1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 placement->num_busy_placement = 0; 106 return; 107 } 108 109 /* Object isn't an AMDGPU object so ignore */ 110 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 111 placement->placement = &placements; 112 placement->busy_placement = &placements; 113 placement->num_placement = 1; 114 placement->num_busy_placement = 1; 115 return; 116 } 117 118 abo = ttm_to_amdgpu_bo(bo); 119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 120 placement->num_placement = 0; 121 placement->num_busy_placement = 0; 122 return; 123 } 124 125 switch (bo->resource->mem_type) { 126 case AMDGPU_PL_GDS: 127 case AMDGPU_PL_GWS: 128 case AMDGPU_PL_OA: 129 case AMDGPU_PL_DOORBELL: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned int window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned int offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct amdgpu_job *job; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 202 return -EINVAL; 203 204 /* Map only what can't be accessed directly */ 205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 207 mm_cur->start; 208 return 0; 209 } 210 211 212 /* 213 * If start begins at an offset inside the page, then adjust the size 214 * and addr accordingly 215 */ 216 offset = mm_cur->start & ~PAGE_MASK; 217 218 num_pages = PFN_UP(*size + offset); 219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 220 221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 222 223 *addr = adev->gmc.gart_start; 224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 225 AMDGPU_GPU_PAGE_SIZE; 226 *addr += offset; 227 228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 230 231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 232 AMDGPU_FENCE_OWNER_UNDEFINED, 233 num_dw * 4 + num_bytes, 234 AMDGPU_IB_POOL_DELAYED, &job); 235 if (r) 236 return r; 237 238 src_addr = num_dw * 4; 239 src_addr += job->ibs[0].gpu_addr; 240 241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 244 dst_addr, num_bytes, false); 245 246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 247 WARN_ON(job->ibs[0].length_dw > num_dw); 248 249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 250 if (tmz) 251 flags |= AMDGPU_PTE_TMZ; 252 253 cpu_addr = &job->ibs[0].ptr[num_dw]; 254 255 if (mem->mem_type == TTM_PL_TT) { 256 dma_addr_t *dma_addr; 257 258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 268 flags, cpu_addr); 269 dma_address += PAGE_SIZE; 270 } 271 } 272 273 dma_fence_put(amdgpu_job_submit(job)); 274 return 0; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 300 struct amdgpu_res_cursor src_mm, dst_mm; 301 struct dma_fence *fence = NULL; 302 int r = 0; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 DRM_ERROR("Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, 332 resv, &next, false, true, tmz); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /* 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 413 * 414 * Called by amdgpu_bo_move() 415 */ 416 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 417 struct ttm_resource *mem) 418 { 419 u64 mem_size = (u64)mem->size; 420 struct amdgpu_res_cursor cursor; 421 u64 end; 422 423 if (mem->mem_type == TTM_PL_SYSTEM || 424 mem->mem_type == TTM_PL_TT) 425 return true; 426 if (mem->mem_type != TTM_PL_VRAM) 427 return false; 428 429 amdgpu_res_first(mem, 0, mem_size, &cursor); 430 end = cursor.start + cursor.size; 431 while (cursor.remaining) { 432 amdgpu_res_next(&cursor, cursor.size); 433 434 if (!cursor.remaining) 435 break; 436 437 /* ttm_resource_ioremap only supports contiguous memory */ 438 if (end != cursor.start) 439 return false; 440 441 end = cursor.start + cursor.size; 442 } 443 444 return end <= adev->gmc.visible_vram_size; 445 } 446 447 /* 448 * amdgpu_bo_move - Move a buffer object to a new memory location 449 * 450 * Called by ttm_bo_handle_move_mem() 451 */ 452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 453 struct ttm_operation_ctx *ctx, 454 struct ttm_resource *new_mem, 455 struct ttm_place *hop) 456 { 457 struct amdgpu_device *adev; 458 struct amdgpu_bo *abo; 459 struct ttm_resource *old_mem = bo->resource; 460 int r; 461 462 if (new_mem->mem_type == TTM_PL_TT || 463 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 465 if (r) 466 return r; 467 } 468 469 abo = ttm_to_amdgpu_bo(bo); 470 adev = amdgpu_ttm_adev(bo->bdev); 471 472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 473 bo->ttm == NULL)) { 474 ttm_bo_move_null(bo, new_mem); 475 goto out; 476 } 477 if (old_mem->mem_type == TTM_PL_SYSTEM && 478 (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 480 ttm_bo_move_null(bo, new_mem); 481 goto out; 482 } 483 if ((old_mem->mem_type == TTM_PL_TT || 484 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 485 new_mem->mem_type == TTM_PL_SYSTEM) { 486 r = ttm_bo_wait_ctx(bo, ctx); 487 if (r) 488 return r; 489 490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 491 ttm_resource_free(bo, &bo->resource); 492 ttm_bo_assign_mem(bo, new_mem); 493 goto out; 494 } 495 496 if (old_mem->mem_type == AMDGPU_PL_GDS || 497 old_mem->mem_type == AMDGPU_PL_GWS || 498 old_mem->mem_type == AMDGPU_PL_OA || 499 old_mem->mem_type == AMDGPU_PL_DOORBELL || 500 new_mem->mem_type == AMDGPU_PL_GDS || 501 new_mem->mem_type == AMDGPU_PL_GWS || 502 new_mem->mem_type == AMDGPU_PL_OA || 503 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 504 /* Nothing to save here */ 505 ttm_bo_move_null(bo, new_mem); 506 goto out; 507 } 508 509 if (bo->type == ttm_bo_type_device && 510 new_mem->mem_type == TTM_PL_VRAM && 511 old_mem->mem_type != TTM_PL_VRAM) { 512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 513 * accesses the BO after it's moved. 514 */ 515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 516 } 517 518 if (adev->mman.buffer_funcs_enabled) { 519 if (((old_mem->mem_type == TTM_PL_SYSTEM && 520 new_mem->mem_type == TTM_PL_VRAM) || 521 (old_mem->mem_type == TTM_PL_VRAM && 522 new_mem->mem_type == TTM_PL_SYSTEM))) { 523 hop->fpfn = 0; 524 hop->lpfn = 0; 525 hop->mem_type = TTM_PL_TT; 526 hop->flags = TTM_PL_FLAG_TEMPORARY; 527 return -EMULTIHOP; 528 } 529 530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 531 } else { 532 r = -ENODEV; 533 } 534 535 if (r) { 536 /* Check that all memory is CPU accessible */ 537 if (!amdgpu_mem_visible(adev, old_mem) || 538 !amdgpu_mem_visible(adev, new_mem)) { 539 pr_err("Move buffer fallback to memcpy unavailable\n"); 540 return r; 541 } 542 543 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 544 if (r) 545 return r; 546 } 547 548 out: 549 /* update statistics */ 550 atomic64_add(bo->base.size, &adev->num_bytes_moved); 551 amdgpu_bo_move_notify(bo, evict, new_mem); 552 return 0; 553 } 554 555 /* 556 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 557 * 558 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 559 */ 560 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 561 struct ttm_resource *mem) 562 { 563 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 564 size_t bus_size = (size_t)mem->size; 565 566 switch (mem->mem_type) { 567 case TTM_PL_SYSTEM: 568 /* system memory */ 569 return 0; 570 case TTM_PL_TT: 571 case AMDGPU_PL_PREEMPT: 572 break; 573 case TTM_PL_VRAM: 574 mem->bus.offset = mem->start << PAGE_SHIFT; 575 /* check if it's visible */ 576 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 577 return -EINVAL; 578 579 if (adev->mman.aper_base_kaddr && 580 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 581 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 582 mem->bus.offset; 583 584 mem->bus.offset += adev->gmc.aper_base; 585 mem->bus.is_iomem = true; 586 break; 587 case AMDGPU_PL_DOORBELL: 588 mem->bus.offset = mem->start << PAGE_SHIFT; 589 mem->bus.offset += adev->doorbell.base; 590 mem->bus.is_iomem = true; 591 mem->bus.caching = ttm_uncached; 592 break; 593 default: 594 return -EINVAL; 595 } 596 return 0; 597 } 598 599 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 600 unsigned long page_offset) 601 { 602 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 603 struct amdgpu_res_cursor cursor; 604 605 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 606 &cursor); 607 608 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 609 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 610 611 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 612 } 613 614 /** 615 * amdgpu_ttm_domain_start - Returns GPU start address 616 * @adev: amdgpu device object 617 * @type: type of the memory 618 * 619 * Returns: 620 * GPU start address of a memory domain 621 */ 622 623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 624 { 625 switch (type) { 626 case TTM_PL_TT: 627 return adev->gmc.gart_start; 628 case TTM_PL_VRAM: 629 return adev->gmc.vram_start; 630 } 631 632 return 0; 633 } 634 635 /* 636 * TTM backend functions. 637 */ 638 struct amdgpu_ttm_tt { 639 struct ttm_tt ttm; 640 struct drm_gem_object *gobj; 641 u64 offset; 642 uint64_t userptr; 643 struct task_struct *usertask; 644 uint32_t userflags; 645 bool bound; 646 int32_t pool_id; 647 }; 648 649 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 650 651 #ifdef CONFIG_DRM_AMDGPU_USERPTR 652 /* 653 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 654 * memory and start HMM tracking CPU page table update 655 * 656 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 657 * once afterwards to stop HMM tracking 658 */ 659 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 660 struct hmm_range **range) 661 { 662 struct ttm_tt *ttm = bo->tbo.ttm; 663 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 664 unsigned long start = gtt->userptr; 665 struct vm_area_struct *vma; 666 struct mm_struct *mm; 667 bool readonly; 668 int r = 0; 669 670 /* Make sure get_user_pages_done() can cleanup gracefully */ 671 *range = NULL; 672 673 mm = bo->notifier.mm; 674 if (unlikely(!mm)) { 675 DRM_DEBUG_DRIVER("BO is not registered?\n"); 676 return -EFAULT; 677 } 678 679 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 680 return -ESRCH; 681 682 mmap_read_lock(mm); 683 vma = vma_lookup(mm, start); 684 if (unlikely(!vma)) { 685 r = -EFAULT; 686 goto out_unlock; 687 } 688 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 689 vma->vm_file)) { 690 r = -EPERM; 691 goto out_unlock; 692 } 693 694 readonly = amdgpu_ttm_tt_is_readonly(ttm); 695 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 696 readonly, NULL, pages, range); 697 out_unlock: 698 mmap_read_unlock(mm); 699 if (r) 700 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 701 702 mmput(mm); 703 704 return r; 705 } 706 707 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 708 */ 709 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 710 struct hmm_range *range) 711 { 712 struct amdgpu_ttm_tt *gtt = (void *)ttm; 713 714 if (gtt && gtt->userptr && range) 715 amdgpu_hmm_range_get_pages_done(range); 716 } 717 718 /* 719 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 720 * Check if the pages backing this ttm range have been invalidated 721 * 722 * Returns: true if pages are still valid 723 */ 724 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 725 struct hmm_range *range) 726 { 727 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 728 729 if (!gtt || !gtt->userptr || !range) 730 return false; 731 732 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 733 gtt->userptr, ttm->num_pages); 734 735 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 736 737 return !amdgpu_hmm_range_get_pages_done(range); 738 } 739 #endif 740 741 /* 742 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 743 * 744 * Called by amdgpu_cs_list_validate(). This creates the page list 745 * that backs user memory and will ultimately be mapped into the device 746 * address space. 747 */ 748 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 749 { 750 unsigned long i; 751 752 for (i = 0; i < ttm->num_pages; ++i) 753 ttm->pages[i] = pages ? pages[i] : NULL; 754 } 755 756 /* 757 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 758 * 759 * Called by amdgpu_ttm_backend_bind() 760 **/ 761 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 762 struct ttm_tt *ttm) 763 { 764 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 765 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 766 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 767 enum dma_data_direction direction = write ? 768 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 769 int r; 770 771 /* Allocate an SG array and squash pages into it */ 772 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 773 (u64)ttm->num_pages << PAGE_SHIFT, 774 GFP_KERNEL); 775 if (r) 776 goto release_sg; 777 778 /* Map SG to device */ 779 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 780 if (r) 781 goto release_sg; 782 783 /* convert SG to linear array of pages and dma addresses */ 784 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 785 ttm->num_pages); 786 787 return 0; 788 789 release_sg: 790 kfree(ttm->sg); 791 ttm->sg = NULL; 792 return r; 793 } 794 795 /* 796 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 797 */ 798 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 799 struct ttm_tt *ttm) 800 { 801 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 802 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 803 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 804 enum dma_data_direction direction = write ? 805 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 806 807 /* double check that we don't free the table twice */ 808 if (!ttm->sg || !ttm->sg->sgl) 809 return; 810 811 /* unmap the pages mapped to the device */ 812 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 813 sg_free_table(ttm->sg); 814 } 815 816 /* 817 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 818 * MQDn+CtrlStackn where n is the number of XCCs per partition. 819 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 820 * and uses memory type default, UC. The rest of pages_per_xcc are 821 * Ctrl stack and modify their memory type to NC. 822 */ 823 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 824 struct ttm_tt *ttm, uint64_t flags) 825 { 826 struct amdgpu_ttm_tt *gtt = (void *)ttm; 827 uint64_t total_pages = ttm->num_pages; 828 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 829 uint64_t page_idx, pages_per_xcc; 830 int i; 831 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 832 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 833 834 pages_per_xcc = total_pages; 835 do_div(pages_per_xcc, num_xcc); 836 837 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 838 /* MQD page: use default flags */ 839 amdgpu_gart_bind(adev, 840 gtt->offset + (page_idx << PAGE_SHIFT), 841 1, >t->ttm.dma_address[page_idx], flags); 842 /* 843 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 844 * the second page of the BO onward. 845 */ 846 amdgpu_gart_bind(adev, 847 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 848 pages_per_xcc - 1, 849 >t->ttm.dma_address[page_idx + 1], 850 ctrl_flags); 851 } 852 } 853 854 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 855 struct ttm_buffer_object *tbo, 856 uint64_t flags) 857 { 858 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 859 struct ttm_tt *ttm = tbo->ttm; 860 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 861 862 if (amdgpu_bo_encrypted(abo)) 863 flags |= AMDGPU_PTE_TMZ; 864 865 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 866 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 867 } else { 868 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 869 gtt->ttm.dma_address, flags); 870 } 871 } 872 873 /* 874 * amdgpu_ttm_backend_bind - Bind GTT memory 875 * 876 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 877 * This handles binding GTT memory to the device address space. 878 */ 879 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 880 struct ttm_tt *ttm, 881 struct ttm_resource *bo_mem) 882 { 883 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 884 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 885 uint64_t flags; 886 int r; 887 888 if (!bo_mem) 889 return -EINVAL; 890 891 if (gtt->bound) 892 return 0; 893 894 if (gtt->userptr) { 895 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 896 if (r) { 897 DRM_ERROR("failed to pin userptr\n"); 898 return r; 899 } 900 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 901 if (!ttm->sg) { 902 struct dma_buf_attachment *attach; 903 struct sg_table *sgt; 904 905 attach = gtt->gobj->import_attach; 906 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 907 if (IS_ERR(sgt)) 908 return PTR_ERR(sgt); 909 910 ttm->sg = sgt; 911 } 912 913 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 914 ttm->num_pages); 915 } 916 917 if (!ttm->num_pages) { 918 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 919 ttm->num_pages, bo_mem, ttm); 920 } 921 922 if (bo_mem->mem_type != TTM_PL_TT || 923 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 924 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 925 return 0; 926 } 927 928 /* compute PTE flags relevant to this BO memory */ 929 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 930 931 /* bind pages into GART page tables */ 932 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 933 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 934 gtt->ttm.dma_address, flags); 935 gtt->bound = true; 936 return 0; 937 } 938 939 /* 940 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 941 * through AGP or GART aperture. 942 * 943 * If bo is accessible through AGP aperture, then use AGP aperture 944 * to access bo; otherwise allocate logical space in GART aperture 945 * and map bo to GART aperture. 946 */ 947 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 948 { 949 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 950 struct ttm_operation_ctx ctx = { false, false }; 951 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 952 struct ttm_placement placement; 953 struct ttm_place placements; 954 struct ttm_resource *tmp; 955 uint64_t addr, flags; 956 int r; 957 958 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 959 return 0; 960 961 addr = amdgpu_gmc_agp_addr(bo); 962 if (addr != AMDGPU_BO_INVALID_OFFSET) 963 return 0; 964 965 /* allocate GART space */ 966 placement.num_placement = 1; 967 placement.placement = &placements; 968 placement.num_busy_placement = 1; 969 placement.busy_placement = &placements; 970 placements.fpfn = 0; 971 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 972 placements.mem_type = TTM_PL_TT; 973 placements.flags = bo->resource->placement; 974 975 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 976 if (unlikely(r)) 977 return r; 978 979 /* compute PTE flags for this buffer object */ 980 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 981 982 /* Bind pages */ 983 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 984 amdgpu_ttm_gart_bind(adev, bo, flags); 985 amdgpu_gart_invalidate_tlb(adev); 986 ttm_resource_free(bo, &bo->resource); 987 ttm_bo_assign_mem(bo, tmp); 988 989 return 0; 990 } 991 992 /* 993 * amdgpu_ttm_recover_gart - Rebind GTT pages 994 * 995 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 996 * rebind GTT pages during a GPU reset. 997 */ 998 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 999 { 1000 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1001 uint64_t flags; 1002 1003 if (!tbo->ttm) 1004 return; 1005 1006 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1007 amdgpu_ttm_gart_bind(adev, tbo, flags); 1008 } 1009 1010 /* 1011 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1012 * 1013 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1014 * ttm_tt_destroy(). 1015 */ 1016 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1017 struct ttm_tt *ttm) 1018 { 1019 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1020 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1021 1022 /* if the pages have userptr pinning then clear that first */ 1023 if (gtt->userptr) { 1024 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1025 } else if (ttm->sg && gtt->gobj->import_attach) { 1026 struct dma_buf_attachment *attach; 1027 1028 attach = gtt->gobj->import_attach; 1029 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1030 ttm->sg = NULL; 1031 } 1032 1033 if (!gtt->bound) 1034 return; 1035 1036 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1037 return; 1038 1039 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1040 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1041 gtt->bound = false; 1042 } 1043 1044 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1045 struct ttm_tt *ttm) 1046 { 1047 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1048 1049 if (gtt->usertask) 1050 put_task_struct(gtt->usertask); 1051 1052 ttm_tt_fini(>t->ttm); 1053 kfree(gtt); 1054 } 1055 1056 /** 1057 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1058 * 1059 * @bo: The buffer object to create a GTT ttm_tt object around 1060 * @page_flags: Page flags to be added to the ttm_tt object 1061 * 1062 * Called by ttm_tt_create(). 1063 */ 1064 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1065 uint32_t page_flags) 1066 { 1067 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1068 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1069 struct amdgpu_ttm_tt *gtt; 1070 enum ttm_caching caching; 1071 1072 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1073 if (!gtt) 1074 return NULL; 1075 1076 gtt->gobj = &bo->base; 1077 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1078 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1079 else 1080 gtt->pool_id = abo->xcp_id; 1081 1082 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1083 caching = ttm_write_combined; 1084 else 1085 caching = ttm_cached; 1086 1087 /* allocate space for the uninitialized page entries */ 1088 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1089 kfree(gtt); 1090 return NULL; 1091 } 1092 return >t->ttm; 1093 } 1094 1095 /* 1096 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1097 * 1098 * Map the pages of a ttm_tt object to an address space visible 1099 * to the underlying device. 1100 */ 1101 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1102 struct ttm_tt *ttm, 1103 struct ttm_operation_ctx *ctx) 1104 { 1105 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1106 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1107 struct ttm_pool *pool; 1108 pgoff_t i; 1109 int ret; 1110 1111 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1112 if (gtt->userptr) { 1113 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1114 if (!ttm->sg) 1115 return -ENOMEM; 1116 return 0; 1117 } 1118 1119 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1120 return 0; 1121 1122 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1123 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1124 else 1125 pool = &adev->mman.bdev.pool; 1126 ret = ttm_pool_alloc(pool, ttm, ctx); 1127 if (ret) 1128 return ret; 1129 1130 for (i = 0; i < ttm->num_pages; ++i) 1131 ttm->pages[i]->mapping = bdev->dev_mapping; 1132 1133 return 0; 1134 } 1135 1136 /* 1137 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1138 * 1139 * Unmaps pages of a ttm_tt object from the device address space and 1140 * unpopulates the page array backing it. 1141 */ 1142 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1143 struct ttm_tt *ttm) 1144 { 1145 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1146 struct amdgpu_device *adev; 1147 struct ttm_pool *pool; 1148 pgoff_t i; 1149 1150 amdgpu_ttm_backend_unbind(bdev, ttm); 1151 1152 if (gtt->userptr) { 1153 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1154 kfree(ttm->sg); 1155 ttm->sg = NULL; 1156 return; 1157 } 1158 1159 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1160 return; 1161 1162 for (i = 0; i < ttm->num_pages; ++i) 1163 ttm->pages[i]->mapping = NULL; 1164 1165 adev = amdgpu_ttm_adev(bdev); 1166 1167 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1168 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1169 else 1170 pool = &adev->mman.bdev.pool; 1171 1172 return ttm_pool_free(pool, ttm); 1173 } 1174 1175 /** 1176 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1177 * task 1178 * 1179 * @tbo: The ttm_buffer_object that contains the userptr 1180 * @user_addr: The returned value 1181 */ 1182 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1183 uint64_t *user_addr) 1184 { 1185 struct amdgpu_ttm_tt *gtt; 1186 1187 if (!tbo->ttm) 1188 return -EINVAL; 1189 1190 gtt = (void *)tbo->ttm; 1191 *user_addr = gtt->userptr; 1192 return 0; 1193 } 1194 1195 /** 1196 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1197 * task 1198 * 1199 * @bo: The ttm_buffer_object to bind this userptr to 1200 * @addr: The address in the current tasks VM space to use 1201 * @flags: Requirements of userptr object. 1202 * 1203 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1204 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1205 * initialize GPU VM for a KFD process. 1206 */ 1207 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1208 uint64_t addr, uint32_t flags) 1209 { 1210 struct amdgpu_ttm_tt *gtt; 1211 1212 if (!bo->ttm) { 1213 /* TODO: We want a separate TTM object type for userptrs */ 1214 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1215 if (bo->ttm == NULL) 1216 return -ENOMEM; 1217 } 1218 1219 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1220 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1221 1222 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1223 gtt->userptr = addr; 1224 gtt->userflags = flags; 1225 1226 if (gtt->usertask) 1227 put_task_struct(gtt->usertask); 1228 gtt->usertask = current->group_leader; 1229 get_task_struct(gtt->usertask); 1230 1231 return 0; 1232 } 1233 1234 /* 1235 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1236 */ 1237 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1238 { 1239 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1240 1241 if (gtt == NULL) 1242 return NULL; 1243 1244 if (gtt->usertask == NULL) 1245 return NULL; 1246 1247 return gtt->usertask->mm; 1248 } 1249 1250 /* 1251 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1252 * address range for the current task. 1253 * 1254 */ 1255 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1256 unsigned long end, unsigned long *userptr) 1257 { 1258 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1259 unsigned long size; 1260 1261 if (gtt == NULL || !gtt->userptr) 1262 return false; 1263 1264 /* Return false if no part of the ttm_tt object lies within 1265 * the range 1266 */ 1267 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1268 if (gtt->userptr > end || gtt->userptr + size <= start) 1269 return false; 1270 1271 if (userptr) 1272 *userptr = gtt->userptr; 1273 return true; 1274 } 1275 1276 /* 1277 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1278 */ 1279 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1280 { 1281 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1282 1283 if (gtt == NULL || !gtt->userptr) 1284 return false; 1285 1286 return true; 1287 } 1288 1289 /* 1290 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1291 */ 1292 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1293 { 1294 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1295 1296 if (gtt == NULL) 1297 return false; 1298 1299 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1300 } 1301 1302 /** 1303 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1304 * 1305 * @ttm: The ttm_tt object to compute the flags for 1306 * @mem: The memory registry backing this ttm_tt object 1307 * 1308 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1309 */ 1310 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1311 { 1312 uint64_t flags = 0; 1313 1314 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1315 flags |= AMDGPU_PTE_VALID; 1316 1317 if (mem && (mem->mem_type == TTM_PL_TT || 1318 mem->mem_type == AMDGPU_PL_DOORBELL || 1319 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1320 flags |= AMDGPU_PTE_SYSTEM; 1321 1322 if (ttm->caching == ttm_cached) 1323 flags |= AMDGPU_PTE_SNOOPED; 1324 } 1325 1326 if (mem && mem->mem_type == TTM_PL_VRAM && 1327 mem->bus.caching == ttm_cached) 1328 flags |= AMDGPU_PTE_SNOOPED; 1329 1330 return flags; 1331 } 1332 1333 /** 1334 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1335 * 1336 * @adev: amdgpu_device pointer 1337 * @ttm: The ttm_tt object to compute the flags for 1338 * @mem: The memory registry backing this ttm_tt object 1339 * 1340 * Figure out the flags to use for a VM PTE (Page Table Entry). 1341 */ 1342 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1343 struct ttm_resource *mem) 1344 { 1345 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1346 1347 flags |= adev->gart.gart_pte_flags; 1348 flags |= AMDGPU_PTE_READABLE; 1349 1350 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1351 flags |= AMDGPU_PTE_WRITEABLE; 1352 1353 return flags; 1354 } 1355 1356 /* 1357 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1358 * object. 1359 * 1360 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1361 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1362 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1363 * used to clean out a memory space. 1364 */ 1365 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1366 const struct ttm_place *place) 1367 { 1368 struct dma_resv_iter resv_cursor; 1369 struct dma_fence *f; 1370 1371 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1372 return ttm_bo_eviction_valuable(bo, place); 1373 1374 /* Swapout? */ 1375 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1376 return true; 1377 1378 if (bo->type == ttm_bo_type_kernel && 1379 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1380 return false; 1381 1382 /* If bo is a KFD BO, check if the bo belongs to the current process. 1383 * If true, then return false as any KFD process needs all its BOs to 1384 * be resident to run successfully 1385 */ 1386 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1387 DMA_RESV_USAGE_BOOKKEEP, f) { 1388 if (amdkfd_fence_check_mm(f, current->mm)) 1389 return false; 1390 } 1391 1392 /* Preemptible BOs don't own system resources managed by the 1393 * driver (pages, VRAM, GART space). They point to resources 1394 * owned by someone else (e.g. pageable memory in user mode 1395 * or a DMABuf). They are used in a preemptible context so we 1396 * can guarantee no deadlocks and good QoS in case of MMU 1397 * notifiers or DMABuf move notifiers from the resource owner. 1398 */ 1399 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1400 return false; 1401 1402 if (bo->resource->mem_type == TTM_PL_TT && 1403 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1404 return false; 1405 1406 return ttm_bo_eviction_valuable(bo, place); 1407 } 1408 1409 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1410 void *buf, size_t size, bool write) 1411 { 1412 while (size) { 1413 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1414 uint64_t bytes = 4 - (pos & 0x3); 1415 uint32_t shift = (pos & 0x3) * 8; 1416 uint32_t mask = 0xffffffff << shift; 1417 uint32_t value = 0; 1418 1419 if (size < bytes) { 1420 mask &= 0xffffffff >> (bytes - size) * 8; 1421 bytes = size; 1422 } 1423 1424 if (mask != 0xffffffff) { 1425 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1426 if (write) { 1427 value &= ~mask; 1428 value |= (*(uint32_t *)buf << shift) & mask; 1429 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1430 } else { 1431 value = (value & mask) >> shift; 1432 memcpy(buf, &value, bytes); 1433 } 1434 } else { 1435 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1436 } 1437 1438 pos += bytes; 1439 buf += bytes; 1440 size -= bytes; 1441 } 1442 } 1443 1444 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1445 unsigned long offset, void *buf, 1446 int len, int write) 1447 { 1448 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1449 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1450 struct amdgpu_res_cursor src_mm; 1451 struct amdgpu_job *job; 1452 struct dma_fence *fence; 1453 uint64_t src_addr, dst_addr; 1454 unsigned int num_dw; 1455 int r, idx; 1456 1457 if (len != PAGE_SIZE) 1458 return -EINVAL; 1459 1460 if (!adev->mman.sdma_access_ptr) 1461 return -EACCES; 1462 1463 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1464 return -ENODEV; 1465 1466 if (write) 1467 memcpy(adev->mman.sdma_access_ptr, buf, len); 1468 1469 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1470 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1471 AMDGPU_FENCE_OWNER_UNDEFINED, 1472 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1473 &job); 1474 if (r) 1475 goto out; 1476 1477 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1478 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1479 src_mm.start; 1480 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1481 if (write) 1482 swap(src_addr, dst_addr); 1483 1484 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1485 PAGE_SIZE, false); 1486 1487 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1488 WARN_ON(job->ibs[0].length_dw > num_dw); 1489 1490 fence = amdgpu_job_submit(job); 1491 1492 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1493 r = -ETIMEDOUT; 1494 dma_fence_put(fence); 1495 1496 if (!(r || write)) 1497 memcpy(buf, adev->mman.sdma_access_ptr, len); 1498 out: 1499 drm_dev_exit(idx); 1500 return r; 1501 } 1502 1503 /** 1504 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1505 * 1506 * @bo: The buffer object to read/write 1507 * @offset: Offset into buffer object 1508 * @buf: Secondary buffer to write/read from 1509 * @len: Length in bytes of access 1510 * @write: true if writing 1511 * 1512 * This is used to access VRAM that backs a buffer object via MMIO 1513 * access for debugging purposes. 1514 */ 1515 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1516 unsigned long offset, void *buf, int len, 1517 int write) 1518 { 1519 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1520 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1521 struct amdgpu_res_cursor cursor; 1522 int ret = 0; 1523 1524 if (bo->resource->mem_type != TTM_PL_VRAM) 1525 return -EIO; 1526 1527 if (amdgpu_device_has_timeouts_enabled(adev) && 1528 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1529 return len; 1530 1531 amdgpu_res_first(bo->resource, offset, len, &cursor); 1532 while (cursor.remaining) { 1533 size_t count, size = cursor.size; 1534 loff_t pos = cursor.start; 1535 1536 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1537 size -= count; 1538 if (size) { 1539 /* using MM to access rest vram and handle un-aligned address */ 1540 pos += count; 1541 buf += count; 1542 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1543 } 1544 1545 ret += cursor.size; 1546 buf += cursor.size; 1547 amdgpu_res_next(&cursor, cursor.size); 1548 } 1549 1550 return ret; 1551 } 1552 1553 static void 1554 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1555 { 1556 amdgpu_bo_move_notify(bo, false, NULL); 1557 } 1558 1559 static struct ttm_device_funcs amdgpu_bo_driver = { 1560 .ttm_tt_create = &amdgpu_ttm_tt_create, 1561 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1562 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1563 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1564 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1565 .evict_flags = &amdgpu_evict_flags, 1566 .move = &amdgpu_bo_move, 1567 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1568 .release_notify = &amdgpu_bo_release_notify, 1569 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1570 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1571 .access_memory = &amdgpu_ttm_access_memory, 1572 }; 1573 1574 /* 1575 * Firmware Reservation functions 1576 */ 1577 /** 1578 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1579 * 1580 * @adev: amdgpu_device pointer 1581 * 1582 * free fw reserved vram if it has been reserved. 1583 */ 1584 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1585 { 1586 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1587 NULL, &adev->mman.fw_vram_usage_va); 1588 } 1589 1590 /* 1591 * Driver Reservation functions 1592 */ 1593 /** 1594 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1595 * 1596 * @adev: amdgpu_device pointer 1597 * 1598 * free drv reserved vram if it has been reserved. 1599 */ 1600 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1601 { 1602 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1603 NULL, 1604 &adev->mman.drv_vram_usage_va); 1605 } 1606 1607 /** 1608 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1609 * 1610 * @adev: amdgpu_device pointer 1611 * 1612 * create bo vram reservation from fw. 1613 */ 1614 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1615 { 1616 uint64_t vram_size = adev->gmc.visible_vram_size; 1617 1618 adev->mman.fw_vram_usage_va = NULL; 1619 adev->mman.fw_vram_usage_reserved_bo = NULL; 1620 1621 if (adev->mman.fw_vram_usage_size == 0 || 1622 adev->mman.fw_vram_usage_size > vram_size) 1623 return 0; 1624 1625 return amdgpu_bo_create_kernel_at(adev, 1626 adev->mman.fw_vram_usage_start_offset, 1627 adev->mman.fw_vram_usage_size, 1628 &adev->mman.fw_vram_usage_reserved_bo, 1629 &adev->mman.fw_vram_usage_va); 1630 } 1631 1632 /** 1633 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1634 * 1635 * @adev: amdgpu_device pointer 1636 * 1637 * create bo vram reservation from drv. 1638 */ 1639 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1640 { 1641 u64 vram_size = adev->gmc.visible_vram_size; 1642 1643 adev->mman.drv_vram_usage_va = NULL; 1644 adev->mman.drv_vram_usage_reserved_bo = NULL; 1645 1646 if (adev->mman.drv_vram_usage_size == 0 || 1647 adev->mman.drv_vram_usage_size > vram_size) 1648 return 0; 1649 1650 return amdgpu_bo_create_kernel_at(adev, 1651 adev->mman.drv_vram_usage_start_offset, 1652 adev->mman.drv_vram_usage_size, 1653 &adev->mman.drv_vram_usage_reserved_bo, 1654 &adev->mman.drv_vram_usage_va); 1655 } 1656 1657 /* 1658 * Memoy training reservation functions 1659 */ 1660 1661 /** 1662 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1663 * 1664 * @adev: amdgpu_device pointer 1665 * 1666 * free memory training reserved vram if it has been reserved. 1667 */ 1668 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1669 { 1670 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1671 1672 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1673 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1674 ctx->c2p_bo = NULL; 1675 1676 return 0; 1677 } 1678 1679 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1680 uint32_t reserve_size) 1681 { 1682 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1683 1684 memset(ctx, 0, sizeof(*ctx)); 1685 1686 ctx->c2p_train_data_offset = 1687 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1688 ctx->p2c_train_data_offset = 1689 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1690 ctx->train_data_size = 1691 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1692 1693 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1694 ctx->train_data_size, 1695 ctx->p2c_train_data_offset, 1696 ctx->c2p_train_data_offset); 1697 } 1698 1699 /* 1700 * reserve TMR memory at the top of VRAM which holds 1701 * IP Discovery data and is protected by PSP. 1702 */ 1703 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1704 { 1705 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1706 bool mem_train_support = false; 1707 uint32_t reserve_size = 0; 1708 int ret; 1709 1710 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1711 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1712 mem_train_support = true; 1713 else 1714 DRM_DEBUG("memory training does not support!\n"); 1715 } 1716 1717 /* 1718 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1719 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1720 * 1721 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1722 * discovery data and G6 memory training data respectively 1723 */ 1724 if (adev->bios) 1725 reserve_size = 1726 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1727 1728 if (!adev->bios && 1729 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) 1730 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1731 else if (!reserve_size) 1732 reserve_size = DISCOVERY_TMR_OFFSET; 1733 1734 if (mem_train_support) { 1735 /* reserve vram for mem train according to TMR location */ 1736 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1737 ret = amdgpu_bo_create_kernel_at(adev, 1738 ctx->c2p_train_data_offset, 1739 ctx->train_data_size, 1740 &ctx->c2p_bo, 1741 NULL); 1742 if (ret) { 1743 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1744 amdgpu_ttm_training_reserve_vram_fini(adev); 1745 return ret; 1746 } 1747 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1748 } 1749 1750 if (!adev->gmc.is_app_apu) { 1751 ret = amdgpu_bo_create_kernel_at( 1752 adev, adev->gmc.real_vram_size - reserve_size, 1753 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1754 if (ret) { 1755 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1756 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1757 NULL, NULL); 1758 return ret; 1759 } 1760 } else { 1761 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1762 } 1763 1764 return 0; 1765 } 1766 1767 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1768 { 1769 int i; 1770 1771 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1772 return 0; 1773 1774 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1775 sizeof(*adev->mman.ttm_pools), 1776 GFP_KERNEL); 1777 if (!adev->mman.ttm_pools) 1778 return -ENOMEM; 1779 1780 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1781 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1782 adev->gmc.mem_partitions[i].numa.node, 1783 false, false); 1784 } 1785 return 0; 1786 } 1787 1788 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1789 { 1790 int i; 1791 1792 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1793 return; 1794 1795 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1796 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1797 1798 kfree(adev->mman.ttm_pools); 1799 adev->mman.ttm_pools = NULL; 1800 } 1801 1802 /* 1803 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1804 * gtt/vram related fields. 1805 * 1806 * This initializes all of the memory space pools that the TTM layer 1807 * will need such as the GTT space (system memory mapped to the device), 1808 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1809 * can be mapped per VMID. 1810 */ 1811 int amdgpu_ttm_init(struct amdgpu_device *adev) 1812 { 1813 uint64_t gtt_size; 1814 int r; 1815 1816 mutex_init(&adev->mman.gtt_window_lock); 1817 1818 /* No others user of address space so set it to 0 */ 1819 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1820 adev_to_drm(adev)->anon_inode->i_mapping, 1821 adev_to_drm(adev)->vma_offset_manager, 1822 adev->need_swiotlb, 1823 dma_addressing_limited(adev->dev)); 1824 if (r) { 1825 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1826 return r; 1827 } 1828 1829 r = amdgpu_ttm_pools_init(adev); 1830 if (r) { 1831 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1832 return r; 1833 } 1834 adev->mman.initialized = true; 1835 1836 /* Initialize VRAM pool with all of VRAM divided into pages */ 1837 r = amdgpu_vram_mgr_init(adev); 1838 if (r) { 1839 DRM_ERROR("Failed initializing VRAM heap.\n"); 1840 return r; 1841 } 1842 1843 /* Change the size here instead of the init above so only lpfn is affected */ 1844 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1845 #ifdef CONFIG_64BIT 1846 #ifdef CONFIG_X86 1847 if (adev->gmc.xgmi.connected_to_cpu) 1848 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1849 adev->gmc.visible_vram_size); 1850 1851 else if (adev->gmc.is_app_apu) 1852 DRM_DEBUG_DRIVER( 1853 "No need to ioremap when real vram size is 0\n"); 1854 else 1855 #endif 1856 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1857 adev->gmc.visible_vram_size); 1858 #endif 1859 1860 /* 1861 *The reserved vram for firmware must be pinned to the specified 1862 *place on the VRAM, so reserve it early. 1863 */ 1864 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1865 if (r) 1866 return r; 1867 1868 /* 1869 *The reserved vram for driver must be pinned to the specified 1870 *place on the VRAM, so reserve it early. 1871 */ 1872 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1873 if (r) 1874 return r; 1875 1876 /* 1877 * only NAVI10 and onwards ASIC support for IP discovery. 1878 * If IP discovery enabled, a block of memory should be 1879 * reserved for IP discovey. 1880 */ 1881 if (adev->mman.discovery_bin) { 1882 r = amdgpu_ttm_reserve_tmr(adev); 1883 if (r) 1884 return r; 1885 } 1886 1887 /* allocate memory as required for VGA 1888 * This is used for VGA emulation and pre-OS scanout buffers to 1889 * avoid display artifacts while transitioning between pre-OS 1890 * and driver. 1891 */ 1892 if (!adev->gmc.is_app_apu) { 1893 r = amdgpu_bo_create_kernel_at(adev, 0, 1894 adev->mman.stolen_vga_size, 1895 &adev->mman.stolen_vga_memory, 1896 NULL); 1897 if (r) 1898 return r; 1899 1900 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1901 adev->mman.stolen_extended_size, 1902 &adev->mman.stolen_extended_memory, 1903 NULL); 1904 1905 if (r) 1906 return r; 1907 1908 r = amdgpu_bo_create_kernel_at(adev, 1909 adev->mman.stolen_reserved_offset, 1910 adev->mman.stolen_reserved_size, 1911 &adev->mman.stolen_reserved_memory, 1912 NULL); 1913 if (r) 1914 return r; 1915 } else { 1916 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1917 } 1918 1919 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1920 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1921 1922 /* Compute GTT size, either based on TTM limit 1923 * or whatever the user passed on module init. 1924 */ 1925 if (amdgpu_gtt_size == -1) 1926 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1927 else 1928 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1929 1930 /* Initialize GTT memory pool */ 1931 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1932 if (r) { 1933 DRM_ERROR("Failed initializing GTT heap.\n"); 1934 return r; 1935 } 1936 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1937 (unsigned int)(gtt_size / (1024 * 1024))); 1938 1939 /* Initiailize doorbell pool on PCI BAR */ 1940 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1941 if (r) { 1942 DRM_ERROR("Failed initializing doorbell heap.\n"); 1943 return r; 1944 } 1945 1946 /* Create a boorbell page for kernel usages */ 1947 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1948 if (r) { 1949 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1950 return r; 1951 } 1952 1953 /* Initialize preemptible memory pool */ 1954 r = amdgpu_preempt_mgr_init(adev); 1955 if (r) { 1956 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1957 return r; 1958 } 1959 1960 /* Initialize various on-chip memory pools */ 1961 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1962 if (r) { 1963 DRM_ERROR("Failed initializing GDS heap.\n"); 1964 return r; 1965 } 1966 1967 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1968 if (r) { 1969 DRM_ERROR("Failed initializing gws heap.\n"); 1970 return r; 1971 } 1972 1973 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1974 if (r) { 1975 DRM_ERROR("Failed initializing oa heap.\n"); 1976 return r; 1977 } 1978 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1979 AMDGPU_GEM_DOMAIN_GTT, 1980 &adev->mman.sdma_access_bo, NULL, 1981 &adev->mman.sdma_access_ptr)) 1982 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1983 1984 return 0; 1985 } 1986 1987 /* 1988 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1989 */ 1990 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1991 { 1992 int idx; 1993 1994 if (!adev->mman.initialized) 1995 return; 1996 1997 amdgpu_ttm_pools_fini(adev); 1998 1999 amdgpu_ttm_training_reserve_vram_fini(adev); 2000 /* return the stolen vga memory back to VRAM */ 2001 if (!adev->gmc.is_app_apu) { 2002 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2003 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2004 /* return the FW reserved memory back to VRAM */ 2005 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2006 NULL); 2007 if (adev->mman.stolen_reserved_size) 2008 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2009 NULL, NULL); 2010 } 2011 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2012 &adev->mman.sdma_access_ptr); 2013 amdgpu_ttm_fw_reserve_vram_fini(adev); 2014 amdgpu_ttm_drv_reserve_vram_fini(adev); 2015 2016 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2017 2018 if (adev->mman.aper_base_kaddr) 2019 iounmap(adev->mman.aper_base_kaddr); 2020 adev->mman.aper_base_kaddr = NULL; 2021 2022 drm_dev_exit(idx); 2023 } 2024 2025 amdgpu_vram_mgr_fini(adev); 2026 amdgpu_gtt_mgr_fini(adev); 2027 amdgpu_preempt_mgr_fini(adev); 2028 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2029 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2030 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2031 ttm_device_fini(&adev->mman.bdev); 2032 adev->mman.initialized = false; 2033 DRM_INFO("amdgpu: ttm finalized\n"); 2034 } 2035 2036 /** 2037 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2038 * 2039 * @adev: amdgpu_device pointer 2040 * @enable: true when we can use buffer functions. 2041 * 2042 * Enable/disable use of buffer functions during suspend/resume. This should 2043 * only be called at bootup or when userspace isn't running. 2044 */ 2045 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2046 { 2047 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2048 uint64_t size; 2049 int r; 2050 2051 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2052 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2053 return; 2054 2055 if (enable) { 2056 struct amdgpu_ring *ring; 2057 struct drm_gpu_scheduler *sched; 2058 2059 ring = adev->mman.buffer_funcs_ring; 2060 sched = &ring->sched; 2061 r = drm_sched_entity_init(&adev->mman.high_pr, 2062 DRM_SCHED_PRIORITY_KERNEL, &sched, 2063 1, NULL); 2064 if (r) { 2065 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2066 r); 2067 return; 2068 } 2069 2070 r = drm_sched_entity_init(&adev->mman.low_pr, 2071 DRM_SCHED_PRIORITY_NORMAL, &sched, 2072 1, NULL); 2073 if (r) { 2074 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2075 r); 2076 goto error_free_entity; 2077 } 2078 } else { 2079 drm_sched_entity_destroy(&adev->mman.high_pr); 2080 drm_sched_entity_destroy(&adev->mman.low_pr); 2081 dma_fence_put(man->move); 2082 man->move = NULL; 2083 } 2084 2085 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2086 if (enable) 2087 size = adev->gmc.real_vram_size; 2088 else 2089 size = adev->gmc.visible_vram_size; 2090 man->size = size; 2091 adev->mman.buffer_funcs_enabled = enable; 2092 2093 return; 2094 2095 error_free_entity: 2096 drm_sched_entity_destroy(&adev->mman.high_pr); 2097 } 2098 2099 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2100 bool direct_submit, 2101 unsigned int num_dw, 2102 struct dma_resv *resv, 2103 bool vm_needs_flush, 2104 struct amdgpu_job **job, 2105 bool delayed) 2106 { 2107 enum amdgpu_ib_pool_type pool = direct_submit ? 2108 AMDGPU_IB_POOL_DIRECT : 2109 AMDGPU_IB_POOL_DELAYED; 2110 int r; 2111 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2112 &adev->mman.high_pr; 2113 r = amdgpu_job_alloc_with_ib(adev, entity, 2114 AMDGPU_FENCE_OWNER_UNDEFINED, 2115 num_dw * 4, pool, job); 2116 if (r) 2117 return r; 2118 2119 if (vm_needs_flush) { 2120 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2121 adev->gmc.pdb0_bo : 2122 adev->gart.bo); 2123 (*job)->vm_needs_flush = true; 2124 } 2125 if (!resv) 2126 return 0; 2127 2128 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2129 DMA_RESV_USAGE_BOOKKEEP); 2130 } 2131 2132 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2133 uint64_t dst_offset, uint32_t byte_count, 2134 struct dma_resv *resv, 2135 struct dma_fence **fence, bool direct_submit, 2136 bool vm_needs_flush, bool tmz) 2137 { 2138 struct amdgpu_device *adev = ring->adev; 2139 unsigned int num_loops, num_dw; 2140 struct amdgpu_job *job; 2141 uint32_t max_bytes; 2142 unsigned int i; 2143 int r; 2144 2145 if (!direct_submit && !ring->sched.ready) { 2146 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2147 return -EINVAL; 2148 } 2149 2150 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2151 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2152 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2153 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2154 resv, vm_needs_flush, &job, false); 2155 if (r) 2156 return r; 2157 2158 for (i = 0; i < num_loops; i++) { 2159 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2160 2161 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2162 dst_offset, cur_size_in_bytes, tmz); 2163 2164 src_offset += cur_size_in_bytes; 2165 dst_offset += cur_size_in_bytes; 2166 byte_count -= cur_size_in_bytes; 2167 } 2168 2169 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2170 WARN_ON(job->ibs[0].length_dw > num_dw); 2171 if (direct_submit) 2172 r = amdgpu_job_submit_direct(job, ring, fence); 2173 else 2174 *fence = amdgpu_job_submit(job); 2175 if (r) 2176 goto error_free; 2177 2178 return r; 2179 2180 error_free: 2181 amdgpu_job_free(job); 2182 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2183 return r; 2184 } 2185 2186 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2187 uint64_t dst_addr, uint32_t byte_count, 2188 struct dma_resv *resv, 2189 struct dma_fence **fence, 2190 bool vm_needs_flush, bool delayed) 2191 { 2192 struct amdgpu_device *adev = ring->adev; 2193 unsigned int num_loops, num_dw; 2194 struct amdgpu_job *job; 2195 uint32_t max_bytes; 2196 unsigned int i; 2197 int r; 2198 2199 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2200 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2201 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2202 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2203 &job, delayed); 2204 if (r) 2205 return r; 2206 2207 for (i = 0; i < num_loops; i++) { 2208 uint32_t cur_size = min(byte_count, max_bytes); 2209 2210 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2211 cur_size); 2212 2213 dst_addr += cur_size; 2214 byte_count -= cur_size; 2215 } 2216 2217 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2218 WARN_ON(job->ibs[0].length_dw > num_dw); 2219 *fence = amdgpu_job_submit(job); 2220 return 0; 2221 } 2222 2223 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2224 uint32_t src_data, 2225 struct dma_resv *resv, 2226 struct dma_fence **f, 2227 bool delayed) 2228 { 2229 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2230 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2231 struct dma_fence *fence = NULL; 2232 struct amdgpu_res_cursor dst; 2233 int r; 2234 2235 if (!adev->mman.buffer_funcs_enabled) { 2236 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2237 return -EINVAL; 2238 } 2239 2240 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2241 2242 mutex_lock(&adev->mman.gtt_window_lock); 2243 while (dst.remaining) { 2244 struct dma_fence *next; 2245 uint64_t cur_size, to; 2246 2247 /* Never fill more than 256MiB at once to avoid timeouts */ 2248 cur_size = min(dst.size, 256ULL << 20); 2249 2250 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2251 1, ring, false, &cur_size, &to); 2252 if (r) 2253 goto error; 2254 2255 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2256 &next, true, delayed); 2257 if (r) 2258 goto error; 2259 2260 dma_fence_put(fence); 2261 fence = next; 2262 2263 amdgpu_res_next(&dst, cur_size); 2264 } 2265 error: 2266 mutex_unlock(&adev->mman.gtt_window_lock); 2267 if (f) 2268 *f = dma_fence_get(fence); 2269 dma_fence_put(fence); 2270 return r; 2271 } 2272 2273 /** 2274 * amdgpu_ttm_evict_resources - evict memory buffers 2275 * @adev: amdgpu device object 2276 * @mem_type: evicted BO's memory type 2277 * 2278 * Evicts all @mem_type buffers on the lru list of the memory type. 2279 * 2280 * Returns: 2281 * 0 for success or a negative error code on failure. 2282 */ 2283 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2284 { 2285 struct ttm_resource_manager *man; 2286 2287 switch (mem_type) { 2288 case TTM_PL_VRAM: 2289 case TTM_PL_TT: 2290 case AMDGPU_PL_GWS: 2291 case AMDGPU_PL_GDS: 2292 case AMDGPU_PL_OA: 2293 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2294 break; 2295 default: 2296 DRM_ERROR("Trying to evict invalid memory type\n"); 2297 return -EINVAL; 2298 } 2299 2300 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2301 } 2302 2303 #if defined(CONFIG_DEBUG_FS) 2304 2305 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2306 { 2307 struct amdgpu_device *adev = m->private; 2308 2309 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2310 } 2311 2312 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2313 2314 /* 2315 * amdgpu_ttm_vram_read - Linear read access to VRAM 2316 * 2317 * Accesses VRAM via MMIO for debugging purposes. 2318 */ 2319 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2320 size_t size, loff_t *pos) 2321 { 2322 struct amdgpu_device *adev = file_inode(f)->i_private; 2323 ssize_t result = 0; 2324 2325 if (size & 0x3 || *pos & 0x3) 2326 return -EINVAL; 2327 2328 if (*pos >= adev->gmc.mc_vram_size) 2329 return -ENXIO; 2330 2331 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2332 while (size) { 2333 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2334 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2335 2336 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2337 if (copy_to_user(buf, value, bytes)) 2338 return -EFAULT; 2339 2340 result += bytes; 2341 buf += bytes; 2342 *pos += bytes; 2343 size -= bytes; 2344 } 2345 2346 return result; 2347 } 2348 2349 /* 2350 * amdgpu_ttm_vram_write - Linear write access to VRAM 2351 * 2352 * Accesses VRAM via MMIO for debugging purposes. 2353 */ 2354 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2355 size_t size, loff_t *pos) 2356 { 2357 struct amdgpu_device *adev = file_inode(f)->i_private; 2358 ssize_t result = 0; 2359 int r; 2360 2361 if (size & 0x3 || *pos & 0x3) 2362 return -EINVAL; 2363 2364 if (*pos >= adev->gmc.mc_vram_size) 2365 return -ENXIO; 2366 2367 while (size) { 2368 uint32_t value; 2369 2370 if (*pos >= adev->gmc.mc_vram_size) 2371 return result; 2372 2373 r = get_user(value, (uint32_t *)buf); 2374 if (r) 2375 return r; 2376 2377 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2378 2379 result += 4; 2380 buf += 4; 2381 *pos += 4; 2382 size -= 4; 2383 } 2384 2385 return result; 2386 } 2387 2388 static const struct file_operations amdgpu_ttm_vram_fops = { 2389 .owner = THIS_MODULE, 2390 .read = amdgpu_ttm_vram_read, 2391 .write = amdgpu_ttm_vram_write, 2392 .llseek = default_llseek, 2393 }; 2394 2395 /* 2396 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2397 * 2398 * This function is used to read memory that has been mapped to the 2399 * GPU and the known addresses are not physical addresses but instead 2400 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2401 */ 2402 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2403 size_t size, loff_t *pos) 2404 { 2405 struct amdgpu_device *adev = file_inode(f)->i_private; 2406 struct iommu_domain *dom; 2407 ssize_t result = 0; 2408 int r; 2409 2410 /* retrieve the IOMMU domain if any for this device */ 2411 dom = iommu_get_domain_for_dev(adev->dev); 2412 2413 while (size) { 2414 phys_addr_t addr = *pos & PAGE_MASK; 2415 loff_t off = *pos & ~PAGE_MASK; 2416 size_t bytes = PAGE_SIZE - off; 2417 unsigned long pfn; 2418 struct page *p; 2419 void *ptr; 2420 2421 bytes = min(bytes, size); 2422 2423 /* Translate the bus address to a physical address. If 2424 * the domain is NULL it means there is no IOMMU active 2425 * and the address translation is the identity 2426 */ 2427 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2428 2429 pfn = addr >> PAGE_SHIFT; 2430 if (!pfn_valid(pfn)) 2431 return -EPERM; 2432 2433 p = pfn_to_page(pfn); 2434 if (p->mapping != adev->mman.bdev.dev_mapping) 2435 return -EPERM; 2436 2437 ptr = kmap_local_page(p); 2438 r = copy_to_user(buf, ptr + off, bytes); 2439 kunmap_local(ptr); 2440 if (r) 2441 return -EFAULT; 2442 2443 size -= bytes; 2444 *pos += bytes; 2445 result += bytes; 2446 } 2447 2448 return result; 2449 } 2450 2451 /* 2452 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2453 * 2454 * This function is used to write memory that has been mapped to the 2455 * GPU and the known addresses are not physical addresses but instead 2456 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2457 */ 2458 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2459 size_t size, loff_t *pos) 2460 { 2461 struct amdgpu_device *adev = file_inode(f)->i_private; 2462 struct iommu_domain *dom; 2463 ssize_t result = 0; 2464 int r; 2465 2466 dom = iommu_get_domain_for_dev(adev->dev); 2467 2468 while (size) { 2469 phys_addr_t addr = *pos & PAGE_MASK; 2470 loff_t off = *pos & ~PAGE_MASK; 2471 size_t bytes = PAGE_SIZE - off; 2472 unsigned long pfn; 2473 struct page *p; 2474 void *ptr; 2475 2476 bytes = min(bytes, size); 2477 2478 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2479 2480 pfn = addr >> PAGE_SHIFT; 2481 if (!pfn_valid(pfn)) 2482 return -EPERM; 2483 2484 p = pfn_to_page(pfn); 2485 if (p->mapping != adev->mman.bdev.dev_mapping) 2486 return -EPERM; 2487 2488 ptr = kmap_local_page(p); 2489 r = copy_from_user(ptr + off, buf, bytes); 2490 kunmap_local(ptr); 2491 if (r) 2492 return -EFAULT; 2493 2494 size -= bytes; 2495 *pos += bytes; 2496 result += bytes; 2497 } 2498 2499 return result; 2500 } 2501 2502 static const struct file_operations amdgpu_ttm_iomem_fops = { 2503 .owner = THIS_MODULE, 2504 .read = amdgpu_iomem_read, 2505 .write = amdgpu_iomem_write, 2506 .llseek = default_llseek 2507 }; 2508 2509 #endif 2510 2511 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2512 { 2513 #if defined(CONFIG_DEBUG_FS) 2514 struct drm_minor *minor = adev_to_drm(adev)->primary; 2515 struct dentry *root = minor->debugfs_root; 2516 2517 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2518 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2519 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2520 &amdgpu_ttm_iomem_fops); 2521 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2522 &amdgpu_ttm_page_pool_fops); 2523 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2524 TTM_PL_VRAM), 2525 root, "amdgpu_vram_mm"); 2526 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2527 TTM_PL_TT), 2528 root, "amdgpu_gtt_mm"); 2529 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2530 AMDGPU_PL_GDS), 2531 root, "amdgpu_gds_mm"); 2532 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2533 AMDGPU_PL_GWS), 2534 root, "amdgpu_gws_mm"); 2535 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2536 AMDGPU_PL_OA), 2537 root, "amdgpu_oa_mm"); 2538 2539 #endif 2540 } 2541