1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, 0); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 uint32_t copy_flags = 0; 299 struct amdgpu_bo *abo_src, *abo_dst; 300 301 if (!adev->mman.buffer_funcs_enabled) { 302 DRM_ERROR("Trying to move memory with ring turned off.\n"); 303 return -EINVAL; 304 } 305 306 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 308 309 mutex_lock(&adev->mman.gtt_window_lock); 310 while (src_mm.remaining) { 311 uint64_t from, to, cur_size; 312 struct dma_fence *next; 313 314 /* Never copy more than 256MiB at once to avoid a timeout */ 315 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 316 317 /* Map src to window 0 and dst to window 1. */ 318 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 319 0, ring, tmz, &cur_size, &from); 320 if (r) 321 goto error; 322 323 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 324 1, ring, tmz, &cur_size, &to); 325 if (r) 326 goto error; 327 328 abo_src = ttm_to_amdgpu_bo(src->bo); 329 abo_dst = ttm_to_amdgpu_bo(dst->bo); 330 if (tmz) 331 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 332 if (abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) 333 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED; 334 if (abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) 335 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED; 336 337 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 338 &next, false, true, copy_flags); 339 if (r) 340 goto error; 341 342 dma_fence_put(fence); 343 fence = next; 344 345 amdgpu_res_next(&src_mm, cur_size); 346 amdgpu_res_next(&dst_mm, cur_size); 347 } 348 error: 349 mutex_unlock(&adev->mman.gtt_window_lock); 350 if (f) 351 *f = dma_fence_get(fence); 352 dma_fence_put(fence); 353 return r; 354 } 355 356 /* 357 * amdgpu_move_blit - Copy an entire buffer to another buffer 358 * 359 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 360 * help move buffers to and from VRAM. 361 */ 362 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 363 bool evict, 364 struct ttm_resource *new_mem, 365 struct ttm_resource *old_mem) 366 { 367 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 368 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 369 struct amdgpu_copy_mem src, dst; 370 struct dma_fence *fence = NULL; 371 int r; 372 373 src.bo = bo; 374 dst.bo = bo; 375 src.mem = old_mem; 376 dst.mem = new_mem; 377 src.offset = 0; 378 dst.offset = 0; 379 380 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 381 new_mem->size, 382 amdgpu_bo_encrypted(abo), 383 bo->base.resv, &fence); 384 if (r) 385 goto error; 386 387 /* clear the space being freed */ 388 if (old_mem->mem_type == TTM_PL_VRAM && 389 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 390 struct dma_fence *wipe_fence = NULL; 391 392 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 393 false); 394 if (r) { 395 goto error; 396 } else if (wipe_fence) { 397 dma_fence_put(fence); 398 fence = wipe_fence; 399 } 400 } 401 402 /* Always block for VM page tables before committing the new location */ 403 if (bo->type == ttm_bo_type_kernel) 404 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 405 else 406 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 407 dma_fence_put(fence); 408 return r; 409 410 error: 411 if (fence) 412 dma_fence_wait(fence, false); 413 dma_fence_put(fence); 414 return r; 415 } 416 417 /** 418 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 419 * @adev: amdgpu device 420 * @res: the resource to check 421 * 422 * Returns: true if the full resource is CPU visible, false otherwise. 423 */ 424 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 425 struct ttm_resource *res) 426 { 427 struct amdgpu_res_cursor cursor; 428 429 if (!res) 430 return false; 431 432 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 433 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 434 return true; 435 436 if (res->mem_type != TTM_PL_VRAM) 437 return false; 438 439 amdgpu_res_first(res, 0, res->size, &cursor); 440 while (cursor.remaining) { 441 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 442 return false; 443 amdgpu_res_next(&cursor, cursor.size); 444 } 445 446 return true; 447 } 448 449 /* 450 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 451 * 452 * Called by amdgpu_bo_move() 453 */ 454 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 455 struct ttm_resource *mem) 456 { 457 if (!amdgpu_res_cpu_visible(adev, mem)) 458 return false; 459 460 /* ttm_resource_ioremap only supports contiguous memory */ 461 if (mem->mem_type == TTM_PL_VRAM && 462 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 463 return false; 464 465 return true; 466 } 467 468 /* 469 * amdgpu_bo_move - Move a buffer object to a new memory location 470 * 471 * Called by ttm_bo_handle_move_mem() 472 */ 473 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 474 struct ttm_operation_ctx *ctx, 475 struct ttm_resource *new_mem, 476 struct ttm_place *hop) 477 { 478 struct amdgpu_device *adev; 479 struct amdgpu_bo *abo; 480 struct ttm_resource *old_mem = bo->resource; 481 int r; 482 483 if (new_mem->mem_type == TTM_PL_TT || 484 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 485 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 486 if (r) 487 return r; 488 } 489 490 abo = ttm_to_amdgpu_bo(bo); 491 adev = amdgpu_ttm_adev(bo->bdev); 492 493 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 494 bo->ttm == NULL)) { 495 amdgpu_bo_move_notify(bo, evict, new_mem); 496 ttm_bo_move_null(bo, new_mem); 497 return 0; 498 } 499 if (old_mem->mem_type == TTM_PL_SYSTEM && 500 (new_mem->mem_type == TTM_PL_TT || 501 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 502 amdgpu_bo_move_notify(bo, evict, new_mem); 503 ttm_bo_move_null(bo, new_mem); 504 return 0; 505 } 506 if ((old_mem->mem_type == TTM_PL_TT || 507 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 508 new_mem->mem_type == TTM_PL_SYSTEM) { 509 r = ttm_bo_wait_ctx(bo, ctx); 510 if (r) 511 return r; 512 513 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 514 amdgpu_bo_move_notify(bo, evict, new_mem); 515 ttm_resource_free(bo, &bo->resource); 516 ttm_bo_assign_mem(bo, new_mem); 517 return 0; 518 } 519 520 if (old_mem->mem_type == AMDGPU_PL_GDS || 521 old_mem->mem_type == AMDGPU_PL_GWS || 522 old_mem->mem_type == AMDGPU_PL_OA || 523 old_mem->mem_type == AMDGPU_PL_DOORBELL || 524 new_mem->mem_type == AMDGPU_PL_GDS || 525 new_mem->mem_type == AMDGPU_PL_GWS || 526 new_mem->mem_type == AMDGPU_PL_OA || 527 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 528 /* Nothing to save here */ 529 amdgpu_bo_move_notify(bo, evict, new_mem); 530 ttm_bo_move_null(bo, new_mem); 531 return 0; 532 } 533 534 if (bo->type == ttm_bo_type_device && 535 new_mem->mem_type == TTM_PL_VRAM && 536 old_mem->mem_type != TTM_PL_VRAM) { 537 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 538 * accesses the BO after it's moved. 539 */ 540 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 541 } 542 543 if (adev->mman.buffer_funcs_enabled && 544 ((old_mem->mem_type == TTM_PL_SYSTEM && 545 new_mem->mem_type == TTM_PL_VRAM) || 546 (old_mem->mem_type == TTM_PL_VRAM && 547 new_mem->mem_type == TTM_PL_SYSTEM))) { 548 hop->fpfn = 0; 549 hop->lpfn = 0; 550 hop->mem_type = TTM_PL_TT; 551 hop->flags = TTM_PL_FLAG_TEMPORARY; 552 return -EMULTIHOP; 553 } 554 555 amdgpu_bo_move_notify(bo, evict, new_mem); 556 if (adev->mman.buffer_funcs_enabled) 557 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 558 else 559 r = -ENODEV; 560 561 if (r) { 562 /* Check that all memory is CPU accessible */ 563 if (!amdgpu_res_copyable(adev, old_mem) || 564 !amdgpu_res_copyable(adev, new_mem)) { 565 pr_err("Move buffer fallback to memcpy unavailable\n"); 566 return r; 567 } 568 569 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 570 if (r) 571 return r; 572 } 573 574 /* update statistics after the move */ 575 if (evict) 576 atomic64_inc(&adev->num_evictions); 577 atomic64_add(bo->base.size, &adev->num_bytes_moved); 578 return 0; 579 } 580 581 /* 582 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 583 * 584 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 585 */ 586 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 587 struct ttm_resource *mem) 588 { 589 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 590 591 switch (mem->mem_type) { 592 case TTM_PL_SYSTEM: 593 /* system memory */ 594 return 0; 595 case TTM_PL_TT: 596 case AMDGPU_PL_PREEMPT: 597 break; 598 case TTM_PL_VRAM: 599 mem->bus.offset = mem->start << PAGE_SHIFT; 600 601 if (adev->mman.aper_base_kaddr && 602 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 603 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 604 mem->bus.offset; 605 606 mem->bus.offset += adev->gmc.aper_base; 607 mem->bus.is_iomem = true; 608 break; 609 case AMDGPU_PL_DOORBELL: 610 mem->bus.offset = mem->start << PAGE_SHIFT; 611 mem->bus.offset += adev->doorbell.base; 612 mem->bus.is_iomem = true; 613 mem->bus.caching = ttm_uncached; 614 break; 615 default: 616 return -EINVAL; 617 } 618 return 0; 619 } 620 621 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 622 unsigned long page_offset) 623 { 624 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 625 struct amdgpu_res_cursor cursor; 626 627 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 628 &cursor); 629 630 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 631 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 632 633 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 634 } 635 636 /** 637 * amdgpu_ttm_domain_start - Returns GPU start address 638 * @adev: amdgpu device object 639 * @type: type of the memory 640 * 641 * Returns: 642 * GPU start address of a memory domain 643 */ 644 645 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 646 { 647 switch (type) { 648 case TTM_PL_TT: 649 return adev->gmc.gart_start; 650 case TTM_PL_VRAM: 651 return adev->gmc.vram_start; 652 } 653 654 return 0; 655 } 656 657 /* 658 * TTM backend functions. 659 */ 660 struct amdgpu_ttm_tt { 661 struct ttm_tt ttm; 662 struct drm_gem_object *gobj; 663 u64 offset; 664 uint64_t userptr; 665 struct task_struct *usertask; 666 uint32_t userflags; 667 bool bound; 668 int32_t pool_id; 669 }; 670 671 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 672 673 #ifdef CONFIG_DRM_AMDGPU_USERPTR 674 /* 675 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 676 * memory and start HMM tracking CPU page table update 677 * 678 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 679 * once afterwards to stop HMM tracking 680 */ 681 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 682 struct hmm_range **range) 683 { 684 struct ttm_tt *ttm = bo->tbo.ttm; 685 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 686 unsigned long start = gtt->userptr; 687 struct vm_area_struct *vma; 688 struct mm_struct *mm; 689 bool readonly; 690 int r = 0; 691 692 /* Make sure get_user_pages_done() can cleanup gracefully */ 693 *range = NULL; 694 695 mm = bo->notifier.mm; 696 if (unlikely(!mm)) { 697 DRM_DEBUG_DRIVER("BO is not registered?\n"); 698 return -EFAULT; 699 } 700 701 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 702 return -ESRCH; 703 704 mmap_read_lock(mm); 705 vma = vma_lookup(mm, start); 706 if (unlikely(!vma)) { 707 r = -EFAULT; 708 goto out_unlock; 709 } 710 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 711 vma->vm_file)) { 712 r = -EPERM; 713 goto out_unlock; 714 } 715 716 readonly = amdgpu_ttm_tt_is_readonly(ttm); 717 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 718 readonly, NULL, pages, range); 719 out_unlock: 720 mmap_read_unlock(mm); 721 if (r) 722 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 723 724 mmput(mm); 725 726 return r; 727 } 728 729 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 730 */ 731 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 732 struct hmm_range *range) 733 { 734 struct amdgpu_ttm_tt *gtt = (void *)ttm; 735 736 if (gtt && gtt->userptr && range) 737 amdgpu_hmm_range_get_pages_done(range); 738 } 739 740 /* 741 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 742 * Check if the pages backing this ttm range have been invalidated 743 * 744 * Returns: true if pages are still valid 745 */ 746 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 747 struct hmm_range *range) 748 { 749 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 750 751 if (!gtt || !gtt->userptr || !range) 752 return false; 753 754 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 755 gtt->userptr, ttm->num_pages); 756 757 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 758 759 return !amdgpu_hmm_range_get_pages_done(range); 760 } 761 #endif 762 763 /* 764 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 765 * 766 * Called by amdgpu_cs_list_validate(). This creates the page list 767 * that backs user memory and will ultimately be mapped into the device 768 * address space. 769 */ 770 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 771 { 772 unsigned long i; 773 774 for (i = 0; i < ttm->num_pages; ++i) 775 ttm->pages[i] = pages ? pages[i] : NULL; 776 } 777 778 /* 779 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 780 * 781 * Called by amdgpu_ttm_backend_bind() 782 **/ 783 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 784 struct ttm_tt *ttm) 785 { 786 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 787 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 788 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 789 enum dma_data_direction direction = write ? 790 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 791 int r; 792 793 /* Allocate an SG array and squash pages into it */ 794 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 795 (u64)ttm->num_pages << PAGE_SHIFT, 796 GFP_KERNEL); 797 if (r) 798 goto release_sg; 799 800 /* Map SG to device */ 801 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 802 if (r) 803 goto release_sg; 804 805 /* convert SG to linear array of pages and dma addresses */ 806 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 807 ttm->num_pages); 808 809 return 0; 810 811 release_sg: 812 kfree(ttm->sg); 813 ttm->sg = NULL; 814 return r; 815 } 816 817 /* 818 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 819 */ 820 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 821 struct ttm_tt *ttm) 822 { 823 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 824 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 825 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 826 enum dma_data_direction direction = write ? 827 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 828 829 /* double check that we don't free the table twice */ 830 if (!ttm->sg || !ttm->sg->sgl) 831 return; 832 833 /* unmap the pages mapped to the device */ 834 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 835 sg_free_table(ttm->sg); 836 } 837 838 /* 839 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 840 * MQDn+CtrlStackn where n is the number of XCCs per partition. 841 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 842 * and uses memory type default, UC. The rest of pages_per_xcc are 843 * Ctrl stack and modify their memory type to NC. 844 */ 845 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 846 struct ttm_tt *ttm, uint64_t flags) 847 { 848 struct amdgpu_ttm_tt *gtt = (void *)ttm; 849 uint64_t total_pages = ttm->num_pages; 850 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 851 uint64_t page_idx, pages_per_xcc; 852 int i; 853 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC); 854 855 pages_per_xcc = total_pages; 856 do_div(pages_per_xcc, num_xcc); 857 858 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 859 /* MQD page: use default flags */ 860 amdgpu_gart_bind(adev, 861 gtt->offset + (page_idx << PAGE_SHIFT), 862 1, >t->ttm.dma_address[page_idx], flags); 863 /* 864 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 865 * the second page of the BO onward. 866 */ 867 amdgpu_gart_bind(adev, 868 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 869 pages_per_xcc - 1, 870 >t->ttm.dma_address[page_idx + 1], 871 ctrl_flags); 872 } 873 } 874 875 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 876 struct ttm_buffer_object *tbo, 877 uint64_t flags) 878 { 879 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 880 struct ttm_tt *ttm = tbo->ttm; 881 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 882 883 if (amdgpu_bo_encrypted(abo)) 884 flags |= AMDGPU_PTE_TMZ; 885 886 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 887 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 888 } else { 889 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 890 gtt->ttm.dma_address, flags); 891 } 892 gtt->bound = true; 893 } 894 895 /* 896 * amdgpu_ttm_backend_bind - Bind GTT memory 897 * 898 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 899 * This handles binding GTT memory to the device address space. 900 */ 901 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 902 struct ttm_tt *ttm, 903 struct ttm_resource *bo_mem) 904 { 905 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 906 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 907 uint64_t flags; 908 int r; 909 910 if (!bo_mem) 911 return -EINVAL; 912 913 if (gtt->bound) 914 return 0; 915 916 if (gtt->userptr) { 917 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 918 if (r) { 919 DRM_ERROR("failed to pin userptr\n"); 920 return r; 921 } 922 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 923 if (!ttm->sg) { 924 struct dma_buf_attachment *attach; 925 struct sg_table *sgt; 926 927 attach = gtt->gobj->import_attach; 928 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 929 if (IS_ERR(sgt)) 930 return PTR_ERR(sgt); 931 932 ttm->sg = sgt; 933 } 934 935 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 936 ttm->num_pages); 937 } 938 939 if (!ttm->num_pages) { 940 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 941 ttm->num_pages, bo_mem, ttm); 942 } 943 944 if (bo_mem->mem_type != TTM_PL_TT || 945 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 946 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 947 return 0; 948 } 949 950 /* compute PTE flags relevant to this BO memory */ 951 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 952 953 /* bind pages into GART page tables */ 954 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 955 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 956 gtt->ttm.dma_address, flags); 957 gtt->bound = true; 958 return 0; 959 } 960 961 /* 962 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 963 * through AGP or GART aperture. 964 * 965 * If bo is accessible through AGP aperture, then use AGP aperture 966 * to access bo; otherwise allocate logical space in GART aperture 967 * and map bo to GART aperture. 968 */ 969 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 970 { 971 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 972 struct ttm_operation_ctx ctx = { false, false }; 973 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 974 struct ttm_placement placement; 975 struct ttm_place placements; 976 struct ttm_resource *tmp; 977 uint64_t addr, flags; 978 int r; 979 980 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 981 return 0; 982 983 addr = amdgpu_gmc_agp_addr(bo); 984 if (addr != AMDGPU_BO_INVALID_OFFSET) 985 return 0; 986 987 /* allocate GART space */ 988 placement.num_placement = 1; 989 placement.placement = &placements; 990 placements.fpfn = 0; 991 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 992 placements.mem_type = TTM_PL_TT; 993 placements.flags = bo->resource->placement; 994 995 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 996 if (unlikely(r)) 997 return r; 998 999 /* compute PTE flags for this buffer object */ 1000 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 1001 1002 /* Bind pages */ 1003 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1004 amdgpu_ttm_gart_bind(adev, bo, flags); 1005 amdgpu_gart_invalidate_tlb(adev); 1006 ttm_resource_free(bo, &bo->resource); 1007 ttm_bo_assign_mem(bo, tmp); 1008 1009 return 0; 1010 } 1011 1012 /* 1013 * amdgpu_ttm_recover_gart - Rebind GTT pages 1014 * 1015 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1016 * rebind GTT pages during a GPU reset. 1017 */ 1018 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1019 { 1020 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1021 uint64_t flags; 1022 1023 if (!tbo->ttm) 1024 return; 1025 1026 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1027 amdgpu_ttm_gart_bind(adev, tbo, flags); 1028 } 1029 1030 /* 1031 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1032 * 1033 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1034 * ttm_tt_destroy(). 1035 */ 1036 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1037 struct ttm_tt *ttm) 1038 { 1039 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1040 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1041 1042 /* if the pages have userptr pinning then clear that first */ 1043 if (gtt->userptr) { 1044 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1045 } else if (ttm->sg && gtt->gobj->import_attach) { 1046 struct dma_buf_attachment *attach; 1047 1048 attach = gtt->gobj->import_attach; 1049 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1050 ttm->sg = NULL; 1051 } 1052 1053 if (!gtt->bound) 1054 return; 1055 1056 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1057 return; 1058 1059 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1060 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1061 gtt->bound = false; 1062 } 1063 1064 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1065 struct ttm_tt *ttm) 1066 { 1067 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1068 1069 if (gtt->usertask) 1070 put_task_struct(gtt->usertask); 1071 1072 ttm_tt_fini(>t->ttm); 1073 kfree(gtt); 1074 } 1075 1076 /** 1077 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1078 * 1079 * @bo: The buffer object to create a GTT ttm_tt object around 1080 * @page_flags: Page flags to be added to the ttm_tt object 1081 * 1082 * Called by ttm_tt_create(). 1083 */ 1084 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1085 uint32_t page_flags) 1086 { 1087 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1088 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1089 struct amdgpu_ttm_tt *gtt; 1090 enum ttm_caching caching; 1091 1092 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1093 if (!gtt) 1094 return NULL; 1095 1096 gtt->gobj = &bo->base; 1097 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1098 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1099 else 1100 gtt->pool_id = abo->xcp_id; 1101 1102 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1103 caching = ttm_write_combined; 1104 else 1105 caching = ttm_cached; 1106 1107 /* allocate space for the uninitialized page entries */ 1108 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1109 kfree(gtt); 1110 return NULL; 1111 } 1112 return >t->ttm; 1113 } 1114 1115 /* 1116 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1117 * 1118 * Map the pages of a ttm_tt object to an address space visible 1119 * to the underlying device. 1120 */ 1121 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1122 struct ttm_tt *ttm, 1123 struct ttm_operation_ctx *ctx) 1124 { 1125 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1126 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1127 struct ttm_pool *pool; 1128 pgoff_t i; 1129 int ret; 1130 1131 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1132 if (gtt->userptr) { 1133 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1134 if (!ttm->sg) 1135 return -ENOMEM; 1136 return 0; 1137 } 1138 1139 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1140 return 0; 1141 1142 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1143 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1144 else 1145 pool = &adev->mman.bdev.pool; 1146 ret = ttm_pool_alloc(pool, ttm, ctx); 1147 if (ret) 1148 return ret; 1149 1150 for (i = 0; i < ttm->num_pages; ++i) 1151 ttm->pages[i]->mapping = bdev->dev_mapping; 1152 1153 return 0; 1154 } 1155 1156 /* 1157 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1158 * 1159 * Unmaps pages of a ttm_tt object from the device address space and 1160 * unpopulates the page array backing it. 1161 */ 1162 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1163 struct ttm_tt *ttm) 1164 { 1165 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1166 struct amdgpu_device *adev; 1167 struct ttm_pool *pool; 1168 pgoff_t i; 1169 1170 amdgpu_ttm_backend_unbind(bdev, ttm); 1171 1172 if (gtt->userptr) { 1173 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1174 kfree(ttm->sg); 1175 ttm->sg = NULL; 1176 return; 1177 } 1178 1179 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1180 return; 1181 1182 for (i = 0; i < ttm->num_pages; ++i) 1183 ttm->pages[i]->mapping = NULL; 1184 1185 adev = amdgpu_ttm_adev(bdev); 1186 1187 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1188 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1189 else 1190 pool = &adev->mman.bdev.pool; 1191 1192 return ttm_pool_free(pool, ttm); 1193 } 1194 1195 /** 1196 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1197 * task 1198 * 1199 * @tbo: The ttm_buffer_object that contains the userptr 1200 * @user_addr: The returned value 1201 */ 1202 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1203 uint64_t *user_addr) 1204 { 1205 struct amdgpu_ttm_tt *gtt; 1206 1207 if (!tbo->ttm) 1208 return -EINVAL; 1209 1210 gtt = (void *)tbo->ttm; 1211 *user_addr = gtt->userptr; 1212 return 0; 1213 } 1214 1215 /** 1216 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1217 * task 1218 * 1219 * @bo: The ttm_buffer_object to bind this userptr to 1220 * @addr: The address in the current tasks VM space to use 1221 * @flags: Requirements of userptr object. 1222 * 1223 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1224 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1225 * initialize GPU VM for a KFD process. 1226 */ 1227 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1228 uint64_t addr, uint32_t flags) 1229 { 1230 struct amdgpu_ttm_tt *gtt; 1231 1232 if (!bo->ttm) { 1233 /* TODO: We want a separate TTM object type for userptrs */ 1234 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1235 if (bo->ttm == NULL) 1236 return -ENOMEM; 1237 } 1238 1239 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1240 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1241 1242 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1243 gtt->userptr = addr; 1244 gtt->userflags = flags; 1245 1246 if (gtt->usertask) 1247 put_task_struct(gtt->usertask); 1248 gtt->usertask = current->group_leader; 1249 get_task_struct(gtt->usertask); 1250 1251 return 0; 1252 } 1253 1254 /* 1255 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1256 */ 1257 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1258 { 1259 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1260 1261 if (gtt == NULL) 1262 return NULL; 1263 1264 if (gtt->usertask == NULL) 1265 return NULL; 1266 1267 return gtt->usertask->mm; 1268 } 1269 1270 /* 1271 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1272 * address range for the current task. 1273 * 1274 */ 1275 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1276 unsigned long end, unsigned long *userptr) 1277 { 1278 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1279 unsigned long size; 1280 1281 if (gtt == NULL || !gtt->userptr) 1282 return false; 1283 1284 /* Return false if no part of the ttm_tt object lies within 1285 * the range 1286 */ 1287 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1288 if (gtt->userptr > end || gtt->userptr + size <= start) 1289 return false; 1290 1291 if (userptr) 1292 *userptr = gtt->userptr; 1293 return true; 1294 } 1295 1296 /* 1297 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1298 */ 1299 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1300 { 1301 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1302 1303 if (gtt == NULL || !gtt->userptr) 1304 return false; 1305 1306 return true; 1307 } 1308 1309 /* 1310 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1311 */ 1312 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1313 { 1314 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1315 1316 if (gtt == NULL) 1317 return false; 1318 1319 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1320 } 1321 1322 /** 1323 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1324 * 1325 * @ttm: The ttm_tt object to compute the flags for 1326 * @mem: The memory registry backing this ttm_tt object 1327 * 1328 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1329 */ 1330 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1331 { 1332 uint64_t flags = 0; 1333 1334 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1335 flags |= AMDGPU_PTE_VALID; 1336 1337 if (mem && (mem->mem_type == TTM_PL_TT || 1338 mem->mem_type == AMDGPU_PL_DOORBELL || 1339 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1340 flags |= AMDGPU_PTE_SYSTEM; 1341 1342 if (ttm->caching == ttm_cached) 1343 flags |= AMDGPU_PTE_SNOOPED; 1344 } 1345 1346 if (mem && mem->mem_type == TTM_PL_VRAM && 1347 mem->bus.caching == ttm_cached) 1348 flags |= AMDGPU_PTE_SNOOPED; 1349 1350 return flags; 1351 } 1352 1353 /** 1354 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1355 * 1356 * @adev: amdgpu_device pointer 1357 * @ttm: The ttm_tt object to compute the flags for 1358 * @mem: The memory registry backing this ttm_tt object 1359 * 1360 * Figure out the flags to use for a VM PTE (Page Table Entry). 1361 */ 1362 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1363 struct ttm_resource *mem) 1364 { 1365 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1366 1367 flags |= adev->gart.gart_pte_flags; 1368 flags |= AMDGPU_PTE_READABLE; 1369 1370 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1371 flags |= AMDGPU_PTE_WRITEABLE; 1372 1373 return flags; 1374 } 1375 1376 /* 1377 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1378 * object. 1379 * 1380 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1381 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1382 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1383 * used to clean out a memory space. 1384 */ 1385 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1386 const struct ttm_place *place) 1387 { 1388 struct dma_resv_iter resv_cursor; 1389 struct dma_fence *f; 1390 1391 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1392 return ttm_bo_eviction_valuable(bo, place); 1393 1394 /* Swapout? */ 1395 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1396 return true; 1397 1398 if (bo->type == ttm_bo_type_kernel && 1399 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1400 return false; 1401 1402 /* If bo is a KFD BO, check if the bo belongs to the current process. 1403 * If true, then return false as any KFD process needs all its BOs to 1404 * be resident to run successfully 1405 */ 1406 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1407 DMA_RESV_USAGE_BOOKKEEP, f) { 1408 if (amdkfd_fence_check_mm(f, current->mm) && 1409 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1410 return false; 1411 } 1412 1413 /* Preemptible BOs don't own system resources managed by the 1414 * driver (pages, VRAM, GART space). They point to resources 1415 * owned by someone else (e.g. pageable memory in user mode 1416 * or a DMABuf). They are used in a preemptible context so we 1417 * can guarantee no deadlocks and good QoS in case of MMU 1418 * notifiers or DMABuf move notifiers from the resource owner. 1419 */ 1420 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1421 return false; 1422 1423 if (bo->resource->mem_type == TTM_PL_TT && 1424 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1425 return false; 1426 1427 return ttm_bo_eviction_valuable(bo, place); 1428 } 1429 1430 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1431 void *buf, size_t size, bool write) 1432 { 1433 while (size) { 1434 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1435 uint64_t bytes = 4 - (pos & 0x3); 1436 uint32_t shift = (pos & 0x3) * 8; 1437 uint32_t mask = 0xffffffff << shift; 1438 uint32_t value = 0; 1439 1440 if (size < bytes) { 1441 mask &= 0xffffffff >> (bytes - size) * 8; 1442 bytes = size; 1443 } 1444 1445 if (mask != 0xffffffff) { 1446 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1447 if (write) { 1448 value &= ~mask; 1449 value |= (*(uint32_t *)buf << shift) & mask; 1450 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1451 } else { 1452 value = (value & mask) >> shift; 1453 memcpy(buf, &value, bytes); 1454 } 1455 } else { 1456 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1457 } 1458 1459 pos += bytes; 1460 buf += bytes; 1461 size -= bytes; 1462 } 1463 } 1464 1465 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1466 unsigned long offset, void *buf, 1467 int len, int write) 1468 { 1469 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1470 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1471 struct amdgpu_res_cursor src_mm; 1472 struct amdgpu_job *job; 1473 struct dma_fence *fence; 1474 uint64_t src_addr, dst_addr; 1475 unsigned int num_dw; 1476 int r, idx; 1477 1478 if (len != PAGE_SIZE) 1479 return -EINVAL; 1480 1481 if (!adev->mman.sdma_access_ptr) 1482 return -EACCES; 1483 1484 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1485 return -ENODEV; 1486 1487 if (write) 1488 memcpy(adev->mman.sdma_access_ptr, buf, len); 1489 1490 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1491 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1492 AMDGPU_FENCE_OWNER_UNDEFINED, 1493 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1494 &job); 1495 if (r) 1496 goto out; 1497 1498 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1499 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1500 src_mm.start; 1501 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1502 if (write) 1503 swap(src_addr, dst_addr); 1504 1505 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1506 PAGE_SIZE, 0); 1507 1508 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1509 WARN_ON(job->ibs[0].length_dw > num_dw); 1510 1511 fence = amdgpu_job_submit(job); 1512 1513 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1514 r = -ETIMEDOUT; 1515 dma_fence_put(fence); 1516 1517 if (!(r || write)) 1518 memcpy(buf, adev->mman.sdma_access_ptr, len); 1519 out: 1520 drm_dev_exit(idx); 1521 return r; 1522 } 1523 1524 /** 1525 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1526 * 1527 * @bo: The buffer object to read/write 1528 * @offset: Offset into buffer object 1529 * @buf: Secondary buffer to write/read from 1530 * @len: Length in bytes of access 1531 * @write: true if writing 1532 * 1533 * This is used to access VRAM that backs a buffer object via MMIO 1534 * access for debugging purposes. 1535 */ 1536 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1537 unsigned long offset, void *buf, int len, 1538 int write) 1539 { 1540 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1541 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1542 struct amdgpu_res_cursor cursor; 1543 int ret = 0; 1544 1545 if (bo->resource->mem_type != TTM_PL_VRAM) 1546 return -EIO; 1547 1548 if (amdgpu_device_has_timeouts_enabled(adev) && 1549 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1550 return len; 1551 1552 amdgpu_res_first(bo->resource, offset, len, &cursor); 1553 while (cursor.remaining) { 1554 size_t count, size = cursor.size; 1555 loff_t pos = cursor.start; 1556 1557 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1558 size -= count; 1559 if (size) { 1560 /* using MM to access rest vram and handle un-aligned address */ 1561 pos += count; 1562 buf += count; 1563 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1564 } 1565 1566 ret += cursor.size; 1567 buf += cursor.size; 1568 amdgpu_res_next(&cursor, cursor.size); 1569 } 1570 1571 return ret; 1572 } 1573 1574 static void 1575 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1576 { 1577 amdgpu_bo_move_notify(bo, false, NULL); 1578 } 1579 1580 static struct ttm_device_funcs amdgpu_bo_driver = { 1581 .ttm_tt_create = &amdgpu_ttm_tt_create, 1582 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1583 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1584 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1585 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1586 .evict_flags = &amdgpu_evict_flags, 1587 .move = &amdgpu_bo_move, 1588 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1589 .release_notify = &amdgpu_bo_release_notify, 1590 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1591 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1592 .access_memory = &amdgpu_ttm_access_memory, 1593 }; 1594 1595 /* 1596 * Firmware Reservation functions 1597 */ 1598 /** 1599 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1600 * 1601 * @adev: amdgpu_device pointer 1602 * 1603 * free fw reserved vram if it has been reserved. 1604 */ 1605 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1606 { 1607 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1608 NULL, &adev->mman.fw_vram_usage_va); 1609 } 1610 1611 /* 1612 * Driver Reservation functions 1613 */ 1614 /** 1615 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1616 * 1617 * @adev: amdgpu_device pointer 1618 * 1619 * free drv reserved vram if it has been reserved. 1620 */ 1621 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1622 { 1623 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1624 NULL, 1625 &adev->mman.drv_vram_usage_va); 1626 } 1627 1628 /** 1629 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1630 * 1631 * @adev: amdgpu_device pointer 1632 * 1633 * create bo vram reservation from fw. 1634 */ 1635 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1636 { 1637 uint64_t vram_size = adev->gmc.visible_vram_size; 1638 1639 adev->mman.fw_vram_usage_va = NULL; 1640 adev->mman.fw_vram_usage_reserved_bo = NULL; 1641 1642 if (adev->mman.fw_vram_usage_size == 0 || 1643 adev->mman.fw_vram_usage_size > vram_size) 1644 return 0; 1645 1646 return amdgpu_bo_create_kernel_at(adev, 1647 adev->mman.fw_vram_usage_start_offset, 1648 adev->mman.fw_vram_usage_size, 1649 &adev->mman.fw_vram_usage_reserved_bo, 1650 &adev->mman.fw_vram_usage_va); 1651 } 1652 1653 /** 1654 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1655 * 1656 * @adev: amdgpu_device pointer 1657 * 1658 * create bo vram reservation from drv. 1659 */ 1660 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1661 { 1662 u64 vram_size = adev->gmc.visible_vram_size; 1663 1664 adev->mman.drv_vram_usage_va = NULL; 1665 adev->mman.drv_vram_usage_reserved_bo = NULL; 1666 1667 if (adev->mman.drv_vram_usage_size == 0 || 1668 adev->mman.drv_vram_usage_size > vram_size) 1669 return 0; 1670 1671 return amdgpu_bo_create_kernel_at(adev, 1672 adev->mman.drv_vram_usage_start_offset, 1673 adev->mman.drv_vram_usage_size, 1674 &adev->mman.drv_vram_usage_reserved_bo, 1675 &adev->mman.drv_vram_usage_va); 1676 } 1677 1678 /* 1679 * Memoy training reservation functions 1680 */ 1681 1682 /** 1683 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1684 * 1685 * @adev: amdgpu_device pointer 1686 * 1687 * free memory training reserved vram if it has been reserved. 1688 */ 1689 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1690 { 1691 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1692 1693 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1694 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1695 ctx->c2p_bo = NULL; 1696 1697 return 0; 1698 } 1699 1700 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1701 uint32_t reserve_size) 1702 { 1703 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1704 1705 memset(ctx, 0, sizeof(*ctx)); 1706 1707 ctx->c2p_train_data_offset = 1708 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1709 ctx->p2c_train_data_offset = 1710 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1711 ctx->train_data_size = 1712 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1713 1714 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1715 ctx->train_data_size, 1716 ctx->p2c_train_data_offset, 1717 ctx->c2p_train_data_offset); 1718 } 1719 1720 /* 1721 * reserve TMR memory at the top of VRAM which holds 1722 * IP Discovery data and is protected by PSP. 1723 */ 1724 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1725 { 1726 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1727 bool mem_train_support = false; 1728 uint32_t reserve_size = 0; 1729 int ret; 1730 1731 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1732 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1733 mem_train_support = true; 1734 else 1735 DRM_DEBUG("memory training does not support!\n"); 1736 } 1737 1738 /* 1739 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1740 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1741 * 1742 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1743 * discovery data and G6 memory training data respectively 1744 */ 1745 if (adev->bios) 1746 reserve_size = 1747 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1748 1749 if (!adev->bios && 1750 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1751 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4))) 1752 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1753 else if (!reserve_size) 1754 reserve_size = DISCOVERY_TMR_OFFSET; 1755 1756 if (mem_train_support) { 1757 /* reserve vram for mem train according to TMR location */ 1758 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1759 ret = amdgpu_bo_create_kernel_at(adev, 1760 ctx->c2p_train_data_offset, 1761 ctx->train_data_size, 1762 &ctx->c2p_bo, 1763 NULL); 1764 if (ret) { 1765 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1766 amdgpu_ttm_training_reserve_vram_fini(adev); 1767 return ret; 1768 } 1769 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1770 } 1771 1772 if (!adev->gmc.is_app_apu) { 1773 ret = amdgpu_bo_create_kernel_at( 1774 adev, adev->gmc.real_vram_size - reserve_size, 1775 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1776 if (ret) { 1777 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1778 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1779 NULL, NULL); 1780 return ret; 1781 } 1782 } else { 1783 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1784 } 1785 1786 return 0; 1787 } 1788 1789 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1790 { 1791 int i; 1792 1793 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1794 return 0; 1795 1796 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1797 sizeof(*adev->mman.ttm_pools), 1798 GFP_KERNEL); 1799 if (!adev->mman.ttm_pools) 1800 return -ENOMEM; 1801 1802 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1803 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1804 adev->gmc.mem_partitions[i].numa.node, 1805 false, false); 1806 } 1807 return 0; 1808 } 1809 1810 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1811 { 1812 int i; 1813 1814 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1815 return; 1816 1817 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1818 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1819 1820 kfree(adev->mman.ttm_pools); 1821 adev->mman.ttm_pools = NULL; 1822 } 1823 1824 /* 1825 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1826 * gtt/vram related fields. 1827 * 1828 * This initializes all of the memory space pools that the TTM layer 1829 * will need such as the GTT space (system memory mapped to the device), 1830 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1831 * can be mapped per VMID. 1832 */ 1833 int amdgpu_ttm_init(struct amdgpu_device *adev) 1834 { 1835 uint64_t gtt_size; 1836 int r; 1837 1838 mutex_init(&adev->mman.gtt_window_lock); 1839 1840 /* No others user of address space so set it to 0 */ 1841 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1842 adev_to_drm(adev)->anon_inode->i_mapping, 1843 adev_to_drm(adev)->vma_offset_manager, 1844 adev->need_swiotlb, 1845 dma_addressing_limited(adev->dev)); 1846 if (r) { 1847 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1848 return r; 1849 } 1850 1851 r = amdgpu_ttm_pools_init(adev); 1852 if (r) { 1853 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1854 return r; 1855 } 1856 adev->mman.initialized = true; 1857 1858 /* Initialize VRAM pool with all of VRAM divided into pages */ 1859 r = amdgpu_vram_mgr_init(adev); 1860 if (r) { 1861 DRM_ERROR("Failed initializing VRAM heap.\n"); 1862 return r; 1863 } 1864 1865 /* Change the size here instead of the init above so only lpfn is affected */ 1866 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1867 #ifdef CONFIG_64BIT 1868 #ifdef CONFIG_X86 1869 if (adev->gmc.xgmi.connected_to_cpu) 1870 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1871 adev->gmc.visible_vram_size); 1872 1873 else if (adev->gmc.is_app_apu) 1874 DRM_DEBUG_DRIVER( 1875 "No need to ioremap when real vram size is 0\n"); 1876 else 1877 #endif 1878 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1879 adev->gmc.visible_vram_size); 1880 #endif 1881 1882 /* 1883 *The reserved vram for firmware must be pinned to the specified 1884 *place on the VRAM, so reserve it early. 1885 */ 1886 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1887 if (r) 1888 return r; 1889 1890 /* 1891 *The reserved vram for driver must be pinned to the specified 1892 *place on the VRAM, so reserve it early. 1893 */ 1894 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1895 if (r) 1896 return r; 1897 1898 /* 1899 * only NAVI10 and onwards ASIC support for IP discovery. 1900 * If IP discovery enabled, a block of memory should be 1901 * reserved for IP discovey. 1902 */ 1903 if (adev->mman.discovery_bin) { 1904 r = amdgpu_ttm_reserve_tmr(adev); 1905 if (r) 1906 return r; 1907 } 1908 1909 /* allocate memory as required for VGA 1910 * This is used for VGA emulation and pre-OS scanout buffers to 1911 * avoid display artifacts while transitioning between pre-OS 1912 * and driver. 1913 */ 1914 if (!adev->gmc.is_app_apu) { 1915 r = amdgpu_bo_create_kernel_at(adev, 0, 1916 adev->mman.stolen_vga_size, 1917 &adev->mman.stolen_vga_memory, 1918 NULL); 1919 if (r) 1920 return r; 1921 1922 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1923 adev->mman.stolen_extended_size, 1924 &adev->mman.stolen_extended_memory, 1925 NULL); 1926 1927 if (r) 1928 return r; 1929 1930 r = amdgpu_bo_create_kernel_at(adev, 1931 adev->mman.stolen_reserved_offset, 1932 adev->mman.stolen_reserved_size, 1933 &adev->mman.stolen_reserved_memory, 1934 NULL); 1935 if (r) 1936 return r; 1937 } else { 1938 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1939 } 1940 1941 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1942 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1943 1944 /* Compute GTT size, either based on TTM limit 1945 * or whatever the user passed on module init. 1946 */ 1947 if (amdgpu_gtt_size == -1) 1948 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1949 else 1950 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1951 1952 /* Initialize GTT memory pool */ 1953 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1954 if (r) { 1955 DRM_ERROR("Failed initializing GTT heap.\n"); 1956 return r; 1957 } 1958 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1959 (unsigned int)(gtt_size / (1024 * 1024))); 1960 1961 /* Initiailize doorbell pool on PCI BAR */ 1962 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1963 if (r) { 1964 DRM_ERROR("Failed initializing doorbell heap.\n"); 1965 return r; 1966 } 1967 1968 /* Create a boorbell page for kernel usages */ 1969 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1970 if (r) { 1971 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1972 return r; 1973 } 1974 1975 /* Initialize preemptible memory pool */ 1976 r = amdgpu_preempt_mgr_init(adev); 1977 if (r) { 1978 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1979 return r; 1980 } 1981 1982 /* Initialize various on-chip memory pools */ 1983 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1984 if (r) { 1985 DRM_ERROR("Failed initializing GDS heap.\n"); 1986 return r; 1987 } 1988 1989 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1990 if (r) { 1991 DRM_ERROR("Failed initializing gws heap.\n"); 1992 return r; 1993 } 1994 1995 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1996 if (r) { 1997 DRM_ERROR("Failed initializing oa heap.\n"); 1998 return r; 1999 } 2000 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2001 AMDGPU_GEM_DOMAIN_GTT, 2002 &adev->mman.sdma_access_bo, NULL, 2003 &adev->mman.sdma_access_ptr)) 2004 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2005 2006 return 0; 2007 } 2008 2009 /* 2010 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2011 */ 2012 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2013 { 2014 int idx; 2015 2016 if (!adev->mman.initialized) 2017 return; 2018 2019 amdgpu_ttm_pools_fini(adev); 2020 2021 amdgpu_ttm_training_reserve_vram_fini(adev); 2022 /* return the stolen vga memory back to VRAM */ 2023 if (!adev->gmc.is_app_apu) { 2024 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2025 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2026 /* return the FW reserved memory back to VRAM */ 2027 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2028 NULL); 2029 if (adev->mman.stolen_reserved_size) 2030 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2031 NULL, NULL); 2032 } 2033 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2034 &adev->mman.sdma_access_ptr); 2035 amdgpu_ttm_fw_reserve_vram_fini(adev); 2036 amdgpu_ttm_drv_reserve_vram_fini(adev); 2037 2038 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2039 2040 if (adev->mman.aper_base_kaddr) 2041 iounmap(adev->mman.aper_base_kaddr); 2042 adev->mman.aper_base_kaddr = NULL; 2043 2044 drm_dev_exit(idx); 2045 } 2046 2047 amdgpu_vram_mgr_fini(adev); 2048 amdgpu_gtt_mgr_fini(adev); 2049 amdgpu_preempt_mgr_fini(adev); 2050 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2051 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2052 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2053 ttm_device_fini(&adev->mman.bdev); 2054 adev->mman.initialized = false; 2055 DRM_INFO("amdgpu: ttm finalized\n"); 2056 } 2057 2058 /** 2059 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2060 * 2061 * @adev: amdgpu_device pointer 2062 * @enable: true when we can use buffer functions. 2063 * 2064 * Enable/disable use of buffer functions during suspend/resume. This should 2065 * only be called at bootup or when userspace isn't running. 2066 */ 2067 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2068 { 2069 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2070 uint64_t size; 2071 int r; 2072 2073 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2074 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2075 return; 2076 2077 if (enable) { 2078 struct amdgpu_ring *ring; 2079 struct drm_gpu_scheduler *sched; 2080 2081 ring = adev->mman.buffer_funcs_ring; 2082 sched = &ring->sched; 2083 r = drm_sched_entity_init(&adev->mman.high_pr, 2084 DRM_SCHED_PRIORITY_KERNEL, &sched, 2085 1, NULL); 2086 if (r) { 2087 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2088 r); 2089 return; 2090 } 2091 2092 r = drm_sched_entity_init(&adev->mman.low_pr, 2093 DRM_SCHED_PRIORITY_NORMAL, &sched, 2094 1, NULL); 2095 if (r) { 2096 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2097 r); 2098 goto error_free_entity; 2099 } 2100 } else { 2101 drm_sched_entity_destroy(&adev->mman.high_pr); 2102 drm_sched_entity_destroy(&adev->mman.low_pr); 2103 dma_fence_put(man->move); 2104 man->move = NULL; 2105 } 2106 2107 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2108 if (enable) 2109 size = adev->gmc.real_vram_size; 2110 else 2111 size = adev->gmc.visible_vram_size; 2112 man->size = size; 2113 adev->mman.buffer_funcs_enabled = enable; 2114 2115 return; 2116 2117 error_free_entity: 2118 drm_sched_entity_destroy(&adev->mman.high_pr); 2119 } 2120 2121 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2122 bool direct_submit, 2123 unsigned int num_dw, 2124 struct dma_resv *resv, 2125 bool vm_needs_flush, 2126 struct amdgpu_job **job, 2127 bool delayed) 2128 { 2129 enum amdgpu_ib_pool_type pool = direct_submit ? 2130 AMDGPU_IB_POOL_DIRECT : 2131 AMDGPU_IB_POOL_DELAYED; 2132 int r; 2133 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2134 &adev->mman.high_pr; 2135 r = amdgpu_job_alloc_with_ib(adev, entity, 2136 AMDGPU_FENCE_OWNER_UNDEFINED, 2137 num_dw * 4, pool, job); 2138 if (r) 2139 return r; 2140 2141 if (vm_needs_flush) { 2142 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2143 adev->gmc.pdb0_bo : 2144 adev->gart.bo); 2145 (*job)->vm_needs_flush = true; 2146 } 2147 if (!resv) 2148 return 0; 2149 2150 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2151 DMA_RESV_USAGE_BOOKKEEP); 2152 } 2153 2154 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2155 uint64_t dst_offset, uint32_t byte_count, 2156 struct dma_resv *resv, 2157 struct dma_fence **fence, bool direct_submit, 2158 bool vm_needs_flush, uint32_t copy_flags) 2159 { 2160 struct amdgpu_device *adev = ring->adev; 2161 unsigned int num_loops, num_dw; 2162 struct amdgpu_job *job; 2163 uint32_t max_bytes; 2164 unsigned int i; 2165 int r; 2166 2167 if (!direct_submit && !ring->sched.ready) { 2168 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2169 return -EINVAL; 2170 } 2171 2172 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2173 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2174 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2175 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2176 resv, vm_needs_flush, &job, false); 2177 if (r) 2178 return r; 2179 2180 for (i = 0; i < num_loops; i++) { 2181 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2182 2183 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2184 dst_offset, cur_size_in_bytes, copy_flags); 2185 src_offset += cur_size_in_bytes; 2186 dst_offset += cur_size_in_bytes; 2187 byte_count -= cur_size_in_bytes; 2188 } 2189 2190 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2191 WARN_ON(job->ibs[0].length_dw > num_dw); 2192 if (direct_submit) 2193 r = amdgpu_job_submit_direct(job, ring, fence); 2194 else 2195 *fence = amdgpu_job_submit(job); 2196 if (r) 2197 goto error_free; 2198 2199 return r; 2200 2201 error_free: 2202 amdgpu_job_free(job); 2203 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2204 return r; 2205 } 2206 2207 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2208 uint64_t dst_addr, uint32_t byte_count, 2209 struct dma_resv *resv, 2210 struct dma_fence **fence, 2211 bool vm_needs_flush, bool delayed) 2212 { 2213 struct amdgpu_device *adev = ring->adev; 2214 unsigned int num_loops, num_dw; 2215 struct amdgpu_job *job; 2216 uint32_t max_bytes; 2217 unsigned int i; 2218 int r; 2219 2220 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2221 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2222 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2223 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2224 &job, delayed); 2225 if (r) 2226 return r; 2227 2228 for (i = 0; i < num_loops; i++) { 2229 uint32_t cur_size = min(byte_count, max_bytes); 2230 2231 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2232 cur_size); 2233 2234 dst_addr += cur_size; 2235 byte_count -= cur_size; 2236 } 2237 2238 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2239 WARN_ON(job->ibs[0].length_dw > num_dw); 2240 *fence = amdgpu_job_submit(job); 2241 return 0; 2242 } 2243 2244 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2245 uint32_t src_data, 2246 struct dma_resv *resv, 2247 struct dma_fence **f, 2248 bool delayed) 2249 { 2250 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2251 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2252 struct dma_fence *fence = NULL; 2253 struct amdgpu_res_cursor dst; 2254 int r; 2255 2256 if (!adev->mman.buffer_funcs_enabled) { 2257 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2258 return -EINVAL; 2259 } 2260 2261 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2262 2263 mutex_lock(&adev->mman.gtt_window_lock); 2264 while (dst.remaining) { 2265 struct dma_fence *next; 2266 uint64_t cur_size, to; 2267 2268 /* Never fill more than 256MiB at once to avoid timeouts */ 2269 cur_size = min(dst.size, 256ULL << 20); 2270 2271 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2272 1, ring, false, &cur_size, &to); 2273 if (r) 2274 goto error; 2275 2276 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2277 &next, true, delayed); 2278 if (r) 2279 goto error; 2280 2281 dma_fence_put(fence); 2282 fence = next; 2283 2284 amdgpu_res_next(&dst, cur_size); 2285 } 2286 error: 2287 mutex_unlock(&adev->mman.gtt_window_lock); 2288 if (f) 2289 *f = dma_fence_get(fence); 2290 dma_fence_put(fence); 2291 return r; 2292 } 2293 2294 /** 2295 * amdgpu_ttm_evict_resources - evict memory buffers 2296 * @adev: amdgpu device object 2297 * @mem_type: evicted BO's memory type 2298 * 2299 * Evicts all @mem_type buffers on the lru list of the memory type. 2300 * 2301 * Returns: 2302 * 0 for success or a negative error code on failure. 2303 */ 2304 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2305 { 2306 struct ttm_resource_manager *man; 2307 2308 switch (mem_type) { 2309 case TTM_PL_VRAM: 2310 case TTM_PL_TT: 2311 case AMDGPU_PL_GWS: 2312 case AMDGPU_PL_GDS: 2313 case AMDGPU_PL_OA: 2314 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2315 break; 2316 default: 2317 DRM_ERROR("Trying to evict invalid memory type\n"); 2318 return -EINVAL; 2319 } 2320 2321 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2322 } 2323 2324 #if defined(CONFIG_DEBUG_FS) 2325 2326 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2327 { 2328 struct amdgpu_device *adev = m->private; 2329 2330 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2331 } 2332 2333 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2334 2335 /* 2336 * amdgpu_ttm_vram_read - Linear read access to VRAM 2337 * 2338 * Accesses VRAM via MMIO for debugging purposes. 2339 */ 2340 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2341 size_t size, loff_t *pos) 2342 { 2343 struct amdgpu_device *adev = file_inode(f)->i_private; 2344 ssize_t result = 0; 2345 2346 if (size & 0x3 || *pos & 0x3) 2347 return -EINVAL; 2348 2349 if (*pos >= adev->gmc.mc_vram_size) 2350 return -ENXIO; 2351 2352 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2353 while (size) { 2354 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2355 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2356 2357 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2358 if (copy_to_user(buf, value, bytes)) 2359 return -EFAULT; 2360 2361 result += bytes; 2362 buf += bytes; 2363 *pos += bytes; 2364 size -= bytes; 2365 } 2366 2367 return result; 2368 } 2369 2370 /* 2371 * amdgpu_ttm_vram_write - Linear write access to VRAM 2372 * 2373 * Accesses VRAM via MMIO for debugging purposes. 2374 */ 2375 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2376 size_t size, loff_t *pos) 2377 { 2378 struct amdgpu_device *adev = file_inode(f)->i_private; 2379 ssize_t result = 0; 2380 int r; 2381 2382 if (size & 0x3 || *pos & 0x3) 2383 return -EINVAL; 2384 2385 if (*pos >= adev->gmc.mc_vram_size) 2386 return -ENXIO; 2387 2388 while (size) { 2389 uint32_t value; 2390 2391 if (*pos >= adev->gmc.mc_vram_size) 2392 return result; 2393 2394 r = get_user(value, (uint32_t *)buf); 2395 if (r) 2396 return r; 2397 2398 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2399 2400 result += 4; 2401 buf += 4; 2402 *pos += 4; 2403 size -= 4; 2404 } 2405 2406 return result; 2407 } 2408 2409 static const struct file_operations amdgpu_ttm_vram_fops = { 2410 .owner = THIS_MODULE, 2411 .read = amdgpu_ttm_vram_read, 2412 .write = amdgpu_ttm_vram_write, 2413 .llseek = default_llseek, 2414 }; 2415 2416 /* 2417 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2418 * 2419 * This function is used to read memory that has been mapped to the 2420 * GPU and the known addresses are not physical addresses but instead 2421 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2422 */ 2423 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2424 size_t size, loff_t *pos) 2425 { 2426 struct amdgpu_device *adev = file_inode(f)->i_private; 2427 struct iommu_domain *dom; 2428 ssize_t result = 0; 2429 int r; 2430 2431 /* retrieve the IOMMU domain if any for this device */ 2432 dom = iommu_get_domain_for_dev(adev->dev); 2433 2434 while (size) { 2435 phys_addr_t addr = *pos & PAGE_MASK; 2436 loff_t off = *pos & ~PAGE_MASK; 2437 size_t bytes = PAGE_SIZE - off; 2438 unsigned long pfn; 2439 struct page *p; 2440 void *ptr; 2441 2442 bytes = min(bytes, size); 2443 2444 /* Translate the bus address to a physical address. If 2445 * the domain is NULL it means there is no IOMMU active 2446 * and the address translation is the identity 2447 */ 2448 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2449 2450 pfn = addr >> PAGE_SHIFT; 2451 if (!pfn_valid(pfn)) 2452 return -EPERM; 2453 2454 p = pfn_to_page(pfn); 2455 if (p->mapping != adev->mman.bdev.dev_mapping) 2456 return -EPERM; 2457 2458 ptr = kmap_local_page(p); 2459 r = copy_to_user(buf, ptr + off, bytes); 2460 kunmap_local(ptr); 2461 if (r) 2462 return -EFAULT; 2463 2464 size -= bytes; 2465 *pos += bytes; 2466 result += bytes; 2467 } 2468 2469 return result; 2470 } 2471 2472 /* 2473 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2474 * 2475 * This function is used to write memory that has been mapped to the 2476 * GPU and the known addresses are not physical addresses but instead 2477 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2478 */ 2479 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2480 size_t size, loff_t *pos) 2481 { 2482 struct amdgpu_device *adev = file_inode(f)->i_private; 2483 struct iommu_domain *dom; 2484 ssize_t result = 0; 2485 int r; 2486 2487 dom = iommu_get_domain_for_dev(adev->dev); 2488 2489 while (size) { 2490 phys_addr_t addr = *pos & PAGE_MASK; 2491 loff_t off = *pos & ~PAGE_MASK; 2492 size_t bytes = PAGE_SIZE - off; 2493 unsigned long pfn; 2494 struct page *p; 2495 void *ptr; 2496 2497 bytes = min(bytes, size); 2498 2499 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2500 2501 pfn = addr >> PAGE_SHIFT; 2502 if (!pfn_valid(pfn)) 2503 return -EPERM; 2504 2505 p = pfn_to_page(pfn); 2506 if (p->mapping != adev->mman.bdev.dev_mapping) 2507 return -EPERM; 2508 2509 ptr = kmap_local_page(p); 2510 r = copy_from_user(ptr + off, buf, bytes); 2511 kunmap_local(ptr); 2512 if (r) 2513 return -EFAULT; 2514 2515 size -= bytes; 2516 *pos += bytes; 2517 result += bytes; 2518 } 2519 2520 return result; 2521 } 2522 2523 static const struct file_operations amdgpu_ttm_iomem_fops = { 2524 .owner = THIS_MODULE, 2525 .read = amdgpu_iomem_read, 2526 .write = amdgpu_iomem_write, 2527 .llseek = default_llseek 2528 }; 2529 2530 #endif 2531 2532 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2533 { 2534 #if defined(CONFIG_DEBUG_FS) 2535 struct drm_minor *minor = adev_to_drm(adev)->primary; 2536 struct dentry *root = minor->debugfs_root; 2537 2538 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2539 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2540 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2541 &amdgpu_ttm_iomem_fops); 2542 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2543 &amdgpu_ttm_page_pool_fops); 2544 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2545 TTM_PL_VRAM), 2546 root, "amdgpu_vram_mm"); 2547 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2548 TTM_PL_TT), 2549 root, "amdgpu_gtt_mm"); 2550 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2551 AMDGPU_PL_GDS), 2552 root, "amdgpu_gds_mm"); 2553 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2554 AMDGPU_PL_GWS), 2555 root, "amdgpu_gws_mm"); 2556 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2557 AMDGPU_PL_OA), 2558 root, "amdgpu_oa_mm"); 2559 2560 #endif 2561 } 2562