more than 256MiB at once to avoid timeouts */
2243 		cur_size = min(dst.size, 256ULL << 20);
2244 
2245 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2246 					  1, ring, false, &cur_size, &to);
2247 		if (r)
2248 			goto error;
2249 
2250 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2251 					&next, true, delayed);
2252 		if (r)
2253 			goto error;
2254 
2255 		dma_fence_put(fence);
2256 		fence = next;
2257 
2258 		amdgpu_res_next(&dst, cur_size);
2259 	}
2260 error:
2261 	mutex_unlock(&adev->mman.gtt_window_lock);
2262 	if (f)
2263 		*f = dma_fence_get(fence);
2264 	dma_fence_put(fence);
2265 	return r;
2266 }
2267 
2268 /**
2269  * amdgpu_ttm_evict_resources - evict memory buffers
2270  * @adev: amdgpu device object
2271  * @mem_type: evicted BO's memory type
2272  *
2273  * Evicts all @mem_type buffers on the lru list of the memory type.
2274  *
2275  * Returns:
2276  * 0 for success or a negative error code on failure.
2277  */
2278 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2279 {
2280 	struct ttm_resource_manager *man;
2281 
2282 	switch (mem_type) {
2283 	case TTM_PL_VRAM:
2284 	case TTM_PL_TT:
2285 	case AMDGPU_PL_GWS:
2286 	case AMDGPU_PL_GDS:
2287 	case AMDGPU_PL_OA:
2288 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2289 		break;
2290 	default:
2291 		DRM_ERROR("Trying to evict invalid memory type\n");
2292 		return -EINVAL;
2293 	}
2294 
2295 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2296 }
2297 
2298 #if defined(CONFIG_DEBUG_FS)
2299 
2300 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2301 {
2302 	struct amdgpu_device *adev = m->private;
2303 
2304 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2305 }
2306 
2307 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2308 
2309 /*
2310  * amdgpu_ttm_vram_read - Linear read access to VRAM
2311  *
2312  * Accesses VRAM via MMIO for debugging purposes.
2313  */
2314 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2315 				    size_t size, loff_t *pos)
2316 {
2317 	struct amdgpu_device *adev = file_inode(f)->i_private;
2318 	ssize_t result = 0;
2319 
2320 	if (size & 0x3 || *pos & 0x3)
2321 		return -EINVAL;
2322 
2323 	if (*pos >= adev->gmc.mc_vram_size)
2324 		return -ENXIO;
2325 
2326 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2327 	while (size) {
2328 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2329 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2330 
2331 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2332 		if (copy_to_user(buf, value, bytes))
2333 			return -EFAULT;
2334 
2335 		result += bytes;
2336 		buf += bytes;
2337 		*pos += bytes;
2338 		size -= bytes;
2339 	}
2340 
2341 	return result;
2342 }
2343 
2344 /*
2345  * amdgpu_ttm_vram_write - Linear write access to VRAM
2346  *
2347  * Accesses VRAM via MMIO for debugging purposes.
2348  */
2349 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2350 				    size_t size, loff_t *pos)
2351 {
2352 	struct amdgpu_device *adev = file_inode(f)->i_private;
2353 	ssize_t result = 0;
2354 	int r;
2355 
2356 	if (size & 0x3 || *pos & 0x3)
2357 		return -EINVAL;
2358 
2359 	if (*pos >= adev->gmc.mc_vram_size)
2360 		return -ENXIO;
2361 
2362 	while (size) {
2363 		uint32_t value;
2364 
2365 		if (*pos >= adev->gmc.mc_vram_size)
2366 			return result;
2367 
2368 		r = get_user(value, (uint32_t *)buf);
2369 		if (r)
2370 			return r;
2371 
2372 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2373 
2374 		result += 4;
2375 		buf += 4;
2376 		*pos += 4;
2377 		size -= 4;
2378 	}
2379 
2380 	return result;
2381 }
2382 
2383 static const struct file_operations amdgpu_ttm_vram_fops = {
2384 	.owner = THIS_MODULE,
2385 	.read = amdgpu_ttm_vram_read,
2386 	.write = amdgpu_ttm_vram_write,
2387 	.llseek = default_llseek,
2388 };
2389 
2390 /*
2391  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2392  *
2393  * This function is used to read memory that has been mapped to the
2394  * GPU and the known addresses are not physical addresses but instead
2395  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2396  */
2397 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2398 				 size_t size, loff_t *pos)
2399 {
2400 	struct amdgpu_device *adev = file_inode(f)->i_private;
2401 	struct iommu_domain *dom;
2402 	ssize_t result = 0;
2403 	int r;
2404 
2405 	/* retrieve the IOMMU domain if any for this device */
2406 	dom = iommu_get_domain_for_dev(adev->dev);
2407 
2408 	while (size) {
2409 		phys_addr_t addr = *pos & PAGE_MASK;
2410 		loff_t off = *pos & ~PAGE_MASK;
2411 		size_t bytes = PAGE_SIZE - off;
2412 		unsigned long pfn;
2413 		struct page *p;
2414 		void *ptr;
2415 
2416 		bytes = min(bytes, size);
2417 
2418 		/* Translate the bus address to a physical address.  If
2419 		 * the domain is NULL it means there is no IOMMU active
2420 		 * and the address translation is the identity
2421 		 */
2422 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2423 
2424 		pfn = addr >> PAGE_SHIFT;
2425 		if (!pfn_valid(pfn))
2426 			return -EPERM;
2427 
2428 		p = pfn_to_page(pfn);
2429 		if (p->mapping != adev->mman.bdev.dev_mapping)
2430 			return -EPERM;
2431 
2432 		ptr = kmap_local_page(p);
2433 		r = copy_to_user(buf, ptr + off, bytes);
2434 		kunmap_local(ptr);
2435 		if (r)
2436 			return -EFAULT;
2437 
2438 		size -= bytes;
2439 		*pos += bytes;
2440 		result += bytes;
2441 	}
2442 
2443 	return result;
2444 }
2445 
2446 /*
2447  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2448  *
2449  * This function is used to write memory that has been mapped to the
2450  * GPU and the known addresses are not physical addresses but instead
2451  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2452  */
2453 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2454 				 size_t size, loff_t *pos)
2455 {
2456 	struct amdgpu_device *adev = file_inode(f)->i_private;
2457 	struct iommu_domain *dom;
2458 	ssize_t result = 0;
2459 	int r;
2460 
2461 	dom = iommu_get_domain_for_dev(adev->dev);
2462 
2463 	while (size) {
2464 		phys_addr_t addr = *pos & PAGE_MASK;
2465 		loff_t off = *pos & ~PAGE_MASK;
2466 		size_t bytes = PAGE_SIZE - off;
2467 		unsigned long pfn;
2468 		struct page *p;
2469 		void *ptr;
2470 
2471 		bytes = min(bytes, size);
2472 
2473 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2474 
2475 		pfn = addr >> PAGE_SHIFT;
2476 		if (!pfn_valid(pfn))
2477 			return -EPERM;
2478 
2479 		p = pfn_to_page(pfn);
2480 		if (p->mapping != adev->mman.bdev.dev_mapping)
2481 			return -EPERM;
2482 
2483 		ptr = kmap_local_page(p);
2484 		r = copy_from_user(ptr + off, buf, bytes);
2485 		kunmap_local(ptr);
2486 		if (r)
2487 			return -EFAULT;
2488 
2489 		size -= bytes;
2490 		*pos += bytes;
2491 		result += bytes;
2492 	}
2493 
2494 	return result;
2495 }
2496 
2497 static const struct file_operations amdgpu_ttm_iomem_fops = {
2498 	.owner = THIS_MODULE,
2499 	.read = amdgpu_iomem_read,
2500 	.write = amdgpu_iomem_write,
2501 	.llseek = default_llseek
2502 };
2503 
2504 #endif
2505 
2506 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2507 {
2508 #if defined(CONFIG_DEBUG_FS)
2509 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2510 	struct dentry *root = minor->debugfs_root;
2511 
2512 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2513 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2514 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2515 			    &amdgpu_ttm_iomem_fops);
2516 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2517 			    &amdgpu_ttm_page_pool_fops);
2518 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2519 							     TTM_PL_VRAM),
2520 					    root, "amdgpu_vram_mm");
2521 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2522 							     TTM_PL_TT),
2523 					    root, "amdgpu_gtt_mm");
2524 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525 							     AMDGPU_PL_GDS),
2526 					    root, "amdgpu_gds_mm");
2527 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528 							     AMDGPU_PL_GWS),
2529 					    root, "amdgpu_gws_mm");
2530 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531 							     AMDGPU_PL_OA),
2532 					    root, "amdgpu_oa_mm");
2533 
2534 #endif
2535 }
2536