1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, 0); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 299 uint32_t copy_flags = 0; 300 301 if (!adev->mman.buffer_funcs_enabled) { 302 DRM_ERROR("Trying to move memory with ring turned off.\n"); 303 return -EINVAL; 304 } 305 306 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 308 309 mutex_lock(&adev->mman.gtt_window_lock); 310 while (src_mm.remaining) { 311 uint64_t from, to, cur_size; 312 struct dma_fence *next; 313 314 /* Never copy more than 256MiB at once to avoid a timeout */ 315 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 316 317 /* Map src to window 0 and dst to window 1. */ 318 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 319 0, ring, tmz, &cur_size, &from); 320 if (r) 321 goto error; 322 323 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 324 1, ring, tmz, &cur_size, &to); 325 if (r) 326 goto error; 327 328 if (tmz) 329 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 332 &next, false, true, copy_flags); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /** 412 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 413 * @adev: amdgpu device 414 * @res: the resource to check 415 * 416 * Returns: true if the full resource is CPU visible, false otherwise. 417 */ 418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 419 struct ttm_resource *res) 420 { 421 struct amdgpu_res_cursor cursor; 422 423 if (!res) 424 return false; 425 426 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 427 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 428 return true; 429 430 if (res->mem_type != TTM_PL_VRAM) 431 return false; 432 433 amdgpu_res_first(res, 0, res->size, &cursor); 434 while (cursor.remaining) { 435 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 436 return false; 437 amdgpu_res_next(&cursor, cursor.size); 438 } 439 440 return true; 441 } 442 443 /* 444 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 445 * 446 * Called by amdgpu_bo_move() 447 */ 448 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 449 struct ttm_resource *mem) 450 { 451 if (!amdgpu_res_cpu_visible(adev, mem)) 452 return false; 453 454 /* ttm_resource_ioremap only supports contiguous memory */ 455 if (mem->mem_type == TTM_PL_VRAM && 456 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 457 return false; 458 459 return true; 460 } 461 462 /* 463 * amdgpu_bo_move - Move a buffer object to a new memory location 464 * 465 * Called by ttm_bo_handle_move_mem() 466 */ 467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 468 struct ttm_operation_ctx *ctx, 469 struct ttm_resource *new_mem, 470 struct ttm_place *hop) 471 { 472 struct amdgpu_device *adev; 473 struct amdgpu_bo *abo; 474 struct ttm_resource *old_mem = bo->resource; 475 int r; 476 477 if (new_mem->mem_type == TTM_PL_TT || 478 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 479 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 480 if (r) 481 return r; 482 } 483 484 abo = ttm_to_amdgpu_bo(bo); 485 adev = amdgpu_ttm_adev(bo->bdev); 486 487 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 488 bo->ttm == NULL)) { 489 amdgpu_bo_move_notify(bo, evict, new_mem); 490 ttm_bo_move_null(bo, new_mem); 491 return 0; 492 } 493 if (old_mem->mem_type == TTM_PL_SYSTEM && 494 (new_mem->mem_type == TTM_PL_TT || 495 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 496 amdgpu_bo_move_notify(bo, evict, new_mem); 497 ttm_bo_move_null(bo, new_mem); 498 return 0; 499 } 500 if ((old_mem->mem_type == TTM_PL_TT || 501 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 502 new_mem->mem_type == TTM_PL_SYSTEM) { 503 r = ttm_bo_wait_ctx(bo, ctx); 504 if (r) 505 return r; 506 507 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 508 amdgpu_bo_move_notify(bo, evict, new_mem); 509 ttm_resource_free(bo, &bo->resource); 510 ttm_bo_assign_mem(bo, new_mem); 511 return 0; 512 } 513 514 if (old_mem->mem_type == AMDGPU_PL_GDS || 515 old_mem->mem_type == AMDGPU_PL_GWS || 516 old_mem->mem_type == AMDGPU_PL_OA || 517 old_mem->mem_type == AMDGPU_PL_DOORBELL || 518 new_mem->mem_type == AMDGPU_PL_GDS || 519 new_mem->mem_type == AMDGPU_PL_GWS || 520 new_mem->mem_type == AMDGPU_PL_OA || 521 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 522 /* Nothing to save here */ 523 amdgpu_bo_move_notify(bo, evict, new_mem); 524 ttm_bo_move_null(bo, new_mem); 525 return 0; 526 } 527 528 if (bo->type == ttm_bo_type_device && 529 new_mem->mem_type == TTM_PL_VRAM && 530 old_mem->mem_type != TTM_PL_VRAM) { 531 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 532 * accesses the BO after it's moved. 533 */ 534 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 535 } 536 537 if (adev->mman.buffer_funcs_enabled && 538 ((old_mem->mem_type == TTM_PL_SYSTEM && 539 new_mem->mem_type == TTM_PL_VRAM) || 540 (old_mem->mem_type == TTM_PL_VRAM && 541 new_mem->mem_type == TTM_PL_SYSTEM))) { 542 hop->fpfn = 0; 543 hop->lpfn = 0; 544 hop->mem_type = TTM_PL_TT; 545 hop->flags = TTM_PL_FLAG_TEMPORARY; 546 return -EMULTIHOP; 547 } 548 549 amdgpu_bo_move_notify(bo, evict, new_mem); 550 if (adev->mman.buffer_funcs_enabled) 551 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 552 else 553 r = -ENODEV; 554 555 if (r) { 556 /* Check that all memory is CPU accessible */ 557 if (!amdgpu_res_copyable(adev, old_mem) || 558 !amdgpu_res_copyable(adev, new_mem)) { 559 pr_err("Move buffer fallback to memcpy unavailable\n"); 560 return r; 561 } 562 563 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 564 if (r) 565 return r; 566 } 567 568 /* update statistics after the move */ 569 if (evict) 570 atomic64_inc(&adev->num_evictions); 571 atomic64_add(bo->base.size, &adev->num_bytes_moved); 572 return 0; 573 } 574 575 /* 576 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 577 * 578 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 579 */ 580 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 581 struct ttm_resource *mem) 582 { 583 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 584 585 switch (mem->mem_type) { 586 case TTM_PL_SYSTEM: 587 /* system memory */ 588 return 0; 589 case TTM_PL_TT: 590 case AMDGPU_PL_PREEMPT: 591 break; 592 case TTM_PL_VRAM: 593 mem->bus.offset = mem->start << PAGE_SHIFT; 594 595 if (adev->mman.aper_base_kaddr && 596 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 597 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 598 mem->bus.offset; 599 600 mem->bus.offset += adev->gmc.aper_base; 601 mem->bus.is_iomem = true; 602 break; 603 case AMDGPU_PL_DOORBELL: 604 mem->bus.offset = mem->start << PAGE_SHIFT; 605 mem->bus.offset += adev->doorbell.base; 606 mem->bus.is_iomem = true; 607 mem->bus.caching = ttm_uncached; 608 break; 609 default: 610 return -EINVAL; 611 } 612 return 0; 613 } 614 615 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 616 unsigned long page_offset) 617 { 618 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 619 struct amdgpu_res_cursor cursor; 620 621 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 622 &cursor); 623 624 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 625 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 626 627 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 628 } 629 630 /** 631 * amdgpu_ttm_domain_start - Returns GPU start address 632 * @adev: amdgpu device object 633 * @type: type of the memory 634 * 635 * Returns: 636 * GPU start address of a memory domain 637 */ 638 639 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 640 { 641 switch (type) { 642 case TTM_PL_TT: 643 return adev->gmc.gart_start; 644 case TTM_PL_VRAM: 645 return adev->gmc.vram_start; 646 } 647 648 return 0; 649 } 650 651 /* 652 * TTM backend functions. 653 */ 654 struct amdgpu_ttm_tt { 655 struct ttm_tt ttm; 656 struct drm_gem_object *gobj; 657 u64 offset; 658 uint64_t userptr; 659 struct task_struct *usertask; 660 uint32_t userflags; 661 bool bound; 662 int32_t pool_id; 663 }; 664 665 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 666 667 #ifdef CONFIG_DRM_AMDGPU_USERPTR 668 /* 669 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 670 * memory and start HMM tracking CPU page table update 671 * 672 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 673 * once afterwards to stop HMM tracking 674 */ 675 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 676 struct hmm_range **range) 677 { 678 struct ttm_tt *ttm = bo->tbo.ttm; 679 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 680 unsigned long start = gtt->userptr; 681 struct vm_area_struct *vma; 682 struct mm_struct *mm; 683 bool readonly; 684 int r = 0; 685 686 /* Make sure get_user_pages_done() can cleanup gracefully */ 687 *range = NULL; 688 689 mm = bo->notifier.mm; 690 if (unlikely(!mm)) { 691 DRM_DEBUG_DRIVER("BO is not registered?\n"); 692 return -EFAULT; 693 } 694 695 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 696 return -ESRCH; 697 698 mmap_read_lock(mm); 699 vma = vma_lookup(mm, start); 700 if (unlikely(!vma)) { 701 r = -EFAULT; 702 goto out_unlock; 703 } 704 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 705 vma->vm_file)) { 706 r = -EPERM; 707 goto out_unlock; 708 } 709 710 readonly = amdgpu_ttm_tt_is_readonly(ttm); 711 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 712 readonly, NULL, pages, range); 713 out_unlock: 714 mmap_read_unlock(mm); 715 if (r) 716 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 717 718 mmput(mm); 719 720 return r; 721 } 722 723 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 724 */ 725 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 726 struct hmm_range *range) 727 { 728 struct amdgpu_ttm_tt *gtt = (void *)ttm; 729 730 if (gtt && gtt->userptr && range) 731 amdgpu_hmm_range_get_pages_done(range); 732 } 733 734 /* 735 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 736 * Check if the pages backing this ttm range have been invalidated 737 * 738 * Returns: true if pages are still valid 739 */ 740 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 741 struct hmm_range *range) 742 { 743 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 744 745 if (!gtt || !gtt->userptr || !range) 746 return false; 747 748 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 749 gtt->userptr, ttm->num_pages); 750 751 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 752 753 return !amdgpu_hmm_range_get_pages_done(range); 754 } 755 #endif 756 757 /* 758 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 759 * 760 * Called by amdgpu_cs_list_validate(). This creates the page list 761 * that backs user memory and will ultimately be mapped into the device 762 * address space. 763 */ 764 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 765 { 766 unsigned long i; 767 768 for (i = 0; i < ttm->num_pages; ++i) 769 ttm->pages[i] = pages ? pages[i] : NULL; 770 } 771 772 /* 773 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 774 * 775 * Called by amdgpu_ttm_backend_bind() 776 **/ 777 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 778 struct ttm_tt *ttm) 779 { 780 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 781 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 782 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 783 enum dma_data_direction direction = write ? 784 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 785 int r; 786 787 /* Allocate an SG array and squash pages into it */ 788 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 789 (u64)ttm->num_pages << PAGE_SHIFT, 790 GFP_KERNEL); 791 if (r) 792 goto release_sg; 793 794 /* Map SG to device */ 795 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 796 if (r) 797 goto release_sg; 798 799 /* convert SG to linear array of pages and dma addresses */ 800 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 801 ttm->num_pages); 802 803 return 0; 804 805 release_sg: 806 kfree(ttm->sg); 807 ttm->sg = NULL; 808 return r; 809 } 810 811 /* 812 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 813 */ 814 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 815 struct ttm_tt *ttm) 816 { 817 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 818 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 819 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 820 enum dma_data_direction direction = write ? 821 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 822 823 /* double check that we don't free the table twice */ 824 if (!ttm->sg || !ttm->sg->sgl) 825 return; 826 827 /* unmap the pages mapped to the device */ 828 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 829 sg_free_table(ttm->sg); 830 } 831 832 /* 833 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 834 * MQDn+CtrlStackn where n is the number of XCCs per partition. 835 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 836 * and uses memory type default, UC. The rest of pages_per_xcc are 837 * Ctrl stack and modify their memory type to NC. 838 */ 839 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 840 struct ttm_tt *ttm, uint64_t flags) 841 { 842 struct amdgpu_ttm_tt *gtt = (void *)ttm; 843 uint64_t total_pages = ttm->num_pages; 844 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 845 uint64_t page_idx, pages_per_xcc; 846 int i; 847 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 848 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 849 850 pages_per_xcc = total_pages; 851 do_div(pages_per_xcc, num_xcc); 852 853 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 854 /* MQD page: use default flags */ 855 amdgpu_gart_bind(adev, 856 gtt->offset + (page_idx << PAGE_SHIFT), 857 1, >t->ttm.dma_address[page_idx], flags); 858 /* 859 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 860 * the second page of the BO onward. 861 */ 862 amdgpu_gart_bind(adev, 863 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 864 pages_per_xcc - 1, 865 >t->ttm.dma_address[page_idx + 1], 866 ctrl_flags); 867 } 868 } 869 870 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 871 struct ttm_buffer_object *tbo, 872 uint64_t flags) 873 { 874 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 875 struct ttm_tt *ttm = tbo->ttm; 876 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 877 878 if (amdgpu_bo_encrypted(abo)) 879 flags |= AMDGPU_PTE_TMZ; 880 881 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 882 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 883 } else { 884 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 885 gtt->ttm.dma_address, flags); 886 } 887 gtt->bound = true; 888 } 889 890 /* 891 * amdgpu_ttm_backend_bind - Bind GTT memory 892 * 893 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 894 * This handles binding GTT memory to the device address space. 895 */ 896 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 897 struct ttm_tt *ttm, 898 struct ttm_resource *bo_mem) 899 { 900 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 901 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 902 uint64_t flags; 903 int r; 904 905 if (!bo_mem) 906 return -EINVAL; 907 908 if (gtt->bound) 909 return 0; 910 911 if (gtt->userptr) { 912 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 913 if (r) { 914 DRM_ERROR("failed to pin userptr\n"); 915 return r; 916 } 917 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 918 if (!ttm->sg) { 919 struct dma_buf_attachment *attach; 920 struct sg_table *sgt; 921 922 attach = gtt->gobj->import_attach; 923 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 924 if (IS_ERR(sgt)) 925 return PTR_ERR(sgt); 926 927 ttm->sg = sgt; 928 } 929 930 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 931 ttm->num_pages); 932 } 933 934 if (!ttm->num_pages) { 935 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 936 ttm->num_pages, bo_mem, ttm); 937 } 938 939 if (bo_mem->mem_type != TTM_PL_TT || 940 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 941 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 942 return 0; 943 } 944 945 /* compute PTE flags relevant to this BO memory */ 946 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 947 948 /* bind pages into GART page tables */ 949 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 950 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 951 gtt->ttm.dma_address, flags); 952 gtt->bound = true; 953 return 0; 954 } 955 956 /* 957 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 958 * through AGP or GART aperture. 959 * 960 * If bo is accessible through AGP aperture, then use AGP aperture 961 * to access bo; otherwise allocate logical space in GART aperture 962 * and map bo to GART aperture. 963 */ 964 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 965 { 966 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 967 struct ttm_operation_ctx ctx = { false, false }; 968 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 969 struct ttm_placement placement; 970 struct ttm_place placements; 971 struct ttm_resource *tmp; 972 uint64_t addr, flags; 973 int r; 974 975 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 976 return 0; 977 978 addr = amdgpu_gmc_agp_addr(bo); 979 if (addr != AMDGPU_BO_INVALID_OFFSET) 980 return 0; 981 982 /* allocate GART space */ 983 placement.num_placement = 1; 984 placement.placement = &placements; 985 placements.fpfn = 0; 986 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 987 placements.mem_type = TTM_PL_TT; 988 placements.flags = bo->resource->placement; 989 990 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 991 if (unlikely(r)) 992 return r; 993 994 /* compute PTE flags for this buffer object */ 995 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 996 997 /* Bind pages */ 998 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 999 amdgpu_ttm_gart_bind(adev, bo, flags); 1000 amdgpu_gart_invalidate_tlb(adev); 1001 ttm_resource_free(bo, &bo->resource); 1002 ttm_bo_assign_mem(bo, tmp); 1003 1004 return 0; 1005 } 1006 1007 /* 1008 * amdgpu_ttm_recover_gart - Rebind GTT pages 1009 * 1010 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1011 * rebind GTT pages during a GPU reset. 1012 */ 1013 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1014 { 1015 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1016 uint64_t flags; 1017 1018 if (!tbo->ttm) 1019 return; 1020 1021 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1022 amdgpu_ttm_gart_bind(adev, tbo, flags); 1023 } 1024 1025 /* 1026 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1027 * 1028 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1029 * ttm_tt_destroy(). 1030 */ 1031 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1032 struct ttm_tt *ttm) 1033 { 1034 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1035 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1036 1037 /* if the pages have userptr pinning then clear that first */ 1038 if (gtt->userptr) { 1039 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1040 } else if (ttm->sg && gtt->gobj->import_attach) { 1041 struct dma_buf_attachment *attach; 1042 1043 attach = gtt->gobj->import_attach; 1044 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1045 ttm->sg = NULL; 1046 } 1047 1048 if (!gtt->bound) 1049 return; 1050 1051 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1052 return; 1053 1054 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1055 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1056 gtt->bound = false; 1057 } 1058 1059 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1060 struct ttm_tt *ttm) 1061 { 1062 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1063 1064 if (gtt->usertask) 1065 put_task_struct(gtt->usertask); 1066 1067 ttm_tt_fini(>t->ttm); 1068 kfree(gtt); 1069 } 1070 1071 /** 1072 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1073 * 1074 * @bo: The buffer object to create a GTT ttm_tt object around 1075 * @page_flags: Page flags to be added to the ttm_tt object 1076 * 1077 * Called by ttm_tt_create(). 1078 */ 1079 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1080 uint32_t page_flags) 1081 { 1082 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1083 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1084 struct amdgpu_ttm_tt *gtt; 1085 enum ttm_caching caching; 1086 1087 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1088 if (!gtt) 1089 return NULL; 1090 1091 gtt->gobj = &bo->base; 1092 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1093 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1094 else 1095 gtt->pool_id = abo->xcp_id; 1096 1097 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1098 caching = ttm_write_combined; 1099 else 1100 caching = ttm_cached; 1101 1102 /* allocate space for the uninitialized page entries */ 1103 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1104 kfree(gtt); 1105 return NULL; 1106 } 1107 return >t->ttm; 1108 } 1109 1110 /* 1111 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1112 * 1113 * Map the pages of a ttm_tt object to an address space visible 1114 * to the underlying device. 1115 */ 1116 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1117 struct ttm_tt *ttm, 1118 struct ttm_operation_ctx *ctx) 1119 { 1120 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1121 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1122 struct ttm_pool *pool; 1123 pgoff_t i; 1124 int ret; 1125 1126 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1127 if (gtt->userptr) { 1128 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1129 if (!ttm->sg) 1130 return -ENOMEM; 1131 return 0; 1132 } 1133 1134 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1135 return 0; 1136 1137 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1138 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1139 else 1140 pool = &adev->mman.bdev.pool; 1141 ret = ttm_pool_alloc(pool, ttm, ctx); 1142 if (ret) 1143 return ret; 1144 1145 for (i = 0; i < ttm->num_pages; ++i) 1146 ttm->pages[i]->mapping = bdev->dev_mapping; 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1153 * 1154 * Unmaps pages of a ttm_tt object from the device address space and 1155 * unpopulates the page array backing it. 1156 */ 1157 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1158 struct ttm_tt *ttm) 1159 { 1160 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1161 struct amdgpu_device *adev; 1162 struct ttm_pool *pool; 1163 pgoff_t i; 1164 1165 amdgpu_ttm_backend_unbind(bdev, ttm); 1166 1167 if (gtt->userptr) { 1168 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1169 kfree(ttm->sg); 1170 ttm->sg = NULL; 1171 return; 1172 } 1173 1174 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1175 return; 1176 1177 for (i = 0; i < ttm->num_pages; ++i) 1178 ttm->pages[i]->mapping = NULL; 1179 1180 adev = amdgpu_ttm_adev(bdev); 1181 1182 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1183 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1184 else 1185 pool = &adev->mman.bdev.pool; 1186 1187 return ttm_pool_free(pool, ttm); 1188 } 1189 1190 /** 1191 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1192 * task 1193 * 1194 * @tbo: The ttm_buffer_object that contains the userptr 1195 * @user_addr: The returned value 1196 */ 1197 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1198 uint64_t *user_addr) 1199 { 1200 struct amdgpu_ttm_tt *gtt; 1201 1202 if (!tbo->ttm) 1203 return -EINVAL; 1204 1205 gtt = (void *)tbo->ttm; 1206 *user_addr = gtt->userptr; 1207 return 0; 1208 } 1209 1210 /** 1211 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1212 * task 1213 * 1214 * @bo: The ttm_buffer_object to bind this userptr to 1215 * @addr: The address in the current tasks VM space to use 1216 * @flags: Requirements of userptr object. 1217 * 1218 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1219 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1220 * initialize GPU VM for a KFD process. 1221 */ 1222 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1223 uint64_t addr, uint32_t flags) 1224 { 1225 struct amdgpu_ttm_tt *gtt; 1226 1227 if (!bo->ttm) { 1228 /* TODO: We want a separate TTM object type for userptrs */ 1229 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1230 if (bo->ttm == NULL) 1231 return -ENOMEM; 1232 } 1233 1234 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1235 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1236 1237 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1238 gtt->userptr = addr; 1239 gtt->userflags = flags; 1240 1241 if (gtt->usertask) 1242 put_task_struct(gtt->usertask); 1243 gtt->usertask = current->group_leader; 1244 get_task_struct(gtt->usertask); 1245 1246 return 0; 1247 } 1248 1249 /* 1250 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1251 */ 1252 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1253 { 1254 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1255 1256 if (gtt == NULL) 1257 return NULL; 1258 1259 if (gtt->usertask == NULL) 1260 return NULL; 1261 1262 return gtt->usertask->mm; 1263 } 1264 1265 /* 1266 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1267 * address range for the current task. 1268 * 1269 */ 1270 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1271 unsigned long end, unsigned long *userptr) 1272 { 1273 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1274 unsigned long size; 1275 1276 if (gtt == NULL || !gtt->userptr) 1277 return false; 1278 1279 /* Return false if no part of the ttm_tt object lies within 1280 * the range 1281 */ 1282 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1283 if (gtt->userptr > end || gtt->userptr + size <= start) 1284 return false; 1285 1286 if (userptr) 1287 *userptr = gtt->userptr; 1288 return true; 1289 } 1290 1291 /* 1292 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1293 */ 1294 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1295 { 1296 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1297 1298 if (gtt == NULL || !gtt->userptr) 1299 return false; 1300 1301 return true; 1302 } 1303 1304 /* 1305 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1306 */ 1307 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1308 { 1309 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1310 1311 if (gtt == NULL) 1312 return false; 1313 1314 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1315 } 1316 1317 /** 1318 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1319 * 1320 * @ttm: The ttm_tt object to compute the flags for 1321 * @mem: The memory registry backing this ttm_tt object 1322 * 1323 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1324 */ 1325 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1326 { 1327 uint64_t flags = 0; 1328 1329 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1330 flags |= AMDGPU_PTE_VALID; 1331 1332 if (mem && (mem->mem_type == TTM_PL_TT || 1333 mem->mem_type == AMDGPU_PL_DOORBELL || 1334 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1335 flags |= AMDGPU_PTE_SYSTEM; 1336 1337 if (ttm->caching == ttm_cached) 1338 flags |= AMDGPU_PTE_SNOOPED; 1339 } 1340 1341 if (mem && mem->mem_type == TTM_PL_VRAM && 1342 mem->bus.caching == ttm_cached) 1343 flags |= AMDGPU_PTE_SNOOPED; 1344 1345 return flags; 1346 } 1347 1348 /** 1349 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1350 * 1351 * @adev: amdgpu_device pointer 1352 * @ttm: The ttm_tt object to compute the flags for 1353 * @mem: The memory registry backing this ttm_tt object 1354 * 1355 * Figure out the flags to use for a VM PTE (Page Table Entry). 1356 */ 1357 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1358 struct ttm_resource *mem) 1359 { 1360 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1361 1362 flags |= adev->gart.gart_pte_flags; 1363 flags |= AMDGPU_PTE_READABLE; 1364 1365 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1366 flags |= AMDGPU_PTE_WRITEABLE; 1367 1368 return flags; 1369 } 1370 1371 /* 1372 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1373 * object. 1374 * 1375 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1376 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1377 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1378 * used to clean out a memory space. 1379 */ 1380 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1381 const struct ttm_place *place) 1382 { 1383 struct dma_resv_iter resv_cursor; 1384 struct dma_fence *f; 1385 1386 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1387 return ttm_bo_eviction_valuable(bo, place); 1388 1389 /* Swapout? */ 1390 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1391 return true; 1392 1393 if (bo->type == ttm_bo_type_kernel && 1394 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1395 return false; 1396 1397 /* If bo is a KFD BO, check if the bo belongs to the current process. 1398 * If true, then return false as any KFD process needs all its BOs to 1399 * be resident to run successfully 1400 */ 1401 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1402 DMA_RESV_USAGE_BOOKKEEP, f) { 1403 if (amdkfd_fence_check_mm(f, current->mm) && 1404 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1405 return false; 1406 } 1407 1408 /* Preemptible BOs don't own system resources managed by the 1409 * driver (pages, VRAM, GART space). They point to resources 1410 * owned by someone else (e.g. pageable memory in user mode 1411 * or a DMABuf). They are used in a preemptible context so we 1412 * can guarantee no deadlocks and good QoS in case of MMU 1413 * notifiers or DMABuf move notifiers from the resource owner. 1414 */ 1415 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1416 return false; 1417 1418 if (bo->resource->mem_type == TTM_PL_TT && 1419 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1420 return false; 1421 1422 return ttm_bo_eviction_valuable(bo, place); 1423 } 1424 1425 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1426 void *buf, size_t size, bool write) 1427 { 1428 while (size) { 1429 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1430 uint64_t bytes = 4 - (pos & 0x3); 1431 uint32_t shift = (pos & 0x3) * 8; 1432 uint32_t mask = 0xffffffff << shift; 1433 uint32_t value = 0; 1434 1435 if (size < bytes) { 1436 mask &= 0xffffffff >> (bytes - size) * 8; 1437 bytes = size; 1438 } 1439 1440 if (mask != 0xffffffff) { 1441 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1442 if (write) { 1443 value &= ~mask; 1444 value |= (*(uint32_t *)buf << shift) & mask; 1445 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1446 } else { 1447 value = (value & mask) >> shift; 1448 memcpy(buf, &value, bytes); 1449 } 1450 } else { 1451 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1452 } 1453 1454 pos += bytes; 1455 buf += bytes; 1456 size -= bytes; 1457 } 1458 } 1459 1460 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1461 unsigned long offset, void *buf, 1462 int len, int write) 1463 { 1464 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1465 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1466 struct amdgpu_res_cursor src_mm; 1467 struct amdgpu_job *job; 1468 struct dma_fence *fence; 1469 uint64_t src_addr, dst_addr; 1470 unsigned int num_dw; 1471 int r, idx; 1472 1473 if (len != PAGE_SIZE) 1474 return -EINVAL; 1475 1476 if (!adev->mman.sdma_access_ptr) 1477 return -EACCES; 1478 1479 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1480 return -ENODEV; 1481 1482 if (write) 1483 memcpy(adev->mman.sdma_access_ptr, buf, len); 1484 1485 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1486 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1487 AMDGPU_FENCE_OWNER_UNDEFINED, 1488 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1489 &job); 1490 if (r) 1491 goto out; 1492 1493 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1494 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1495 src_mm.start; 1496 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1497 if (write) 1498 swap(src_addr, dst_addr); 1499 1500 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1501 PAGE_SIZE, 0); 1502 1503 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1504 WARN_ON(job->ibs[0].length_dw > num_dw); 1505 1506 fence = amdgpu_job_submit(job); 1507 1508 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1509 r = -ETIMEDOUT; 1510 dma_fence_put(fence); 1511 1512 if (!(r || write)) 1513 memcpy(buf, adev->mman.sdma_access_ptr, len); 1514 out: 1515 drm_dev_exit(idx); 1516 return r; 1517 } 1518 1519 /** 1520 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1521 * 1522 * @bo: The buffer object to read/write 1523 * @offset: Offset into buffer object 1524 * @buf: Secondary buffer to write/read from 1525 * @len: Length in bytes of access 1526 * @write: true if writing 1527 * 1528 * This is used to access VRAM that backs a buffer object via MMIO 1529 * access for debugging purposes. 1530 */ 1531 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1532 unsigned long offset, void *buf, int len, 1533 int write) 1534 { 1535 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1536 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1537 struct amdgpu_res_cursor cursor; 1538 int ret = 0; 1539 1540 if (bo->resource->mem_type != TTM_PL_VRAM) 1541 return -EIO; 1542 1543 if (amdgpu_device_has_timeouts_enabled(adev) && 1544 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1545 return len; 1546 1547 amdgpu_res_first(bo->resource, offset, len, &cursor); 1548 while (cursor.remaining) { 1549 size_t count, size = cursor.size; 1550 loff_t pos = cursor.start; 1551 1552 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1553 size -= count; 1554 if (size) { 1555 /* using MM to access rest vram and handle un-aligned address */ 1556 pos += count; 1557 buf += count; 1558 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1559 } 1560 1561 ret += cursor.size; 1562 buf += cursor.size; 1563 amdgpu_res_next(&cursor, cursor.size); 1564 } 1565 1566 return ret; 1567 } 1568 1569 static void 1570 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1571 { 1572 amdgpu_bo_move_notify(bo, false, NULL); 1573 } 1574 1575 static struct ttm_device_funcs amdgpu_bo_driver = { 1576 .ttm_tt_create = &amdgpu_ttm_tt_create, 1577 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1578 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1579 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1580 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1581 .evict_flags = &amdgpu_evict_flags, 1582 .move = &amdgpu_bo_move, 1583 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1584 .release_notify = &amdgpu_bo_release_notify, 1585 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1586 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1587 .access_memory = &amdgpu_ttm_access_memory, 1588 }; 1589 1590 /* 1591 * Firmware Reservation functions 1592 */ 1593 /** 1594 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1595 * 1596 * @adev: amdgpu_device pointer 1597 * 1598 * free fw reserved vram if it has been reserved. 1599 */ 1600 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1601 { 1602 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1603 NULL, &adev->mman.fw_vram_usage_va); 1604 } 1605 1606 /* 1607 * Driver Reservation functions 1608 */ 1609 /** 1610 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1611 * 1612 * @adev: amdgpu_device pointer 1613 * 1614 * free drv reserved vram if it has been reserved. 1615 */ 1616 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1617 { 1618 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1619 NULL, 1620 &adev->mman.drv_vram_usage_va); 1621 } 1622 1623 /** 1624 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1625 * 1626 * @adev: amdgpu_device pointer 1627 * 1628 * create bo vram reservation from fw. 1629 */ 1630 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1631 { 1632 uint64_t vram_size = adev->gmc.visible_vram_size; 1633 1634 adev->mman.fw_vram_usage_va = NULL; 1635 adev->mman.fw_vram_usage_reserved_bo = NULL; 1636 1637 if (adev->mman.fw_vram_usage_size == 0 || 1638 adev->mman.fw_vram_usage_size > vram_size) 1639 return 0; 1640 1641 return amdgpu_bo_create_kernel_at(adev, 1642 adev->mman.fw_vram_usage_start_offset, 1643 adev->mman.fw_vram_usage_size, 1644 &adev->mman.fw_vram_usage_reserved_bo, 1645 &adev->mman.fw_vram_usage_va); 1646 } 1647 1648 /** 1649 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1650 * 1651 * @adev: amdgpu_device pointer 1652 * 1653 * create bo vram reservation from drv. 1654 */ 1655 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1656 { 1657 u64 vram_size = adev->gmc.visible_vram_size; 1658 1659 adev->mman.drv_vram_usage_va = NULL; 1660 adev->mman.drv_vram_usage_reserved_bo = NULL; 1661 1662 if (adev->mman.drv_vram_usage_size == 0 || 1663 adev->mman.drv_vram_usage_size > vram_size) 1664 return 0; 1665 1666 return amdgpu_bo_create_kernel_at(adev, 1667 adev->mman.drv_vram_usage_start_offset, 1668 adev->mman.drv_vram_usage_size, 1669 &adev->mman.drv_vram_usage_reserved_bo, 1670 &adev->mman.drv_vram_usage_va); 1671 } 1672 1673 /* 1674 * Memoy training reservation functions 1675 */ 1676 1677 /** 1678 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1679 * 1680 * @adev: amdgpu_device pointer 1681 * 1682 * free memory training reserved vram if it has been reserved. 1683 */ 1684 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1685 { 1686 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1687 1688 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1689 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1690 ctx->c2p_bo = NULL; 1691 1692 return 0; 1693 } 1694 1695 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1696 uint32_t reserve_size) 1697 { 1698 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1699 1700 memset(ctx, 0, sizeof(*ctx)); 1701 1702 ctx->c2p_train_data_offset = 1703 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1704 ctx->p2c_train_data_offset = 1705 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1706 ctx->train_data_size = 1707 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1708 1709 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1710 ctx->train_data_size, 1711 ctx->p2c_train_data_offset, 1712 ctx->c2p_train_data_offset); 1713 } 1714 1715 /* 1716 * reserve TMR memory at the top of VRAM which holds 1717 * IP Discovery data and is protected by PSP. 1718 */ 1719 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1720 { 1721 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1722 bool mem_train_support = false; 1723 uint32_t reserve_size = 0; 1724 int ret; 1725 1726 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1727 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1728 mem_train_support = true; 1729 else 1730 DRM_DEBUG("memory training does not support!\n"); 1731 } 1732 1733 /* 1734 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1735 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1736 * 1737 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1738 * discovery data and G6 memory training data respectively 1739 */ 1740 if (adev->bios) 1741 reserve_size = 1742 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1743 1744 if (!adev->bios && 1745 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1746 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4))) 1747 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1748 else if (!reserve_size) 1749 reserve_size = DISCOVERY_TMR_OFFSET; 1750 1751 if (mem_train_support) { 1752 /* reserve vram for mem train according to TMR location */ 1753 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1754 ret = amdgpu_bo_create_kernel_at(adev, 1755 ctx->c2p_train_data_offset, 1756 ctx->train_data_size, 1757 &ctx->c2p_bo, 1758 NULL); 1759 if (ret) { 1760 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1761 amdgpu_ttm_training_reserve_vram_fini(adev); 1762 return ret; 1763 } 1764 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1765 } 1766 1767 if (!adev->gmc.is_app_apu) { 1768 ret = amdgpu_bo_create_kernel_at( 1769 adev, adev->gmc.real_vram_size - reserve_size, 1770 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1771 if (ret) { 1772 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1773 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1774 NULL, NULL); 1775 return ret; 1776 } 1777 } else { 1778 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1779 } 1780 1781 return 0; 1782 } 1783 1784 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1785 { 1786 int i; 1787 1788 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1789 return 0; 1790 1791 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1792 sizeof(*adev->mman.ttm_pools), 1793 GFP_KERNEL); 1794 if (!adev->mman.ttm_pools) 1795 return -ENOMEM; 1796 1797 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1798 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1799 adev->gmc.mem_partitions[i].numa.node, 1800 false, false); 1801 } 1802 return 0; 1803 } 1804 1805 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1806 { 1807 int i; 1808 1809 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1810 return; 1811 1812 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1813 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1814 1815 kfree(adev->mman.ttm_pools); 1816 adev->mman.ttm_pools = NULL; 1817 } 1818 1819 /* 1820 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1821 * gtt/vram related fields. 1822 * 1823 * This initializes all of the memory space pools that the TTM layer 1824 * will need such as the GTT space (system memory mapped to the device), 1825 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1826 * can be mapped per VMID. 1827 */ 1828 int amdgpu_ttm_init(struct amdgpu_device *adev) 1829 { 1830 uint64_t gtt_size; 1831 int r; 1832 1833 mutex_init(&adev->mman.gtt_window_lock); 1834 1835 /* No others user of address space so set it to 0 */ 1836 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1837 adev_to_drm(adev)->anon_inode->i_mapping, 1838 adev_to_drm(adev)->vma_offset_manager, 1839 adev->need_swiotlb, 1840 dma_addressing_limited(adev->dev)); 1841 if (r) { 1842 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1843 return r; 1844 } 1845 1846 r = amdgpu_ttm_pools_init(adev); 1847 if (r) { 1848 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1849 return r; 1850 } 1851 adev->mman.initialized = true; 1852 1853 /* Initialize VRAM pool with all of VRAM divided into pages */ 1854 r = amdgpu_vram_mgr_init(adev); 1855 if (r) { 1856 DRM_ERROR("Failed initializing VRAM heap.\n"); 1857 return r; 1858 } 1859 1860 /* Change the size here instead of the init above so only lpfn is affected */ 1861 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1862 #ifdef CONFIG_64BIT 1863 #ifdef CONFIG_X86 1864 if (adev->gmc.xgmi.connected_to_cpu) 1865 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1866 adev->gmc.visible_vram_size); 1867 1868 else if (adev->gmc.is_app_apu) 1869 DRM_DEBUG_DRIVER( 1870 "No need to ioremap when real vram size is 0\n"); 1871 else 1872 #endif 1873 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1874 adev->gmc.visible_vram_size); 1875 #endif 1876 1877 /* 1878 *The reserved vram for firmware must be pinned to the specified 1879 *place on the VRAM, so reserve it early. 1880 */ 1881 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1882 if (r) 1883 return r; 1884 1885 /* 1886 *The reserved vram for driver must be pinned to the specified 1887 *place on the VRAM, so reserve it early. 1888 */ 1889 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1890 if (r) 1891 return r; 1892 1893 /* 1894 * only NAVI10 and onwards ASIC support for IP discovery. 1895 * If IP discovery enabled, a block of memory should be 1896 * reserved for IP discovey. 1897 */ 1898 if (adev->mman.discovery_bin) { 1899 r = amdgpu_ttm_reserve_tmr(adev); 1900 if (r) 1901 return r; 1902 } 1903 1904 /* allocate memory as required for VGA 1905 * This is used for VGA emulation and pre-OS scanout buffers to 1906 * avoid display artifacts while transitioning between pre-OS 1907 * and driver. 1908 */ 1909 if (!adev->gmc.is_app_apu) { 1910 r = amdgpu_bo_create_kernel_at(adev, 0, 1911 adev->mman.stolen_vga_size, 1912 &adev->mman.stolen_vga_memory, 1913 NULL); 1914 if (r) 1915 return r; 1916 1917 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1918 adev->mman.stolen_extended_size, 1919 &adev->mman.stolen_extended_memory, 1920 NULL); 1921 1922 if (r) 1923 return r; 1924 1925 r = amdgpu_bo_create_kernel_at(adev, 1926 adev->mman.stolen_reserved_offset, 1927 adev->mman.stolen_reserved_size, 1928 &adev->mman.stolen_reserved_memory, 1929 NULL); 1930 if (r) 1931 return r; 1932 } else { 1933 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1934 } 1935 1936 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1937 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1938 1939 /* Compute GTT size, either based on TTM limit 1940 * or whatever the user passed on module init. 1941 */ 1942 if (amdgpu_gtt_size == -1) 1943 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1944 else 1945 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1946 1947 /* Initialize GTT memory pool */ 1948 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1949 if (r) { 1950 DRM_ERROR("Failed initializing GTT heap.\n"); 1951 return r; 1952 } 1953 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1954 (unsigned int)(gtt_size / (1024 * 1024))); 1955 1956 /* Initiailize doorbell pool on PCI BAR */ 1957 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1958 if (r) { 1959 DRM_ERROR("Failed initializing doorbell heap.\n"); 1960 return r; 1961 } 1962 1963 /* Create a boorbell page for kernel usages */ 1964 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1965 if (r) { 1966 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1967 return r; 1968 } 1969 1970 /* Initialize preemptible memory pool */ 1971 r = amdgpu_preempt_mgr_init(adev); 1972 if (r) { 1973 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1974 return r; 1975 } 1976 1977 /* Initialize various on-chip memory pools */ 1978 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1979 if (r) { 1980 DRM_ERROR("Failed initializing GDS heap.\n"); 1981 return r; 1982 } 1983 1984 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1985 if (r) { 1986 DRM_ERROR("Failed initializing gws heap.\n"); 1987 return r; 1988 } 1989 1990 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1991 if (r) { 1992 DRM_ERROR("Failed initializing oa heap.\n"); 1993 return r; 1994 } 1995 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1996 AMDGPU_GEM_DOMAIN_GTT, 1997 &adev->mman.sdma_access_bo, NULL, 1998 &adev->mman.sdma_access_ptr)) 1999 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2000 2001 return 0; 2002 } 2003 2004 /* 2005 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2006 */ 2007 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2008 { 2009 int idx; 2010 2011 if (!adev->mman.initialized) 2012 return; 2013 2014 amdgpu_ttm_pools_fini(adev); 2015 2016 amdgpu_ttm_training_reserve_vram_fini(adev); 2017 /* return the stolen vga memory back to VRAM */ 2018 if (!adev->gmc.is_app_apu) { 2019 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2020 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2021 /* return the FW reserved memory back to VRAM */ 2022 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2023 NULL); 2024 if (adev->mman.stolen_reserved_size) 2025 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2026 NULL, NULL); 2027 } 2028 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2029 &adev->mman.sdma_access_ptr); 2030 amdgpu_ttm_fw_reserve_vram_fini(adev); 2031 amdgpu_ttm_drv_reserve_vram_fini(adev); 2032 2033 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2034 2035 if (adev->mman.aper_base_kaddr) 2036 iounmap(adev->mman.aper_base_kaddr); 2037 adev->mman.aper_base_kaddr = NULL; 2038 2039 drm_dev_exit(idx); 2040 } 2041 2042 amdgpu_vram_mgr_fini(adev); 2043 amdgpu_gtt_mgr_fini(adev); 2044 amdgpu_preempt_mgr_fini(adev); 2045 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2046 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2047 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2048 ttm_device_fini(&adev->mman.bdev); 2049 adev->mman.initialized = false; 2050 DRM_INFO("amdgpu: ttm finalized\n"); 2051 } 2052 2053 /** 2054 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2055 * 2056 * @adev: amdgpu_device pointer 2057 * @enable: true when we can use buffer functions. 2058 * 2059 * Enable/disable use of buffer functions during suspend/resume. This should 2060 * only be called at bootup or when userspace isn't running. 2061 */ 2062 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2063 { 2064 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2065 uint64_t size; 2066 int r; 2067 2068 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2069 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2070 return; 2071 2072 if (enable) { 2073 struct amdgpu_ring *ring; 2074 struct drm_gpu_scheduler *sched; 2075 2076 ring = adev->mman.buffer_funcs_ring; 2077 sched = &ring->sched; 2078 r = drm_sched_entity_init(&adev->mman.high_pr, 2079 DRM_SCHED_PRIORITY_KERNEL, &sched, 2080 1, NULL); 2081 if (r) { 2082 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2083 r); 2084 return; 2085 } 2086 2087 r = drm_sched_entity_init(&adev->mman.low_pr, 2088 DRM_SCHED_PRIORITY_NORMAL, &sched, 2089 1, NULL); 2090 if (r) { 2091 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2092 r); 2093 goto error_free_entity; 2094 } 2095 } else { 2096 drm_sched_entity_destroy(&adev->mman.high_pr); 2097 drm_sched_entity_destroy(&adev->mman.low_pr); 2098 dma_fence_put(man->move); 2099 man->move = NULL; 2100 } 2101 2102 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2103 if (enable) 2104 size = adev->gmc.real_vram_size; 2105 else 2106 size = adev->gmc.visible_vram_size; 2107 man->size = size; 2108 adev->mman.buffer_funcs_enabled = enable; 2109 2110 return; 2111 2112 error_free_entity: 2113 drm_sched_entity_destroy(&adev->mman.high_pr); 2114 } 2115 2116 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2117 bool direct_submit, 2118 unsigned int num_dw, 2119 struct dma_resv *resv, 2120 bool vm_needs_flush, 2121 struct amdgpu_job **job, 2122 bool delayed) 2123 { 2124 enum amdgpu_ib_pool_type pool = direct_submit ? 2125 AMDGPU_IB_POOL_DIRECT : 2126 AMDGPU_IB_POOL_DELAYED; 2127 int r; 2128 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2129 &adev->mman.high_pr; 2130 r = amdgpu_job_alloc_with_ib(adev, entity, 2131 AMDGPU_FENCE_OWNER_UNDEFINED, 2132 num_dw * 4, pool, job); 2133 if (r) 2134 return r; 2135 2136 if (vm_needs_flush) { 2137 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2138 adev->gmc.pdb0_bo : 2139 adev->gart.bo); 2140 (*job)->vm_needs_flush = true; 2141 } 2142 if (!resv) 2143 return 0; 2144 2145 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2146 DMA_RESV_USAGE_BOOKKEEP); 2147 } 2148 2149 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2150 uint64_t dst_offset, uint32_t byte_count, 2151 struct dma_resv *resv, 2152 struct dma_fence **fence, bool direct_submit, 2153 bool vm_needs_flush, uint32_t copy_flags) 2154 { 2155 struct amdgpu_device *adev = ring->adev; 2156 unsigned int num_loops, num_dw; 2157 struct amdgpu_job *job; 2158 uint32_t max_bytes; 2159 unsigned int i; 2160 int r; 2161 2162 if (!direct_submit && !ring->sched.ready) { 2163 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2164 return -EINVAL; 2165 } 2166 2167 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2168 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2169 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2170 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2171 resv, vm_needs_flush, &job, false); 2172 if (r) 2173 return r; 2174 2175 for (i = 0; i < num_loops; i++) { 2176 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2177 2178 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2179 dst_offset, cur_size_in_bytes, copy_flags); 2180 src_offset += cur_size_in_bytes; 2181 dst_offset += cur_size_in_bytes; 2182 byte_count -= cur_size_in_bytes; 2183 } 2184 2185 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2186 WARN_ON(job->ibs[0].length_dw > num_dw); 2187 if (direct_submit) 2188 r = amdgpu_job_submit_direct(job, ring, fence); 2189 else 2190 *fence = amdgpu_job_submit(job); 2191 if (r) 2192 goto error_free; 2193 2194 return r; 2195 2196 error_free: 2197 amdgpu_job_free(job); 2198 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2199 return r; 2200 } 2201 2202 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2203 uint64_t dst_addr, uint32_t byte_count, 2204 struct dma_resv *resv, 2205 struct dma_fence **fence, 2206 bool vm_needs_flush, bool delayed) 2207 { 2208 struct amdgpu_device *adev = ring->adev; 2209 unsigned int num_loops, num_dw; 2210 struct amdgpu_job *job; 2211 uint32_t max_bytes; 2212 unsigned int i; 2213 int r; 2214 2215 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2216 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2217 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2218 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2219 &job, delayed); 2220 if (r) 2221 return r; 2222 2223 for (i = 0; i < num_loops; i++) { 2224 uint32_t cur_size = min(byte_count, max_bytes); 2225 2226 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2227 cur_size); 2228 2229 dst_addr += cur_size; 2230 byte_count -= cur_size; 2231 } 2232 2233 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2234 WARN_ON(job->ibs[0].length_dw > num_dw); 2235 *fence = amdgpu_job_submit(job); 2236 return 0; 2237 } 2238 2239 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2240 uint32_t src_data, 2241 struct dma_resv *resv, 2242 struct dma_fence **f, 2243 bool delayed) 2244 { 2245 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2246 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2247 struct dma_fence *fence = NULL; 2248 struct amdgpu_res_cursor dst; 2249 int r; 2250 2251 if (!adev->mman.buffer_funcs_enabled) { 2252 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2253 return -EINVAL; 2254 } 2255 2256 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2257 2258 mutex_lock(&adev->mman.gtt_window_lock); 2259 while (dst.remaining) { 2260 struct dma_fence *next; 2261 uint64_t cur_size, to; 2262 2263 /* Never fill more than 256MiB at once to avoid timeouts */ 2264 cur_size = min(dst.size, 256ULL << 20); 2265 2266 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2267 1, ring, false, &cur_size, &to); 2268 if (r) 2269 goto error; 2270 2271 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2272 &next, true, delayed); 2273 if (r) 2274 goto error; 2275 2276 dma_fence_put(fence); 2277 fence = next; 2278 2279 amdgpu_res_next(&dst, cur_size); 2280 } 2281 error: 2282 mutex_unlock(&adev->mman.gtt_window_lock); 2283 if (f) 2284 *f = dma_fence_get(fence); 2285 dma_fence_put(fence); 2286 return r; 2287 } 2288 2289 /** 2290 * amdgpu_ttm_evict_resources - evict memory buffers 2291 * @adev: amdgpu device object 2292 * @mem_type: evicted BO's memory type 2293 * 2294 * Evicts all @mem_type buffers on the lru list of the memory type. 2295 * 2296 * Returns: 2297 * 0 for success or a negative error code on failure. 2298 */ 2299 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2300 { 2301 struct ttm_resource_manager *man; 2302 2303 switch (mem_type) { 2304 case TTM_PL_VRAM: 2305 case TTM_PL_TT: 2306 case AMDGPU_PL_GWS: 2307 case AMDGPU_PL_GDS: 2308 case AMDGPU_PL_OA: 2309 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2310 break; 2311 default: 2312 DRM_ERROR("Trying to evict invalid memory type\n"); 2313 return -EINVAL; 2314 } 2315 2316 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2317 } 2318 2319 #if defined(CONFIG_DEBUG_FS) 2320 2321 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2322 { 2323 struct amdgpu_device *adev = m->private; 2324 2325 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2326 } 2327 2328 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2329 2330 /* 2331 * amdgpu_ttm_vram_read - Linear read access to VRAM 2332 * 2333 * Accesses VRAM via MMIO for debugging purposes. 2334 */ 2335 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2336 size_t size, loff_t *pos) 2337 { 2338 struct amdgpu_device *adev = file_inode(f)->i_private; 2339 ssize_t result = 0; 2340 2341 if (size & 0x3 || *pos & 0x3) 2342 return -EINVAL; 2343 2344 if (*pos >= adev->gmc.mc_vram_size) 2345 return -ENXIO; 2346 2347 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2348 while (size) { 2349 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2350 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2351 2352 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2353 if (copy_to_user(buf, value, bytes)) 2354 return -EFAULT; 2355 2356 result += bytes; 2357 buf += bytes; 2358 *pos += bytes; 2359 size -= bytes; 2360 } 2361 2362 return result; 2363 } 2364 2365 /* 2366 * amdgpu_ttm_vram_write - Linear write access to VRAM 2367 * 2368 * Accesses VRAM via MMIO for debugging purposes. 2369 */ 2370 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2371 size_t size, loff_t *pos) 2372 { 2373 struct amdgpu_device *adev = file_inode(f)->i_private; 2374 ssize_t result = 0; 2375 int r; 2376 2377 if (size & 0x3 || *pos & 0x3) 2378 return -EINVAL; 2379 2380 if (*pos >= adev->gmc.mc_vram_size) 2381 return -ENXIO; 2382 2383 while (size) { 2384 uint32_t value; 2385 2386 if (*pos >= adev->gmc.mc_vram_size) 2387 return result; 2388 2389 r = get_user(value, (uint32_t *)buf); 2390 if (r) 2391 return r; 2392 2393 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2394 2395 result += 4; 2396 buf += 4; 2397 *pos += 4; 2398 size -= 4; 2399 } 2400 2401 return result; 2402 } 2403 2404 static const struct file_operations amdgpu_ttm_vram_fops = { 2405 .owner = THIS_MODULE, 2406 .read = amdgpu_ttm_vram_read, 2407 .write = amdgpu_ttm_vram_write, 2408 .llseek = default_llseek, 2409 }; 2410 2411 /* 2412 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2413 * 2414 * This function is used to read memory that has been mapped to the 2415 * GPU and the known addresses are not physical addresses but instead 2416 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2417 */ 2418 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2419 size_t size, loff_t *pos) 2420 { 2421 struct amdgpu_device *adev = file_inode(f)->i_private; 2422 struct iommu_domain *dom; 2423 ssize_t result = 0; 2424 int r; 2425 2426 /* retrieve the IOMMU domain if any for this device */ 2427 dom = iommu_get_domain_for_dev(adev->dev); 2428 2429 while (size) { 2430 phys_addr_t addr = *pos & PAGE_MASK; 2431 loff_t off = *pos & ~PAGE_MASK; 2432 size_t bytes = PAGE_SIZE - off; 2433 unsigned long pfn; 2434 struct page *p; 2435 void *ptr; 2436 2437 bytes = min(bytes, size); 2438 2439 /* Translate the bus address to a physical address. If 2440 * the domain is NULL it means there is no IOMMU active 2441 * and the address translation is the identity 2442 */ 2443 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2444 2445 pfn = addr >> PAGE_SHIFT; 2446 if (!pfn_valid(pfn)) 2447 return -EPERM; 2448 2449 p = pfn_to_page(pfn); 2450 if (p->mapping != adev->mman.bdev.dev_mapping) 2451 return -EPERM; 2452 2453 ptr = kmap_local_page(p); 2454 r = copy_to_user(buf, ptr + off, bytes); 2455 kunmap_local(ptr); 2456 if (r) 2457 return -EFAULT; 2458 2459 size -= bytes; 2460 *pos += bytes; 2461 result += bytes; 2462 } 2463 2464 return result; 2465 } 2466 2467 /* 2468 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2469 * 2470 * This function is used to write memory that has been mapped to the 2471 * GPU and the known addresses are not physical addresses but instead 2472 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2473 */ 2474 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2475 size_t size, loff_t *pos) 2476 { 2477 struct amdgpu_device *adev = file_inode(f)->i_private; 2478 struct iommu_domain *dom; 2479 ssize_t result = 0; 2480 int r; 2481 2482 dom = iommu_get_domain_for_dev(adev->dev); 2483 2484 while (size) { 2485 phys_addr_t addr = *pos & PAGE_MASK; 2486 loff_t off = *pos & ~PAGE_MASK; 2487 size_t bytes = PAGE_SIZE - off; 2488 unsigned long pfn; 2489 struct page *p; 2490 void *ptr; 2491 2492 bytes = min(bytes, size); 2493 2494 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2495 2496 pfn = addr >> PAGE_SHIFT; 2497 if (!pfn_valid(pfn)) 2498 return -EPERM; 2499 2500 p = pfn_to_page(pfn); 2501 if (p->mapping != adev->mman.bdev.dev_mapping) 2502 return -EPERM; 2503 2504 ptr = kmap_local_page(p); 2505 r = copy_from_user(ptr + off, buf, bytes); 2506 kunmap_local(ptr); 2507 if (r) 2508 return -EFAULT; 2509 2510 size -= bytes; 2511 *pos += bytes; 2512 result += bytes; 2513 } 2514 2515 return result; 2516 } 2517 2518 static const struct file_operations amdgpu_ttm_iomem_fops = { 2519 .owner = THIS_MODULE, 2520 .read = amdgpu_iomem_read, 2521 .write = amdgpu_iomem_write, 2522 .llseek = default_llseek 2523 }; 2524 2525 #endif 2526 2527 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2528 { 2529 #if defined(CONFIG_DEBUG_FS) 2530 struct drm_minor *minor = adev_to_drm(adev)->primary; 2531 struct dentry *root = minor->debugfs_root; 2532 2533 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2534 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2535 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2536 &amdgpu_ttm_iomem_fops); 2537 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2538 &amdgpu_ttm_page_pool_fops); 2539 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2540 TTM_PL_VRAM), 2541 root, "amdgpu_vram_mm"); 2542 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2543 TTM_PL_TT), 2544 root, "amdgpu_gtt_mm"); 2545 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2546 AMDGPU_PL_GDS), 2547 root, "amdgpu_gds_mm"); 2548 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2549 AMDGPU_PL_GWS), 2550 root, "amdgpu_gws_mm"); 2551 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2552 AMDGPU_PL_OA), 2553 root, "amdgpu_oa_mm"); 2554 2555 #endif 2556 } 2557