1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, 0); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 uint32_t copy_flags = 0; 299 struct amdgpu_bo *abo_src, *abo_dst; 300 301 if (!adev->mman.buffer_funcs_enabled) { 302 DRM_ERROR("Trying to move memory with ring turned off.\n"); 303 return -EINVAL; 304 } 305 306 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 308 309 mutex_lock(&adev->mman.gtt_window_lock); 310 while (src_mm.remaining) { 311 uint64_t from, to, cur_size, tiling_flags; 312 uint32_t num_type, data_format, max_com; 313 struct dma_fence *next; 314 315 /* Never copy more than 256MiB at once to avoid a timeout */ 316 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 317 318 /* Map src to window 0 and dst to window 1. */ 319 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 320 0, ring, tmz, &cur_size, &from); 321 if (r) 322 goto error; 323 324 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 325 1, ring, tmz, &cur_size, &to); 326 if (r) 327 goto error; 328 329 abo_src = ttm_to_amdgpu_bo(src->bo); 330 abo_dst = ttm_to_amdgpu_bo(dst->bo); 331 if (tmz) 332 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 333 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 334 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM)) 335 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED; 336 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 337 (dst->mem->mem_type == TTM_PL_VRAM)) { 338 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED; 339 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags); 340 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK); 341 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE); 342 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT); 343 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) | 344 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) | 345 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format)); 346 } 347 348 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 349 &next, false, true, copy_flags); 350 if (r) 351 goto error; 352 353 dma_fence_put(fence); 354 fence = next; 355 356 amdgpu_res_next(&src_mm, cur_size); 357 amdgpu_res_next(&dst_mm, cur_size); 358 } 359 error: 360 mutex_unlock(&adev->mman.gtt_window_lock); 361 if (f) 362 *f = dma_fence_get(fence); 363 dma_fence_put(fence); 364 return r; 365 } 366 367 /* 368 * amdgpu_move_blit - Copy an entire buffer to another buffer 369 * 370 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 371 * help move buffers to and from VRAM. 372 */ 373 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 374 bool evict, 375 struct ttm_resource *new_mem, 376 struct ttm_resource *old_mem) 377 { 378 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 379 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 380 struct amdgpu_copy_mem src, dst; 381 struct dma_fence *fence = NULL; 382 int r; 383 384 src.bo = bo; 385 dst.bo = bo; 386 src.mem = old_mem; 387 dst.mem = new_mem; 388 src.offset = 0; 389 dst.offset = 0; 390 391 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 392 new_mem->size, 393 amdgpu_bo_encrypted(abo), 394 bo->base.resv, &fence); 395 if (r) 396 goto error; 397 398 /* clear the space being freed */ 399 if (old_mem->mem_type == TTM_PL_VRAM && 400 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 401 struct dma_fence *wipe_fence = NULL; 402 403 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 404 false); 405 if (r) { 406 goto error; 407 } else if (wipe_fence) { 408 amdgpu_vram_mgr_set_cleared(bo->resource); 409 dma_fence_put(fence); 410 fence = wipe_fence; 411 } 412 } 413 414 /* Always block for VM page tables before committing the new location */ 415 if (bo->type == ttm_bo_type_kernel) 416 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 417 else 418 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 419 dma_fence_put(fence); 420 return r; 421 422 error: 423 if (fence) 424 dma_fence_wait(fence, false); 425 dma_fence_put(fence); 426 return r; 427 } 428 429 /** 430 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 431 * @adev: amdgpu device 432 * @res: the resource to check 433 * 434 * Returns: true if the full resource is CPU visible, false otherwise. 435 */ 436 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 437 struct ttm_resource *res) 438 { 439 struct amdgpu_res_cursor cursor; 440 441 if (!res) 442 return false; 443 444 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 445 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 446 return true; 447 448 if (res->mem_type != TTM_PL_VRAM) 449 return false; 450 451 amdgpu_res_first(res, 0, res->size, &cursor); 452 while (cursor.remaining) { 453 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 454 return false; 455 amdgpu_res_next(&cursor, cursor.size); 456 } 457 458 return true; 459 } 460 461 /* 462 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 463 * 464 * Called by amdgpu_bo_move() 465 */ 466 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 467 struct ttm_resource *mem) 468 { 469 if (!amdgpu_res_cpu_visible(adev, mem)) 470 return false; 471 472 /* ttm_resource_ioremap only supports contiguous memory */ 473 if (mem->mem_type == TTM_PL_VRAM && 474 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 475 return false; 476 477 return true; 478 } 479 480 /* 481 * amdgpu_bo_move - Move a buffer object to a new memory location 482 * 483 * Called by ttm_bo_handle_move_mem() 484 */ 485 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 486 struct ttm_operation_ctx *ctx, 487 struct ttm_resource *new_mem, 488 struct ttm_place *hop) 489 { 490 struct amdgpu_device *adev; 491 struct amdgpu_bo *abo; 492 struct ttm_resource *old_mem = bo->resource; 493 int r; 494 495 if (new_mem->mem_type == TTM_PL_TT || 496 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 497 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 498 if (r) 499 return r; 500 } 501 502 abo = ttm_to_amdgpu_bo(bo); 503 adev = amdgpu_ttm_adev(bo->bdev); 504 505 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 506 bo->ttm == NULL)) { 507 amdgpu_bo_move_notify(bo, evict, new_mem); 508 ttm_bo_move_null(bo, new_mem); 509 return 0; 510 } 511 if (old_mem->mem_type == TTM_PL_SYSTEM && 512 (new_mem->mem_type == TTM_PL_TT || 513 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 514 amdgpu_bo_move_notify(bo, evict, new_mem); 515 ttm_bo_move_null(bo, new_mem); 516 return 0; 517 } 518 if ((old_mem->mem_type == TTM_PL_TT || 519 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 520 new_mem->mem_type == TTM_PL_SYSTEM) { 521 r = ttm_bo_wait_ctx(bo, ctx); 522 if (r) 523 return r; 524 525 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 526 amdgpu_bo_move_notify(bo, evict, new_mem); 527 ttm_resource_free(bo, &bo->resource); 528 ttm_bo_assign_mem(bo, new_mem); 529 return 0; 530 } 531 532 if (old_mem->mem_type == AMDGPU_PL_GDS || 533 old_mem->mem_type == AMDGPU_PL_GWS || 534 old_mem->mem_type == AMDGPU_PL_OA || 535 old_mem->mem_type == AMDGPU_PL_DOORBELL || 536 new_mem->mem_type == AMDGPU_PL_GDS || 537 new_mem->mem_type == AMDGPU_PL_GWS || 538 new_mem->mem_type == AMDGPU_PL_OA || 539 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 540 /* Nothing to save here */ 541 amdgpu_bo_move_notify(bo, evict, new_mem); 542 ttm_bo_move_null(bo, new_mem); 543 return 0; 544 } 545 546 if (bo->type == ttm_bo_type_device && 547 new_mem->mem_type == TTM_PL_VRAM && 548 old_mem->mem_type != TTM_PL_VRAM) { 549 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 550 * accesses the BO after it's moved. 551 */ 552 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 553 } 554 555 if (adev->mman.buffer_funcs_enabled && 556 ((old_mem->mem_type == TTM_PL_SYSTEM && 557 new_mem->mem_type == TTM_PL_VRAM) || 558 (old_mem->mem_type == TTM_PL_VRAM && 559 new_mem->mem_type == TTM_PL_SYSTEM))) { 560 hop->fpfn = 0; 561 hop->lpfn = 0; 562 hop->mem_type = TTM_PL_TT; 563 hop->flags = TTM_PL_FLAG_TEMPORARY; 564 return -EMULTIHOP; 565 } 566 567 amdgpu_bo_move_notify(bo, evict, new_mem); 568 if (adev->mman.buffer_funcs_enabled) 569 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 570 else 571 r = -ENODEV; 572 573 if (r) { 574 /* Check that all memory is CPU accessible */ 575 if (!amdgpu_res_copyable(adev, old_mem) || 576 !amdgpu_res_copyable(adev, new_mem)) { 577 pr_err("Move buffer fallback to memcpy unavailable\n"); 578 return r; 579 } 580 581 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 582 if (r) 583 return r; 584 } 585 586 /* update statistics after the move */ 587 if (evict) 588 atomic64_inc(&adev->num_evictions); 589 atomic64_add(bo->base.size, &adev->num_bytes_moved); 590 return 0; 591 } 592 593 /* 594 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 595 * 596 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 597 */ 598 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 599 struct ttm_resource *mem) 600 { 601 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 602 603 switch (mem->mem_type) { 604 case TTM_PL_SYSTEM: 605 /* system memory */ 606 return 0; 607 case TTM_PL_TT: 608 case AMDGPU_PL_PREEMPT: 609 break; 610 case TTM_PL_VRAM: 611 mem->bus.offset = mem->start << PAGE_SHIFT; 612 613 if (adev->mman.aper_base_kaddr && 614 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 615 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 616 mem->bus.offset; 617 618 mem->bus.offset += adev->gmc.aper_base; 619 mem->bus.is_iomem = true; 620 break; 621 case AMDGPU_PL_DOORBELL: 622 mem->bus.offset = mem->start << PAGE_SHIFT; 623 mem->bus.offset += adev->doorbell.base; 624 mem->bus.is_iomem = true; 625 mem->bus.caching = ttm_uncached; 626 break; 627 default: 628 return -EINVAL; 629 } 630 return 0; 631 } 632 633 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 634 unsigned long page_offset) 635 { 636 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 637 struct amdgpu_res_cursor cursor; 638 639 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 640 &cursor); 641 642 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 643 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 644 645 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 646 } 647 648 /** 649 * amdgpu_ttm_domain_start - Returns GPU start address 650 * @adev: amdgpu device object 651 * @type: type of the memory 652 * 653 * Returns: 654 * GPU start address of a memory domain 655 */ 656 657 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 658 { 659 switch (type) { 660 case TTM_PL_TT: 661 return adev->gmc.gart_start; 662 case TTM_PL_VRAM: 663 return adev->gmc.vram_start; 664 } 665 666 return 0; 667 } 668 669 /* 670 * TTM backend functions. 671 */ 672 struct amdgpu_ttm_tt { 673 struct ttm_tt ttm; 674 struct drm_gem_object *gobj; 675 u64 offset; 676 uint64_t userptr; 677 struct task_struct *usertask; 678 uint32_t userflags; 679 bool bound; 680 int32_t pool_id; 681 }; 682 683 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 684 685 #ifdef CONFIG_DRM_AMDGPU_USERPTR 686 /* 687 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 688 * memory and start HMM tracking CPU page table update 689 * 690 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 691 * once afterwards to stop HMM tracking 692 */ 693 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 694 struct hmm_range **range) 695 { 696 struct ttm_tt *ttm = bo->tbo.ttm; 697 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 698 unsigned long start = gtt->userptr; 699 struct vm_area_struct *vma; 700 struct mm_struct *mm; 701 bool readonly; 702 int r = 0; 703 704 /* Make sure get_user_pages_done() can cleanup gracefully */ 705 *range = NULL; 706 707 mm = bo->notifier.mm; 708 if (unlikely(!mm)) { 709 DRM_DEBUG_DRIVER("BO is not registered?\n"); 710 return -EFAULT; 711 } 712 713 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 714 return -ESRCH; 715 716 mmap_read_lock(mm); 717 vma = vma_lookup(mm, start); 718 if (unlikely(!vma)) { 719 r = -EFAULT; 720 goto out_unlock; 721 } 722 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 723 vma->vm_file)) { 724 r = -EPERM; 725 goto out_unlock; 726 } 727 728 readonly = amdgpu_ttm_tt_is_readonly(ttm); 729 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 730 readonly, NULL, pages, range); 731 out_unlock: 732 mmap_read_unlock(mm); 733 if (r) 734 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 735 736 mmput(mm); 737 738 return r; 739 } 740 741 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 742 */ 743 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 744 struct hmm_range *range) 745 { 746 struct amdgpu_ttm_tt *gtt = (void *)ttm; 747 748 if (gtt && gtt->userptr && range) 749 amdgpu_hmm_range_get_pages_done(range); 750 } 751 752 /* 753 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 754 * Check if the pages backing this ttm range have been invalidated 755 * 756 * Returns: true if pages are still valid 757 */ 758 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 759 struct hmm_range *range) 760 { 761 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 762 763 if (!gtt || !gtt->userptr || !range) 764 return false; 765 766 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 767 gtt->userptr, ttm->num_pages); 768 769 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 770 771 return !amdgpu_hmm_range_get_pages_done(range); 772 } 773 #endif 774 775 /* 776 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 777 * 778 * Called by amdgpu_cs_list_validate(). This creates the page list 779 * that backs user memory and will ultimately be mapped into the device 780 * address space. 781 */ 782 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 783 { 784 unsigned long i; 785 786 for (i = 0; i < ttm->num_pages; ++i) 787 ttm->pages[i] = pages ? pages[i] : NULL; 788 } 789 790 /* 791 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 792 * 793 * Called by amdgpu_ttm_backend_bind() 794 **/ 795 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 796 struct ttm_tt *ttm) 797 { 798 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 799 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 800 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 801 enum dma_data_direction direction = write ? 802 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 803 int r; 804 805 /* Allocate an SG array and squash pages into it */ 806 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 807 (u64)ttm->num_pages << PAGE_SHIFT, 808 GFP_KERNEL); 809 if (r) 810 goto release_sg; 811 812 /* Map SG to device */ 813 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 814 if (r) 815 goto release_sg; 816 817 /* convert SG to linear array of pages and dma addresses */ 818 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 819 ttm->num_pages); 820 821 return 0; 822 823 release_sg: 824 kfree(ttm->sg); 825 ttm->sg = NULL; 826 return r; 827 } 828 829 /* 830 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 831 */ 832 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 833 struct ttm_tt *ttm) 834 { 835 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 836 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 837 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 838 enum dma_data_direction direction = write ? 839 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 840 841 /* double check that we don't free the table twice */ 842 if (!ttm->sg || !ttm->sg->sgl) 843 return; 844 845 /* unmap the pages mapped to the device */ 846 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 847 sg_free_table(ttm->sg); 848 } 849 850 /* 851 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 852 * MQDn+CtrlStackn where n is the number of XCCs per partition. 853 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 854 * and uses memory type default, UC. The rest of pages_per_xcc are 855 * Ctrl stack and modify their memory type to NC. 856 */ 857 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 858 struct ttm_tt *ttm, uint64_t flags) 859 { 860 struct amdgpu_ttm_tt *gtt = (void *)ttm; 861 uint64_t total_pages = ttm->num_pages; 862 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 863 uint64_t page_idx, pages_per_xcc; 864 int i; 865 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC); 866 867 pages_per_xcc = total_pages; 868 do_div(pages_per_xcc, num_xcc); 869 870 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 871 /* MQD page: use default flags */ 872 amdgpu_gart_bind(adev, 873 gtt->offset + (page_idx << PAGE_SHIFT), 874 1, >t->ttm.dma_address[page_idx], flags); 875 /* 876 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 877 * the second page of the BO onward. 878 */ 879 amdgpu_gart_bind(adev, 880 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 881 pages_per_xcc - 1, 882 >t->ttm.dma_address[page_idx + 1], 883 ctrl_flags); 884 } 885 } 886 887 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 888 struct ttm_buffer_object *tbo, 889 uint64_t flags) 890 { 891 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 892 struct ttm_tt *ttm = tbo->ttm; 893 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 894 895 if (amdgpu_bo_encrypted(abo)) 896 flags |= AMDGPU_PTE_TMZ; 897 898 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 899 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 900 } else { 901 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 902 gtt->ttm.dma_address, flags); 903 } 904 gtt->bound = true; 905 } 906 907 /* 908 * amdgpu_ttm_backend_bind - Bind GTT memory 909 * 910 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 911 * This handles binding GTT memory to the device address space. 912 */ 913 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 914 struct ttm_tt *ttm, 915 struct ttm_resource *bo_mem) 916 { 917 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 918 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 919 uint64_t flags; 920 int r; 921 922 if (!bo_mem) 923 return -EINVAL; 924 925 if (gtt->bound) 926 return 0; 927 928 if (gtt->userptr) { 929 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 930 if (r) { 931 DRM_ERROR("failed to pin userptr\n"); 932 return r; 933 } 934 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 935 if (!ttm->sg) { 936 struct dma_buf_attachment *attach; 937 struct sg_table *sgt; 938 939 attach = gtt->gobj->import_attach; 940 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 941 if (IS_ERR(sgt)) 942 return PTR_ERR(sgt); 943 944 ttm->sg = sgt; 945 } 946 947 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 948 ttm->num_pages); 949 } 950 951 if (!ttm->num_pages) { 952 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 953 ttm->num_pages, bo_mem, ttm); 954 } 955 956 if (bo_mem->mem_type != TTM_PL_TT || 957 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 958 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 959 return 0; 960 } 961 962 /* compute PTE flags relevant to this BO memory */ 963 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 964 965 /* bind pages into GART page tables */ 966 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 967 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 968 gtt->ttm.dma_address, flags); 969 gtt->bound = true; 970 return 0; 971 } 972 973 /* 974 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 975 * through AGP or GART aperture. 976 * 977 * If bo is accessible through AGP aperture, then use AGP aperture 978 * to access bo; otherwise allocate logical space in GART aperture 979 * and map bo to GART aperture. 980 */ 981 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 982 { 983 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 984 struct ttm_operation_ctx ctx = { false, false }; 985 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 986 struct ttm_placement placement; 987 struct ttm_place placements; 988 struct ttm_resource *tmp; 989 uint64_t addr, flags; 990 int r; 991 992 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 993 return 0; 994 995 addr = amdgpu_gmc_agp_addr(bo); 996 if (addr != AMDGPU_BO_INVALID_OFFSET) 997 return 0; 998 999 /* allocate GART space */ 1000 placement.num_placement = 1; 1001 placement.placement = &placements; 1002 placements.fpfn = 0; 1003 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1004 placements.mem_type = TTM_PL_TT; 1005 placements.flags = bo->resource->placement; 1006 1007 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1008 if (unlikely(r)) 1009 return r; 1010 1011 /* compute PTE flags for this buffer object */ 1012 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 1013 1014 /* Bind pages */ 1015 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1016 amdgpu_ttm_gart_bind(adev, bo, flags); 1017 amdgpu_gart_invalidate_tlb(adev); 1018 ttm_resource_free(bo, &bo->resource); 1019 ttm_bo_assign_mem(bo, tmp); 1020 1021 return 0; 1022 } 1023 1024 /* 1025 * amdgpu_ttm_recover_gart - Rebind GTT pages 1026 * 1027 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1028 * rebind GTT pages during a GPU reset. 1029 */ 1030 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1031 { 1032 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1033 uint64_t flags; 1034 1035 if (!tbo->ttm) 1036 return; 1037 1038 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1039 amdgpu_ttm_gart_bind(adev, tbo, flags); 1040 } 1041 1042 /* 1043 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1044 * 1045 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1046 * ttm_tt_destroy(). 1047 */ 1048 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1049 struct ttm_tt *ttm) 1050 { 1051 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1052 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1053 1054 /* if the pages have userptr pinning then clear that first */ 1055 if (gtt->userptr) { 1056 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1057 } else if (ttm->sg && gtt->gobj->import_attach) { 1058 struct dma_buf_attachment *attach; 1059 1060 attach = gtt->gobj->import_attach; 1061 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1062 ttm->sg = NULL; 1063 } 1064 1065 if (!gtt->bound) 1066 return; 1067 1068 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1069 return; 1070 1071 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1072 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1073 gtt->bound = false; 1074 } 1075 1076 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1077 struct ttm_tt *ttm) 1078 { 1079 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1080 1081 if (gtt->usertask) 1082 put_task_struct(gtt->usertask); 1083 1084 ttm_tt_fini(>t->ttm); 1085 kfree(gtt); 1086 } 1087 1088 /** 1089 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1090 * 1091 * @bo: The buffer object to create a GTT ttm_tt object around 1092 * @page_flags: Page flags to be added to the ttm_tt object 1093 * 1094 * Called by ttm_tt_create(). 1095 */ 1096 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1097 uint32_t page_flags) 1098 { 1099 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1100 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1101 struct amdgpu_ttm_tt *gtt; 1102 enum ttm_caching caching; 1103 1104 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1105 if (!gtt) 1106 return NULL; 1107 1108 gtt->gobj = &bo->base; 1109 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1110 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1111 else 1112 gtt->pool_id = abo->xcp_id; 1113 1114 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1115 caching = ttm_write_combined; 1116 else 1117 caching = ttm_cached; 1118 1119 /* allocate space for the uninitialized page entries */ 1120 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1121 kfree(gtt); 1122 return NULL; 1123 } 1124 return >t->ttm; 1125 } 1126 1127 /* 1128 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1129 * 1130 * Map the pages of a ttm_tt object to an address space visible 1131 * to the underlying device. 1132 */ 1133 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1134 struct ttm_tt *ttm, 1135 struct ttm_operation_ctx *ctx) 1136 { 1137 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1138 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1139 struct ttm_pool *pool; 1140 pgoff_t i; 1141 int ret; 1142 1143 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1144 if (gtt->userptr) { 1145 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1146 if (!ttm->sg) 1147 return -ENOMEM; 1148 return 0; 1149 } 1150 1151 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1152 return 0; 1153 1154 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1155 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1156 else 1157 pool = &adev->mman.bdev.pool; 1158 ret = ttm_pool_alloc(pool, ttm, ctx); 1159 if (ret) 1160 return ret; 1161 1162 for (i = 0; i < ttm->num_pages; ++i) 1163 ttm->pages[i]->mapping = bdev->dev_mapping; 1164 1165 return 0; 1166 } 1167 1168 /* 1169 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1170 * 1171 * Unmaps pages of a ttm_tt object from the device address space and 1172 * unpopulates the page array backing it. 1173 */ 1174 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1175 struct ttm_tt *ttm) 1176 { 1177 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1178 struct amdgpu_device *adev; 1179 struct ttm_pool *pool; 1180 pgoff_t i; 1181 1182 amdgpu_ttm_backend_unbind(bdev, ttm); 1183 1184 if (gtt->userptr) { 1185 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1186 kfree(ttm->sg); 1187 ttm->sg = NULL; 1188 return; 1189 } 1190 1191 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1192 return; 1193 1194 for (i = 0; i < ttm->num_pages; ++i) 1195 ttm->pages[i]->mapping = NULL; 1196 1197 adev = amdgpu_ttm_adev(bdev); 1198 1199 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1200 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1201 else 1202 pool = &adev->mman.bdev.pool; 1203 1204 return ttm_pool_free(pool, ttm); 1205 } 1206 1207 /** 1208 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1209 * task 1210 * 1211 * @tbo: The ttm_buffer_object that contains the userptr 1212 * @user_addr: The returned value 1213 */ 1214 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1215 uint64_t *user_addr) 1216 { 1217 struct amdgpu_ttm_tt *gtt; 1218 1219 if (!tbo->ttm) 1220 return -EINVAL; 1221 1222 gtt = (void *)tbo->ttm; 1223 *user_addr = gtt->userptr; 1224 return 0; 1225 } 1226 1227 /** 1228 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1229 * task 1230 * 1231 * @bo: The ttm_buffer_object to bind this userptr to 1232 * @addr: The address in the current tasks VM space to use 1233 * @flags: Requirements of userptr object. 1234 * 1235 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1236 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1237 * initialize GPU VM for a KFD process. 1238 */ 1239 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1240 uint64_t addr, uint32_t flags) 1241 { 1242 struct amdgpu_ttm_tt *gtt; 1243 1244 if (!bo->ttm) { 1245 /* TODO: We want a separate TTM object type for userptrs */ 1246 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1247 if (bo->ttm == NULL) 1248 return -ENOMEM; 1249 } 1250 1251 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1252 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1253 1254 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1255 gtt->userptr = addr; 1256 gtt->userflags = flags; 1257 1258 if (gtt->usertask) 1259 put_task_struct(gtt->usertask); 1260 gtt->usertask = current->group_leader; 1261 get_task_struct(gtt->usertask); 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1268 */ 1269 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1270 { 1271 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1272 1273 if (gtt == NULL) 1274 return NULL; 1275 1276 if (gtt->usertask == NULL) 1277 return NULL; 1278 1279 return gtt->usertask->mm; 1280 } 1281 1282 /* 1283 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1284 * address range for the current task. 1285 * 1286 */ 1287 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1288 unsigned long end, unsigned long *userptr) 1289 { 1290 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1291 unsigned long size; 1292 1293 if (gtt == NULL || !gtt->userptr) 1294 return false; 1295 1296 /* Return false if no part of the ttm_tt object lies within 1297 * the range 1298 */ 1299 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1300 if (gtt->userptr > end || gtt->userptr + size <= start) 1301 return false; 1302 1303 if (userptr) 1304 *userptr = gtt->userptr; 1305 return true; 1306 } 1307 1308 /* 1309 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1310 */ 1311 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1312 { 1313 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1314 1315 if (gtt == NULL || !gtt->userptr) 1316 return false; 1317 1318 return true; 1319 } 1320 1321 /* 1322 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1323 */ 1324 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1325 { 1326 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1327 1328 if (gtt == NULL) 1329 return false; 1330 1331 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1332 } 1333 1334 /** 1335 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1336 * 1337 * @ttm: The ttm_tt object to compute the flags for 1338 * @mem: The memory registry backing this ttm_tt object 1339 * 1340 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1341 */ 1342 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1343 { 1344 uint64_t flags = 0; 1345 1346 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1347 flags |= AMDGPU_PTE_VALID; 1348 1349 if (mem && (mem->mem_type == TTM_PL_TT || 1350 mem->mem_type == AMDGPU_PL_DOORBELL || 1351 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1352 flags |= AMDGPU_PTE_SYSTEM; 1353 1354 if (ttm->caching == ttm_cached) 1355 flags |= AMDGPU_PTE_SNOOPED; 1356 } 1357 1358 if (mem && mem->mem_type == TTM_PL_VRAM && 1359 mem->bus.caching == ttm_cached) 1360 flags |= AMDGPU_PTE_SNOOPED; 1361 1362 return flags; 1363 } 1364 1365 /** 1366 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1367 * 1368 * @adev: amdgpu_device pointer 1369 * @ttm: The ttm_tt object to compute the flags for 1370 * @mem: The memory registry backing this ttm_tt object 1371 * 1372 * Figure out the flags to use for a VM PTE (Page Table Entry). 1373 */ 1374 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1375 struct ttm_resource *mem) 1376 { 1377 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1378 1379 flags |= adev->gart.gart_pte_flags; 1380 flags |= AMDGPU_PTE_READABLE; 1381 1382 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1383 flags |= AMDGPU_PTE_WRITEABLE; 1384 1385 return flags; 1386 } 1387 1388 /* 1389 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1390 * object. 1391 * 1392 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1393 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1394 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1395 * used to clean out a memory space. 1396 */ 1397 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1398 const struct ttm_place *place) 1399 { 1400 struct dma_resv_iter resv_cursor; 1401 struct dma_fence *f; 1402 1403 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1404 return ttm_bo_eviction_valuable(bo, place); 1405 1406 /* Swapout? */ 1407 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1408 return true; 1409 1410 if (bo->type == ttm_bo_type_kernel && 1411 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1412 return false; 1413 1414 /* If bo is a KFD BO, check if the bo belongs to the current process. 1415 * If true, then return false as any KFD process needs all its BOs to 1416 * be resident to run successfully 1417 */ 1418 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1419 DMA_RESV_USAGE_BOOKKEEP, f) { 1420 if (amdkfd_fence_check_mm(f, current->mm) && 1421 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1422 return false; 1423 } 1424 1425 /* Preemptible BOs don't own system resources managed by the 1426 * driver (pages, VRAM, GART space). They point to resources 1427 * owned by someone else (e.g. pageable memory in user mode 1428 * or a DMABuf). They are used in a preemptible context so we 1429 * can guarantee no deadlocks and good QoS in case of MMU 1430 * notifiers or DMABuf move notifiers from the resource owner. 1431 */ 1432 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1433 return false; 1434 1435 if (bo->resource->mem_type == TTM_PL_TT && 1436 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1437 return false; 1438 1439 return ttm_bo_eviction_valuable(bo, place); 1440 } 1441 1442 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1443 void *buf, size_t size, bool write) 1444 { 1445 while (size) { 1446 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1447 uint64_t bytes = 4 - (pos & 0x3); 1448 uint32_t shift = (pos & 0x3) * 8; 1449 uint32_t mask = 0xffffffff << shift; 1450 uint32_t value = 0; 1451 1452 if (size < bytes) { 1453 mask &= 0xffffffff >> (bytes - size) * 8; 1454 bytes = size; 1455 } 1456 1457 if (mask != 0xffffffff) { 1458 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1459 if (write) { 1460 value &= ~mask; 1461 value |= (*(uint32_t *)buf << shift) & mask; 1462 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1463 } else { 1464 value = (value & mask) >> shift; 1465 memcpy(buf, &value, bytes); 1466 } 1467 } else { 1468 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1469 } 1470 1471 pos += bytes; 1472 buf += bytes; 1473 size -= bytes; 1474 } 1475 } 1476 1477 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1478 unsigned long offset, void *buf, 1479 int len, int write) 1480 { 1481 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1482 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1483 struct amdgpu_res_cursor src_mm; 1484 struct amdgpu_job *job; 1485 struct dma_fence *fence; 1486 uint64_t src_addr, dst_addr; 1487 unsigned int num_dw; 1488 int r, idx; 1489 1490 if (len != PAGE_SIZE) 1491 return -EINVAL; 1492 1493 if (!adev->mman.sdma_access_ptr) 1494 return -EACCES; 1495 1496 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1497 return -ENODEV; 1498 1499 if (write) 1500 memcpy(adev->mman.sdma_access_ptr, buf, len); 1501 1502 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1503 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1504 AMDGPU_FENCE_OWNER_UNDEFINED, 1505 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1506 &job); 1507 if (r) 1508 goto out; 1509 1510 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1511 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1512 src_mm.start; 1513 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1514 if (write) 1515 swap(src_addr, dst_addr); 1516 1517 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1518 PAGE_SIZE, 0); 1519 1520 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1521 WARN_ON(job->ibs[0].length_dw > num_dw); 1522 1523 fence = amdgpu_job_submit(job); 1524 1525 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1526 r = -ETIMEDOUT; 1527 dma_fence_put(fence); 1528 1529 if (!(r || write)) 1530 memcpy(buf, adev->mman.sdma_access_ptr, len); 1531 out: 1532 drm_dev_exit(idx); 1533 return r; 1534 } 1535 1536 /** 1537 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1538 * 1539 * @bo: The buffer object to read/write 1540 * @offset: Offset into buffer object 1541 * @buf: Secondary buffer to write/read from 1542 * @len: Length in bytes of access 1543 * @write: true if writing 1544 * 1545 * This is used to access VRAM that backs a buffer object via MMIO 1546 * access for debugging purposes. 1547 */ 1548 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1549 unsigned long offset, void *buf, int len, 1550 int write) 1551 { 1552 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1553 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1554 struct amdgpu_res_cursor cursor; 1555 int ret = 0; 1556 1557 if (bo->resource->mem_type != TTM_PL_VRAM) 1558 return -EIO; 1559 1560 if (amdgpu_device_has_timeouts_enabled(adev) && 1561 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1562 return len; 1563 1564 amdgpu_res_first(bo->resource, offset, len, &cursor); 1565 while (cursor.remaining) { 1566 size_t count, size = cursor.size; 1567 loff_t pos = cursor.start; 1568 1569 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1570 size -= count; 1571 if (size) { 1572 /* using MM to access rest vram and handle un-aligned address */ 1573 pos += count; 1574 buf += count; 1575 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1576 } 1577 1578 ret += cursor.size; 1579 buf += cursor.size; 1580 amdgpu_res_next(&cursor, cursor.size); 1581 } 1582 1583 return ret; 1584 } 1585 1586 static void 1587 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1588 { 1589 amdgpu_bo_move_notify(bo, false, NULL); 1590 } 1591 1592 static struct ttm_device_funcs amdgpu_bo_driver = { 1593 .ttm_tt_create = &amdgpu_ttm_tt_create, 1594 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1595 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1596 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1597 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1598 .evict_flags = &amdgpu_evict_flags, 1599 .move = &amdgpu_bo_move, 1600 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1601 .release_notify = &amdgpu_bo_release_notify, 1602 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1603 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1604 .access_memory = &amdgpu_ttm_access_memory, 1605 }; 1606 1607 /* 1608 * Firmware Reservation functions 1609 */ 1610 /** 1611 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1612 * 1613 * @adev: amdgpu_device pointer 1614 * 1615 * free fw reserved vram if it has been reserved. 1616 */ 1617 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1618 { 1619 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1620 NULL, &adev->mman.fw_vram_usage_va); 1621 } 1622 1623 /* 1624 * Driver Reservation functions 1625 */ 1626 /** 1627 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1628 * 1629 * @adev: amdgpu_device pointer 1630 * 1631 * free drv reserved vram if it has been reserved. 1632 */ 1633 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1634 { 1635 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1636 NULL, 1637 &adev->mman.drv_vram_usage_va); 1638 } 1639 1640 /** 1641 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1642 * 1643 * @adev: amdgpu_device pointer 1644 * 1645 * create bo vram reservation from fw. 1646 */ 1647 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1648 { 1649 uint64_t vram_size = adev->gmc.visible_vram_size; 1650 1651 adev->mman.fw_vram_usage_va = NULL; 1652 adev->mman.fw_vram_usage_reserved_bo = NULL; 1653 1654 if (adev->mman.fw_vram_usage_size == 0 || 1655 adev->mman.fw_vram_usage_size > vram_size) 1656 return 0; 1657 1658 return amdgpu_bo_create_kernel_at(adev, 1659 adev->mman.fw_vram_usage_start_offset, 1660 adev->mman.fw_vram_usage_size, 1661 &adev->mman.fw_vram_usage_reserved_bo, 1662 &adev->mman.fw_vram_usage_va); 1663 } 1664 1665 /** 1666 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1667 * 1668 * @adev: amdgpu_device pointer 1669 * 1670 * create bo vram reservation from drv. 1671 */ 1672 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1673 { 1674 u64 vram_size = adev->gmc.visible_vram_size; 1675 1676 adev->mman.drv_vram_usage_va = NULL; 1677 adev->mman.drv_vram_usage_reserved_bo = NULL; 1678 1679 if (adev->mman.drv_vram_usage_size == 0 || 1680 adev->mman.drv_vram_usage_size > vram_size) 1681 return 0; 1682 1683 return amdgpu_bo_create_kernel_at(adev, 1684 adev->mman.drv_vram_usage_start_offset, 1685 adev->mman.drv_vram_usage_size, 1686 &adev->mman.drv_vram_usage_reserved_bo, 1687 &adev->mman.drv_vram_usage_va); 1688 } 1689 1690 /* 1691 * Memoy training reservation functions 1692 */ 1693 1694 /** 1695 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1696 * 1697 * @adev: amdgpu_device pointer 1698 * 1699 * free memory training reserved vram if it has been reserved. 1700 */ 1701 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1702 { 1703 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1704 1705 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1706 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1707 ctx->c2p_bo = NULL; 1708 1709 return 0; 1710 } 1711 1712 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1713 uint32_t reserve_size) 1714 { 1715 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1716 1717 memset(ctx, 0, sizeof(*ctx)); 1718 1719 ctx->c2p_train_data_offset = 1720 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1721 ctx->p2c_train_data_offset = 1722 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1723 ctx->train_data_size = 1724 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1725 1726 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1727 ctx->train_data_size, 1728 ctx->p2c_train_data_offset, 1729 ctx->c2p_train_data_offset); 1730 } 1731 1732 /* 1733 * reserve TMR memory at the top of VRAM which holds 1734 * IP Discovery data and is protected by PSP. 1735 */ 1736 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1737 { 1738 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1739 bool mem_train_support = false; 1740 uint32_t reserve_size = 0; 1741 int ret; 1742 1743 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1744 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1745 mem_train_support = true; 1746 else 1747 DRM_DEBUG("memory training does not support!\n"); 1748 } 1749 1750 /* 1751 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1752 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1753 * 1754 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1755 * discovery data and G6 memory training data respectively 1756 */ 1757 if (adev->bios) 1758 reserve_size = 1759 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1760 1761 if (!adev->bios && 1762 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1763 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4))) 1764 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1765 else if (!reserve_size) 1766 reserve_size = DISCOVERY_TMR_OFFSET; 1767 1768 if (mem_train_support) { 1769 /* reserve vram for mem train according to TMR location */ 1770 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1771 ret = amdgpu_bo_create_kernel_at(adev, 1772 ctx->c2p_train_data_offset, 1773 ctx->train_data_size, 1774 &ctx->c2p_bo, 1775 NULL); 1776 if (ret) { 1777 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1778 amdgpu_ttm_training_reserve_vram_fini(adev); 1779 return ret; 1780 } 1781 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1782 } 1783 1784 if (!adev->gmc.is_app_apu) { 1785 ret = amdgpu_bo_create_kernel_at( 1786 adev, adev->gmc.real_vram_size - reserve_size, 1787 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1788 if (ret) { 1789 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1790 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1791 NULL, NULL); 1792 return ret; 1793 } 1794 } else { 1795 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1796 } 1797 1798 return 0; 1799 } 1800 1801 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1802 { 1803 int i; 1804 1805 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1806 return 0; 1807 1808 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1809 sizeof(*adev->mman.ttm_pools), 1810 GFP_KERNEL); 1811 if (!adev->mman.ttm_pools) 1812 return -ENOMEM; 1813 1814 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1815 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1816 adev->gmc.mem_partitions[i].numa.node, 1817 false, false); 1818 } 1819 return 0; 1820 } 1821 1822 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1823 { 1824 int i; 1825 1826 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1827 return; 1828 1829 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1830 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1831 1832 kfree(adev->mman.ttm_pools); 1833 adev->mman.ttm_pools = NULL; 1834 } 1835 1836 /* 1837 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1838 * gtt/vram related fields. 1839 * 1840 * This initializes all of the memory space pools that the TTM layer 1841 * will need such as the GTT space (system memory mapped to the device), 1842 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1843 * can be mapped per VMID. 1844 */ 1845 int amdgpu_ttm_init(struct amdgpu_device *adev) 1846 { 1847 uint64_t gtt_size; 1848 int r; 1849 1850 mutex_init(&adev->mman.gtt_window_lock); 1851 1852 /* No others user of address space so set it to 0 */ 1853 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1854 adev_to_drm(adev)->anon_inode->i_mapping, 1855 adev_to_drm(adev)->vma_offset_manager, 1856 adev->need_swiotlb, 1857 dma_addressing_limited(adev->dev)); 1858 if (r) { 1859 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1860 return r; 1861 } 1862 1863 r = amdgpu_ttm_pools_init(adev); 1864 if (r) { 1865 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1866 return r; 1867 } 1868 adev->mman.initialized = true; 1869 1870 /* Initialize VRAM pool with all of VRAM divided into pages */ 1871 r = amdgpu_vram_mgr_init(adev); 1872 if (r) { 1873 DRM_ERROR("Failed initializing VRAM heap.\n"); 1874 return r; 1875 } 1876 1877 /* Change the size here instead of the init above so only lpfn is affected */ 1878 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1879 #ifdef CONFIG_64BIT 1880 #ifdef CONFIG_X86 1881 if (adev->gmc.xgmi.connected_to_cpu) 1882 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1883 adev->gmc.visible_vram_size); 1884 1885 else if (adev->gmc.is_app_apu) 1886 DRM_DEBUG_DRIVER( 1887 "No need to ioremap when real vram size is 0\n"); 1888 else 1889 #endif 1890 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1891 adev->gmc.visible_vram_size); 1892 #endif 1893 1894 /* 1895 *The reserved vram for firmware must be pinned to the specified 1896 *place on the VRAM, so reserve it early. 1897 */ 1898 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1899 if (r) 1900 return r; 1901 1902 /* 1903 *The reserved vram for driver must be pinned to the specified 1904 *place on the VRAM, so reserve it early. 1905 */ 1906 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1907 if (r) 1908 return r; 1909 1910 /* 1911 * only NAVI10 and onwards ASIC support for IP discovery. 1912 * If IP discovery enabled, a block of memory should be 1913 * reserved for IP discovey. 1914 */ 1915 if (adev->mman.discovery_bin) { 1916 r = amdgpu_ttm_reserve_tmr(adev); 1917 if (r) 1918 return r; 1919 } 1920 1921 /* allocate memory as required for VGA 1922 * This is used for VGA emulation and pre-OS scanout buffers to 1923 * avoid display artifacts while transitioning between pre-OS 1924 * and driver. 1925 */ 1926 if (!adev->gmc.is_app_apu) { 1927 r = amdgpu_bo_create_kernel_at(adev, 0, 1928 adev->mman.stolen_vga_size, 1929 &adev->mman.stolen_vga_memory, 1930 NULL); 1931 if (r) 1932 return r; 1933 1934 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1935 adev->mman.stolen_extended_size, 1936 &adev->mman.stolen_extended_memory, 1937 NULL); 1938 1939 if (r) 1940 return r; 1941 1942 r = amdgpu_bo_create_kernel_at(adev, 1943 adev->mman.stolen_reserved_offset, 1944 adev->mman.stolen_reserved_size, 1945 &adev->mman.stolen_reserved_memory, 1946 NULL); 1947 if (r) 1948 return r; 1949 } else { 1950 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1951 } 1952 1953 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1954 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1955 1956 /* Compute GTT size, either based on TTM limit 1957 * or whatever the user passed on module init. 1958 */ 1959 if (amdgpu_gtt_size == -1) 1960 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1961 else 1962 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1963 1964 /* Initialize GTT memory pool */ 1965 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1966 if (r) { 1967 DRM_ERROR("Failed initializing GTT heap.\n"); 1968 return r; 1969 } 1970 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1971 (unsigned int)(gtt_size / (1024 * 1024))); 1972 1973 /* Initiailize doorbell pool on PCI BAR */ 1974 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1975 if (r) { 1976 DRM_ERROR("Failed initializing doorbell heap.\n"); 1977 return r; 1978 } 1979 1980 /* Create a boorbell page for kernel usages */ 1981 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1982 if (r) { 1983 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1984 return r; 1985 } 1986 1987 /* Initialize preemptible memory pool */ 1988 r = amdgpu_preempt_mgr_init(adev); 1989 if (r) { 1990 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1991 return r; 1992 } 1993 1994 /* Initialize various on-chip memory pools */ 1995 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1996 if (r) { 1997 DRM_ERROR("Failed initializing GDS heap.\n"); 1998 return r; 1999 } 2000 2001 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 2002 if (r) { 2003 DRM_ERROR("Failed initializing gws heap.\n"); 2004 return r; 2005 } 2006 2007 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 2008 if (r) { 2009 DRM_ERROR("Failed initializing oa heap.\n"); 2010 return r; 2011 } 2012 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2013 AMDGPU_GEM_DOMAIN_GTT, 2014 &adev->mman.sdma_access_bo, NULL, 2015 &adev->mman.sdma_access_ptr)) 2016 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2017 2018 return 0; 2019 } 2020 2021 /* 2022 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2023 */ 2024 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2025 { 2026 int idx; 2027 2028 if (!adev->mman.initialized) 2029 return; 2030 2031 amdgpu_ttm_pools_fini(adev); 2032 2033 amdgpu_ttm_training_reserve_vram_fini(adev); 2034 /* return the stolen vga memory back to VRAM */ 2035 if (!adev->gmc.is_app_apu) { 2036 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2037 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2038 /* return the FW reserved memory back to VRAM */ 2039 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2040 NULL); 2041 if (adev->mman.stolen_reserved_size) 2042 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2043 NULL, NULL); 2044 } 2045 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2046 &adev->mman.sdma_access_ptr); 2047 amdgpu_ttm_fw_reserve_vram_fini(adev); 2048 amdgpu_ttm_drv_reserve_vram_fini(adev); 2049 2050 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2051 2052 if (adev->mman.aper_base_kaddr) 2053 iounmap(adev->mman.aper_base_kaddr); 2054 adev->mman.aper_base_kaddr = NULL; 2055 2056 drm_dev_exit(idx); 2057 } 2058 2059 amdgpu_vram_mgr_fini(adev); 2060 amdgpu_gtt_mgr_fini(adev); 2061 amdgpu_preempt_mgr_fini(adev); 2062 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2063 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2064 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2065 ttm_device_fini(&adev->mman.bdev); 2066 adev->mman.initialized = false; 2067 DRM_INFO("amdgpu: ttm finalized\n"); 2068 } 2069 2070 /** 2071 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2072 * 2073 * @adev: amdgpu_device pointer 2074 * @enable: true when we can use buffer functions. 2075 * 2076 * Enable/disable use of buffer functions during suspend/resume. This should 2077 * only be called at bootup or when userspace isn't running. 2078 */ 2079 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2080 { 2081 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2082 uint64_t size; 2083 int r; 2084 2085 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2086 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2087 return; 2088 2089 if (enable) { 2090 struct amdgpu_ring *ring; 2091 struct drm_gpu_scheduler *sched; 2092 2093 ring = adev->mman.buffer_funcs_ring; 2094 sched = &ring->sched; 2095 r = drm_sched_entity_init(&adev->mman.high_pr, 2096 DRM_SCHED_PRIORITY_KERNEL, &sched, 2097 1, NULL); 2098 if (r) { 2099 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2100 r); 2101 return; 2102 } 2103 2104 r = drm_sched_entity_init(&adev->mman.low_pr, 2105 DRM_SCHED_PRIORITY_NORMAL, &sched, 2106 1, NULL); 2107 if (r) { 2108 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2109 r); 2110 goto error_free_entity; 2111 } 2112 } else { 2113 drm_sched_entity_destroy(&adev->mman.high_pr); 2114 drm_sched_entity_destroy(&adev->mman.low_pr); 2115 dma_fence_put(man->move); 2116 man->move = NULL; 2117 } 2118 2119 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2120 if (enable) 2121 size = adev->gmc.real_vram_size; 2122 else 2123 size = adev->gmc.visible_vram_size; 2124 man->size = size; 2125 adev->mman.buffer_funcs_enabled = enable; 2126 2127 return; 2128 2129 error_free_entity: 2130 drm_sched_entity_destroy(&adev->mman.high_pr); 2131 } 2132 2133 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2134 bool direct_submit, 2135 unsigned int num_dw, 2136 struct dma_resv *resv, 2137 bool vm_needs_flush, 2138 struct amdgpu_job **job, 2139 bool delayed) 2140 { 2141 enum amdgpu_ib_pool_type pool = direct_submit ? 2142 AMDGPU_IB_POOL_DIRECT : 2143 AMDGPU_IB_POOL_DELAYED; 2144 int r; 2145 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2146 &adev->mman.high_pr; 2147 r = amdgpu_job_alloc_with_ib(adev, entity, 2148 AMDGPU_FENCE_OWNER_UNDEFINED, 2149 num_dw * 4, pool, job); 2150 if (r) 2151 return r; 2152 2153 if (vm_needs_flush) { 2154 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2155 adev->gmc.pdb0_bo : 2156 adev->gart.bo); 2157 (*job)->vm_needs_flush = true; 2158 } 2159 if (!resv) 2160 return 0; 2161 2162 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2163 DMA_RESV_USAGE_BOOKKEEP); 2164 } 2165 2166 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2167 uint64_t dst_offset, uint32_t byte_count, 2168 struct dma_resv *resv, 2169 struct dma_fence **fence, bool direct_submit, 2170 bool vm_needs_flush, uint32_t copy_flags) 2171 { 2172 struct amdgpu_device *adev = ring->adev; 2173 unsigned int num_loops, num_dw; 2174 struct amdgpu_job *job; 2175 uint32_t max_bytes; 2176 unsigned int i; 2177 int r; 2178 2179 if (!direct_submit && !ring->sched.ready) { 2180 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2181 return -EINVAL; 2182 } 2183 2184 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2185 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2186 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2187 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2188 resv, vm_needs_flush, &job, false); 2189 if (r) 2190 return r; 2191 2192 for (i = 0; i < num_loops; i++) { 2193 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2194 2195 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2196 dst_offset, cur_size_in_bytes, copy_flags); 2197 src_offset += cur_size_in_bytes; 2198 dst_offset += cur_size_in_bytes; 2199 byte_count -= cur_size_in_bytes; 2200 } 2201 2202 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2203 WARN_ON(job->ibs[0].length_dw > num_dw); 2204 if (direct_submit) 2205 r = amdgpu_job_submit_direct(job, ring, fence); 2206 else 2207 *fence = amdgpu_job_submit(job); 2208 if (r) 2209 goto error_free; 2210 2211 return r; 2212 2213 error_free: 2214 amdgpu_job_free(job); 2215 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2216 return r; 2217 } 2218 2219 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2220 uint64_t dst_addr, uint32_t byte_count, 2221 struct dma_resv *resv, 2222 struct dma_fence **fence, 2223 bool vm_needs_flush, bool delayed) 2224 { 2225 struct amdgpu_device *adev = ring->adev; 2226 unsigned int num_loops, num_dw; 2227 struct amdgpu_job *job; 2228 uint32_t max_bytes; 2229 unsigned int i; 2230 int r; 2231 2232 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2233 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2234 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2235 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2236 &job, delayed); 2237 if (r) 2238 return r; 2239 2240 for (i = 0; i < num_loops; i++) { 2241 uint32_t cur_size = min(byte_count, max_bytes); 2242 2243 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2244 cur_size); 2245 2246 dst_addr += cur_size; 2247 byte_count -= cur_size; 2248 } 2249 2250 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2251 WARN_ON(job->ibs[0].length_dw > num_dw); 2252 *fence = amdgpu_job_submit(job); 2253 return 0; 2254 } 2255 2256 /** 2257 * amdgpu_ttm_clear_buffer - clear memory buffers 2258 * @bo: amdgpu buffer object 2259 * @resv: reservation object 2260 * @fence: dma_fence associated with the operation 2261 * 2262 * Clear the memory buffer resource. 2263 * 2264 * Returns: 2265 * 0 for success or a negative error code on failure. 2266 */ 2267 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2268 struct dma_resv *resv, 2269 struct dma_fence **fence) 2270 { 2271 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2272 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2273 struct amdgpu_res_cursor cursor; 2274 u64 addr; 2275 int r; 2276 2277 if (!adev->mman.buffer_funcs_enabled) 2278 return -EINVAL; 2279 2280 if (!fence) 2281 return -EINVAL; 2282 2283 *fence = dma_fence_get_stub(); 2284 2285 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2286 2287 mutex_lock(&adev->mman.gtt_window_lock); 2288 while (cursor.remaining) { 2289 struct dma_fence *next = NULL; 2290 u64 size; 2291 2292 if (amdgpu_res_cleared(&cursor)) { 2293 amdgpu_res_next(&cursor, cursor.size); 2294 continue; 2295 } 2296 2297 /* Never clear more than 256MiB at once to avoid timeouts */ 2298 size = min(cursor.size, 256ULL << 20); 2299 2300 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2301 1, ring, false, &size, &addr); 2302 if (r) 2303 goto err; 2304 2305 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2306 &next, true, true); 2307 if (r) 2308 goto err; 2309 2310 dma_fence_put(*fence); 2311 *fence = next; 2312 2313 amdgpu_res_next(&cursor, size); 2314 } 2315 err: 2316 mutex_unlock(&adev->mman.gtt_window_lock); 2317 2318 return r; 2319 } 2320 2321 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2322 uint32_t src_data, 2323 struct dma_resv *resv, 2324 struct dma_fence **f, 2325 bool delayed) 2326 { 2327 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2328 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2329 struct dma_fence *fence = NULL; 2330 struct amdgpu_res_cursor dst; 2331 int r; 2332 2333 if (!adev->mman.buffer_funcs_enabled) { 2334 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2335 return -EINVAL; 2336 } 2337 2338 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2339 2340 mutex_lock(&adev->mman.gtt_window_lock); 2341 while (dst.remaining) { 2342 struct dma_fence *next; 2343 uint64_t cur_size, to; 2344 2345 /* Never fill more than 256MiB at once to avoid timeouts */ 2346 cur_size = min(dst.size, 256ULL << 20); 2347 2348 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2349 1, ring, false, &cur_size, &to); 2350 if (r) 2351 goto error; 2352 2353 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2354 &next, true, delayed); 2355 if (r) 2356 goto error; 2357 2358 dma_fence_put(fence); 2359 fence = next; 2360 2361 amdgpu_res_next(&dst, cur_size); 2362 } 2363 error: 2364 mutex_unlock(&adev->mman.gtt_window_lock); 2365 if (f) 2366 *f = dma_fence_get(fence); 2367 dma_fence_put(fence); 2368 return r; 2369 } 2370 2371 /** 2372 * amdgpu_ttm_evict_resources - evict memory buffers 2373 * @adev: amdgpu device object 2374 * @mem_type: evicted BO's memory type 2375 * 2376 * Evicts all @mem_type buffers on the lru list of the memory type. 2377 * 2378 * Returns: 2379 * 0 for success or a negative error code on failure. 2380 */ 2381 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2382 { 2383 struct ttm_resource_manager *man; 2384 2385 switch (mem_type) { 2386 case TTM_PL_VRAM: 2387 case TTM_PL_TT: 2388 case AMDGPU_PL_GWS: 2389 case AMDGPU_PL_GDS: 2390 case AMDGPU_PL_OA: 2391 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2392 break; 2393 default: 2394 DRM_ERROR("Trying to evict invalid memory type\n"); 2395 return -EINVAL; 2396 } 2397 2398 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2399 } 2400 2401 #if defined(CONFIG_DEBUG_FS) 2402 2403 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2404 { 2405 struct amdgpu_device *adev = m->private; 2406 2407 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2408 } 2409 2410 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2411 2412 /* 2413 * amdgpu_ttm_vram_read - Linear read access to VRAM 2414 * 2415 * Accesses VRAM via MMIO for debugging purposes. 2416 */ 2417 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2418 size_t size, loff_t *pos) 2419 { 2420 struct amdgpu_device *adev = file_inode(f)->i_private; 2421 ssize_t result = 0; 2422 2423 if (size & 0x3 || *pos & 0x3) 2424 return -EINVAL; 2425 2426 if (*pos >= adev->gmc.mc_vram_size) 2427 return -ENXIO; 2428 2429 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2430 while (size) { 2431 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2432 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2433 2434 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2435 if (copy_to_user(buf, value, bytes)) 2436 return -EFAULT; 2437 2438 result += bytes; 2439 buf += bytes; 2440 *pos += bytes; 2441 size -= bytes; 2442 } 2443 2444 return result; 2445 } 2446 2447 /* 2448 * amdgpu_ttm_vram_write - Linear write access to VRAM 2449 * 2450 * Accesses VRAM via MMIO for debugging purposes. 2451 */ 2452 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2453 size_t size, loff_t *pos) 2454 { 2455 struct amdgpu_device *adev = file_inode(f)->i_private; 2456 ssize_t result = 0; 2457 int r; 2458 2459 if (size & 0x3 || *pos & 0x3) 2460 return -EINVAL; 2461 2462 if (*pos >= adev->gmc.mc_vram_size) 2463 return -ENXIO; 2464 2465 while (size) { 2466 uint32_t value; 2467 2468 if (*pos >= adev->gmc.mc_vram_size) 2469 return result; 2470 2471 r = get_user(value, (uint32_t *)buf); 2472 if (r) 2473 return r; 2474 2475 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2476 2477 result += 4; 2478 buf += 4; 2479 *pos += 4; 2480 size -= 4; 2481 } 2482 2483 return result; 2484 } 2485 2486 static const struct file_operations amdgpu_ttm_vram_fops = { 2487 .owner = THIS_MODULE, 2488 .read = amdgpu_ttm_vram_read, 2489 .write = amdgpu_ttm_vram_write, 2490 .llseek = default_llseek, 2491 }; 2492 2493 /* 2494 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2495 * 2496 * This function is used to read memory that has been mapped to the 2497 * GPU and the known addresses are not physical addresses but instead 2498 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2499 */ 2500 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2501 size_t size, loff_t *pos) 2502 { 2503 struct amdgpu_device *adev = file_inode(f)->i_private; 2504 struct iommu_domain *dom; 2505 ssize_t result = 0; 2506 int r; 2507 2508 /* retrieve the IOMMU domain if any for this device */ 2509 dom = iommu_get_domain_for_dev(adev->dev); 2510 2511 while (size) { 2512 phys_addr_t addr = *pos & PAGE_MASK; 2513 loff_t off = *pos & ~PAGE_MASK; 2514 size_t bytes = PAGE_SIZE - off; 2515 unsigned long pfn; 2516 struct page *p; 2517 void *ptr; 2518 2519 bytes = min(bytes, size); 2520 2521 /* Translate the bus address to a physical address. If 2522 * the domain is NULL it means there is no IOMMU active 2523 * and the address translation is the identity 2524 */ 2525 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2526 2527 pfn = addr >> PAGE_SHIFT; 2528 if (!pfn_valid(pfn)) 2529 return -EPERM; 2530 2531 p = pfn_to_page(pfn); 2532 if (p->mapping != adev->mman.bdev.dev_mapping) 2533 return -EPERM; 2534 2535 ptr = kmap_local_page(p); 2536 r = copy_to_user(buf, ptr + off, bytes); 2537 kunmap_local(ptr); 2538 if (r) 2539 return -EFAULT; 2540 2541 size -= bytes; 2542 *pos += bytes; 2543 result += bytes; 2544 } 2545 2546 return result; 2547 } 2548 2549 /* 2550 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2551 * 2552 * This function is used to write memory that has been mapped to the 2553 * GPU and the known addresses are not physical addresses but instead 2554 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2555 */ 2556 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2557 size_t size, loff_t *pos) 2558 { 2559 struct amdgpu_device *adev = file_inode(f)->i_private; 2560 struct iommu_domain *dom; 2561 ssize_t result = 0; 2562 int r; 2563 2564 dom = iommu_get_domain_for_dev(adev->dev); 2565 2566 while (size) { 2567 phys_addr_t addr = *pos & PAGE_MASK; 2568 loff_t off = *pos & ~PAGE_MASK; 2569 size_t bytes = PAGE_SIZE - off; 2570 unsigned long pfn; 2571 struct page *p; 2572 void *ptr; 2573 2574 bytes = min(bytes, size); 2575 2576 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2577 2578 pfn = addr >> PAGE_SHIFT; 2579 if (!pfn_valid(pfn)) 2580 return -EPERM; 2581 2582 p = pfn_to_page(pfn); 2583 if (p->mapping != adev->mman.bdev.dev_mapping) 2584 return -EPERM; 2585 2586 ptr = kmap_local_page(p); 2587 r = copy_from_user(ptr + off, buf, bytes); 2588 kunmap_local(ptr); 2589 if (r) 2590 return -EFAULT; 2591 2592 size -= bytes; 2593 *pos += bytes; 2594 result += bytes; 2595 } 2596 2597 return result; 2598 } 2599 2600 static const struct file_operations amdgpu_ttm_iomem_fops = { 2601 .owner = THIS_MODULE, 2602 .read = amdgpu_iomem_read, 2603 .write = amdgpu_iomem_write, 2604 .llseek = default_llseek 2605 }; 2606 2607 #endif 2608 2609 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2610 { 2611 #if defined(CONFIG_DEBUG_FS) 2612 struct drm_minor *minor = adev_to_drm(adev)->primary; 2613 struct dentry *root = minor->debugfs_root; 2614 2615 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2616 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2617 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2618 &amdgpu_ttm_iomem_fops); 2619 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2620 &amdgpu_ttm_page_pool_fops); 2621 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2622 TTM_PL_VRAM), 2623 root, "amdgpu_vram_mm"); 2624 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2625 TTM_PL_TT), 2626 root, "amdgpu_gtt_mm"); 2627 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2628 AMDGPU_PL_GDS), 2629 root, "amdgpu_gds_mm"); 2630 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2631 AMDGPU_PL_GWS), 2632 root, "amdgpu_gws_mm"); 2633 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2634 AMDGPU_PL_OA), 2635 root, "amdgpu_oa_mm"); 2636 2637 #endif 2638 } 2639