xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 382fc1f681324bb38bedfe763107a60256c4ddc8)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51 
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64 
65 MODULE_IMPORT_NS(DMA_BUF);
66 
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
68 
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 				   struct ttm_tt *ttm,
71 				   struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73 				      struct ttm_tt *ttm);
74 
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 				    unsigned int type,
77 				    uint64_t size_in_page)
78 {
79 	return ttm_range_man_init(&adev->mman.bdev, type,
80 				  false, size_in_page);
81 }
82 
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 				struct ttm_placement *placement)
93 {
94 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 	struct amdgpu_bo *abo;
96 	static const struct ttm_place placements = {
97 		.fpfn = 0,
98 		.lpfn = 0,
99 		.mem_type = TTM_PL_SYSTEM,
100 		.flags = 0
101 	};
102 
103 	/* Don't handle scatter gather BOs */
104 	if (bo->type == ttm_bo_type_sg) {
105 		placement->num_placement = 0;
106 		placement->num_busy_placement = 0;
107 		return;
108 	}
109 
110 	/* Object isn't an AMDGPU object so ignore */
111 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 		placement->placement = &placements;
113 		placement->busy_placement = &placements;
114 		placement->num_placement = 1;
115 		placement->num_busy_placement = 1;
116 		return;
117 	}
118 
119 	abo = ttm_to_amdgpu_bo(bo);
120 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121 		placement->num_placement = 0;
122 		placement->num_busy_placement = 0;
123 		return;
124 	}
125 
126 	switch (bo->resource->mem_type) {
127 	case AMDGPU_PL_GDS:
128 	case AMDGPU_PL_GWS:
129 	case AMDGPU_PL_OA:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct dma_fence *fence;
193 	struct amdgpu_job *job;
194 	void *cpu_addr;
195 	uint64_t flags;
196 	unsigned int i;
197 	int r;
198 
199 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 
202 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 		return -EINVAL;
204 
205 	/* Map only what can't be accessed directly */
206 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 			mm_cur->start;
209 		return 0;
210 	}
211 
212 
213 	/*
214 	 * If start begins at an offset inside the page, then adjust the size
215 	 * and addr accordingly
216 	 */
217 	offset = mm_cur->start & ~PAGE_MASK;
218 
219 	num_pages = PFN_UP(*size + offset);
220 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 
222 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 
224 	*addr = adev->gmc.gart_start;
225 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 		AMDGPU_GPU_PAGE_SIZE;
227 	*addr += offset;
228 
229 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 
232 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233 				     AMDGPU_IB_POOL_DELAYED, &job);
234 	if (r)
235 		return r;
236 
237 	src_addr = num_dw * 4;
238 	src_addr += job->ibs[0].gpu_addr;
239 
240 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243 				dst_addr, num_bytes, false);
244 
245 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246 	WARN_ON(job->ibs[0].length_dw > num_dw);
247 
248 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249 	if (tmz)
250 		flags |= AMDGPU_PTE_TMZ;
251 
252 	cpu_addr = &job->ibs[0].ptr[num_dw];
253 
254 	if (mem->mem_type == TTM_PL_TT) {
255 		dma_addr_t *dma_addr;
256 
257 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259 	} else {
260 		dma_addr_t dma_address;
261 
262 		dma_address = mm_cur->start;
263 		dma_address += adev->vm_manager.vram_base_offset;
264 
265 		for (i = 0; i < num_pages; ++i) {
266 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267 					flags, cpu_addr);
268 			dma_address += PAGE_SIZE;
269 		}
270 	}
271 
272 	r = amdgpu_job_submit(job, &adev->mman.entity,
273 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 	if (r)
275 		goto error_free;
276 
277 	dma_fence_put(fence);
278 
279 	return r;
280 
281 error_free:
282 	amdgpu_job_free(job);
283 	return r;
284 }
285 
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 			       const struct amdgpu_copy_mem *src,
303 			       const struct amdgpu_copy_mem *dst,
304 			       uint64_t size, bool tmz,
305 			       struct dma_resv *resv,
306 			       struct dma_fence **f)
307 {
308 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 	struct amdgpu_res_cursor src_mm, dst_mm;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 
321 	mutex_lock(&adev->mman.gtt_window_lock);
322 	while (src_mm.remaining) {
323 		uint64_t from, to, cur_size;
324 		struct dma_fence *next;
325 
326 		/* Never copy more than 256MiB at once to avoid a timeout */
327 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328 
329 		/* Map src to window 0 and dst to window 1. */
330 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331 					  0, ring, tmz, &cur_size, &from);
332 		if (r)
333 			goto error;
334 
335 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336 					  1, ring, tmz, &cur_size, &to);
337 		if (r)
338 			goto error;
339 
340 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
341 				       resv, &next, false, true, tmz);
342 		if (r)
343 			goto error;
344 
345 		dma_fence_put(fence);
346 		fence = next;
347 
348 		amdgpu_res_next(&src_mm, cur_size);
349 		amdgpu_res_next(&dst_mm, cur_size);
350 	}
351 error:
352 	mutex_unlock(&adev->mman.gtt_window_lock);
353 	if (f)
354 		*f = dma_fence_get(fence);
355 	dma_fence_put(fence);
356 	return r;
357 }
358 
359 /*
360  * amdgpu_move_blit - Copy an entire buffer to another buffer
361  *
362  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363  * help move buffers to and from VRAM.
364  */
365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366 			    bool evict,
367 			    struct ttm_resource *new_mem,
368 			    struct ttm_resource *old_mem)
369 {
370 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372 	struct amdgpu_copy_mem src, dst;
373 	struct dma_fence *fence = NULL;
374 	int r;
375 
376 	src.bo = bo;
377 	dst.bo = bo;
378 	src.mem = old_mem;
379 	dst.mem = new_mem;
380 	src.offset = 0;
381 	dst.offset = 0;
382 
383 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384 				       new_mem->num_pages << PAGE_SHIFT,
385 				       amdgpu_bo_encrypted(abo),
386 				       bo->base.resv, &fence);
387 	if (r)
388 		goto error;
389 
390 	/* clear the space being freed */
391 	if (old_mem->mem_type == TTM_PL_VRAM &&
392 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393 		struct dma_fence *wipe_fence = NULL;
394 
395 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396 		if (r) {
397 			goto error;
398 		} else if (wipe_fence) {
399 			dma_fence_put(fence);
400 			fence = wipe_fence;
401 		}
402 	}
403 
404 	/* Always block for VM page tables before committing the new location */
405 	if (bo->type == ttm_bo_type_kernel)
406 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407 	else
408 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409 	dma_fence_put(fence);
410 	return r;
411 
412 error:
413 	if (fence)
414 		dma_fence_wait(fence, false);
415 	dma_fence_put(fence);
416 	return r;
417 }
418 
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425 			       struct ttm_resource *mem)
426 {
427 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428 	struct amdgpu_res_cursor cursor;
429 
430 	if (mem->mem_type == TTM_PL_SYSTEM ||
431 	    mem->mem_type == TTM_PL_TT)
432 		return true;
433 	if (mem->mem_type != TTM_PL_VRAM)
434 		return false;
435 
436 	amdgpu_res_first(mem, 0, mem_size, &cursor);
437 
438 	/* ttm_resource_ioremap only supports contiguous memory */
439 	if (cursor.size != mem_size)
440 		return false;
441 
442 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
443 }
444 
445 /*
446  * amdgpu_bo_move - Move a buffer object to a new memory location
447  *
448  * Called by ttm_bo_handle_move_mem()
449  */
450 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
451 			  struct ttm_operation_ctx *ctx,
452 			  struct ttm_resource *new_mem,
453 			  struct ttm_place *hop)
454 {
455 	struct amdgpu_device *adev;
456 	struct amdgpu_bo *abo;
457 	struct ttm_resource *old_mem = bo->resource;
458 	int r;
459 
460 	if (new_mem->mem_type == TTM_PL_TT ||
461 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
462 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
463 		if (r)
464 			return r;
465 	}
466 
467 	/* Can't move a pinned BO */
468 	abo = ttm_to_amdgpu_bo(bo);
469 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
470 		return -EINVAL;
471 
472 	adev = amdgpu_ttm_adev(bo->bdev);
473 
474 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
475 			 bo->ttm == NULL)) {
476 		ttm_bo_move_null(bo, new_mem);
477 		goto out;
478 	}
479 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
480 	    (new_mem->mem_type == TTM_PL_TT ||
481 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
482 		ttm_bo_move_null(bo, new_mem);
483 		goto out;
484 	}
485 	if ((old_mem->mem_type == TTM_PL_TT ||
486 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
487 	    new_mem->mem_type == TTM_PL_SYSTEM) {
488 		r = ttm_bo_wait_ctx(bo, ctx);
489 		if (r)
490 			return r;
491 
492 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
493 		ttm_resource_free(bo, &bo->resource);
494 		ttm_bo_assign_mem(bo, new_mem);
495 		goto out;
496 	}
497 
498 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
499 	    old_mem->mem_type == AMDGPU_PL_GWS ||
500 	    old_mem->mem_type == AMDGPU_PL_OA ||
501 	    new_mem->mem_type == AMDGPU_PL_GDS ||
502 	    new_mem->mem_type == AMDGPU_PL_GWS ||
503 	    new_mem->mem_type == AMDGPU_PL_OA) {
504 		/* Nothing to save here */
505 		ttm_bo_move_null(bo, new_mem);
506 		goto out;
507 	}
508 
509 	if (bo->type == ttm_bo_type_device &&
510 	    new_mem->mem_type == TTM_PL_VRAM &&
511 	    old_mem->mem_type != TTM_PL_VRAM) {
512 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513 		 * accesses the BO after it's moved.
514 		 */
515 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 	}
517 
518 	if (adev->mman.buffer_funcs_enabled) {
519 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520 		      new_mem->mem_type == TTM_PL_VRAM) ||
521 		     (old_mem->mem_type == TTM_PL_VRAM &&
522 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
523 			hop->fpfn = 0;
524 			hop->lpfn = 0;
525 			hop->mem_type = TTM_PL_TT;
526 			hop->flags = TTM_PL_FLAG_TEMPORARY;
527 			return -EMULTIHOP;
528 		}
529 
530 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 	} else {
532 		r = -ENODEV;
533 	}
534 
535 	if (r) {
536 		/* Check that all memory is CPU accessible */
537 		if (!amdgpu_mem_visible(adev, old_mem) ||
538 		    !amdgpu_mem_visible(adev, new_mem)) {
539 			pr_err("Move buffer fallback to memcpy unavailable\n");
540 			return r;
541 		}
542 
543 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544 		if (r)
545 			return r;
546 	}
547 
548 out:
549 	/* update statistics */
550 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
551 	amdgpu_bo_move_notify(bo, evict, new_mem);
552 	return 0;
553 }
554 
555 /*
556  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
557  *
558  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
559  */
560 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
561 				     struct ttm_resource *mem)
562 {
563 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
564 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
565 
566 	switch (mem->mem_type) {
567 	case TTM_PL_SYSTEM:
568 		/* system memory */
569 		return 0;
570 	case TTM_PL_TT:
571 	case AMDGPU_PL_PREEMPT:
572 		break;
573 	case TTM_PL_VRAM:
574 		mem->bus.offset = mem->start << PAGE_SHIFT;
575 		/* check if it's visible */
576 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
577 			return -EINVAL;
578 
579 		if (adev->mman.aper_base_kaddr &&
580 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
581 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
582 					mem->bus.offset;
583 
584 		mem->bus.offset += adev->gmc.aper_base;
585 		mem->bus.is_iomem = true;
586 		break;
587 	default:
588 		return -EINVAL;
589 	}
590 	return 0;
591 }
592 
593 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
594 					   unsigned long page_offset)
595 {
596 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
597 	struct amdgpu_res_cursor cursor;
598 
599 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
600 			 &cursor);
601 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
602 }
603 
604 /**
605  * amdgpu_ttm_domain_start - Returns GPU start address
606  * @adev: amdgpu device object
607  * @type: type of the memory
608  *
609  * Returns:
610  * GPU start address of a memory domain
611  */
612 
613 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
614 {
615 	switch (type) {
616 	case TTM_PL_TT:
617 		return adev->gmc.gart_start;
618 	case TTM_PL_VRAM:
619 		return adev->gmc.vram_start;
620 	}
621 
622 	return 0;
623 }
624 
625 /*
626  * TTM backend functions.
627  */
628 struct amdgpu_ttm_tt {
629 	struct ttm_tt	ttm;
630 	struct drm_gem_object	*gobj;
631 	u64			offset;
632 	uint64_t		userptr;
633 	struct task_struct	*usertask;
634 	uint32_t		userflags;
635 	bool			bound;
636 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
637 	struct hmm_range	*range;
638 #endif
639 };
640 
641 #ifdef CONFIG_DRM_AMDGPU_USERPTR
642 /*
643  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
644  * memory and start HMM tracking CPU page table update
645  *
646  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
647  * once afterwards to stop HMM tracking
648  */
649 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
650 {
651 	struct ttm_tt *ttm = bo->tbo.ttm;
652 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
653 	unsigned long start = gtt->userptr;
654 	struct vm_area_struct *vma;
655 	struct mm_struct *mm;
656 	bool readonly;
657 	int r = 0;
658 
659 	mm = bo->notifier.mm;
660 	if (unlikely(!mm)) {
661 		DRM_DEBUG_DRIVER("BO is not registered?\n");
662 		return -EFAULT;
663 	}
664 
665 	/* Another get_user_pages is running at the same time?? */
666 	if (WARN_ON(gtt->range))
667 		return -EFAULT;
668 
669 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
670 		return -ESRCH;
671 
672 	mmap_read_lock(mm);
673 	vma = vma_lookup(mm, start);
674 	if (unlikely(!vma)) {
675 		r = -EFAULT;
676 		goto out_unlock;
677 	}
678 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
679 		vma->vm_file)) {
680 		r = -EPERM;
681 		goto out_unlock;
682 	}
683 
684 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
685 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
686 				       ttm->num_pages, &gtt->range, readonly,
687 				       true, NULL);
688 out_unlock:
689 	mmap_read_unlock(mm);
690 	if (r)
691 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
692 
693 	mmput(mm);
694 
695 	return r;
696 }
697 
698 /*
699  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
700  * Check if the pages backing this ttm range have been invalidated
701  *
702  * Returns: true if pages are still valid
703  */
704 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
705 {
706 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
707 	bool r = false;
708 
709 	if (!gtt || !gtt->userptr)
710 		return false;
711 
712 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
713 		gtt->userptr, ttm->num_pages);
714 
715 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
716 		"No user pages to check\n");
717 
718 	if (gtt->range) {
719 		/*
720 		 * FIXME: Must always hold notifier_lock for this, and must
721 		 * not ignore the return code.
722 		 */
723 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
724 		gtt->range = NULL;
725 	}
726 
727 	return !r;
728 }
729 #endif
730 
731 /*
732  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
733  *
734  * Called by amdgpu_cs_list_validate(). This creates the page list
735  * that backs user memory and will ultimately be mapped into the device
736  * address space.
737  */
738 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
739 {
740 	unsigned long i;
741 
742 	for (i = 0; i < ttm->num_pages; ++i)
743 		ttm->pages[i] = pages ? pages[i] : NULL;
744 }
745 
746 /*
747  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
748  *
749  * Called by amdgpu_ttm_backend_bind()
750  **/
751 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
752 				     struct ttm_tt *ttm)
753 {
754 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
755 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
756 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
757 	enum dma_data_direction direction = write ?
758 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
759 	int r;
760 
761 	/* Allocate an SG array and squash pages into it */
762 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
763 				      (u64)ttm->num_pages << PAGE_SHIFT,
764 				      GFP_KERNEL);
765 	if (r)
766 		goto release_sg;
767 
768 	/* Map SG to device */
769 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
770 	if (r)
771 		goto release_sg;
772 
773 	/* convert SG to linear array of pages and dma addresses */
774 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
775 				       ttm->num_pages);
776 
777 	return 0;
778 
779 release_sg:
780 	kfree(ttm->sg);
781 	ttm->sg = NULL;
782 	return r;
783 }
784 
785 /*
786  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
787  */
788 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
789 					struct ttm_tt *ttm)
790 {
791 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
792 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
793 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
794 	enum dma_data_direction direction = write ?
795 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
796 
797 	/* double check that we don't free the table twice */
798 	if (!ttm->sg || !ttm->sg->sgl)
799 		return;
800 
801 	/* unmap the pages mapped to the device */
802 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
803 	sg_free_table(ttm->sg);
804 
805 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
806 	if (gtt->range) {
807 		unsigned long i;
808 
809 		for (i = 0; i < ttm->num_pages; i++) {
810 			if (ttm->pages[i] !=
811 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
812 				break;
813 		}
814 
815 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
816 	}
817 #endif
818 }
819 
820 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
821 				 struct ttm_buffer_object *tbo,
822 				 uint64_t flags)
823 {
824 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
825 	struct ttm_tt *ttm = tbo->ttm;
826 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
827 
828 	if (amdgpu_bo_encrypted(abo))
829 		flags |= AMDGPU_PTE_TMZ;
830 
831 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
832 		uint64_t page_idx = 1;
833 
834 		amdgpu_gart_bind(adev, gtt->offset, page_idx,
835 				 gtt->ttm.dma_address, flags);
836 
837 		/* The memory type of the first page defaults to UC. Now
838 		 * modify the memory type to NC from the second page of
839 		 * the BO onward.
840 		 */
841 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
842 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
843 
844 		amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
845 				 ttm->num_pages - page_idx,
846 				 &(gtt->ttm.dma_address[page_idx]), flags);
847 	} else {
848 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
849 				 gtt->ttm.dma_address, flags);
850 	}
851 }
852 
853 /*
854  * amdgpu_ttm_backend_bind - Bind GTT memory
855  *
856  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
857  * This handles binding GTT memory to the device address space.
858  */
859 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
860 				   struct ttm_tt *ttm,
861 				   struct ttm_resource *bo_mem)
862 {
863 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
864 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
865 	uint64_t flags;
866 	int r;
867 
868 	if (!bo_mem)
869 		return -EINVAL;
870 
871 	if (gtt->bound)
872 		return 0;
873 
874 	if (gtt->userptr) {
875 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
876 		if (r) {
877 			DRM_ERROR("failed to pin userptr\n");
878 			return r;
879 		}
880 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
881 		if (!ttm->sg) {
882 			struct dma_buf_attachment *attach;
883 			struct sg_table *sgt;
884 
885 			attach = gtt->gobj->import_attach;
886 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
887 			if (IS_ERR(sgt))
888 				return PTR_ERR(sgt);
889 
890 			ttm->sg = sgt;
891 		}
892 
893 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
894 					       ttm->num_pages);
895 	}
896 
897 	if (!ttm->num_pages) {
898 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
899 		     ttm->num_pages, bo_mem, ttm);
900 	}
901 
902 	if (bo_mem->mem_type != TTM_PL_TT ||
903 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
904 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
905 		return 0;
906 	}
907 
908 	/* compute PTE flags relevant to this BO memory */
909 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
910 
911 	/* bind pages into GART page tables */
912 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
913 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
914 			 gtt->ttm.dma_address, flags);
915 	gtt->bound = true;
916 	return 0;
917 }
918 
919 /*
920  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
921  * through AGP or GART aperture.
922  *
923  * If bo is accessible through AGP aperture, then use AGP aperture
924  * to access bo; otherwise allocate logical space in GART aperture
925  * and map bo to GART aperture.
926  */
927 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
928 {
929 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
930 	struct ttm_operation_ctx ctx = { false, false };
931 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
932 	struct ttm_placement placement;
933 	struct ttm_place placements;
934 	struct ttm_resource *tmp;
935 	uint64_t addr, flags;
936 	int r;
937 
938 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
939 		return 0;
940 
941 	addr = amdgpu_gmc_agp_addr(bo);
942 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
943 		bo->resource->start = addr >> PAGE_SHIFT;
944 		return 0;
945 	}
946 
947 	/* allocate GART space */
948 	placement.num_placement = 1;
949 	placement.placement = &placements;
950 	placement.num_busy_placement = 1;
951 	placement.busy_placement = &placements;
952 	placements.fpfn = 0;
953 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
954 	placements.mem_type = TTM_PL_TT;
955 	placements.flags = bo->resource->placement;
956 
957 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
958 	if (unlikely(r))
959 		return r;
960 
961 	/* compute PTE flags for this buffer object */
962 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
963 
964 	/* Bind pages */
965 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
966 	amdgpu_ttm_gart_bind(adev, bo, flags);
967 	amdgpu_gart_invalidate_tlb(adev);
968 	ttm_resource_free(bo, &bo->resource);
969 	ttm_bo_assign_mem(bo, tmp);
970 
971 	return 0;
972 }
973 
974 /*
975  * amdgpu_ttm_recover_gart - Rebind GTT pages
976  *
977  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
978  * rebind GTT pages during a GPU reset.
979  */
980 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
981 {
982 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
983 	uint64_t flags;
984 
985 	if (!tbo->ttm)
986 		return;
987 
988 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
989 	amdgpu_ttm_gart_bind(adev, tbo, flags);
990 }
991 
992 /*
993  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
994  *
995  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
996  * ttm_tt_destroy().
997  */
998 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
999 				      struct ttm_tt *ttm)
1000 {
1001 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1002 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1003 
1004 	/* if the pages have userptr pinning then clear that first */
1005 	if (gtt->userptr) {
1006 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1007 	} else if (ttm->sg && gtt->gobj->import_attach) {
1008 		struct dma_buf_attachment *attach;
1009 
1010 		attach = gtt->gobj->import_attach;
1011 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1012 		ttm->sg = NULL;
1013 	}
1014 
1015 	if (!gtt->bound)
1016 		return;
1017 
1018 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1019 		return;
1020 
1021 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1022 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1023 	gtt->bound = false;
1024 }
1025 
1026 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1027 				       struct ttm_tt *ttm)
1028 {
1029 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1030 
1031 	if (gtt->usertask)
1032 		put_task_struct(gtt->usertask);
1033 
1034 	ttm_tt_fini(&gtt->ttm);
1035 	kfree(gtt);
1036 }
1037 
1038 /**
1039  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1040  *
1041  * @bo: The buffer object to create a GTT ttm_tt object around
1042  * @page_flags: Page flags to be added to the ttm_tt object
1043  *
1044  * Called by ttm_tt_create().
1045  */
1046 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1047 					   uint32_t page_flags)
1048 {
1049 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1050 	struct amdgpu_ttm_tt *gtt;
1051 	enum ttm_caching caching;
1052 
1053 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1054 	if (gtt == NULL) {
1055 		return NULL;
1056 	}
1057 	gtt->gobj = &bo->base;
1058 
1059 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1060 		caching = ttm_write_combined;
1061 	else
1062 		caching = ttm_cached;
1063 
1064 	/* allocate space for the uninitialized page entries */
1065 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1066 		kfree(gtt);
1067 		return NULL;
1068 	}
1069 	return &gtt->ttm;
1070 }
1071 
1072 /*
1073  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1074  *
1075  * Map the pages of a ttm_tt object to an address space visible
1076  * to the underlying device.
1077  */
1078 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1079 				  struct ttm_tt *ttm,
1080 				  struct ttm_operation_ctx *ctx)
1081 {
1082 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1083 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1084 	pgoff_t i;
1085 	int ret;
1086 
1087 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1088 	if (gtt->userptr) {
1089 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1090 		if (!ttm->sg)
1091 			return -ENOMEM;
1092 		return 0;
1093 	}
1094 
1095 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1096 		return 0;
1097 
1098 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1099 	if (ret)
1100 		return ret;
1101 
1102 	for (i = 0; i < ttm->num_pages; ++i)
1103 		ttm->pages[i]->mapping = bdev->dev_mapping;
1104 
1105 	return 0;
1106 }
1107 
1108 /*
1109  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1110  *
1111  * Unmaps pages of a ttm_tt object from the device address space and
1112  * unpopulates the page array backing it.
1113  */
1114 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1115 				     struct ttm_tt *ttm)
1116 {
1117 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1118 	struct amdgpu_device *adev;
1119 	pgoff_t i;
1120 
1121 	amdgpu_ttm_backend_unbind(bdev, ttm);
1122 
1123 	if (gtt->userptr) {
1124 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1125 		kfree(ttm->sg);
1126 		ttm->sg = NULL;
1127 		return;
1128 	}
1129 
1130 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1131 		return;
1132 
1133 	for (i = 0; i < ttm->num_pages; ++i)
1134 		ttm->pages[i]->mapping = NULL;
1135 
1136 	adev = amdgpu_ttm_adev(bdev);
1137 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1138 }
1139 
1140 /**
1141  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1142  * task
1143  *
1144  * @tbo: The ttm_buffer_object that contains the userptr
1145  * @user_addr:  The returned value
1146  */
1147 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1148 			      uint64_t *user_addr)
1149 {
1150 	struct amdgpu_ttm_tt *gtt;
1151 
1152 	if (!tbo->ttm)
1153 		return -EINVAL;
1154 
1155 	gtt = (void *)tbo->ttm;
1156 	*user_addr = gtt->userptr;
1157 	return 0;
1158 }
1159 
1160 /**
1161  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1162  * task
1163  *
1164  * @bo: The ttm_buffer_object to bind this userptr to
1165  * @addr:  The address in the current tasks VM space to use
1166  * @flags: Requirements of userptr object.
1167  *
1168  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1169  * to current task
1170  */
1171 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1172 			      uint64_t addr, uint32_t flags)
1173 {
1174 	struct amdgpu_ttm_tt *gtt;
1175 
1176 	if (!bo->ttm) {
1177 		/* TODO: We want a separate TTM object type for userptrs */
1178 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1179 		if (bo->ttm == NULL)
1180 			return -ENOMEM;
1181 	}
1182 
1183 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1184 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1185 
1186 	gtt = (void *)bo->ttm;
1187 	gtt->userptr = addr;
1188 	gtt->userflags = flags;
1189 
1190 	if (gtt->usertask)
1191 		put_task_struct(gtt->usertask);
1192 	gtt->usertask = current->group_leader;
1193 	get_task_struct(gtt->usertask);
1194 
1195 	return 0;
1196 }
1197 
1198 /*
1199  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1200  */
1201 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1202 {
1203 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1204 
1205 	if (gtt == NULL)
1206 		return NULL;
1207 
1208 	if (gtt->usertask == NULL)
1209 		return NULL;
1210 
1211 	return gtt->usertask->mm;
1212 }
1213 
1214 /*
1215  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1216  * address range for the current task.
1217  *
1218  */
1219 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1220 				  unsigned long end, unsigned long *userptr)
1221 {
1222 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1223 	unsigned long size;
1224 
1225 	if (gtt == NULL || !gtt->userptr)
1226 		return false;
1227 
1228 	/* Return false if no part of the ttm_tt object lies within
1229 	 * the range
1230 	 */
1231 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1232 	if (gtt->userptr > end || gtt->userptr + size <= start)
1233 		return false;
1234 
1235 	if (userptr)
1236 		*userptr = gtt->userptr;
1237 	return true;
1238 }
1239 
1240 /*
1241  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1242  */
1243 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1244 {
1245 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1246 
1247 	if (gtt == NULL || !gtt->userptr)
1248 		return false;
1249 
1250 	return true;
1251 }
1252 
1253 /*
1254  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1255  */
1256 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1257 {
1258 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1259 
1260 	if (gtt == NULL)
1261 		return false;
1262 
1263 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1264 }
1265 
1266 /**
1267  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1268  *
1269  * @ttm: The ttm_tt object to compute the flags for
1270  * @mem: The memory registry backing this ttm_tt object
1271  *
1272  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1273  */
1274 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1275 {
1276 	uint64_t flags = 0;
1277 
1278 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1279 		flags |= AMDGPU_PTE_VALID;
1280 
1281 	if (mem && (mem->mem_type == TTM_PL_TT ||
1282 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1283 		flags |= AMDGPU_PTE_SYSTEM;
1284 
1285 		if (ttm->caching == ttm_cached)
1286 			flags |= AMDGPU_PTE_SNOOPED;
1287 	}
1288 
1289 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1290 			mem->bus.caching == ttm_cached)
1291 		flags |= AMDGPU_PTE_SNOOPED;
1292 
1293 	return flags;
1294 }
1295 
1296 /**
1297  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1298  *
1299  * @adev: amdgpu_device pointer
1300  * @ttm: The ttm_tt object to compute the flags for
1301  * @mem: The memory registry backing this ttm_tt object
1302  *
1303  * Figure out the flags to use for a VM PTE (Page Table Entry).
1304  */
1305 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1306 				 struct ttm_resource *mem)
1307 {
1308 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1309 
1310 	flags |= adev->gart.gart_pte_flags;
1311 	flags |= AMDGPU_PTE_READABLE;
1312 
1313 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1314 		flags |= AMDGPU_PTE_WRITEABLE;
1315 
1316 	return flags;
1317 }
1318 
1319 /*
1320  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1321  * object.
1322  *
1323  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1324  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1325  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1326  * used to clean out a memory space.
1327  */
1328 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1329 					    const struct ttm_place *place)
1330 {
1331 	unsigned long num_pages = bo->resource->num_pages;
1332 	struct dma_resv_iter resv_cursor;
1333 	struct amdgpu_res_cursor cursor;
1334 	struct dma_fence *f;
1335 
1336 	/* Swapout? */
1337 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1338 		return true;
1339 
1340 	if (bo->type == ttm_bo_type_kernel &&
1341 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1342 		return false;
1343 
1344 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1345 	 * If true, then return false as any KFD process needs all its BOs to
1346 	 * be resident to run successfully
1347 	 */
1348 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1349 				DMA_RESV_USAGE_BOOKKEEP, f) {
1350 		if (amdkfd_fence_check_mm(f, current->mm))
1351 			return false;
1352 	}
1353 
1354 	switch (bo->resource->mem_type) {
1355 	case AMDGPU_PL_PREEMPT:
1356 		/* Preemptible BOs don't own system resources managed by the
1357 		 * driver (pages, VRAM, GART space). They point to resources
1358 		 * owned by someone else (e.g. pageable memory in user mode
1359 		 * or a DMABuf). They are used in a preemptible context so we
1360 		 * can guarantee no deadlocks and good QoS in case of MMU
1361 		 * notifiers or DMABuf move notifiers from the resource owner.
1362 		 */
1363 		return false;
1364 	case TTM_PL_TT:
1365 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1366 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1367 			return false;
1368 		return true;
1369 
1370 	case TTM_PL_VRAM:
1371 		/* Check each drm MM node individually */
1372 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1373 				 &cursor);
1374 		while (cursor.remaining) {
1375 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1376 			    && !(place->lpfn &&
1377 				 place->lpfn <= PFN_DOWN(cursor.start)))
1378 				return true;
1379 
1380 			amdgpu_res_next(&cursor, cursor.size);
1381 		}
1382 		return false;
1383 
1384 	default:
1385 		break;
1386 	}
1387 
1388 	return ttm_bo_eviction_valuable(bo, place);
1389 }
1390 
1391 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1392 				      void *buf, size_t size, bool write)
1393 {
1394 	while (size) {
1395 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1396 		uint64_t bytes = 4 - (pos & 0x3);
1397 		uint32_t shift = (pos & 0x3) * 8;
1398 		uint32_t mask = 0xffffffff << shift;
1399 		uint32_t value = 0;
1400 
1401 		if (size < bytes) {
1402 			mask &= 0xffffffff >> (bytes - size) * 8;
1403 			bytes = size;
1404 		}
1405 
1406 		if (mask != 0xffffffff) {
1407 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1408 			if (write) {
1409 				value &= ~mask;
1410 				value |= (*(uint32_t *)buf << shift) & mask;
1411 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1412 			} else {
1413 				value = (value & mask) >> shift;
1414 				memcpy(buf, &value, bytes);
1415 			}
1416 		} else {
1417 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1418 		}
1419 
1420 		pos += bytes;
1421 		buf += bytes;
1422 		size -= bytes;
1423 	}
1424 }
1425 
1426 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1427 					unsigned long offset, void *buf, int len, int write)
1428 {
1429 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1430 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1431 	struct amdgpu_res_cursor src_mm;
1432 	struct amdgpu_job *job;
1433 	struct dma_fence *fence;
1434 	uint64_t src_addr, dst_addr;
1435 	unsigned int num_dw;
1436 	int r, idx;
1437 
1438 	if (len != PAGE_SIZE)
1439 		return -EINVAL;
1440 
1441 	if (!adev->mman.sdma_access_ptr)
1442 		return -EACCES;
1443 
1444 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1445 		return -ENODEV;
1446 
1447 	if (write)
1448 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1449 
1450 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1451 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1452 	if (r)
1453 		goto out;
1454 
1455 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1456 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1457 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1458 	if (write)
1459 		swap(src_addr, dst_addr);
1460 
1461 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1462 
1463 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1464 	WARN_ON(job->ibs[0].length_dw > num_dw);
1465 
1466 	r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1467 	if (r) {
1468 		amdgpu_job_free(job);
1469 		goto out;
1470 	}
1471 
1472 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1473 		r = -ETIMEDOUT;
1474 	dma_fence_put(fence);
1475 
1476 	if (!(r || write))
1477 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1478 out:
1479 	drm_dev_exit(idx);
1480 	return r;
1481 }
1482 
1483 /**
1484  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1485  *
1486  * @bo:  The buffer object to read/write
1487  * @offset:  Offset into buffer object
1488  * @buf:  Secondary buffer to write/read from
1489  * @len: Length in bytes of access
1490  * @write:  true if writing
1491  *
1492  * This is used to access VRAM that backs a buffer object via MMIO
1493  * access for debugging purposes.
1494  */
1495 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1496 				    unsigned long offset, void *buf, int len,
1497 				    int write)
1498 {
1499 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1500 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1501 	struct amdgpu_res_cursor cursor;
1502 	int ret = 0;
1503 
1504 	if (bo->resource->mem_type != TTM_PL_VRAM)
1505 		return -EIO;
1506 
1507 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1508 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1509 		return len;
1510 
1511 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1512 	while (cursor.remaining) {
1513 		size_t count, size = cursor.size;
1514 		loff_t pos = cursor.start;
1515 
1516 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1517 		size -= count;
1518 		if (size) {
1519 			/* using MM to access rest vram and handle un-aligned address */
1520 			pos += count;
1521 			buf += count;
1522 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1523 		}
1524 
1525 		ret += cursor.size;
1526 		buf += cursor.size;
1527 		amdgpu_res_next(&cursor, cursor.size);
1528 	}
1529 
1530 	return ret;
1531 }
1532 
1533 static void
1534 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1535 {
1536 	amdgpu_bo_move_notify(bo, false, NULL);
1537 }
1538 
1539 static struct ttm_device_funcs amdgpu_bo_driver = {
1540 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1541 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1542 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1543 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1544 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1545 	.evict_flags = &amdgpu_evict_flags,
1546 	.move = &amdgpu_bo_move,
1547 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1548 	.release_notify = &amdgpu_bo_release_notify,
1549 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1550 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1551 	.access_memory = &amdgpu_ttm_access_memory,
1552 };
1553 
1554 /*
1555  * Firmware Reservation functions
1556  */
1557 /**
1558  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1559  *
1560  * @adev: amdgpu_device pointer
1561  *
1562  * free fw reserved vram if it has been reserved.
1563  */
1564 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1565 {
1566 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1567 		NULL, &adev->mman.fw_vram_usage_va);
1568 }
1569 
1570 /**
1571  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1572  *
1573  * @adev: amdgpu_device pointer
1574  *
1575  * create bo vram reservation from fw.
1576  */
1577 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1578 {
1579 	uint64_t vram_size = adev->gmc.visible_vram_size;
1580 
1581 	adev->mman.fw_vram_usage_va = NULL;
1582 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1583 
1584 	if (adev->mman.fw_vram_usage_size == 0 ||
1585 	    adev->mman.fw_vram_usage_size > vram_size)
1586 		return 0;
1587 
1588 	return amdgpu_bo_create_kernel_at(adev,
1589 					  adev->mman.fw_vram_usage_start_offset,
1590 					  adev->mman.fw_vram_usage_size,
1591 					  AMDGPU_GEM_DOMAIN_VRAM,
1592 					  &adev->mman.fw_vram_usage_reserved_bo,
1593 					  &adev->mman.fw_vram_usage_va);
1594 }
1595 
1596 /*
1597  * Memoy training reservation functions
1598  */
1599 
1600 /**
1601  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1602  *
1603  * @adev: amdgpu_device pointer
1604  *
1605  * free memory training reserved vram if it has been reserved.
1606  */
1607 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1608 {
1609 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1610 
1611 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1612 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1613 	ctx->c2p_bo = NULL;
1614 
1615 	return 0;
1616 }
1617 
1618 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1619 {
1620 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1621 
1622 	memset(ctx, 0, sizeof(*ctx));
1623 
1624 	ctx->c2p_train_data_offset =
1625 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1626 	ctx->p2c_train_data_offset =
1627 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1628 	ctx->train_data_size =
1629 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1630 
1631 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1632 			ctx->train_data_size,
1633 			ctx->p2c_train_data_offset,
1634 			ctx->c2p_train_data_offset);
1635 }
1636 
1637 /*
1638  * reserve TMR memory at the top of VRAM which holds
1639  * IP Discovery data and is protected by PSP.
1640  */
1641 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1642 {
1643 	int ret;
1644 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1645 	bool mem_train_support = false;
1646 
1647 	if (!amdgpu_sriov_vf(adev)) {
1648 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1649 			mem_train_support = true;
1650 		else
1651 			DRM_DEBUG("memory training does not support!\n");
1652 	}
1653 
1654 	/*
1655 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1656 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1657 	 *
1658 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1659 	 * discovery data and G6 memory training data respectively
1660 	 */
1661 	adev->mman.discovery_tmr_size =
1662 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1663 	if (!adev->mman.discovery_tmr_size)
1664 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1665 
1666 	if (mem_train_support) {
1667 		/* reserve vram for mem train according to TMR location */
1668 		amdgpu_ttm_training_data_block_init(adev);
1669 		ret = amdgpu_bo_create_kernel_at(adev,
1670 					 ctx->c2p_train_data_offset,
1671 					 ctx->train_data_size,
1672 					 AMDGPU_GEM_DOMAIN_VRAM,
1673 					 &ctx->c2p_bo,
1674 					 NULL);
1675 		if (ret) {
1676 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1677 			amdgpu_ttm_training_reserve_vram_fini(adev);
1678 			return ret;
1679 		}
1680 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1681 	}
1682 
1683 	ret = amdgpu_bo_create_kernel_at(adev,
1684 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1685 				adev->mman.discovery_tmr_size,
1686 				AMDGPU_GEM_DOMAIN_VRAM,
1687 				&adev->mman.discovery_memory,
1688 				NULL);
1689 	if (ret) {
1690 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1691 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1692 		return ret;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 /*
1699  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1700  * gtt/vram related fields.
1701  *
1702  * This initializes all of the memory space pools that the TTM layer
1703  * will need such as the GTT space (system memory mapped to the device),
1704  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1705  * can be mapped per VMID.
1706  */
1707 int amdgpu_ttm_init(struct amdgpu_device *adev)
1708 {
1709 	uint64_t gtt_size;
1710 	int r;
1711 	u64 vis_vram_limit;
1712 
1713 	mutex_init(&adev->mman.gtt_window_lock);
1714 
1715 	/* No others user of address space so set it to 0 */
1716 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1717 			       adev_to_drm(adev)->anon_inode->i_mapping,
1718 			       adev_to_drm(adev)->vma_offset_manager,
1719 			       adev->need_swiotlb,
1720 			       dma_addressing_limited(adev->dev));
1721 	if (r) {
1722 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1723 		return r;
1724 	}
1725 	adev->mman.initialized = true;
1726 
1727 	/* Initialize VRAM pool with all of VRAM divided into pages */
1728 	r = amdgpu_vram_mgr_init(adev);
1729 	if (r) {
1730 		DRM_ERROR("Failed initializing VRAM heap.\n");
1731 		return r;
1732 	}
1733 
1734 	/* Reduce size of CPU-visible VRAM if requested */
1735 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1736 	if (amdgpu_vis_vram_limit > 0 &&
1737 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1738 		adev->gmc.visible_vram_size = vis_vram_limit;
1739 
1740 	/* Change the size here instead of the init above so only lpfn is affected */
1741 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1742 #ifdef CONFIG_64BIT
1743 #ifdef CONFIG_X86
1744 	if (adev->gmc.xgmi.connected_to_cpu)
1745 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1746 				adev->gmc.visible_vram_size);
1747 
1748 	else
1749 #endif
1750 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1751 				adev->gmc.visible_vram_size);
1752 #endif
1753 
1754 	/*
1755 	 *The reserved vram for firmware must be pinned to the specified
1756 	 *place on the VRAM, so reserve it early.
1757 	 */
1758 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1759 	if (r) {
1760 		return r;
1761 	}
1762 
1763 	/*
1764 	 * only NAVI10 and onwards ASIC support for IP discovery.
1765 	 * If IP discovery enabled, a block of memory should be
1766 	 * reserved for IP discovey.
1767 	 */
1768 	if (adev->mman.discovery_bin) {
1769 		r = amdgpu_ttm_reserve_tmr(adev);
1770 		if (r)
1771 			return r;
1772 	}
1773 
1774 	/* allocate memory as required for VGA
1775 	 * This is used for VGA emulation and pre-OS scanout buffers to
1776 	 * avoid display artifacts while transitioning between pre-OS
1777 	 * and driver.  */
1778 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1779 				       AMDGPU_GEM_DOMAIN_VRAM,
1780 				       &adev->mman.stolen_vga_memory,
1781 				       NULL);
1782 	if (r)
1783 		return r;
1784 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1785 				       adev->mman.stolen_extended_size,
1786 				       AMDGPU_GEM_DOMAIN_VRAM,
1787 				       &adev->mman.stolen_extended_memory,
1788 				       NULL);
1789 	if (r)
1790 		return r;
1791 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1792 				       adev->mman.stolen_reserved_size,
1793 				       AMDGPU_GEM_DOMAIN_VRAM,
1794 				       &adev->mman.stolen_reserved_memory,
1795 				       NULL);
1796 	if (r)
1797 		return r;
1798 
1799 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1800 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1801 
1802 	/* Compute GTT size, either based on 1/2 the size of RAM size
1803 	 * or whatever the user passed on module init */
1804 	if (amdgpu_gtt_size == -1) {
1805 		struct sysinfo si;
1806 
1807 		si_meminfo(&si);
1808 		/* Certain GL unit tests for large textures can cause problems
1809 		 * with the OOM killer since there is no way to link this memory
1810 		 * to a process.  This was originally mitigated (but not necessarily
1811 		 * eliminated) by limiting the GTT size.  The problem is this limit
1812 		 * is often too low for many modern games so just make the limit 1/2
1813 		 * of system memory which aligns with TTM. The OOM accounting needs
1814 		 * to be addressed, but we shouldn't prevent common 3D applications
1815 		 * from being usable just to potentially mitigate that corner case.
1816 		 */
1817 		gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1818 			       (u64)si.totalram * si.mem_unit / 2);
1819 	} else {
1820 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1821 	}
1822 
1823 	/* Initialize GTT memory pool */
1824 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1825 	if (r) {
1826 		DRM_ERROR("Failed initializing GTT heap.\n");
1827 		return r;
1828 	}
1829 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1830 		 (unsigned)(gtt_size / (1024 * 1024)));
1831 
1832 	/* Initialize preemptible memory pool */
1833 	r = amdgpu_preempt_mgr_init(adev);
1834 	if (r) {
1835 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1836 		return r;
1837 	}
1838 
1839 	/* Initialize various on-chip memory pools */
1840 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1841 	if (r) {
1842 		DRM_ERROR("Failed initializing GDS heap.\n");
1843 		return r;
1844 	}
1845 
1846 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1847 	if (r) {
1848 		DRM_ERROR("Failed initializing gws heap.\n");
1849 		return r;
1850 	}
1851 
1852 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1853 	if (r) {
1854 		DRM_ERROR("Failed initializing oa heap.\n");
1855 		return r;
1856 	}
1857 
1858 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1859 				AMDGPU_GEM_DOMAIN_GTT,
1860 				&adev->mman.sdma_access_bo, NULL,
1861 				&adev->mman.sdma_access_ptr))
1862 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1863 
1864 	return 0;
1865 }
1866 
1867 /*
1868  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1869  */
1870 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1871 {
1872 	int idx;
1873 	if (!adev->mman.initialized)
1874 		return;
1875 
1876 	amdgpu_ttm_training_reserve_vram_fini(adev);
1877 	/* return the stolen vga memory back to VRAM */
1878 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1879 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1880 	/* return the IP Discovery TMR memory back to VRAM */
1881 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1882 	if (adev->mman.stolen_reserved_size)
1883 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1884 				      NULL, NULL);
1885 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1886 					&adev->mman.sdma_access_ptr);
1887 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1888 
1889 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1890 
1891 		if (adev->mman.aper_base_kaddr)
1892 			iounmap(adev->mman.aper_base_kaddr);
1893 		adev->mman.aper_base_kaddr = NULL;
1894 
1895 		drm_dev_exit(idx);
1896 	}
1897 
1898 	amdgpu_vram_mgr_fini(adev);
1899 	amdgpu_gtt_mgr_fini(adev);
1900 	amdgpu_preempt_mgr_fini(adev);
1901 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1902 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1903 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1904 	ttm_device_fini(&adev->mman.bdev);
1905 	adev->mman.initialized = false;
1906 	DRM_INFO("amdgpu: ttm finalized\n");
1907 }
1908 
1909 /**
1910  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1911  *
1912  * @adev: amdgpu_device pointer
1913  * @enable: true when we can use buffer functions.
1914  *
1915  * Enable/disable use of buffer functions during suspend/resume. This should
1916  * only be called at bootup or when userspace isn't running.
1917  */
1918 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1919 {
1920 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1921 	uint64_t size;
1922 	int r;
1923 
1924 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1925 	    adev->mman.buffer_funcs_enabled == enable)
1926 		return;
1927 
1928 	if (enable) {
1929 		struct amdgpu_ring *ring;
1930 		struct drm_gpu_scheduler *sched;
1931 
1932 		ring = adev->mman.buffer_funcs_ring;
1933 		sched = &ring->sched;
1934 		r = drm_sched_entity_init(&adev->mman.entity,
1935 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1936 					  1, NULL);
1937 		if (r) {
1938 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1939 				  r);
1940 			return;
1941 		}
1942 	} else {
1943 		drm_sched_entity_destroy(&adev->mman.entity);
1944 		dma_fence_put(man->move);
1945 		man->move = NULL;
1946 	}
1947 
1948 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1949 	if (enable)
1950 		size = adev->gmc.real_vram_size;
1951 	else
1952 		size = adev->gmc.visible_vram_size;
1953 	man->size = size;
1954 	adev->mman.buffer_funcs_enabled = enable;
1955 }
1956 
1957 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1958 				  bool direct_submit,
1959 				  unsigned int num_dw,
1960 				  struct dma_resv *resv,
1961 				  bool vm_needs_flush,
1962 				  struct amdgpu_job **job)
1963 {
1964 	enum amdgpu_ib_pool_type pool = direct_submit ?
1965 		AMDGPU_IB_POOL_DIRECT :
1966 		AMDGPU_IB_POOL_DELAYED;
1967 	int r;
1968 
1969 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1970 	if (r)
1971 		return r;
1972 
1973 	if (vm_needs_flush) {
1974 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1975 							adev->gmc.pdb0_bo :
1976 							adev->gart.bo);
1977 		(*job)->vm_needs_flush = true;
1978 	}
1979 	if (resv) {
1980 		r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1981 				     AMDGPU_SYNC_ALWAYS,
1982 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1983 		if (r) {
1984 			DRM_ERROR("sync failed (%d).\n", r);
1985 			amdgpu_job_free(*job);
1986 			return r;
1987 		}
1988 	}
1989 	return 0;
1990 }
1991 
1992 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1993 		       uint64_t dst_offset, uint32_t byte_count,
1994 		       struct dma_resv *resv,
1995 		       struct dma_fence **fence, bool direct_submit,
1996 		       bool vm_needs_flush, bool tmz)
1997 {
1998 	struct amdgpu_device *adev = ring->adev;
1999 	unsigned num_loops, num_dw;
2000 	struct amdgpu_job *job;
2001 	uint32_t max_bytes;
2002 	unsigned i;
2003 	int r;
2004 
2005 	if (!direct_submit && !ring->sched.ready) {
2006 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2007 		return -EINVAL;
2008 	}
2009 
2010 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2011 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2012 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2013 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2014 				   resv, vm_needs_flush, &job);
2015 	if (r)
2016 		return r;
2017 
2018 	for (i = 0; i < num_loops; i++) {
2019 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2020 
2021 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2022 					dst_offset, cur_size_in_bytes, tmz);
2023 
2024 		src_offset += cur_size_in_bytes;
2025 		dst_offset += cur_size_in_bytes;
2026 		byte_count -= cur_size_in_bytes;
2027 	}
2028 
2029 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2030 	WARN_ON(job->ibs[0].length_dw > num_dw);
2031 	if (direct_submit)
2032 		r = amdgpu_job_submit_direct(job, ring, fence);
2033 	else
2034 		r = amdgpu_job_submit(job, &adev->mman.entity,
2035 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2036 	if (r)
2037 		goto error_free;
2038 
2039 	return r;
2040 
2041 error_free:
2042 	amdgpu_job_free(job);
2043 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2044 	return r;
2045 }
2046 
2047 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2048 			       uint64_t dst_addr, uint32_t byte_count,
2049 			       struct dma_resv *resv,
2050 			       struct dma_fence **fence,
2051 			       bool vm_needs_flush)
2052 {
2053 	struct amdgpu_device *adev = ring->adev;
2054 	unsigned int num_loops, num_dw;
2055 	struct amdgpu_job *job;
2056 	uint32_t max_bytes;
2057 	unsigned int i;
2058 	int r;
2059 
2060 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2061 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2062 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2063 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2064 				   &job);
2065 	if (r)
2066 		return r;
2067 
2068 	for (i = 0; i < num_loops; i++) {
2069 		uint32_t cur_size = min(byte_count, max_bytes);
2070 
2071 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2072 					cur_size);
2073 
2074 		dst_addr += cur_size;
2075 		byte_count -= cur_size;
2076 	}
2077 
2078 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2079 	WARN_ON(job->ibs[0].length_dw > num_dw);
2080 	r = amdgpu_job_submit(job, &adev->mman.entity,
2081 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2082 	if (r)
2083 		goto error_free;
2084 
2085 	return 0;
2086 
2087 error_free:
2088 	amdgpu_job_free(job);
2089 	return r;
2090 }
2091 
2092 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2093 			uint32_t src_data,
2094 			struct dma_resv *resv,
2095 			struct dma_fence **f)
2096 {
2097 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2098 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2099 	struct dma_fence *fence = NULL;
2100 	struct amdgpu_res_cursor dst;
2101 	int r;
2102 
2103 	if (!adev->mman.buffer_funcs_enabled) {
2104 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2105 		return -EINVAL;
2106 	}
2107 
2108 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2109 
2110 	mutex_lock(&adev->mman.gtt_window_lock);
2111 	while (dst.remaining) {
2112 		struct dma_fence *next;
2113 		uint64_t cur_size, to;
2114 
2115 		/* Never fill more than 256MiB at once to avoid timeouts */
2116 		cur_size = min(dst.size, 256ULL << 20);
2117 
2118 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2119 					  1, ring, false, &cur_size, &to);
2120 		if (r)
2121 			goto error;
2122 
2123 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2124 					&next, true);
2125 		if (r)
2126 			goto error;
2127 
2128 		dma_fence_put(fence);
2129 		fence = next;
2130 
2131 		amdgpu_res_next(&dst, cur_size);
2132 	}
2133 error:
2134 	mutex_unlock(&adev->mman.gtt_window_lock);
2135 	if (f)
2136 		*f = dma_fence_get(fence);
2137 	dma_fence_put(fence);
2138 	return r;
2139 }
2140 
2141 /**
2142  * amdgpu_ttm_evict_resources - evict memory buffers
2143  * @adev: amdgpu device object
2144  * @mem_type: evicted BO's memory type
2145  *
2146  * Evicts all @mem_type buffers on the lru list of the memory type.
2147  *
2148  * Returns:
2149  * 0 for success or a negative error code on failure.
2150  */
2151 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2152 {
2153 	struct ttm_resource_manager *man;
2154 
2155 	switch (mem_type) {
2156 	case TTM_PL_VRAM:
2157 	case TTM_PL_TT:
2158 	case AMDGPU_PL_GWS:
2159 	case AMDGPU_PL_GDS:
2160 	case AMDGPU_PL_OA:
2161 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2162 		break;
2163 	default:
2164 		DRM_ERROR("Trying to evict invalid memory type\n");
2165 		return -EINVAL;
2166 	}
2167 
2168 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2169 }
2170 
2171 #if defined(CONFIG_DEBUG_FS)
2172 
2173 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2174 {
2175 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2176 
2177 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2178 }
2179 
2180 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2181 
2182 /*
2183  * amdgpu_ttm_vram_read - Linear read access to VRAM
2184  *
2185  * Accesses VRAM via MMIO for debugging purposes.
2186  */
2187 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2188 				    size_t size, loff_t *pos)
2189 {
2190 	struct amdgpu_device *adev = file_inode(f)->i_private;
2191 	ssize_t result = 0;
2192 
2193 	if (size & 0x3 || *pos & 0x3)
2194 		return -EINVAL;
2195 
2196 	if (*pos >= adev->gmc.mc_vram_size)
2197 		return -ENXIO;
2198 
2199 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2200 	while (size) {
2201 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2202 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2203 
2204 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2205 		if (copy_to_user(buf, value, bytes))
2206 			return -EFAULT;
2207 
2208 		result += bytes;
2209 		buf += bytes;
2210 		*pos += bytes;
2211 		size -= bytes;
2212 	}
2213 
2214 	return result;
2215 }
2216 
2217 /*
2218  * amdgpu_ttm_vram_write - Linear write access to VRAM
2219  *
2220  * Accesses VRAM via MMIO for debugging purposes.
2221  */
2222 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2223 				    size_t size, loff_t *pos)
2224 {
2225 	struct amdgpu_device *adev = file_inode(f)->i_private;
2226 	ssize_t result = 0;
2227 	int r;
2228 
2229 	if (size & 0x3 || *pos & 0x3)
2230 		return -EINVAL;
2231 
2232 	if (*pos >= adev->gmc.mc_vram_size)
2233 		return -ENXIO;
2234 
2235 	while (size) {
2236 		uint32_t value;
2237 
2238 		if (*pos >= adev->gmc.mc_vram_size)
2239 			return result;
2240 
2241 		r = get_user(value, (uint32_t *)buf);
2242 		if (r)
2243 			return r;
2244 
2245 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2246 
2247 		result += 4;
2248 		buf += 4;
2249 		*pos += 4;
2250 		size -= 4;
2251 	}
2252 
2253 	return result;
2254 }
2255 
2256 static const struct file_operations amdgpu_ttm_vram_fops = {
2257 	.owner = THIS_MODULE,
2258 	.read = amdgpu_ttm_vram_read,
2259 	.write = amdgpu_ttm_vram_write,
2260 	.llseek = default_llseek,
2261 };
2262 
2263 /*
2264  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2265  *
2266  * This function is used to read memory that has been mapped to the
2267  * GPU and the known addresses are not physical addresses but instead
2268  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2269  */
2270 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2271 				 size_t size, loff_t *pos)
2272 {
2273 	struct amdgpu_device *adev = file_inode(f)->i_private;
2274 	struct iommu_domain *dom;
2275 	ssize_t result = 0;
2276 	int r;
2277 
2278 	/* retrieve the IOMMU domain if any for this device */
2279 	dom = iommu_get_domain_for_dev(adev->dev);
2280 
2281 	while (size) {
2282 		phys_addr_t addr = *pos & PAGE_MASK;
2283 		loff_t off = *pos & ~PAGE_MASK;
2284 		size_t bytes = PAGE_SIZE - off;
2285 		unsigned long pfn;
2286 		struct page *p;
2287 		void *ptr;
2288 
2289 		bytes = bytes < size ? bytes : size;
2290 
2291 		/* Translate the bus address to a physical address.  If
2292 		 * the domain is NULL it means there is no IOMMU active
2293 		 * and the address translation is the identity
2294 		 */
2295 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2296 
2297 		pfn = addr >> PAGE_SHIFT;
2298 		if (!pfn_valid(pfn))
2299 			return -EPERM;
2300 
2301 		p = pfn_to_page(pfn);
2302 		if (p->mapping != adev->mman.bdev.dev_mapping)
2303 			return -EPERM;
2304 
2305 		ptr = kmap(p);
2306 		r = copy_to_user(buf, ptr + off, bytes);
2307 		kunmap(p);
2308 		if (r)
2309 			return -EFAULT;
2310 
2311 		size -= bytes;
2312 		*pos += bytes;
2313 		result += bytes;
2314 	}
2315 
2316 	return result;
2317 }
2318 
2319 /*
2320  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2321  *
2322  * This function is used to write memory that has been mapped to the
2323  * GPU and the known addresses are not physical addresses but instead
2324  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2325  */
2326 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2327 				 size_t size, loff_t *pos)
2328 {
2329 	struct amdgpu_device *adev = file_inode(f)->i_private;
2330 	struct iommu_domain *dom;
2331 	ssize_t result = 0;
2332 	int r;
2333 
2334 	dom = iommu_get_domain_for_dev(adev->dev);
2335 
2336 	while (size) {
2337 		phys_addr_t addr = *pos & PAGE_MASK;
2338 		loff_t off = *pos & ~PAGE_MASK;
2339 		size_t bytes = PAGE_SIZE - off;
2340 		unsigned long pfn;
2341 		struct page *p;
2342 		void *ptr;
2343 
2344 		bytes = bytes < size ? bytes : size;
2345 
2346 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2347 
2348 		pfn = addr >> PAGE_SHIFT;
2349 		if (!pfn_valid(pfn))
2350 			return -EPERM;
2351 
2352 		p = pfn_to_page(pfn);
2353 		if (p->mapping != adev->mman.bdev.dev_mapping)
2354 			return -EPERM;
2355 
2356 		ptr = kmap(p);
2357 		r = copy_from_user(ptr + off, buf, bytes);
2358 		kunmap(p);
2359 		if (r)
2360 			return -EFAULT;
2361 
2362 		size -= bytes;
2363 		*pos += bytes;
2364 		result += bytes;
2365 	}
2366 
2367 	return result;
2368 }
2369 
2370 static const struct file_operations amdgpu_ttm_iomem_fops = {
2371 	.owner = THIS_MODULE,
2372 	.read = amdgpu_iomem_read,
2373 	.write = amdgpu_iomem_write,
2374 	.llseek = default_llseek
2375 };
2376 
2377 #endif
2378 
2379 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2380 {
2381 #if defined(CONFIG_DEBUG_FS)
2382 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2383 	struct dentry *root = minor->debugfs_root;
2384 
2385 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2386 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2387 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2388 			    &amdgpu_ttm_iomem_fops);
2389 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2390 			    &amdgpu_ttm_page_pool_fops);
2391 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2392 							     TTM_PL_VRAM),
2393 					    root, "amdgpu_vram_mm");
2394 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2395 							     TTM_PL_TT),
2396 					    root, "amdgpu_gtt_mm");
2397 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2398 							     AMDGPU_PL_GDS),
2399 					    root, "amdgpu_gds_mm");
2400 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2401 							     AMDGPU_PL_GWS),
2402 					    root, "amdgpu_gws_mm");
2403 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2404 							     AMDGPU_PL_OA),
2405 					    root, "amdgpu_oa_mm");
2406 
2407 #endif
2408 }
2409