1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, 0); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 299 uint32_t copy_flags = 0; 300 301 if (!adev->mman.buffer_funcs_enabled) { 302 DRM_ERROR("Trying to move memory with ring turned off.\n"); 303 return -EINVAL; 304 } 305 306 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 308 309 mutex_lock(&adev->mman.gtt_window_lock); 310 while (src_mm.remaining) { 311 uint64_t from, to, cur_size; 312 struct dma_fence *next; 313 314 /* Never copy more than 256MiB at once to avoid a timeout */ 315 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 316 317 /* Map src to window 0 and dst to window 1. */ 318 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 319 0, ring, tmz, &cur_size, &from); 320 if (r) 321 goto error; 322 323 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 324 1, ring, tmz, &cur_size, &to); 325 if (r) 326 goto error; 327 328 if (tmz) 329 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 332 &next, false, true, copy_flags); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 amdgpu_vram_mgr_set_cleared(bo->resource); 392 dma_fence_put(fence); 393 fence = wipe_fence; 394 } 395 } 396 397 /* Always block for VM page tables before committing the new location */ 398 if (bo->type == ttm_bo_type_kernel) 399 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 400 else 401 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 402 dma_fence_put(fence); 403 return r; 404 405 error: 406 if (fence) 407 dma_fence_wait(fence, false); 408 dma_fence_put(fence); 409 return r; 410 } 411 412 /** 413 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 414 * @adev: amdgpu device 415 * @res: the resource to check 416 * 417 * Returns: true if the full resource is CPU visible, false otherwise. 418 */ 419 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 420 struct ttm_resource *res) 421 { 422 struct amdgpu_res_cursor cursor; 423 424 if (!res) 425 return false; 426 427 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 428 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 429 return true; 430 431 if (res->mem_type != TTM_PL_VRAM) 432 return false; 433 434 amdgpu_res_first(res, 0, res->size, &cursor); 435 while (cursor.remaining) { 436 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 437 return false; 438 amdgpu_res_next(&cursor, cursor.size); 439 } 440 441 return true; 442 } 443 444 /* 445 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 446 * 447 * Called by amdgpu_bo_move() 448 */ 449 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 450 struct ttm_resource *mem) 451 { 452 if (!amdgpu_res_cpu_visible(adev, mem)) 453 return false; 454 455 /* ttm_resource_ioremap only supports contiguous memory */ 456 if (mem->mem_type == TTM_PL_VRAM && 457 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 458 return false; 459 460 return true; 461 } 462 463 /* 464 * amdgpu_bo_move - Move a buffer object to a new memory location 465 * 466 * Called by ttm_bo_handle_move_mem() 467 */ 468 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 469 struct ttm_operation_ctx *ctx, 470 struct ttm_resource *new_mem, 471 struct ttm_place *hop) 472 { 473 struct amdgpu_device *adev; 474 struct amdgpu_bo *abo; 475 struct ttm_resource *old_mem = bo->resource; 476 int r; 477 478 if (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 480 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 481 if (r) 482 return r; 483 } 484 485 abo = ttm_to_amdgpu_bo(bo); 486 adev = amdgpu_ttm_adev(bo->bdev); 487 488 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 489 bo->ttm == NULL)) { 490 amdgpu_bo_move_notify(bo, evict, new_mem); 491 ttm_bo_move_null(bo, new_mem); 492 return 0; 493 } 494 if (old_mem->mem_type == TTM_PL_SYSTEM && 495 (new_mem->mem_type == TTM_PL_TT || 496 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 497 amdgpu_bo_move_notify(bo, evict, new_mem); 498 ttm_bo_move_null(bo, new_mem); 499 return 0; 500 } 501 if ((old_mem->mem_type == TTM_PL_TT || 502 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 503 new_mem->mem_type == TTM_PL_SYSTEM) { 504 r = ttm_bo_wait_ctx(bo, ctx); 505 if (r) 506 return r; 507 508 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 509 amdgpu_bo_move_notify(bo, evict, new_mem); 510 ttm_resource_free(bo, &bo->resource); 511 ttm_bo_assign_mem(bo, new_mem); 512 return 0; 513 } 514 515 if (old_mem->mem_type == AMDGPU_PL_GDS || 516 old_mem->mem_type == AMDGPU_PL_GWS || 517 old_mem->mem_type == AMDGPU_PL_OA || 518 old_mem->mem_type == AMDGPU_PL_DOORBELL || 519 new_mem->mem_type == AMDGPU_PL_GDS || 520 new_mem->mem_type == AMDGPU_PL_GWS || 521 new_mem->mem_type == AMDGPU_PL_OA || 522 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 523 /* Nothing to save here */ 524 amdgpu_bo_move_notify(bo, evict, new_mem); 525 ttm_bo_move_null(bo, new_mem); 526 return 0; 527 } 528 529 if (bo->type == ttm_bo_type_device && 530 new_mem->mem_type == TTM_PL_VRAM && 531 old_mem->mem_type != TTM_PL_VRAM) { 532 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 533 * accesses the BO after it's moved. 534 */ 535 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 536 } 537 538 if (adev->mman.buffer_funcs_enabled && 539 ((old_mem->mem_type == TTM_PL_SYSTEM && 540 new_mem->mem_type == TTM_PL_VRAM) || 541 (old_mem->mem_type == TTM_PL_VRAM && 542 new_mem->mem_type == TTM_PL_SYSTEM))) { 543 hop->fpfn = 0; 544 hop->lpfn = 0; 545 hop->mem_type = TTM_PL_TT; 546 hop->flags = TTM_PL_FLAG_TEMPORARY; 547 return -EMULTIHOP; 548 } 549 550 amdgpu_bo_move_notify(bo, evict, new_mem); 551 if (adev->mman.buffer_funcs_enabled) 552 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 553 else 554 r = -ENODEV; 555 556 if (r) { 557 /* Check that all memory is CPU accessible */ 558 if (!amdgpu_res_copyable(adev, old_mem) || 559 !amdgpu_res_copyable(adev, new_mem)) { 560 pr_err("Move buffer fallback to memcpy unavailable\n"); 561 return r; 562 } 563 564 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 565 if (r) 566 return r; 567 } 568 569 /* update statistics after the move */ 570 if (evict) 571 atomic64_inc(&adev->num_evictions); 572 atomic64_add(bo->base.size, &adev->num_bytes_moved); 573 return 0; 574 } 575 576 /* 577 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 578 * 579 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 580 */ 581 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 582 struct ttm_resource *mem) 583 { 584 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 585 586 switch (mem->mem_type) { 587 case TTM_PL_SYSTEM: 588 /* system memory */ 589 return 0; 590 case TTM_PL_TT: 591 case AMDGPU_PL_PREEMPT: 592 break; 593 case TTM_PL_VRAM: 594 mem->bus.offset = mem->start << PAGE_SHIFT; 595 596 if (adev->mman.aper_base_kaddr && 597 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 598 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 599 mem->bus.offset; 600 601 mem->bus.offset += adev->gmc.aper_base; 602 mem->bus.is_iomem = true; 603 break; 604 case AMDGPU_PL_DOORBELL: 605 mem->bus.offset = mem->start << PAGE_SHIFT; 606 mem->bus.offset += adev->doorbell.base; 607 mem->bus.is_iomem = true; 608 mem->bus.caching = ttm_uncached; 609 break; 610 default: 611 return -EINVAL; 612 } 613 return 0; 614 } 615 616 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 617 unsigned long page_offset) 618 { 619 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 620 struct amdgpu_res_cursor cursor; 621 622 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 623 &cursor); 624 625 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 626 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 627 628 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 629 } 630 631 /** 632 * amdgpu_ttm_domain_start - Returns GPU start address 633 * @adev: amdgpu device object 634 * @type: type of the memory 635 * 636 * Returns: 637 * GPU start address of a memory domain 638 */ 639 640 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 641 { 642 switch (type) { 643 case TTM_PL_TT: 644 return adev->gmc.gart_start; 645 case TTM_PL_VRAM: 646 return adev->gmc.vram_start; 647 } 648 649 return 0; 650 } 651 652 /* 653 * TTM backend functions. 654 */ 655 struct amdgpu_ttm_tt { 656 struct ttm_tt ttm; 657 struct drm_gem_object *gobj; 658 u64 offset; 659 uint64_t userptr; 660 struct task_struct *usertask; 661 uint32_t userflags; 662 bool bound; 663 int32_t pool_id; 664 }; 665 666 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 667 668 #ifdef CONFIG_DRM_AMDGPU_USERPTR 669 /* 670 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 671 * memory and start HMM tracking CPU page table update 672 * 673 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 674 * once afterwards to stop HMM tracking 675 */ 676 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 677 struct hmm_range **range) 678 { 679 struct ttm_tt *ttm = bo->tbo.ttm; 680 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 681 unsigned long start = gtt->userptr; 682 struct vm_area_struct *vma; 683 struct mm_struct *mm; 684 bool readonly; 685 int r = 0; 686 687 /* Make sure get_user_pages_done() can cleanup gracefully */ 688 *range = NULL; 689 690 mm = bo->notifier.mm; 691 if (unlikely(!mm)) { 692 DRM_DEBUG_DRIVER("BO is not registered?\n"); 693 return -EFAULT; 694 } 695 696 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 697 return -ESRCH; 698 699 mmap_read_lock(mm); 700 vma = vma_lookup(mm, start); 701 if (unlikely(!vma)) { 702 r = -EFAULT; 703 goto out_unlock; 704 } 705 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 706 vma->vm_file)) { 707 r = -EPERM; 708 goto out_unlock; 709 } 710 711 readonly = amdgpu_ttm_tt_is_readonly(ttm); 712 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 713 readonly, NULL, pages, range); 714 out_unlock: 715 mmap_read_unlock(mm); 716 if (r) 717 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 718 719 mmput(mm); 720 721 return r; 722 } 723 724 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 725 */ 726 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 727 struct hmm_range *range) 728 { 729 struct amdgpu_ttm_tt *gtt = (void *)ttm; 730 731 if (gtt && gtt->userptr && range) 732 amdgpu_hmm_range_get_pages_done(range); 733 } 734 735 /* 736 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 737 * Check if the pages backing this ttm range have been invalidated 738 * 739 * Returns: true if pages are still valid 740 */ 741 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 742 struct hmm_range *range) 743 { 744 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 745 746 if (!gtt || !gtt->userptr || !range) 747 return false; 748 749 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 750 gtt->userptr, ttm->num_pages); 751 752 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 753 754 return !amdgpu_hmm_range_get_pages_done(range); 755 } 756 #endif 757 758 /* 759 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 760 * 761 * Called by amdgpu_cs_list_validate(). This creates the page list 762 * that backs user memory and will ultimately be mapped into the device 763 * address space. 764 */ 765 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 766 { 767 unsigned long i; 768 769 for (i = 0; i < ttm->num_pages; ++i) 770 ttm->pages[i] = pages ? pages[i] : NULL; 771 } 772 773 /* 774 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 775 * 776 * Called by amdgpu_ttm_backend_bind() 777 **/ 778 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 779 struct ttm_tt *ttm) 780 { 781 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 782 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 783 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 784 enum dma_data_direction direction = write ? 785 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 786 int r; 787 788 /* Allocate an SG array and squash pages into it */ 789 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 790 (u64)ttm->num_pages << PAGE_SHIFT, 791 GFP_KERNEL); 792 if (r) 793 goto release_sg; 794 795 /* Map SG to device */ 796 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 797 if (r) 798 goto release_sg; 799 800 /* convert SG to linear array of pages and dma addresses */ 801 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 802 ttm->num_pages); 803 804 return 0; 805 806 release_sg: 807 kfree(ttm->sg); 808 ttm->sg = NULL; 809 return r; 810 } 811 812 /* 813 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 814 */ 815 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 816 struct ttm_tt *ttm) 817 { 818 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 819 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 820 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 821 enum dma_data_direction direction = write ? 822 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 823 824 /* double check that we don't free the table twice */ 825 if (!ttm->sg || !ttm->sg->sgl) 826 return; 827 828 /* unmap the pages mapped to the device */ 829 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 830 sg_free_table(ttm->sg); 831 } 832 833 /* 834 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 835 * MQDn+CtrlStackn where n is the number of XCCs per partition. 836 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 837 * and uses memory type default, UC. The rest of pages_per_xcc are 838 * Ctrl stack and modify their memory type to NC. 839 */ 840 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 841 struct ttm_tt *ttm, uint64_t flags) 842 { 843 struct amdgpu_ttm_tt *gtt = (void *)ttm; 844 uint64_t total_pages = ttm->num_pages; 845 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 846 uint64_t page_idx, pages_per_xcc; 847 int i; 848 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 849 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 850 851 pages_per_xcc = total_pages; 852 do_div(pages_per_xcc, num_xcc); 853 854 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 855 /* MQD page: use default flags */ 856 amdgpu_gart_bind(adev, 857 gtt->offset + (page_idx << PAGE_SHIFT), 858 1, >t->ttm.dma_address[page_idx], flags); 859 /* 860 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 861 * the second page of the BO onward. 862 */ 863 amdgpu_gart_bind(adev, 864 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 865 pages_per_xcc - 1, 866 >t->ttm.dma_address[page_idx + 1], 867 ctrl_flags); 868 } 869 } 870 871 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 872 struct ttm_buffer_object *tbo, 873 uint64_t flags) 874 { 875 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 876 struct ttm_tt *ttm = tbo->ttm; 877 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 878 879 if (amdgpu_bo_encrypted(abo)) 880 flags |= AMDGPU_PTE_TMZ; 881 882 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 883 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 884 } else { 885 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 886 gtt->ttm.dma_address, flags); 887 } 888 gtt->bound = true; 889 } 890 891 /* 892 * amdgpu_ttm_backend_bind - Bind GTT memory 893 * 894 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 895 * This handles binding GTT memory to the device address space. 896 */ 897 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 898 struct ttm_tt *ttm, 899 struct ttm_resource *bo_mem) 900 { 901 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 902 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 903 uint64_t flags; 904 int r; 905 906 if (!bo_mem) 907 return -EINVAL; 908 909 if (gtt->bound) 910 return 0; 911 912 if (gtt->userptr) { 913 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 914 if (r) { 915 DRM_ERROR("failed to pin userptr\n"); 916 return r; 917 } 918 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 919 if (!ttm->sg) { 920 struct dma_buf_attachment *attach; 921 struct sg_table *sgt; 922 923 attach = gtt->gobj->import_attach; 924 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 925 if (IS_ERR(sgt)) 926 return PTR_ERR(sgt); 927 928 ttm->sg = sgt; 929 } 930 931 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 932 ttm->num_pages); 933 } 934 935 if (!ttm->num_pages) { 936 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 937 ttm->num_pages, bo_mem, ttm); 938 } 939 940 if (bo_mem->mem_type != TTM_PL_TT || 941 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 942 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 943 return 0; 944 } 945 946 /* compute PTE flags relevant to this BO memory */ 947 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 948 949 /* bind pages into GART page tables */ 950 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 951 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 952 gtt->ttm.dma_address, flags); 953 gtt->bound = true; 954 return 0; 955 } 956 957 /* 958 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 959 * through AGP or GART aperture. 960 * 961 * If bo is accessible through AGP aperture, then use AGP aperture 962 * to access bo; otherwise allocate logical space in GART aperture 963 * and map bo to GART aperture. 964 */ 965 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 966 { 967 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 968 struct ttm_operation_ctx ctx = { false, false }; 969 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 970 struct ttm_placement placement; 971 struct ttm_place placements; 972 struct ttm_resource *tmp; 973 uint64_t addr, flags; 974 int r; 975 976 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 977 return 0; 978 979 addr = amdgpu_gmc_agp_addr(bo); 980 if (addr != AMDGPU_BO_INVALID_OFFSET) 981 return 0; 982 983 /* allocate GART space */ 984 placement.num_placement = 1; 985 placement.placement = &placements; 986 placements.fpfn = 0; 987 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 988 placements.mem_type = TTM_PL_TT; 989 placements.flags = bo->resource->placement; 990 991 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 992 if (unlikely(r)) 993 return r; 994 995 /* compute PTE flags for this buffer object */ 996 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 997 998 /* Bind pages */ 999 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1000 amdgpu_ttm_gart_bind(adev, bo, flags); 1001 amdgpu_gart_invalidate_tlb(adev); 1002 ttm_resource_free(bo, &bo->resource); 1003 ttm_bo_assign_mem(bo, tmp); 1004 1005 return 0; 1006 } 1007 1008 /* 1009 * amdgpu_ttm_recover_gart - Rebind GTT pages 1010 * 1011 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1012 * rebind GTT pages during a GPU reset. 1013 */ 1014 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1015 { 1016 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1017 uint64_t flags; 1018 1019 if (!tbo->ttm) 1020 return; 1021 1022 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1023 amdgpu_ttm_gart_bind(adev, tbo, flags); 1024 } 1025 1026 /* 1027 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1028 * 1029 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1030 * ttm_tt_destroy(). 1031 */ 1032 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1033 struct ttm_tt *ttm) 1034 { 1035 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1036 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1037 1038 /* if the pages have userptr pinning then clear that first */ 1039 if (gtt->userptr) { 1040 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1041 } else if (ttm->sg && gtt->gobj->import_attach) { 1042 struct dma_buf_attachment *attach; 1043 1044 attach = gtt->gobj->import_attach; 1045 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1046 ttm->sg = NULL; 1047 } 1048 1049 if (!gtt->bound) 1050 return; 1051 1052 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1053 return; 1054 1055 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1056 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1057 gtt->bound = false; 1058 } 1059 1060 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1061 struct ttm_tt *ttm) 1062 { 1063 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1064 1065 if (gtt->usertask) 1066 put_task_struct(gtt->usertask); 1067 1068 ttm_tt_fini(>t->ttm); 1069 kfree(gtt); 1070 } 1071 1072 /** 1073 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1074 * 1075 * @bo: The buffer object to create a GTT ttm_tt object around 1076 * @page_flags: Page flags to be added to the ttm_tt object 1077 * 1078 * Called by ttm_tt_create(). 1079 */ 1080 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1081 uint32_t page_flags) 1082 { 1083 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1084 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1085 struct amdgpu_ttm_tt *gtt; 1086 enum ttm_caching caching; 1087 1088 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1089 if (!gtt) 1090 return NULL; 1091 1092 gtt->gobj = &bo->base; 1093 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1094 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1095 else 1096 gtt->pool_id = abo->xcp_id; 1097 1098 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1099 caching = ttm_write_combined; 1100 else 1101 caching = ttm_cached; 1102 1103 /* allocate space for the uninitialized page entries */ 1104 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1105 kfree(gtt); 1106 return NULL; 1107 } 1108 return >t->ttm; 1109 } 1110 1111 /* 1112 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1113 * 1114 * Map the pages of a ttm_tt object to an address space visible 1115 * to the underlying device. 1116 */ 1117 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1118 struct ttm_tt *ttm, 1119 struct ttm_operation_ctx *ctx) 1120 { 1121 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1122 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1123 struct ttm_pool *pool; 1124 pgoff_t i; 1125 int ret; 1126 1127 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1128 if (gtt->userptr) { 1129 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1130 if (!ttm->sg) 1131 return -ENOMEM; 1132 return 0; 1133 } 1134 1135 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1136 return 0; 1137 1138 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1139 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1140 else 1141 pool = &adev->mman.bdev.pool; 1142 ret = ttm_pool_alloc(pool, ttm, ctx); 1143 if (ret) 1144 return ret; 1145 1146 for (i = 0; i < ttm->num_pages; ++i) 1147 ttm->pages[i]->mapping = bdev->dev_mapping; 1148 1149 return 0; 1150 } 1151 1152 /* 1153 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1154 * 1155 * Unmaps pages of a ttm_tt object from the device address space and 1156 * unpopulates the page array backing it. 1157 */ 1158 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1159 struct ttm_tt *ttm) 1160 { 1161 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1162 struct amdgpu_device *adev; 1163 struct ttm_pool *pool; 1164 pgoff_t i; 1165 1166 amdgpu_ttm_backend_unbind(bdev, ttm); 1167 1168 if (gtt->userptr) { 1169 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1170 kfree(ttm->sg); 1171 ttm->sg = NULL; 1172 return; 1173 } 1174 1175 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1176 return; 1177 1178 for (i = 0; i < ttm->num_pages; ++i) 1179 ttm->pages[i]->mapping = NULL; 1180 1181 adev = amdgpu_ttm_adev(bdev); 1182 1183 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1184 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1185 else 1186 pool = &adev->mman.bdev.pool; 1187 1188 return ttm_pool_free(pool, ttm); 1189 } 1190 1191 /** 1192 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1193 * task 1194 * 1195 * @tbo: The ttm_buffer_object that contains the userptr 1196 * @user_addr: The returned value 1197 */ 1198 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1199 uint64_t *user_addr) 1200 { 1201 struct amdgpu_ttm_tt *gtt; 1202 1203 if (!tbo->ttm) 1204 return -EINVAL; 1205 1206 gtt = (void *)tbo->ttm; 1207 *user_addr = gtt->userptr; 1208 return 0; 1209 } 1210 1211 /** 1212 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1213 * task 1214 * 1215 * @bo: The ttm_buffer_object to bind this userptr to 1216 * @addr: The address in the current tasks VM space to use 1217 * @flags: Requirements of userptr object. 1218 * 1219 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1220 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1221 * initialize GPU VM for a KFD process. 1222 */ 1223 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1224 uint64_t addr, uint32_t flags) 1225 { 1226 struct amdgpu_ttm_tt *gtt; 1227 1228 if (!bo->ttm) { 1229 /* TODO: We want a separate TTM object type for userptrs */ 1230 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1231 if (bo->ttm == NULL) 1232 return -ENOMEM; 1233 } 1234 1235 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1236 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1237 1238 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1239 gtt->userptr = addr; 1240 gtt->userflags = flags; 1241 1242 if (gtt->usertask) 1243 put_task_struct(gtt->usertask); 1244 gtt->usertask = current->group_leader; 1245 get_task_struct(gtt->usertask); 1246 1247 return 0; 1248 } 1249 1250 /* 1251 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1252 */ 1253 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1254 { 1255 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1256 1257 if (gtt == NULL) 1258 return NULL; 1259 1260 if (gtt->usertask == NULL) 1261 return NULL; 1262 1263 return gtt->usertask->mm; 1264 } 1265 1266 /* 1267 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1268 * address range for the current task. 1269 * 1270 */ 1271 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1272 unsigned long end, unsigned long *userptr) 1273 { 1274 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1275 unsigned long size; 1276 1277 if (gtt == NULL || !gtt->userptr) 1278 return false; 1279 1280 /* Return false if no part of the ttm_tt object lies within 1281 * the range 1282 */ 1283 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1284 if (gtt->userptr > end || gtt->userptr + size <= start) 1285 return false; 1286 1287 if (userptr) 1288 *userptr = gtt->userptr; 1289 return true; 1290 } 1291 1292 /* 1293 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1294 */ 1295 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1296 { 1297 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1298 1299 if (gtt == NULL || !gtt->userptr) 1300 return false; 1301 1302 return true; 1303 } 1304 1305 /* 1306 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1307 */ 1308 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1309 { 1310 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1311 1312 if (gtt == NULL) 1313 return false; 1314 1315 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1316 } 1317 1318 /** 1319 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1320 * 1321 * @ttm: The ttm_tt object to compute the flags for 1322 * @mem: The memory registry backing this ttm_tt object 1323 * 1324 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1325 */ 1326 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1327 { 1328 uint64_t flags = 0; 1329 1330 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1331 flags |= AMDGPU_PTE_VALID; 1332 1333 if (mem && (mem->mem_type == TTM_PL_TT || 1334 mem->mem_type == AMDGPU_PL_DOORBELL || 1335 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1336 flags |= AMDGPU_PTE_SYSTEM; 1337 1338 if (ttm->caching == ttm_cached) 1339 flags |= AMDGPU_PTE_SNOOPED; 1340 } 1341 1342 if (mem && mem->mem_type == TTM_PL_VRAM && 1343 mem->bus.caching == ttm_cached) 1344 flags |= AMDGPU_PTE_SNOOPED; 1345 1346 return flags; 1347 } 1348 1349 /** 1350 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1351 * 1352 * @adev: amdgpu_device pointer 1353 * @ttm: The ttm_tt object to compute the flags for 1354 * @mem: The memory registry backing this ttm_tt object 1355 * 1356 * Figure out the flags to use for a VM PTE (Page Table Entry). 1357 */ 1358 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1359 struct ttm_resource *mem) 1360 { 1361 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1362 1363 flags |= adev->gart.gart_pte_flags; 1364 flags |= AMDGPU_PTE_READABLE; 1365 1366 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1367 flags |= AMDGPU_PTE_WRITEABLE; 1368 1369 return flags; 1370 } 1371 1372 /* 1373 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1374 * object. 1375 * 1376 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1377 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1378 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1379 * used to clean out a memory space. 1380 */ 1381 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1382 const struct ttm_place *place) 1383 { 1384 struct dma_resv_iter resv_cursor; 1385 struct dma_fence *f; 1386 1387 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1388 return ttm_bo_eviction_valuable(bo, place); 1389 1390 /* Swapout? */ 1391 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1392 return true; 1393 1394 if (bo->type == ttm_bo_type_kernel && 1395 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1396 return false; 1397 1398 /* If bo is a KFD BO, check if the bo belongs to the current process. 1399 * If true, then return false as any KFD process needs all its BOs to 1400 * be resident to run successfully 1401 */ 1402 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1403 DMA_RESV_USAGE_BOOKKEEP, f) { 1404 if (amdkfd_fence_check_mm(f, current->mm)) 1405 return false; 1406 } 1407 1408 /* Preemptible BOs don't own system resources managed by the 1409 * driver (pages, VRAM, GART space). They point to resources 1410 * owned by someone else (e.g. pageable memory in user mode 1411 * or a DMABuf). They are used in a preemptible context so we 1412 * can guarantee no deadlocks and good QoS in case of MMU 1413 * notifiers or DMABuf move notifiers from the resource owner. 1414 */ 1415 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1416 return false; 1417 1418 if (bo->resource->mem_type == TTM_PL_TT && 1419 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1420 return false; 1421 1422 return ttm_bo_eviction_valuable(bo, place); 1423 } 1424 1425 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1426 void *buf, size_t size, bool write) 1427 { 1428 while (size) { 1429 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1430 uint64_t bytes = 4 - (pos & 0x3); 1431 uint32_t shift = (pos & 0x3) * 8; 1432 uint32_t mask = 0xffffffff << shift; 1433 uint32_t value = 0; 1434 1435 if (size < bytes) { 1436 mask &= 0xffffffff >> (bytes - size) * 8; 1437 bytes = size; 1438 } 1439 1440 if (mask != 0xffffffff) { 1441 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1442 if (write) { 1443 value &= ~mask; 1444 value |= (*(uint32_t *)buf << shift) & mask; 1445 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1446 } else { 1447 value = (value & mask) >> shift; 1448 memcpy(buf, &value, bytes); 1449 } 1450 } else { 1451 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1452 } 1453 1454 pos += bytes; 1455 buf += bytes; 1456 size -= bytes; 1457 } 1458 } 1459 1460 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1461 unsigned long offset, void *buf, 1462 int len, int write) 1463 { 1464 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1465 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1466 struct amdgpu_res_cursor src_mm; 1467 struct amdgpu_job *job; 1468 struct dma_fence *fence; 1469 uint64_t src_addr, dst_addr; 1470 unsigned int num_dw; 1471 int r, idx; 1472 1473 if (len != PAGE_SIZE) 1474 return -EINVAL; 1475 1476 if (!adev->mman.sdma_access_ptr) 1477 return -EACCES; 1478 1479 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1480 return -ENODEV; 1481 1482 if (write) 1483 memcpy(adev->mman.sdma_access_ptr, buf, len); 1484 1485 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1486 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1487 AMDGPU_FENCE_OWNER_UNDEFINED, 1488 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1489 &job); 1490 if (r) 1491 goto out; 1492 1493 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1494 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1495 src_mm.start; 1496 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1497 if (write) 1498 swap(src_addr, dst_addr); 1499 1500 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1501 PAGE_SIZE, 0); 1502 1503 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1504 WARN_ON(job->ibs[0].length_dw > num_dw); 1505 1506 fence = amdgpu_job_submit(job); 1507 1508 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1509 r = -ETIMEDOUT; 1510 dma_fence_put(fence); 1511 1512 if (!(r || write)) 1513 memcpy(buf, adev->mman.sdma_access_ptr, len); 1514 out: 1515 drm_dev_exit(idx); 1516 return r; 1517 } 1518 1519 /** 1520 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1521 * 1522 * @bo: The buffer object to read/write 1523 * @offset: Offset into buffer object 1524 * @buf: Secondary buffer to write/read from 1525 * @len: Length in bytes of access 1526 * @write: true if writing 1527 * 1528 * This is used to access VRAM that backs a buffer object via MMIO 1529 * access for debugging purposes. 1530 */ 1531 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1532 unsigned long offset, void *buf, int len, 1533 int write) 1534 { 1535 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1536 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1537 struct amdgpu_res_cursor cursor; 1538 int ret = 0; 1539 1540 if (bo->resource->mem_type != TTM_PL_VRAM) 1541 return -EIO; 1542 1543 if (amdgpu_device_has_timeouts_enabled(adev) && 1544 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1545 return len; 1546 1547 amdgpu_res_first(bo->resource, offset, len, &cursor); 1548 while (cursor.remaining) { 1549 size_t count, size = cursor.size; 1550 loff_t pos = cursor.start; 1551 1552 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1553 size -= count; 1554 if (size) { 1555 /* using MM to access rest vram and handle un-aligned address */ 1556 pos += count; 1557 buf += count; 1558 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1559 } 1560 1561 ret += cursor.size; 1562 buf += cursor.size; 1563 amdgpu_res_next(&cursor, cursor.size); 1564 } 1565 1566 return ret; 1567 } 1568 1569 static void 1570 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1571 { 1572 amdgpu_bo_move_notify(bo, false, NULL); 1573 } 1574 1575 static struct ttm_device_funcs amdgpu_bo_driver = { 1576 .ttm_tt_create = &amdgpu_ttm_tt_create, 1577 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1578 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1579 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1580 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1581 .evict_flags = &amdgpu_evict_flags, 1582 .move = &amdgpu_bo_move, 1583 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1584 .release_notify = &amdgpu_bo_release_notify, 1585 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1586 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1587 .access_memory = &amdgpu_ttm_access_memory, 1588 }; 1589 1590 /* 1591 * Firmware Reservation functions 1592 */ 1593 /** 1594 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1595 * 1596 * @adev: amdgpu_device pointer 1597 * 1598 * free fw reserved vram if it has been reserved. 1599 */ 1600 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1601 { 1602 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1603 NULL, &adev->mman.fw_vram_usage_va); 1604 } 1605 1606 /* 1607 * Driver Reservation functions 1608 */ 1609 /** 1610 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1611 * 1612 * @adev: amdgpu_device pointer 1613 * 1614 * free drv reserved vram if it has been reserved. 1615 */ 1616 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1617 { 1618 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1619 NULL, 1620 &adev->mman.drv_vram_usage_va); 1621 } 1622 1623 /** 1624 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1625 * 1626 * @adev: amdgpu_device pointer 1627 * 1628 * create bo vram reservation from fw. 1629 */ 1630 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1631 { 1632 uint64_t vram_size = adev->gmc.visible_vram_size; 1633 1634 adev->mman.fw_vram_usage_va = NULL; 1635 adev->mman.fw_vram_usage_reserved_bo = NULL; 1636 1637 if (adev->mman.fw_vram_usage_size == 0 || 1638 adev->mman.fw_vram_usage_size > vram_size) 1639 return 0; 1640 1641 return amdgpu_bo_create_kernel_at(adev, 1642 adev->mman.fw_vram_usage_start_offset, 1643 adev->mman.fw_vram_usage_size, 1644 &adev->mman.fw_vram_usage_reserved_bo, 1645 &adev->mman.fw_vram_usage_va); 1646 } 1647 1648 /** 1649 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1650 * 1651 * @adev: amdgpu_device pointer 1652 * 1653 * create bo vram reservation from drv. 1654 */ 1655 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1656 { 1657 u64 vram_size = adev->gmc.visible_vram_size; 1658 1659 adev->mman.drv_vram_usage_va = NULL; 1660 adev->mman.drv_vram_usage_reserved_bo = NULL; 1661 1662 if (adev->mman.drv_vram_usage_size == 0 || 1663 adev->mman.drv_vram_usage_size > vram_size) 1664 return 0; 1665 1666 return amdgpu_bo_create_kernel_at(adev, 1667 adev->mman.drv_vram_usage_start_offset, 1668 adev->mman.drv_vram_usage_size, 1669 &adev->mman.drv_vram_usage_reserved_bo, 1670 &adev->mman.drv_vram_usage_va); 1671 } 1672 1673 /* 1674 * Memoy training reservation functions 1675 */ 1676 1677 /** 1678 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1679 * 1680 * @adev: amdgpu_device pointer 1681 * 1682 * free memory training reserved vram if it has been reserved. 1683 */ 1684 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1685 { 1686 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1687 1688 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1689 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1690 ctx->c2p_bo = NULL; 1691 1692 return 0; 1693 } 1694 1695 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1696 uint32_t reserve_size) 1697 { 1698 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1699 1700 memset(ctx, 0, sizeof(*ctx)); 1701 1702 ctx->c2p_train_data_offset = 1703 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1704 ctx->p2c_train_data_offset = 1705 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1706 ctx->train_data_size = 1707 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1708 1709 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1710 ctx->train_data_size, 1711 ctx->p2c_train_data_offset, 1712 ctx->c2p_train_data_offset); 1713 } 1714 1715 /* 1716 * reserve TMR memory at the top of VRAM which holds 1717 * IP Discovery data and is protected by PSP. 1718 */ 1719 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1720 { 1721 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1722 bool mem_train_support = false; 1723 uint32_t reserve_size = 0; 1724 int ret; 1725 1726 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1727 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1728 mem_train_support = true; 1729 else 1730 DRM_DEBUG("memory training does not support!\n"); 1731 } 1732 1733 /* 1734 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1735 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1736 * 1737 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1738 * discovery data and G6 memory training data respectively 1739 */ 1740 if (adev->bios) 1741 reserve_size = 1742 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1743 1744 if (!adev->bios && 1745 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) 1746 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1747 else if (!reserve_size) 1748 reserve_size = DISCOVERY_TMR_OFFSET; 1749 1750 if (mem_train_support) { 1751 /* reserve vram for mem train according to TMR location */ 1752 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1753 ret = amdgpu_bo_create_kernel_at(adev, 1754 ctx->c2p_train_data_offset, 1755 ctx->train_data_size, 1756 &ctx->c2p_bo, 1757 NULL); 1758 if (ret) { 1759 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1760 amdgpu_ttm_training_reserve_vram_fini(adev); 1761 return ret; 1762 } 1763 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1764 } 1765 1766 if (!adev->gmc.is_app_apu) { 1767 ret = amdgpu_bo_create_kernel_at( 1768 adev, adev->gmc.real_vram_size - reserve_size, 1769 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1770 if (ret) { 1771 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1772 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1773 NULL, NULL); 1774 return ret; 1775 } 1776 } else { 1777 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1778 } 1779 1780 return 0; 1781 } 1782 1783 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1784 { 1785 int i; 1786 1787 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1788 return 0; 1789 1790 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1791 sizeof(*adev->mman.ttm_pools), 1792 GFP_KERNEL); 1793 if (!adev->mman.ttm_pools) 1794 return -ENOMEM; 1795 1796 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1797 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1798 adev->gmc.mem_partitions[i].numa.node, 1799 false, false); 1800 } 1801 return 0; 1802 } 1803 1804 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1805 { 1806 int i; 1807 1808 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1809 return; 1810 1811 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1812 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1813 1814 kfree(adev->mman.ttm_pools); 1815 adev->mman.ttm_pools = NULL; 1816 } 1817 1818 /* 1819 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1820 * gtt/vram related fields. 1821 * 1822 * This initializes all of the memory space pools that the TTM layer 1823 * will need such as the GTT space (system memory mapped to the device), 1824 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1825 * can be mapped per VMID. 1826 */ 1827 int amdgpu_ttm_init(struct amdgpu_device *adev) 1828 { 1829 uint64_t gtt_size; 1830 int r; 1831 1832 mutex_init(&adev->mman.gtt_window_lock); 1833 1834 /* No others user of address space so set it to 0 */ 1835 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1836 adev_to_drm(adev)->anon_inode->i_mapping, 1837 adev_to_drm(adev)->vma_offset_manager, 1838 adev->need_swiotlb, 1839 dma_addressing_limited(adev->dev)); 1840 if (r) { 1841 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1842 return r; 1843 } 1844 1845 r = amdgpu_ttm_pools_init(adev); 1846 if (r) { 1847 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1848 return r; 1849 } 1850 adev->mman.initialized = true; 1851 1852 /* Initialize VRAM pool with all of VRAM divided into pages */ 1853 r = amdgpu_vram_mgr_init(adev); 1854 if (r) { 1855 DRM_ERROR("Failed initializing VRAM heap.\n"); 1856 return r; 1857 } 1858 1859 /* Change the size here instead of the init above so only lpfn is affected */ 1860 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1861 #ifdef CONFIG_64BIT 1862 #ifdef CONFIG_X86 1863 if (adev->gmc.xgmi.connected_to_cpu) 1864 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1865 adev->gmc.visible_vram_size); 1866 1867 else if (adev->gmc.is_app_apu) 1868 DRM_DEBUG_DRIVER( 1869 "No need to ioremap when real vram size is 0\n"); 1870 else 1871 #endif 1872 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1873 adev->gmc.visible_vram_size); 1874 #endif 1875 1876 /* 1877 *The reserved vram for firmware must be pinned to the specified 1878 *place on the VRAM, so reserve it early. 1879 */ 1880 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1881 if (r) 1882 return r; 1883 1884 /* 1885 *The reserved vram for driver must be pinned to the specified 1886 *place on the VRAM, so reserve it early. 1887 */ 1888 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1889 if (r) 1890 return r; 1891 1892 /* 1893 * only NAVI10 and onwards ASIC support for IP discovery. 1894 * If IP discovery enabled, a block of memory should be 1895 * reserved for IP discovey. 1896 */ 1897 if (adev->mman.discovery_bin) { 1898 r = amdgpu_ttm_reserve_tmr(adev); 1899 if (r) 1900 return r; 1901 } 1902 1903 /* allocate memory as required for VGA 1904 * This is used for VGA emulation and pre-OS scanout buffers to 1905 * avoid display artifacts while transitioning between pre-OS 1906 * and driver. 1907 */ 1908 if (!adev->gmc.is_app_apu) { 1909 r = amdgpu_bo_create_kernel_at(adev, 0, 1910 adev->mman.stolen_vga_size, 1911 &adev->mman.stolen_vga_memory, 1912 NULL); 1913 if (r) 1914 return r; 1915 1916 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1917 adev->mman.stolen_extended_size, 1918 &adev->mman.stolen_extended_memory, 1919 NULL); 1920 1921 if (r) 1922 return r; 1923 1924 r = amdgpu_bo_create_kernel_at(adev, 1925 adev->mman.stolen_reserved_offset, 1926 adev->mman.stolen_reserved_size, 1927 &adev->mman.stolen_reserved_memory, 1928 NULL); 1929 if (r) 1930 return r; 1931 } else { 1932 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1933 } 1934 1935 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1936 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1937 1938 /* Compute GTT size, either based on TTM limit 1939 * or whatever the user passed on module init. 1940 */ 1941 if (amdgpu_gtt_size == -1) 1942 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1943 else 1944 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1945 1946 /* Initialize GTT memory pool */ 1947 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1948 if (r) { 1949 DRM_ERROR("Failed initializing GTT heap.\n"); 1950 return r; 1951 } 1952 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1953 (unsigned int)(gtt_size / (1024 * 1024))); 1954 1955 /* Initiailize doorbell pool on PCI BAR */ 1956 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1957 if (r) { 1958 DRM_ERROR("Failed initializing doorbell heap.\n"); 1959 return r; 1960 } 1961 1962 /* Create a boorbell page for kernel usages */ 1963 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1964 if (r) { 1965 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1966 return r; 1967 } 1968 1969 /* Initialize preemptible memory pool */ 1970 r = amdgpu_preempt_mgr_init(adev); 1971 if (r) { 1972 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1973 return r; 1974 } 1975 1976 /* Initialize various on-chip memory pools */ 1977 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1978 if (r) { 1979 DRM_ERROR("Failed initializing GDS heap.\n"); 1980 return r; 1981 } 1982 1983 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1984 if (r) { 1985 DRM_ERROR("Failed initializing gws heap.\n"); 1986 return r; 1987 } 1988 1989 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1990 if (r) { 1991 DRM_ERROR("Failed initializing oa heap.\n"); 1992 return r; 1993 } 1994 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1995 AMDGPU_GEM_DOMAIN_GTT, 1996 &adev->mman.sdma_access_bo, NULL, 1997 &adev->mman.sdma_access_ptr)) 1998 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1999 2000 return 0; 2001 } 2002 2003 /* 2004 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2005 */ 2006 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2007 { 2008 int idx; 2009 2010 if (!adev->mman.initialized) 2011 return; 2012 2013 amdgpu_ttm_pools_fini(adev); 2014 2015 amdgpu_ttm_training_reserve_vram_fini(adev); 2016 /* return the stolen vga memory back to VRAM */ 2017 if (!adev->gmc.is_app_apu) { 2018 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2019 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2020 /* return the FW reserved memory back to VRAM */ 2021 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2022 NULL); 2023 if (adev->mman.stolen_reserved_size) 2024 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2025 NULL, NULL); 2026 } 2027 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2028 &adev->mman.sdma_access_ptr); 2029 amdgpu_ttm_fw_reserve_vram_fini(adev); 2030 amdgpu_ttm_drv_reserve_vram_fini(adev); 2031 2032 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2033 2034 if (adev->mman.aper_base_kaddr) 2035 iounmap(adev->mman.aper_base_kaddr); 2036 adev->mman.aper_base_kaddr = NULL; 2037 2038 drm_dev_exit(idx); 2039 } 2040 2041 amdgpu_vram_mgr_fini(adev); 2042 amdgpu_gtt_mgr_fini(adev); 2043 amdgpu_preempt_mgr_fini(adev); 2044 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2045 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2046 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2047 ttm_device_fini(&adev->mman.bdev); 2048 adev->mman.initialized = false; 2049 DRM_INFO("amdgpu: ttm finalized\n"); 2050 } 2051 2052 /** 2053 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2054 * 2055 * @adev: amdgpu_device pointer 2056 * @enable: true when we can use buffer functions. 2057 * 2058 * Enable/disable use of buffer functions during suspend/resume. This should 2059 * only be called at bootup or when userspace isn't running. 2060 */ 2061 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2062 { 2063 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2064 uint64_t size; 2065 int r; 2066 2067 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2068 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2069 return; 2070 2071 if (enable) { 2072 struct amdgpu_ring *ring; 2073 struct drm_gpu_scheduler *sched; 2074 2075 ring = adev->mman.buffer_funcs_ring; 2076 sched = &ring->sched; 2077 r = drm_sched_entity_init(&adev->mman.high_pr, 2078 DRM_SCHED_PRIORITY_KERNEL, &sched, 2079 1, NULL); 2080 if (r) { 2081 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2082 r); 2083 return; 2084 } 2085 2086 r = drm_sched_entity_init(&adev->mman.low_pr, 2087 DRM_SCHED_PRIORITY_NORMAL, &sched, 2088 1, NULL); 2089 if (r) { 2090 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2091 r); 2092 goto error_free_entity; 2093 } 2094 } else { 2095 drm_sched_entity_destroy(&adev->mman.high_pr); 2096 drm_sched_entity_destroy(&adev->mman.low_pr); 2097 dma_fence_put(man->move); 2098 man->move = NULL; 2099 } 2100 2101 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2102 if (enable) 2103 size = adev->gmc.real_vram_size; 2104 else 2105 size = adev->gmc.visible_vram_size; 2106 man->size = size; 2107 adev->mman.buffer_funcs_enabled = enable; 2108 2109 return; 2110 2111 error_free_entity: 2112 drm_sched_entity_destroy(&adev->mman.high_pr); 2113 } 2114 2115 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2116 bool direct_submit, 2117 unsigned int num_dw, 2118 struct dma_resv *resv, 2119 bool vm_needs_flush, 2120 struct amdgpu_job **job, 2121 bool delayed) 2122 { 2123 enum amdgpu_ib_pool_type pool = direct_submit ? 2124 AMDGPU_IB_POOL_DIRECT : 2125 AMDGPU_IB_POOL_DELAYED; 2126 int r; 2127 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2128 &adev->mman.high_pr; 2129 r = amdgpu_job_alloc_with_ib(adev, entity, 2130 AMDGPU_FENCE_OWNER_UNDEFINED, 2131 num_dw * 4, pool, job); 2132 if (r) 2133 return r; 2134 2135 if (vm_needs_flush) { 2136 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2137 adev->gmc.pdb0_bo : 2138 adev->gart.bo); 2139 (*job)->vm_needs_flush = true; 2140 } 2141 if (!resv) 2142 return 0; 2143 2144 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2145 DMA_RESV_USAGE_BOOKKEEP); 2146 } 2147 2148 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2149 uint64_t dst_offset, uint32_t byte_count, 2150 struct dma_resv *resv, 2151 struct dma_fence **fence, bool direct_submit, 2152 bool vm_needs_flush, uint32_t copy_flags) 2153 { 2154 struct amdgpu_device *adev = ring->adev; 2155 unsigned int num_loops, num_dw; 2156 struct amdgpu_job *job; 2157 uint32_t max_bytes; 2158 unsigned int i; 2159 int r; 2160 2161 if (!direct_submit && !ring->sched.ready) { 2162 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2163 return -EINVAL; 2164 } 2165 2166 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2167 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2168 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2169 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2170 resv, vm_needs_flush, &job, false); 2171 if (r) 2172 return r; 2173 2174 for (i = 0; i < num_loops; i++) { 2175 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2176 2177 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2178 dst_offset, cur_size_in_bytes, copy_flags); 2179 src_offset += cur_size_in_bytes; 2180 dst_offset += cur_size_in_bytes; 2181 byte_count -= cur_size_in_bytes; 2182 } 2183 2184 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2185 WARN_ON(job->ibs[0].length_dw > num_dw); 2186 if (direct_submit) 2187 r = amdgpu_job_submit_direct(job, ring, fence); 2188 else 2189 *fence = amdgpu_job_submit(job); 2190 if (r) 2191 goto error_free; 2192 2193 return r; 2194 2195 error_free: 2196 amdgpu_job_free(job); 2197 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2198 return r; 2199 } 2200 2201 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2202 uint64_t dst_addr, uint32_t byte_count, 2203 struct dma_resv *resv, 2204 struct dma_fence **fence, 2205 bool vm_needs_flush, bool delayed) 2206 { 2207 struct amdgpu_device *adev = ring->adev; 2208 unsigned int num_loops, num_dw; 2209 struct amdgpu_job *job; 2210 uint32_t max_bytes; 2211 unsigned int i; 2212 int r; 2213 2214 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2215 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2216 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2217 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2218 &job, delayed); 2219 if (r) 2220 return r; 2221 2222 for (i = 0; i < num_loops; i++) { 2223 uint32_t cur_size = min(byte_count, max_bytes); 2224 2225 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2226 cur_size); 2227 2228 dst_addr += cur_size; 2229 byte_count -= cur_size; 2230 } 2231 2232 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2233 WARN_ON(job->ibs[0].length_dw > num_dw); 2234 *fence = amdgpu_job_submit(job); 2235 return 0; 2236 } 2237 2238 /** 2239 * amdgpu_ttm_clear_buffer - clear memory buffers 2240 * @bo: amdgpu buffer object 2241 * @resv: reservation object 2242 * @fence: dma_fence associated with the operation 2243 * 2244 * Clear the memory buffer resource. 2245 * 2246 * Returns: 2247 * 0 for success or a negative error code on failure. 2248 */ 2249 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2250 struct dma_resv *resv, 2251 struct dma_fence **fence) 2252 { 2253 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2254 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2255 struct amdgpu_res_cursor cursor; 2256 u64 addr; 2257 int r; 2258 2259 if (!adev->mman.buffer_funcs_enabled) 2260 return -EINVAL; 2261 2262 if (!fence) 2263 return -EINVAL; 2264 2265 *fence = dma_fence_get_stub(); 2266 2267 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2268 2269 mutex_lock(&adev->mman.gtt_window_lock); 2270 while (cursor.remaining) { 2271 struct dma_fence *next = NULL; 2272 u64 size; 2273 2274 if (amdgpu_res_cleared(&cursor)) { 2275 amdgpu_res_next(&cursor, cursor.size); 2276 continue; 2277 } 2278 2279 /* Never clear more than 256MiB at once to avoid timeouts */ 2280 size = min(cursor.size, 256ULL << 20); 2281 2282 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2283 1, ring, false, &size, &addr); 2284 if (r) 2285 goto err; 2286 2287 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2288 &next, true, true); 2289 if (r) 2290 goto err; 2291 2292 dma_fence_put(*fence); 2293 *fence = next; 2294 2295 amdgpu_res_next(&cursor, size); 2296 } 2297 err: 2298 mutex_unlock(&adev->mman.gtt_window_lock); 2299 2300 return r; 2301 } 2302 2303 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2304 uint32_t src_data, 2305 struct dma_resv *resv, 2306 struct dma_fence **f, 2307 bool delayed) 2308 { 2309 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2310 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2311 struct dma_fence *fence = NULL; 2312 struct amdgpu_res_cursor dst; 2313 int r; 2314 2315 if (!adev->mman.buffer_funcs_enabled) { 2316 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2317 return -EINVAL; 2318 } 2319 2320 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2321 2322 mutex_lock(&adev->mman.gtt_window_lock); 2323 while (dst.remaining) { 2324 struct dma_fence *next; 2325 uint64_t cur_size, to; 2326 2327 /* Never fill more than 256MiB at once to avoid timeouts */ 2328 cur_size = min(dst.size, 256ULL << 20); 2329 2330 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2331 1, ring, false, &cur_size, &to); 2332 if (r) 2333 goto error; 2334 2335 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2336 &next, true, delayed); 2337 if (r) 2338 goto error; 2339 2340 dma_fence_put(fence); 2341 fence = next; 2342 2343 amdgpu_res_next(&dst, cur_size); 2344 } 2345 error: 2346 mutex_unlock(&adev->mman.gtt_window_lock); 2347 if (f) 2348 *f = dma_fence_get(fence); 2349 dma_fence_put(fence); 2350 return r; 2351 } 2352 2353 /** 2354 * amdgpu_ttm_evict_resources - evict memory buffers 2355 * @adev: amdgpu device object 2356 * @mem_type: evicted BO's memory type 2357 * 2358 * Evicts all @mem_type buffers on the lru list of the memory type. 2359 * 2360 * Returns: 2361 * 0 for success or a negative error code on failure. 2362 */ 2363 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2364 { 2365 struct ttm_resource_manager *man; 2366 2367 switch (mem_type) { 2368 case TTM_PL_VRAM: 2369 case TTM_PL_TT: 2370 case AMDGPU_PL_GWS: 2371 case AMDGPU_PL_GDS: 2372 case AMDGPU_PL_OA: 2373 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2374 break; 2375 default: 2376 DRM_ERROR("Trying to evict invalid memory type\n"); 2377 return -EINVAL; 2378 } 2379 2380 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2381 } 2382 2383 #if defined(CONFIG_DEBUG_FS) 2384 2385 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2386 { 2387 struct amdgpu_device *adev = m->private; 2388 2389 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2390 } 2391 2392 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2393 2394 /* 2395 * amdgpu_ttm_vram_read - Linear read access to VRAM 2396 * 2397 * Accesses VRAM via MMIO for debugging purposes. 2398 */ 2399 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2400 size_t size, loff_t *pos) 2401 { 2402 struct amdgpu_device *adev = file_inode(f)->i_private; 2403 ssize_t result = 0; 2404 2405 if (size & 0x3 || *pos & 0x3) 2406 return -EINVAL; 2407 2408 if (*pos >= adev->gmc.mc_vram_size) 2409 return -ENXIO; 2410 2411 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2412 while (size) { 2413 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2414 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2415 2416 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2417 if (copy_to_user(buf, value, bytes)) 2418 return -EFAULT; 2419 2420 result += bytes; 2421 buf += bytes; 2422 *pos += bytes; 2423 size -= bytes; 2424 } 2425 2426 return result; 2427 } 2428 2429 /* 2430 * amdgpu_ttm_vram_write - Linear write access to VRAM 2431 * 2432 * Accesses VRAM via MMIO for debugging purposes. 2433 */ 2434 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2435 size_t size, loff_t *pos) 2436 { 2437 struct amdgpu_device *adev = file_inode(f)->i_private; 2438 ssize_t result = 0; 2439 int r; 2440 2441 if (size & 0x3 || *pos & 0x3) 2442 return -EINVAL; 2443 2444 if (*pos >= adev->gmc.mc_vram_size) 2445 return -ENXIO; 2446 2447 while (size) { 2448 uint32_t value; 2449 2450 if (*pos >= adev->gmc.mc_vram_size) 2451 return result; 2452 2453 r = get_user(value, (uint32_t *)buf); 2454 if (r) 2455 return r; 2456 2457 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2458 2459 result += 4; 2460 buf += 4; 2461 *pos += 4; 2462 size -= 4; 2463 } 2464 2465 return result; 2466 } 2467 2468 static const struct file_operations amdgpu_ttm_vram_fops = { 2469 .owner = THIS_MODULE, 2470 .read = amdgpu_ttm_vram_read, 2471 .write = amdgpu_ttm_vram_write, 2472 .llseek = default_llseek, 2473 }; 2474 2475 /* 2476 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2477 * 2478 * This function is used to read memory that has been mapped to the 2479 * GPU and the known addresses are not physical addresses but instead 2480 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2481 */ 2482 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2483 size_t size, loff_t *pos) 2484 { 2485 struct amdgpu_device *adev = file_inode(f)->i_private; 2486 struct iommu_domain *dom; 2487 ssize_t result = 0; 2488 int r; 2489 2490 /* retrieve the IOMMU domain if any for this device */ 2491 dom = iommu_get_domain_for_dev(adev->dev); 2492 2493 while (size) { 2494 phys_addr_t addr = *pos & PAGE_MASK; 2495 loff_t off = *pos & ~PAGE_MASK; 2496 size_t bytes = PAGE_SIZE - off; 2497 unsigned long pfn; 2498 struct page *p; 2499 void *ptr; 2500 2501 bytes = min(bytes, size); 2502 2503 /* Translate the bus address to a physical address. If 2504 * the domain is NULL it means there is no IOMMU active 2505 * and the address translation is the identity 2506 */ 2507 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2508 2509 pfn = addr >> PAGE_SHIFT; 2510 if (!pfn_valid(pfn)) 2511 return -EPERM; 2512 2513 p = pfn_to_page(pfn); 2514 if (p->mapping != adev->mman.bdev.dev_mapping) 2515 return -EPERM; 2516 2517 ptr = kmap_local_page(p); 2518 r = copy_to_user(buf, ptr + off, bytes); 2519 kunmap_local(ptr); 2520 if (r) 2521 return -EFAULT; 2522 2523 size -= bytes; 2524 *pos += bytes; 2525 result += bytes; 2526 } 2527 2528 return result; 2529 } 2530 2531 /* 2532 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2533 * 2534 * This function is used to write memory that has been mapped to the 2535 * GPU and the known addresses are not physical addresses but instead 2536 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2537 */ 2538 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2539 size_t size, loff_t *pos) 2540 { 2541 struct amdgpu_device *adev = file_inode(f)->i_private; 2542 struct iommu_domain *dom; 2543 ssize_t result = 0; 2544 int r; 2545 2546 dom = iommu_get_domain_for_dev(adev->dev); 2547 2548 while (size) { 2549 phys_addr_t addr = *pos & PAGE_MASK; 2550 loff_t off = *pos & ~PAGE_MASK; 2551 size_t bytes = PAGE_SIZE - off; 2552 unsigned long pfn; 2553 struct page *p; 2554 void *ptr; 2555 2556 bytes = min(bytes, size); 2557 2558 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2559 2560 pfn = addr >> PAGE_SHIFT; 2561 if (!pfn_valid(pfn)) 2562 return -EPERM; 2563 2564 p = pfn_to_page(pfn); 2565 if (p->mapping != adev->mman.bdev.dev_mapping) 2566 return -EPERM; 2567 2568 ptr = kmap_local_page(p); 2569 r = copy_from_user(ptr + off, buf, bytes); 2570 kunmap_local(ptr); 2571 if (r) 2572 return -EFAULT; 2573 2574 size -= bytes; 2575 *pos += bytes; 2576 result += bytes; 2577 } 2578 2579 return result; 2580 } 2581 2582 static const struct file_operations amdgpu_ttm_iomem_fops = { 2583 .owner = THIS_MODULE, 2584 .read = amdgpu_iomem_read, 2585 .write = amdgpu_iomem_write, 2586 .llseek = default_llseek 2587 }; 2588 2589 #endif 2590 2591 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2592 { 2593 #if defined(CONFIG_DEBUG_FS) 2594 struct drm_minor *minor = adev_to_drm(adev)->primary; 2595 struct dentry *root = minor->debugfs_root; 2596 2597 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2598 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2599 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2600 &amdgpu_ttm_iomem_fops); 2601 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2602 &amdgpu_ttm_page_pool_fops); 2603 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2604 TTM_PL_VRAM), 2605 root, "amdgpu_vram_mm"); 2606 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2607 TTM_PL_TT), 2608 root, "amdgpu_gtt_mm"); 2609 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2610 AMDGPU_PL_GDS), 2611 root, "amdgpu_gds_mm"); 2612 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2613 AMDGPU_PL_GWS), 2614 root, "amdgpu_gws_mm"); 2615 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2616 AMDGPU_PL_OA), 2617 root, "amdgpu_oa_mm"); 2618 2619 #endif 2620 } 2621