xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "amdgpu_sdma.h"
51 #include "bif/bif_4_1_d.h"
52 
53 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
54 
55 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
56 			     struct ttm_mem_reg *mem, unsigned num_pages,
57 			     uint64_t offset, unsigned window,
58 			     struct amdgpu_ring *ring,
59 			     uint64_t *addr);
60 
61 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
62 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
63 
64 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
65 {
66 	return 0;
67 }
68 
69 /**
70  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
71  * memory request.
72  *
73  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
74  * @type: The type of memory requested
75  * @man: The memory type manager for each domain
76  *
77  * This is called by ttm_bo_init_mm() when a buffer object is being
78  * initialized.
79  */
80 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
81 				struct ttm_mem_type_manager *man)
82 {
83 	struct amdgpu_device *adev;
84 
85 	adev = amdgpu_ttm_adev(bdev);
86 
87 	switch (type) {
88 	case TTM_PL_SYSTEM:
89 		/* System memory */
90 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
91 		man->available_caching = TTM_PL_MASK_CACHING;
92 		man->default_caching = TTM_PL_FLAG_CACHED;
93 		break;
94 	case TTM_PL_TT:
95 		/* GTT memory  */
96 		man->func = &amdgpu_gtt_mgr_func;
97 		man->gpu_offset = adev->gmc.gart_start;
98 		man->available_caching = TTM_PL_MASK_CACHING;
99 		man->default_caching = TTM_PL_FLAG_CACHED;
100 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
101 		break;
102 	case TTM_PL_VRAM:
103 		/* "On-card" video ram */
104 		man->func = &amdgpu_vram_mgr_func;
105 		man->gpu_offset = adev->gmc.vram_start;
106 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
107 			     TTM_MEMTYPE_FLAG_MAPPABLE;
108 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
109 		man->default_caching = TTM_PL_FLAG_WC;
110 		break;
111 	case AMDGPU_PL_GDS:
112 	case AMDGPU_PL_GWS:
113 	case AMDGPU_PL_OA:
114 		/* On-chip GDS memory*/
115 		man->func = &ttm_bo_manager_func;
116 		man->gpu_offset = 0;
117 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
118 		man->available_caching = TTM_PL_FLAG_UNCACHED;
119 		man->default_caching = TTM_PL_FLAG_UNCACHED;
120 		break;
121 	default:
122 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
123 		return -EINVAL;
124 	}
125 	return 0;
126 }
127 
128 /**
129  * amdgpu_evict_flags - Compute placement flags
130  *
131  * @bo: The buffer object to evict
132  * @placement: Possible destination(s) for evicted BO
133  *
134  * Fill in placement data when ttm_bo_evict() is called
135  */
136 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
137 				struct ttm_placement *placement)
138 {
139 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
140 	struct amdgpu_bo *abo;
141 	static const struct ttm_place placements = {
142 		.fpfn = 0,
143 		.lpfn = 0,
144 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
145 	};
146 
147 	/* Don't handle scatter gather BOs */
148 	if (bo->type == ttm_bo_type_sg) {
149 		placement->num_placement = 0;
150 		placement->num_busy_placement = 0;
151 		return;
152 	}
153 
154 	/* Object isn't an AMDGPU object so ignore */
155 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
156 		placement->placement = &placements;
157 		placement->busy_placement = &placements;
158 		placement->num_placement = 1;
159 		placement->num_busy_placement = 1;
160 		return;
161 	}
162 
163 	abo = ttm_to_amdgpu_bo(bo);
164 	switch (bo->mem.mem_type) {
165 	case AMDGPU_PL_GDS:
166 	case AMDGPU_PL_GWS:
167 	case AMDGPU_PL_OA:
168 		placement->num_placement = 0;
169 		placement->num_busy_placement = 0;
170 		return;
171 
172 	case TTM_PL_VRAM:
173 		if (!adev->mman.buffer_funcs_enabled) {
174 			/* Move to system memory */
175 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
176 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
177 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
178 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
179 
180 			/* Try evicting to the CPU inaccessible part of VRAM
181 			 * first, but only set GTT as busy placement, so this
182 			 * BO will be evicted to GTT rather than causing other
183 			 * BOs to be evicted from VRAM
184 			 */
185 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
186 							 AMDGPU_GEM_DOMAIN_GTT);
187 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
188 			abo->placements[0].lpfn = 0;
189 			abo->placement.busy_placement = &abo->placements[1];
190 			abo->placement.num_busy_placement = 1;
191 		} else {
192 			/* Move to GTT memory */
193 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
194 		}
195 		break;
196 	case TTM_PL_TT:
197 	default:
198 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
199 		break;
200 	}
201 	*placement = abo->placement;
202 }
203 
204 /**
205  * amdgpu_verify_access - Verify access for a mmap call
206  *
207  * @bo:	The buffer object to map
208  * @filp: The file pointer from the process performing the mmap
209  *
210  * This is called by ttm_bo_mmap() to verify whether a process
211  * has the right to mmap a BO to their process space.
212  */
213 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
214 {
215 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
216 
217 	/*
218 	 * Don't verify access for KFD BOs. They don't have a GEM
219 	 * object associated with them.
220 	 */
221 	if (abo->kfd_bo)
222 		return 0;
223 
224 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
225 		return -EPERM;
226 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
227 					  filp->private_data);
228 }
229 
230 /**
231  * amdgpu_move_null - Register memory for a buffer object
232  *
233  * @bo: The bo to assign the memory to
234  * @new_mem: The memory to be assigned.
235  *
236  * Assign the memory from new_mem to the memory of the buffer object bo.
237  */
238 static void amdgpu_move_null(struct ttm_buffer_object *bo,
239 			     struct ttm_mem_reg *new_mem)
240 {
241 	struct ttm_mem_reg *old_mem = &bo->mem;
242 
243 	BUG_ON(old_mem->mm_node != NULL);
244 	*old_mem = *new_mem;
245 	new_mem->mm_node = NULL;
246 }
247 
248 /**
249  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
250  *
251  * @bo: The bo to assign the memory to.
252  * @mm_node: Memory manager node for drm allocator.
253  * @mem: The region where the bo resides.
254  *
255  */
256 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
257 				    struct drm_mm_node *mm_node,
258 				    struct ttm_mem_reg *mem)
259 {
260 	uint64_t addr = 0;
261 
262 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
263 		addr = mm_node->start << PAGE_SHIFT;
264 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
265 	}
266 	return addr;
267 }
268 
269 /**
270  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
271  * @offset. It also modifies the offset to be within the drm_mm_node returned
272  *
273  * @mem: The region where the bo resides.
274  * @offset: The offset that drm_mm_node is used for finding.
275  *
276  */
277 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
278 					       unsigned long *offset)
279 {
280 	struct drm_mm_node *mm_node = mem->mm_node;
281 
282 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
283 		*offset -= (mm_node->size << PAGE_SHIFT);
284 		++mm_node;
285 	}
286 	return mm_node;
287 }
288 
289 /**
290  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
291  *
292  * The function copies @size bytes from {src->mem + src->offset} to
293  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
294  * move and different for a BO to BO copy.
295  *
296  * @f: Returns the last fence if multiple jobs are submitted.
297  */
298 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
299 			       struct amdgpu_copy_mem *src,
300 			       struct amdgpu_copy_mem *dst,
301 			       uint64_t size,
302 			       struct reservation_object *resv,
303 			       struct dma_fence **f)
304 {
305 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
306 	struct drm_mm_node *src_mm, *dst_mm;
307 	uint64_t src_node_start, dst_node_start, src_node_size,
308 		 dst_node_size, src_page_offset, dst_page_offset;
309 	struct dma_fence *fence = NULL;
310 	int r = 0;
311 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
312 					AMDGPU_GPU_PAGE_SIZE);
313 
314 	if (!adev->mman.buffer_funcs_enabled) {
315 		DRM_ERROR("Trying to move memory with ring turned off.\n");
316 		return -EINVAL;
317 	}
318 
319 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
320 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
321 					     src->offset;
322 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
323 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
324 
325 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
326 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
327 					     dst->offset;
328 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
329 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
330 
331 	mutex_lock(&adev->mman.gtt_window_lock);
332 
333 	while (size) {
334 		unsigned long cur_size;
335 		uint64_t from = src_node_start, to = dst_node_start;
336 		struct dma_fence *next;
337 
338 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
339 		 * begins at an offset, then adjust the size accordingly
340 		 */
341 		cur_size = min3(min(src_node_size, dst_node_size), size,
342 				GTT_MAX_BYTES);
343 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
344 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
345 			cur_size -= max(src_page_offset, dst_page_offset);
346 
347 		/* Map only what needs to be accessed. Map src to window 0 and
348 		 * dst to window 1
349 		 */
350 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
351 			r = amdgpu_map_buffer(src->bo, src->mem,
352 					PFN_UP(cur_size + src_page_offset),
353 					src_node_start, 0, ring,
354 					&from);
355 			if (r)
356 				goto error;
357 			/* Adjust the offset because amdgpu_map_buffer returns
358 			 * start of mapped page
359 			 */
360 			from += src_page_offset;
361 		}
362 
363 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
364 			r = amdgpu_map_buffer(dst->bo, dst->mem,
365 					PFN_UP(cur_size + dst_page_offset),
366 					dst_node_start, 1, ring,
367 					&to);
368 			if (r)
369 				goto error;
370 			to += dst_page_offset;
371 		}
372 
373 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
374 				       resv, &next, false, true);
375 		if (r)
376 			goto error;
377 
378 		dma_fence_put(fence);
379 		fence = next;
380 
381 		size -= cur_size;
382 		if (!size)
383 			break;
384 
385 		src_node_size -= cur_size;
386 		if (!src_node_size) {
387 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
388 							     src->mem);
389 			src_node_size = (src_mm->size << PAGE_SHIFT);
390 		} else {
391 			src_node_start += cur_size;
392 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
393 		}
394 		dst_node_size -= cur_size;
395 		if (!dst_node_size) {
396 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
397 							     dst->mem);
398 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
399 		} else {
400 			dst_node_start += cur_size;
401 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
402 		}
403 	}
404 error:
405 	mutex_unlock(&adev->mman.gtt_window_lock);
406 	if (f)
407 		*f = dma_fence_get(fence);
408 	dma_fence_put(fence);
409 	return r;
410 }
411 
412 /**
413  * amdgpu_move_blit - Copy an entire buffer to another buffer
414  *
415  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
416  * help move buffers to and from VRAM.
417  */
418 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
419 			    bool evict, bool no_wait_gpu,
420 			    struct ttm_mem_reg *new_mem,
421 			    struct ttm_mem_reg *old_mem)
422 {
423 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
424 	struct amdgpu_copy_mem src, dst;
425 	struct dma_fence *fence = NULL;
426 	int r;
427 
428 	src.bo = bo;
429 	dst.bo = bo;
430 	src.mem = old_mem;
431 	dst.mem = new_mem;
432 	src.offset = 0;
433 	dst.offset = 0;
434 
435 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
436 				       new_mem->num_pages << PAGE_SHIFT,
437 				       bo->resv, &fence);
438 	if (r)
439 		goto error;
440 
441 	/* Always block for VM page tables before committing the new location */
442 	if (bo->type == ttm_bo_type_kernel)
443 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
444 	else
445 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
446 	dma_fence_put(fence);
447 	return r;
448 
449 error:
450 	if (fence)
451 		dma_fence_wait(fence, false);
452 	dma_fence_put(fence);
453 	return r;
454 }
455 
456 /**
457  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
458  *
459  * Called by amdgpu_bo_move().
460  */
461 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
462 				struct ttm_operation_ctx *ctx,
463 				struct ttm_mem_reg *new_mem)
464 {
465 	struct amdgpu_device *adev;
466 	struct ttm_mem_reg *old_mem = &bo->mem;
467 	struct ttm_mem_reg tmp_mem;
468 	struct ttm_place placements;
469 	struct ttm_placement placement;
470 	int r;
471 
472 	adev = amdgpu_ttm_adev(bo->bdev);
473 
474 	/* create space/pages for new_mem in GTT space */
475 	tmp_mem = *new_mem;
476 	tmp_mem.mm_node = NULL;
477 	placement.num_placement = 1;
478 	placement.placement = &placements;
479 	placement.num_busy_placement = 1;
480 	placement.busy_placement = &placements;
481 	placements.fpfn = 0;
482 	placements.lpfn = 0;
483 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
484 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
485 	if (unlikely(r)) {
486 		return r;
487 	}
488 
489 	/* set caching flags */
490 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
491 	if (unlikely(r)) {
492 		goto out_cleanup;
493 	}
494 
495 	/* Bind the memory to the GTT space */
496 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
497 	if (unlikely(r)) {
498 		goto out_cleanup;
499 	}
500 
501 	/* blit VRAM to GTT */
502 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
503 	if (unlikely(r)) {
504 		goto out_cleanup;
505 	}
506 
507 	/* move BO (in tmp_mem) to new_mem */
508 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
509 out_cleanup:
510 	ttm_bo_mem_put(bo, &tmp_mem);
511 	return r;
512 }
513 
514 /**
515  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
516  *
517  * Called by amdgpu_bo_move().
518  */
519 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
520 				struct ttm_operation_ctx *ctx,
521 				struct ttm_mem_reg *new_mem)
522 {
523 	struct amdgpu_device *adev;
524 	struct ttm_mem_reg *old_mem = &bo->mem;
525 	struct ttm_mem_reg tmp_mem;
526 	struct ttm_placement placement;
527 	struct ttm_place placements;
528 	int r;
529 
530 	adev = amdgpu_ttm_adev(bo->bdev);
531 
532 	/* make space in GTT for old_mem buffer */
533 	tmp_mem = *new_mem;
534 	tmp_mem.mm_node = NULL;
535 	placement.num_placement = 1;
536 	placement.placement = &placements;
537 	placement.num_busy_placement = 1;
538 	placement.busy_placement = &placements;
539 	placements.fpfn = 0;
540 	placements.lpfn = 0;
541 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
542 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
543 	if (unlikely(r)) {
544 		return r;
545 	}
546 
547 	/* move/bind old memory to GTT space */
548 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
549 	if (unlikely(r)) {
550 		goto out_cleanup;
551 	}
552 
553 	/* copy to VRAM */
554 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
555 	if (unlikely(r)) {
556 		goto out_cleanup;
557 	}
558 out_cleanup:
559 	ttm_bo_mem_put(bo, &tmp_mem);
560 	return r;
561 }
562 
563 /**
564  * amdgpu_bo_move - Move a buffer object to a new memory location
565  *
566  * Called by ttm_bo_handle_move_mem()
567  */
568 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
569 			  struct ttm_operation_ctx *ctx,
570 			  struct ttm_mem_reg *new_mem)
571 {
572 	struct amdgpu_device *adev;
573 	struct amdgpu_bo *abo;
574 	struct ttm_mem_reg *old_mem = &bo->mem;
575 	int r;
576 
577 	/* Can't move a pinned BO */
578 	abo = ttm_to_amdgpu_bo(bo);
579 	if (WARN_ON_ONCE(abo->pin_count > 0))
580 		return -EINVAL;
581 
582 	adev = amdgpu_ttm_adev(bo->bdev);
583 
584 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
585 		amdgpu_move_null(bo, new_mem);
586 		return 0;
587 	}
588 	if ((old_mem->mem_type == TTM_PL_TT &&
589 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
590 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
591 	     new_mem->mem_type == TTM_PL_TT)) {
592 		/* bind is enough */
593 		amdgpu_move_null(bo, new_mem);
594 		return 0;
595 	}
596 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
597 	    old_mem->mem_type == AMDGPU_PL_GWS ||
598 	    old_mem->mem_type == AMDGPU_PL_OA ||
599 	    new_mem->mem_type == AMDGPU_PL_GDS ||
600 	    new_mem->mem_type == AMDGPU_PL_GWS ||
601 	    new_mem->mem_type == AMDGPU_PL_OA) {
602 		/* Nothing to save here */
603 		amdgpu_move_null(bo, new_mem);
604 		return 0;
605 	}
606 
607 	if (!adev->mman.buffer_funcs_enabled)
608 		goto memcpy;
609 
610 	if (old_mem->mem_type == TTM_PL_VRAM &&
611 	    new_mem->mem_type == TTM_PL_SYSTEM) {
612 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
613 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
614 		   new_mem->mem_type == TTM_PL_VRAM) {
615 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
616 	} else {
617 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
618 				     new_mem, old_mem);
619 	}
620 
621 	if (r) {
622 memcpy:
623 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
624 		if (r) {
625 			return r;
626 		}
627 	}
628 
629 	if (bo->type == ttm_bo_type_device &&
630 	    new_mem->mem_type == TTM_PL_VRAM &&
631 	    old_mem->mem_type != TTM_PL_VRAM) {
632 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
633 		 * accesses the BO after it's moved.
634 		 */
635 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
636 	}
637 
638 	/* update statistics */
639 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
640 	return 0;
641 }
642 
643 /**
644  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
645  *
646  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
647  */
648 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
649 {
650 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
651 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
652 	struct drm_mm_node *mm_node = mem->mm_node;
653 
654 	mem->bus.addr = NULL;
655 	mem->bus.offset = 0;
656 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
657 	mem->bus.base = 0;
658 	mem->bus.is_iomem = false;
659 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
660 		return -EINVAL;
661 	switch (mem->mem_type) {
662 	case TTM_PL_SYSTEM:
663 		/* system memory */
664 		return 0;
665 	case TTM_PL_TT:
666 		break;
667 	case TTM_PL_VRAM:
668 		mem->bus.offset = mem->start << PAGE_SHIFT;
669 		/* check if it's visible */
670 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
671 			return -EINVAL;
672 		/* Only physically contiguous buffers apply. In a contiguous
673 		 * buffer, size of the first mm_node would match the number of
674 		 * pages in ttm_mem_reg.
675 		 */
676 		if (adev->mman.aper_base_kaddr &&
677 		    (mm_node->size == mem->num_pages))
678 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
679 					mem->bus.offset;
680 
681 		mem->bus.base = adev->gmc.aper_base;
682 		mem->bus.is_iomem = true;
683 		break;
684 	default:
685 		return -EINVAL;
686 	}
687 	return 0;
688 }
689 
690 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
691 {
692 }
693 
694 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
695 					   unsigned long page_offset)
696 {
697 	struct drm_mm_node *mm;
698 	unsigned long offset = (page_offset << PAGE_SHIFT);
699 
700 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
701 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
702 		(offset >> PAGE_SHIFT);
703 }
704 
705 /*
706  * TTM backend functions.
707  */
708 struct amdgpu_ttm_gup_task_list {
709 	struct list_head	list;
710 	struct task_struct	*task;
711 };
712 
713 struct amdgpu_ttm_tt {
714 	struct ttm_dma_tt	ttm;
715 	u64			offset;
716 	uint64_t		userptr;
717 	struct task_struct	*usertask;
718 	uint32_t		userflags;
719 	spinlock_t              guptasklock;
720 	struct list_head        guptasks;
721 	atomic_t		mmu_invalidations;
722 	uint32_t		last_set_pages;
723 };
724 
725 /**
726  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
727  * pointer to memory
728  *
729  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
730  * This provides a wrapper around the get_user_pages() call to provide
731  * device accessible pages that back user memory.
732  */
733 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
734 {
735 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
736 	struct mm_struct *mm = gtt->usertask->mm;
737 	unsigned int flags = 0;
738 	unsigned pinned = 0;
739 	int r;
740 
741 	if (!mm) /* Happens during process shutdown */
742 		return -ESRCH;
743 
744 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
745 		flags |= FOLL_WRITE;
746 
747 	down_read(&mm->mmap_sem);
748 
749 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
750 		/*
751 		 * check that we only use anonymous memory to prevent problems
752 		 * with writeback
753 		 */
754 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
755 		struct vm_area_struct *vma;
756 
757 		vma = find_vma(mm, gtt->userptr);
758 		if (!vma || vma->vm_file || vma->vm_end < end) {
759 			up_read(&mm->mmap_sem);
760 			return -EPERM;
761 		}
762 	}
763 
764 	/* loop enough times using contiguous pages of memory */
765 	do {
766 		unsigned num_pages = ttm->num_pages - pinned;
767 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
768 		struct page **p = pages + pinned;
769 		struct amdgpu_ttm_gup_task_list guptask;
770 
771 		guptask.task = current;
772 		spin_lock(&gtt->guptasklock);
773 		list_add(&guptask.list, &gtt->guptasks);
774 		spin_unlock(&gtt->guptasklock);
775 
776 		if (mm == current->mm)
777 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
778 		else
779 			r = get_user_pages_remote(gtt->usertask,
780 					mm, userptr, num_pages,
781 					flags, p, NULL, NULL);
782 
783 		spin_lock(&gtt->guptasklock);
784 		list_del(&guptask.list);
785 		spin_unlock(&gtt->guptasklock);
786 
787 		if (r < 0)
788 			goto release_pages;
789 
790 		pinned += r;
791 
792 	} while (pinned < ttm->num_pages);
793 
794 	up_read(&mm->mmap_sem);
795 	return 0;
796 
797 release_pages:
798 	release_pages(pages, pinned);
799 	up_read(&mm->mmap_sem);
800 	return r;
801 }
802 
803 /**
804  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
805  *
806  * Called by amdgpu_cs_list_validate(). This creates the page list
807  * that backs user memory and will ultimately be mapped into the device
808  * address space.
809  */
810 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
811 {
812 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
813 	unsigned i;
814 
815 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
816 	for (i = 0; i < ttm->num_pages; ++i) {
817 		if (ttm->pages[i])
818 			put_page(ttm->pages[i]);
819 
820 		ttm->pages[i] = pages ? pages[i] : NULL;
821 	}
822 }
823 
824 /**
825  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
826  *
827  * Called while unpinning userptr pages
828  */
829 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
830 {
831 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
832 	unsigned i;
833 
834 	for (i = 0; i < ttm->num_pages; ++i) {
835 		struct page *page = ttm->pages[i];
836 
837 		if (!page)
838 			continue;
839 
840 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
841 			set_page_dirty(page);
842 
843 		mark_page_accessed(page);
844 	}
845 }
846 
847 /**
848  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
849  *
850  * Called by amdgpu_ttm_backend_bind()
851  **/
852 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
853 {
854 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
855 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
856 	unsigned nents;
857 	int r;
858 
859 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
860 	enum dma_data_direction direction = write ?
861 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
862 
863 	/* Allocate an SG array and squash pages into it */
864 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
865 				      ttm->num_pages << PAGE_SHIFT,
866 				      GFP_KERNEL);
867 	if (r)
868 		goto release_sg;
869 
870 	/* Map SG to device */
871 	r = -ENOMEM;
872 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
873 	if (nents != ttm->sg->nents)
874 		goto release_sg;
875 
876 	/* convert SG to linear array of pages and dma addresses */
877 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
878 					 gtt->ttm.dma_address, ttm->num_pages);
879 
880 	return 0;
881 
882 release_sg:
883 	kfree(ttm->sg);
884 	return r;
885 }
886 
887 /**
888  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
889  */
890 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
891 {
892 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
893 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
894 
895 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
896 	enum dma_data_direction direction = write ?
897 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
898 
899 	/* double check that we don't free the table twice */
900 	if (!ttm->sg->sgl)
901 		return;
902 
903 	/* unmap the pages mapped to the device */
904 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
905 
906 	/* mark the pages as dirty */
907 	amdgpu_ttm_tt_mark_user_pages(ttm);
908 
909 	sg_free_table(ttm->sg);
910 }
911 
912 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
913 				struct ttm_buffer_object *tbo,
914 				uint64_t flags)
915 {
916 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
917 	struct ttm_tt *ttm = tbo->ttm;
918 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
919 	int r;
920 
921 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
922 		uint64_t page_idx = 1;
923 
924 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
925 				ttm->pages, gtt->ttm.dma_address, flags);
926 		if (r)
927 			goto gart_bind_fail;
928 
929 		/* Patch mtype of the second part BO */
930 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
931 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
932 
933 		r = amdgpu_gart_bind(adev,
934 				gtt->offset + (page_idx << PAGE_SHIFT),
935 				ttm->num_pages - page_idx,
936 				&ttm->pages[page_idx],
937 				&(gtt->ttm.dma_address[page_idx]), flags);
938 	} else {
939 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
940 				     ttm->pages, gtt->ttm.dma_address, flags);
941 	}
942 
943 gart_bind_fail:
944 	if (r)
945 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
946 			  ttm->num_pages, gtt->offset);
947 
948 	return r;
949 }
950 
951 /**
952  * amdgpu_ttm_backend_bind - Bind GTT memory
953  *
954  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
955  * This handles binding GTT memory to the device address space.
956  */
957 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
958 				   struct ttm_mem_reg *bo_mem)
959 {
960 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
961 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
962 	uint64_t flags;
963 	int r = 0;
964 
965 	if (gtt->userptr) {
966 		r = amdgpu_ttm_tt_pin_userptr(ttm);
967 		if (r) {
968 			DRM_ERROR("failed to pin userptr\n");
969 			return r;
970 		}
971 	}
972 	if (!ttm->num_pages) {
973 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
974 		     ttm->num_pages, bo_mem, ttm);
975 	}
976 
977 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
978 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
979 	    bo_mem->mem_type == AMDGPU_PL_OA)
980 		return -EINVAL;
981 
982 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
983 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
984 		return 0;
985 	}
986 
987 	/* compute PTE flags relevant to this BO memory */
988 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
989 
990 	/* bind pages into GART page tables */
991 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
992 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
993 		ttm->pages, gtt->ttm.dma_address, flags);
994 
995 	if (r)
996 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
997 			  ttm->num_pages, gtt->offset);
998 	return r;
999 }
1000 
1001 /**
1002  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1003  */
1004 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1005 {
1006 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1007 	struct ttm_operation_ctx ctx = { false, false };
1008 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1009 	struct ttm_mem_reg tmp;
1010 	struct ttm_placement placement;
1011 	struct ttm_place placements;
1012 	uint64_t addr, flags;
1013 	int r;
1014 
1015 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1016 		return 0;
1017 
1018 	addr = amdgpu_gmc_agp_addr(bo);
1019 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1020 		bo->mem.start = addr >> PAGE_SHIFT;
1021 	} else {
1022 
1023 		/* allocate GART space */
1024 		tmp = bo->mem;
1025 		tmp.mm_node = NULL;
1026 		placement.num_placement = 1;
1027 		placement.placement = &placements;
1028 		placement.num_busy_placement = 1;
1029 		placement.busy_placement = &placements;
1030 		placements.fpfn = 0;
1031 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1032 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1033 			TTM_PL_FLAG_TT;
1034 
1035 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1036 		if (unlikely(r))
1037 			return r;
1038 
1039 		/* compute PTE flags for this buffer object */
1040 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1041 
1042 		/* Bind pages */
1043 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1044 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1045 		if (unlikely(r)) {
1046 			ttm_bo_mem_put(bo, &tmp);
1047 			return r;
1048 		}
1049 
1050 		ttm_bo_mem_put(bo, &bo->mem);
1051 		bo->mem = tmp;
1052 	}
1053 
1054 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1055 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1056 
1057 	return 0;
1058 }
1059 
1060 /**
1061  * amdgpu_ttm_recover_gart - Rebind GTT pages
1062  *
1063  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1064  * rebind GTT pages during a GPU reset.
1065  */
1066 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1067 {
1068 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1069 	uint64_t flags;
1070 	int r;
1071 
1072 	if (!tbo->ttm)
1073 		return 0;
1074 
1075 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1076 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1077 
1078 	return r;
1079 }
1080 
1081 /**
1082  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1083  *
1084  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1085  * ttm_tt_destroy().
1086  */
1087 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1088 {
1089 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1090 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1091 	int r;
1092 
1093 	/* if the pages have userptr pinning then clear that first */
1094 	if (gtt->userptr)
1095 		amdgpu_ttm_tt_unpin_userptr(ttm);
1096 
1097 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1098 		return 0;
1099 
1100 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1101 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1102 	if (r)
1103 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1104 			  gtt->ttm.ttm.num_pages, gtt->offset);
1105 	return r;
1106 }
1107 
1108 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1109 {
1110 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1111 
1112 	if (gtt->usertask)
1113 		put_task_struct(gtt->usertask);
1114 
1115 	ttm_dma_tt_fini(&gtt->ttm);
1116 	kfree(gtt);
1117 }
1118 
1119 static struct ttm_backend_func amdgpu_backend_func = {
1120 	.bind = &amdgpu_ttm_backend_bind,
1121 	.unbind = &amdgpu_ttm_backend_unbind,
1122 	.destroy = &amdgpu_ttm_backend_destroy,
1123 };
1124 
1125 /**
1126  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1127  *
1128  * @bo: The buffer object to create a GTT ttm_tt object around
1129  *
1130  * Called by ttm_tt_create().
1131  */
1132 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1133 					   uint32_t page_flags)
1134 {
1135 	struct amdgpu_device *adev;
1136 	struct amdgpu_ttm_tt *gtt;
1137 
1138 	adev = amdgpu_ttm_adev(bo->bdev);
1139 
1140 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1141 	if (gtt == NULL) {
1142 		return NULL;
1143 	}
1144 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1145 
1146 	/* allocate space for the uninitialized page entries */
1147 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1148 		kfree(gtt);
1149 		return NULL;
1150 	}
1151 	return &gtt->ttm.ttm;
1152 }
1153 
1154 /**
1155  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1156  *
1157  * Map the pages of a ttm_tt object to an address space visible
1158  * to the underlying device.
1159  */
1160 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1161 			struct ttm_operation_ctx *ctx)
1162 {
1163 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1164 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1165 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1166 
1167 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1168 	if (gtt && gtt->userptr) {
1169 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1170 		if (!ttm->sg)
1171 			return -ENOMEM;
1172 
1173 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1174 		ttm->state = tt_unbound;
1175 		return 0;
1176 	}
1177 
1178 	if (slave && ttm->sg) {
1179 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1180 						 gtt->ttm.dma_address,
1181 						 ttm->num_pages);
1182 		ttm->state = tt_unbound;
1183 		return 0;
1184 	}
1185 
1186 #ifdef CONFIG_SWIOTLB
1187 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1188 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1189 	}
1190 #endif
1191 
1192 	/* fall back to generic helper to populate the page array
1193 	 * and map them to the device */
1194 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1195 }
1196 
1197 /**
1198  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1199  *
1200  * Unmaps pages of a ttm_tt object from the device address space and
1201  * unpopulates the page array backing it.
1202  */
1203 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1204 {
1205 	struct amdgpu_device *adev;
1206 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1207 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1208 
1209 	if (gtt && gtt->userptr) {
1210 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1211 		kfree(ttm->sg);
1212 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1213 		return;
1214 	}
1215 
1216 	if (slave)
1217 		return;
1218 
1219 	adev = amdgpu_ttm_adev(ttm->bdev);
1220 
1221 #ifdef CONFIG_SWIOTLB
1222 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1223 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1224 		return;
1225 	}
1226 #endif
1227 
1228 	/* fall back to generic helper to unmap and unpopulate array */
1229 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1230 }
1231 
1232 /**
1233  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1234  * task
1235  *
1236  * @ttm: The ttm_tt object to bind this userptr object to
1237  * @addr:  The address in the current tasks VM space to use
1238  * @flags: Requirements of userptr object.
1239  *
1240  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1241  * to current task
1242  */
1243 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1244 			      uint32_t flags)
1245 {
1246 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1247 
1248 	if (gtt == NULL)
1249 		return -EINVAL;
1250 
1251 	gtt->userptr = addr;
1252 	gtt->userflags = flags;
1253 
1254 	if (gtt->usertask)
1255 		put_task_struct(gtt->usertask);
1256 	gtt->usertask = current->group_leader;
1257 	get_task_struct(gtt->usertask);
1258 
1259 	spin_lock_init(&gtt->guptasklock);
1260 	INIT_LIST_HEAD(&gtt->guptasks);
1261 	atomic_set(&gtt->mmu_invalidations, 0);
1262 	gtt->last_set_pages = 0;
1263 
1264 	return 0;
1265 }
1266 
1267 /**
1268  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1269  */
1270 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1271 {
1272 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1273 
1274 	if (gtt == NULL)
1275 		return NULL;
1276 
1277 	if (gtt->usertask == NULL)
1278 		return NULL;
1279 
1280 	return gtt->usertask->mm;
1281 }
1282 
1283 /**
1284  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1285  * address range for the current task.
1286  *
1287  */
1288 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1289 				  unsigned long end)
1290 {
1291 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1292 	struct amdgpu_ttm_gup_task_list *entry;
1293 	unsigned long size;
1294 
1295 	if (gtt == NULL || !gtt->userptr)
1296 		return false;
1297 
1298 	/* Return false if no part of the ttm_tt object lies within
1299 	 * the range
1300 	 */
1301 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1302 	if (gtt->userptr > end || gtt->userptr + size <= start)
1303 		return false;
1304 
1305 	/* Search the lists of tasks that hold this mapping and see
1306 	 * if current is one of them.  If it is return false.
1307 	 */
1308 	spin_lock(&gtt->guptasklock);
1309 	list_for_each_entry(entry, &gtt->guptasks, list) {
1310 		if (entry->task == current) {
1311 			spin_unlock(&gtt->guptasklock);
1312 			return false;
1313 		}
1314 	}
1315 	spin_unlock(&gtt->guptasklock);
1316 
1317 	atomic_inc(&gtt->mmu_invalidations);
1318 
1319 	return true;
1320 }
1321 
1322 /**
1323  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1324  */
1325 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1326 				       int *last_invalidated)
1327 {
1328 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1329 	int prev_invalidated = *last_invalidated;
1330 
1331 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1332 	return prev_invalidated != *last_invalidated;
1333 }
1334 
1335 /**
1336  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1337  * been invalidated since the last time they've been set?
1338  */
1339 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1340 {
1341 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1342 
1343 	if (gtt == NULL || !gtt->userptr)
1344 		return false;
1345 
1346 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1347 }
1348 
1349 /**
1350  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1351  */
1352 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1353 {
1354 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1355 
1356 	if (gtt == NULL)
1357 		return false;
1358 
1359 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1360 }
1361 
1362 /**
1363  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1364  *
1365  * @ttm: The ttm_tt object to compute the flags for
1366  * @mem: The memory registry backing this ttm_tt object
1367  *
1368  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1369  */
1370 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1371 {
1372 	uint64_t flags = 0;
1373 
1374 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1375 		flags |= AMDGPU_PTE_VALID;
1376 
1377 	if (mem && mem->mem_type == TTM_PL_TT) {
1378 		flags |= AMDGPU_PTE_SYSTEM;
1379 
1380 		if (ttm->caching_state == tt_cached)
1381 			flags |= AMDGPU_PTE_SNOOPED;
1382 	}
1383 
1384 	return flags;
1385 }
1386 
1387 /**
1388  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1389  *
1390  * @ttm: The ttm_tt object to compute the flags for
1391  * @mem: The memory registry backing this ttm_tt object
1392 
1393  * Figure out the flags to use for a VM PTE (Page Table Entry).
1394  */
1395 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1396 				 struct ttm_mem_reg *mem)
1397 {
1398 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1399 
1400 	flags |= adev->gart.gart_pte_flags;
1401 	flags |= AMDGPU_PTE_READABLE;
1402 
1403 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1404 		flags |= AMDGPU_PTE_WRITEABLE;
1405 
1406 	return flags;
1407 }
1408 
1409 /**
1410  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1411  * object.
1412  *
1413  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1414  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1415  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1416  * used to clean out a memory space.
1417  */
1418 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1419 					    const struct ttm_place *place)
1420 {
1421 	unsigned long num_pages = bo->mem.num_pages;
1422 	struct drm_mm_node *node = bo->mem.mm_node;
1423 	struct reservation_object_list *flist;
1424 	struct dma_fence *f;
1425 	int i;
1426 
1427 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1428 	 * If true, then return false as any KFD process needs all its BOs to
1429 	 * be resident to run successfully
1430 	 */
1431 	flist = reservation_object_get_list(bo->resv);
1432 	if (flist) {
1433 		for (i = 0; i < flist->shared_count; ++i) {
1434 			f = rcu_dereference_protected(flist->shared[i],
1435 				reservation_object_held(bo->resv));
1436 			if (amdkfd_fence_check_mm(f, current->mm))
1437 				return false;
1438 		}
1439 	}
1440 
1441 	switch (bo->mem.mem_type) {
1442 	case TTM_PL_TT:
1443 		return true;
1444 
1445 	case TTM_PL_VRAM:
1446 		/* Check each drm MM node individually */
1447 		while (num_pages) {
1448 			if (place->fpfn < (node->start + node->size) &&
1449 			    !(place->lpfn && place->lpfn <= node->start))
1450 				return true;
1451 
1452 			num_pages -= node->size;
1453 			++node;
1454 		}
1455 		return false;
1456 
1457 	default:
1458 		break;
1459 	}
1460 
1461 	return ttm_bo_eviction_valuable(bo, place);
1462 }
1463 
1464 /**
1465  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1466  *
1467  * @bo:  The buffer object to read/write
1468  * @offset:  Offset into buffer object
1469  * @buf:  Secondary buffer to write/read from
1470  * @len: Length in bytes of access
1471  * @write:  true if writing
1472  *
1473  * This is used to access VRAM that backs a buffer object via MMIO
1474  * access for debugging purposes.
1475  */
1476 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1477 				    unsigned long offset,
1478 				    void *buf, int len, int write)
1479 {
1480 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1481 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1482 	struct drm_mm_node *nodes;
1483 	uint32_t value = 0;
1484 	int ret = 0;
1485 	uint64_t pos;
1486 	unsigned long flags;
1487 
1488 	if (bo->mem.mem_type != TTM_PL_VRAM)
1489 		return -EIO;
1490 
1491 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1492 	pos = (nodes->start << PAGE_SHIFT) + offset;
1493 
1494 	while (len && pos < adev->gmc.mc_vram_size) {
1495 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1496 		uint32_t bytes = 4 - (pos & 3);
1497 		uint32_t shift = (pos & 3) * 8;
1498 		uint32_t mask = 0xffffffff << shift;
1499 
1500 		if (len < bytes) {
1501 			mask &= 0xffffffff >> (bytes - len) * 8;
1502 			bytes = len;
1503 		}
1504 
1505 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1506 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1507 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1508 		if (!write || mask != 0xffffffff)
1509 			value = RREG32_NO_KIQ(mmMM_DATA);
1510 		if (write) {
1511 			value &= ~mask;
1512 			value |= (*(uint32_t *)buf << shift) & mask;
1513 			WREG32_NO_KIQ(mmMM_DATA, value);
1514 		}
1515 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1516 		if (!write) {
1517 			value = (value & mask) >> shift;
1518 			memcpy(buf, &value, bytes);
1519 		}
1520 
1521 		ret += bytes;
1522 		buf = (uint8_t *)buf + bytes;
1523 		pos += bytes;
1524 		len -= bytes;
1525 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1526 			++nodes;
1527 			pos = (nodes->start << PAGE_SHIFT);
1528 		}
1529 	}
1530 
1531 	return ret;
1532 }
1533 
1534 static struct ttm_bo_driver amdgpu_bo_driver = {
1535 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1536 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1537 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1538 	.invalidate_caches = &amdgpu_invalidate_caches,
1539 	.init_mem_type = &amdgpu_init_mem_type,
1540 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1541 	.evict_flags = &amdgpu_evict_flags,
1542 	.move = &amdgpu_bo_move,
1543 	.verify_access = &amdgpu_verify_access,
1544 	.move_notify = &amdgpu_bo_move_notify,
1545 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1546 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1547 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1548 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1549 	.access_memory = &amdgpu_ttm_access_memory,
1550 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1551 };
1552 
1553 /*
1554  * Firmware Reservation functions
1555  */
1556 /**
1557  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1558  *
1559  * @adev: amdgpu_device pointer
1560  *
1561  * free fw reserved vram if it has been reserved.
1562  */
1563 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1564 {
1565 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1566 		NULL, &adev->fw_vram_usage.va);
1567 }
1568 
1569 /**
1570  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1571  *
1572  * @adev: amdgpu_device pointer
1573  *
1574  * create bo vram reservation from fw.
1575  */
1576 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1577 {
1578 	struct ttm_operation_ctx ctx = { false, false };
1579 	struct amdgpu_bo_param bp;
1580 	int r = 0;
1581 	int i;
1582 	u64 vram_size = adev->gmc.visible_vram_size;
1583 	u64 offset = adev->fw_vram_usage.start_offset;
1584 	u64 size = adev->fw_vram_usage.size;
1585 	struct amdgpu_bo *bo;
1586 
1587 	memset(&bp, 0, sizeof(bp));
1588 	bp.size = adev->fw_vram_usage.size;
1589 	bp.byte_align = PAGE_SIZE;
1590 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1591 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1592 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1593 	bp.type = ttm_bo_type_kernel;
1594 	bp.resv = NULL;
1595 	adev->fw_vram_usage.va = NULL;
1596 	adev->fw_vram_usage.reserved_bo = NULL;
1597 
1598 	if (adev->fw_vram_usage.size > 0 &&
1599 		adev->fw_vram_usage.size <= vram_size) {
1600 
1601 		r = amdgpu_bo_create(adev, &bp,
1602 				     &adev->fw_vram_usage.reserved_bo);
1603 		if (r)
1604 			goto error_create;
1605 
1606 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1607 		if (r)
1608 			goto error_reserve;
1609 
1610 		/* remove the original mem node and create a new one at the
1611 		 * request position
1612 		 */
1613 		bo = adev->fw_vram_usage.reserved_bo;
1614 		offset = ALIGN(offset, PAGE_SIZE);
1615 		for (i = 0; i < bo->placement.num_placement; ++i) {
1616 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1617 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1618 		}
1619 
1620 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1621 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1622 				     &bo->tbo.mem, &ctx);
1623 		if (r)
1624 			goto error_pin;
1625 
1626 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1627 			AMDGPU_GEM_DOMAIN_VRAM,
1628 			adev->fw_vram_usage.start_offset,
1629 			(adev->fw_vram_usage.start_offset +
1630 			adev->fw_vram_usage.size));
1631 		if (r)
1632 			goto error_pin;
1633 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1634 			&adev->fw_vram_usage.va);
1635 		if (r)
1636 			goto error_kmap;
1637 
1638 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1639 	}
1640 	return r;
1641 
1642 error_kmap:
1643 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1644 error_pin:
1645 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1646 error_reserve:
1647 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1648 error_create:
1649 	adev->fw_vram_usage.va = NULL;
1650 	adev->fw_vram_usage.reserved_bo = NULL;
1651 	return r;
1652 }
1653 /**
1654  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1655  * gtt/vram related fields.
1656  *
1657  * This initializes all of the memory space pools that the TTM layer
1658  * will need such as the GTT space (system memory mapped to the device),
1659  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1660  * can be mapped per VMID.
1661  */
1662 int amdgpu_ttm_init(struct amdgpu_device *adev)
1663 {
1664 	uint64_t gtt_size;
1665 	int r;
1666 	u64 vis_vram_limit;
1667 
1668 	mutex_init(&adev->mman.gtt_window_lock);
1669 
1670 	/* No others user of address space so set it to 0 */
1671 	r = ttm_bo_device_init(&adev->mman.bdev,
1672 			       &amdgpu_bo_driver,
1673 			       adev->ddev->anon_inode->i_mapping,
1674 			       DRM_FILE_PAGE_OFFSET,
1675 			       adev->need_dma32);
1676 	if (r) {
1677 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1678 		return r;
1679 	}
1680 	adev->mman.initialized = true;
1681 
1682 	/* We opt to avoid OOM on system pages allocations */
1683 	adev->mman.bdev.no_retry = true;
1684 
1685 	/* Initialize VRAM pool with all of VRAM divided into pages */
1686 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1687 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1688 	if (r) {
1689 		DRM_ERROR("Failed initializing VRAM heap.\n");
1690 		return r;
1691 	}
1692 
1693 	/* Reduce size of CPU-visible VRAM if requested */
1694 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1695 	if (amdgpu_vis_vram_limit > 0 &&
1696 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1697 		adev->gmc.visible_vram_size = vis_vram_limit;
1698 
1699 	/* Change the size here instead of the init above so only lpfn is affected */
1700 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1701 #ifdef CONFIG_64BIT
1702 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1703 						adev->gmc.visible_vram_size);
1704 #endif
1705 
1706 	/*
1707 	 *The reserved vram for firmware must be pinned to the specified
1708 	 *place on the VRAM, so reserve it early.
1709 	 */
1710 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1711 	if (r) {
1712 		return r;
1713 	}
1714 
1715 	/* allocate memory as required for VGA
1716 	 * This is used for VGA emulation and pre-OS scanout buffers to
1717 	 * avoid display artifacts while transitioning between pre-OS
1718 	 * and driver.  */
1719 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1720 				    AMDGPU_GEM_DOMAIN_VRAM,
1721 				    &adev->stolen_vga_memory,
1722 				    NULL, NULL);
1723 	if (r)
1724 		return r;
1725 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1726 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1727 
1728 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1729 	 * or whatever the user passed on module init */
1730 	if (amdgpu_gtt_size == -1) {
1731 		struct sysinfo si;
1732 
1733 		si_meminfo(&si);
1734 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1735 			       adev->gmc.mc_vram_size),
1736 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1737 	}
1738 	else
1739 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1740 
1741 	/* Initialize GTT memory pool */
1742 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1743 	if (r) {
1744 		DRM_ERROR("Failed initializing GTT heap.\n");
1745 		return r;
1746 	}
1747 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1748 		 (unsigned)(gtt_size / (1024 * 1024)));
1749 
1750 	/* Initialize various on-chip memory pools */
1751 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1752 			   adev->gds.mem.total_size);
1753 	if (r) {
1754 		DRM_ERROR("Failed initializing GDS heap.\n");
1755 		return r;
1756 	}
1757 
1758 	r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size,
1759 				    4, AMDGPU_GEM_DOMAIN_GDS,
1760 				    &adev->gds.gds_gfx_bo, NULL, NULL);
1761 	if (r)
1762 		return r;
1763 
1764 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1765 			   adev->gds.gws.total_size);
1766 	if (r) {
1767 		DRM_ERROR("Failed initializing gws heap.\n");
1768 		return r;
1769 	}
1770 
1771 	r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size,
1772 				    1, AMDGPU_GEM_DOMAIN_GWS,
1773 				    &adev->gds.gws_gfx_bo, NULL, NULL);
1774 	if (r)
1775 		return r;
1776 
1777 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1778 			   adev->gds.oa.total_size);
1779 	if (r) {
1780 		DRM_ERROR("Failed initializing oa heap.\n");
1781 		return r;
1782 	}
1783 
1784 	r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size,
1785 				    1, AMDGPU_GEM_DOMAIN_OA,
1786 				    &adev->gds.oa_gfx_bo, NULL, NULL);
1787 	if (r)
1788 		return r;
1789 
1790 	/* Register debugfs entries for amdgpu_ttm */
1791 	r = amdgpu_ttm_debugfs_init(adev);
1792 	if (r) {
1793 		DRM_ERROR("Failed to init debugfs\n");
1794 		return r;
1795 	}
1796 	return 0;
1797 }
1798 
1799 /**
1800  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1801  */
1802 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1803 {
1804 	/* return the VGA stolen memory (if any) back to VRAM */
1805 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1806 }
1807 
1808 /**
1809  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1810  */
1811 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1812 {
1813 	if (!adev->mman.initialized)
1814 		return;
1815 
1816 	amdgpu_ttm_debugfs_fini(adev);
1817 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1818 	if (adev->mman.aper_base_kaddr)
1819 		iounmap(adev->mman.aper_base_kaddr);
1820 	adev->mman.aper_base_kaddr = NULL;
1821 
1822 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1823 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1824 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1825 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1826 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1827 	ttm_bo_device_release(&adev->mman.bdev);
1828 	adev->mman.initialized = false;
1829 	DRM_INFO("amdgpu: ttm finalized\n");
1830 }
1831 
1832 /**
1833  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1834  *
1835  * @adev: amdgpu_device pointer
1836  * @enable: true when we can use buffer functions.
1837  *
1838  * Enable/disable use of buffer functions during suspend/resume. This should
1839  * only be called at bootup or when userspace isn't running.
1840  */
1841 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1842 {
1843 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1844 	uint64_t size;
1845 	int r;
1846 
1847 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1848 	    adev->mman.buffer_funcs_enabled == enable)
1849 		return;
1850 
1851 	if (enable) {
1852 		struct amdgpu_ring *ring;
1853 		struct drm_sched_rq *rq;
1854 
1855 		ring = adev->mman.buffer_funcs_ring;
1856 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1857 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1858 		if (r) {
1859 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1860 				  r);
1861 			return;
1862 		}
1863 	} else {
1864 		drm_sched_entity_destroy(&adev->mman.entity);
1865 		dma_fence_put(man->move);
1866 		man->move = NULL;
1867 	}
1868 
1869 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1870 	if (enable)
1871 		size = adev->gmc.real_vram_size;
1872 	else
1873 		size = adev->gmc.visible_vram_size;
1874 	man->size = size >> PAGE_SHIFT;
1875 	adev->mman.buffer_funcs_enabled = enable;
1876 }
1877 
1878 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1879 {
1880 	struct drm_file *file_priv;
1881 	struct amdgpu_device *adev;
1882 
1883 	if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
1884 		return -EINVAL;
1885 
1886 	file_priv = filp->private_data;
1887 	adev = file_priv->minor->dev->dev_private;
1888 	if (adev == NULL)
1889 		return -EINVAL;
1890 
1891 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1892 }
1893 
1894 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1895 			     struct ttm_mem_reg *mem, unsigned num_pages,
1896 			     uint64_t offset, unsigned window,
1897 			     struct amdgpu_ring *ring,
1898 			     uint64_t *addr)
1899 {
1900 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1901 	struct amdgpu_device *adev = ring->adev;
1902 	struct ttm_tt *ttm = bo->ttm;
1903 	struct amdgpu_job *job;
1904 	unsigned num_dw, num_bytes;
1905 	dma_addr_t *dma_address;
1906 	struct dma_fence *fence;
1907 	uint64_t src_addr, dst_addr;
1908 	uint64_t flags;
1909 	int r;
1910 
1911 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1912 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1913 
1914 	*addr = adev->gmc.gart_start;
1915 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1916 		AMDGPU_GPU_PAGE_SIZE;
1917 
1918 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1919 	while (num_dw & 0x7)
1920 		num_dw++;
1921 
1922 	num_bytes = num_pages * 8;
1923 
1924 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1925 	if (r)
1926 		return r;
1927 
1928 	src_addr = num_dw * 4;
1929 	src_addr += job->ibs[0].gpu_addr;
1930 
1931 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1932 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1933 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1934 				dst_addr, num_bytes);
1935 
1936 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1937 	WARN_ON(job->ibs[0].length_dw > num_dw);
1938 
1939 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1940 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1941 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1942 			    &job->ibs[0].ptr[num_dw]);
1943 	if (r)
1944 		goto error_free;
1945 
1946 	r = amdgpu_job_submit(job, &adev->mman.entity,
1947 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1948 	if (r)
1949 		goto error_free;
1950 
1951 	dma_fence_put(fence);
1952 
1953 	return r;
1954 
1955 error_free:
1956 	amdgpu_job_free(job);
1957 	return r;
1958 }
1959 
1960 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1961 		       uint64_t dst_offset, uint32_t byte_count,
1962 		       struct reservation_object *resv,
1963 		       struct dma_fence **fence, bool direct_submit,
1964 		       bool vm_needs_flush)
1965 {
1966 	struct amdgpu_device *adev = ring->adev;
1967 	struct amdgpu_job *job;
1968 
1969 	uint32_t max_bytes;
1970 	unsigned num_loops, num_dw;
1971 	unsigned i;
1972 	int r;
1973 
1974 	if (direct_submit && !ring->sched.ready) {
1975 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1976 		return -EINVAL;
1977 	}
1978 
1979 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1980 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1981 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1982 
1983 	/* for IB padding */
1984 	while (num_dw & 0x7)
1985 		num_dw++;
1986 
1987 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1988 	if (r)
1989 		return r;
1990 
1991 	if (vm_needs_flush) {
1992 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1993 		job->vm_needs_flush = true;
1994 	}
1995 	if (resv) {
1996 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1997 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1998 				     false);
1999 		if (r) {
2000 			DRM_ERROR("sync failed (%d).\n", r);
2001 			goto error_free;
2002 		}
2003 	}
2004 
2005 	for (i = 0; i < num_loops; i++) {
2006 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2007 
2008 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2009 					dst_offset, cur_size_in_bytes);
2010 
2011 		src_offset += cur_size_in_bytes;
2012 		dst_offset += cur_size_in_bytes;
2013 		byte_count -= cur_size_in_bytes;
2014 	}
2015 
2016 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2017 	WARN_ON(job->ibs[0].length_dw > num_dw);
2018 	if (direct_submit)
2019 		r = amdgpu_job_submit_direct(job, ring, fence);
2020 	else
2021 		r = amdgpu_job_submit(job, &adev->mman.entity,
2022 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2023 	if (r)
2024 		goto error_free;
2025 
2026 	return r;
2027 
2028 error_free:
2029 	amdgpu_job_free(job);
2030 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2031 	return r;
2032 }
2033 
2034 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2035 		       uint32_t src_data,
2036 		       struct reservation_object *resv,
2037 		       struct dma_fence **fence)
2038 {
2039 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2040 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2041 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2042 
2043 	struct drm_mm_node *mm_node;
2044 	unsigned long num_pages;
2045 	unsigned int num_loops, num_dw;
2046 
2047 	struct amdgpu_job *job;
2048 	int r;
2049 
2050 	if (!adev->mman.buffer_funcs_enabled) {
2051 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2052 		return -EINVAL;
2053 	}
2054 
2055 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2056 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2057 		if (r)
2058 			return r;
2059 	}
2060 
2061 	num_pages = bo->tbo.num_pages;
2062 	mm_node = bo->tbo.mem.mm_node;
2063 	num_loops = 0;
2064 	while (num_pages) {
2065 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2066 
2067 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2068 		num_pages -= mm_node->size;
2069 		++mm_node;
2070 	}
2071 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2072 
2073 	/* for IB padding */
2074 	num_dw += 64;
2075 
2076 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2077 	if (r)
2078 		return r;
2079 
2080 	if (resv) {
2081 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2082 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2083 		if (r) {
2084 			DRM_ERROR("sync failed (%d).\n", r);
2085 			goto error_free;
2086 		}
2087 	}
2088 
2089 	num_pages = bo->tbo.num_pages;
2090 	mm_node = bo->tbo.mem.mm_node;
2091 
2092 	while (num_pages) {
2093 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2094 		uint64_t dst_addr;
2095 
2096 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2097 		while (byte_count) {
2098 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2099 
2100 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2101 						dst_addr, cur_size_in_bytes);
2102 
2103 			dst_addr += cur_size_in_bytes;
2104 			byte_count -= cur_size_in_bytes;
2105 		}
2106 
2107 		num_pages -= mm_node->size;
2108 		++mm_node;
2109 	}
2110 
2111 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2112 	WARN_ON(job->ibs[0].length_dw > num_dw);
2113 	r = amdgpu_job_submit(job, &adev->mman.entity,
2114 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2115 	if (r)
2116 		goto error_free;
2117 
2118 	return 0;
2119 
2120 error_free:
2121 	amdgpu_job_free(job);
2122 	return r;
2123 }
2124 
2125 #if defined(CONFIG_DEBUG_FS)
2126 
2127 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2128 {
2129 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2130 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2131 	struct drm_device *dev = node->minor->dev;
2132 	struct amdgpu_device *adev = dev->dev_private;
2133 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2134 	struct drm_printer p = drm_seq_file_printer(m);
2135 
2136 	man->func->debug(man, &p);
2137 	return 0;
2138 }
2139 
2140 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2141 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2142 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2143 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2144 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2145 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2146 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2147 #ifdef CONFIG_SWIOTLB
2148 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2149 #endif
2150 };
2151 
2152 /**
2153  * amdgpu_ttm_vram_read - Linear read access to VRAM
2154  *
2155  * Accesses VRAM via MMIO for debugging purposes.
2156  */
2157 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2158 				    size_t size, loff_t *pos)
2159 {
2160 	struct amdgpu_device *adev = file_inode(f)->i_private;
2161 	ssize_t result = 0;
2162 	int r;
2163 
2164 	if (size & 0x3 || *pos & 0x3)
2165 		return -EINVAL;
2166 
2167 	if (*pos >= adev->gmc.mc_vram_size)
2168 		return -ENXIO;
2169 
2170 	while (size) {
2171 		unsigned long flags;
2172 		uint32_t value;
2173 
2174 		if (*pos >= adev->gmc.mc_vram_size)
2175 			return result;
2176 
2177 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2178 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2179 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2180 		value = RREG32_NO_KIQ(mmMM_DATA);
2181 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2182 
2183 		r = put_user(value, (uint32_t *)buf);
2184 		if (r)
2185 			return r;
2186 
2187 		result += 4;
2188 		buf += 4;
2189 		*pos += 4;
2190 		size -= 4;
2191 	}
2192 
2193 	return result;
2194 }
2195 
2196 /**
2197  * amdgpu_ttm_vram_write - Linear write access to VRAM
2198  *
2199  * Accesses VRAM via MMIO for debugging purposes.
2200  */
2201 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2202 				    size_t size, loff_t *pos)
2203 {
2204 	struct amdgpu_device *adev = file_inode(f)->i_private;
2205 	ssize_t result = 0;
2206 	int r;
2207 
2208 	if (size & 0x3 || *pos & 0x3)
2209 		return -EINVAL;
2210 
2211 	if (*pos >= adev->gmc.mc_vram_size)
2212 		return -ENXIO;
2213 
2214 	while (size) {
2215 		unsigned long flags;
2216 		uint32_t value;
2217 
2218 		if (*pos >= adev->gmc.mc_vram_size)
2219 			return result;
2220 
2221 		r = get_user(value, (uint32_t *)buf);
2222 		if (r)
2223 			return r;
2224 
2225 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2226 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2227 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2228 		WREG32_NO_KIQ(mmMM_DATA, value);
2229 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2230 
2231 		result += 4;
2232 		buf += 4;
2233 		*pos += 4;
2234 		size -= 4;
2235 	}
2236 
2237 	return result;
2238 }
2239 
2240 static const struct file_operations amdgpu_ttm_vram_fops = {
2241 	.owner = THIS_MODULE,
2242 	.read = amdgpu_ttm_vram_read,
2243 	.write = amdgpu_ttm_vram_write,
2244 	.llseek = default_llseek,
2245 };
2246 
2247 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2248 
2249 /**
2250  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2251  */
2252 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2253 				   size_t size, loff_t *pos)
2254 {
2255 	struct amdgpu_device *adev = file_inode(f)->i_private;
2256 	ssize_t result = 0;
2257 	int r;
2258 
2259 	while (size) {
2260 		loff_t p = *pos / PAGE_SIZE;
2261 		unsigned off = *pos & ~PAGE_MASK;
2262 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2263 		struct page *page;
2264 		void *ptr;
2265 
2266 		if (p >= adev->gart.num_cpu_pages)
2267 			return result;
2268 
2269 		page = adev->gart.pages[p];
2270 		if (page) {
2271 			ptr = kmap(page);
2272 			ptr += off;
2273 
2274 			r = copy_to_user(buf, ptr, cur_size);
2275 			kunmap(adev->gart.pages[p]);
2276 		} else
2277 			r = clear_user(buf, cur_size);
2278 
2279 		if (r)
2280 			return -EFAULT;
2281 
2282 		result += cur_size;
2283 		buf += cur_size;
2284 		*pos += cur_size;
2285 		size -= cur_size;
2286 	}
2287 
2288 	return result;
2289 }
2290 
2291 static const struct file_operations amdgpu_ttm_gtt_fops = {
2292 	.owner = THIS_MODULE,
2293 	.read = amdgpu_ttm_gtt_read,
2294 	.llseek = default_llseek
2295 };
2296 
2297 #endif
2298 
2299 /**
2300  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2301  *
2302  * This function is used to read memory that has been mapped to the
2303  * GPU and the known addresses are not physical addresses but instead
2304  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2305  */
2306 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2307 				 size_t size, loff_t *pos)
2308 {
2309 	struct amdgpu_device *adev = file_inode(f)->i_private;
2310 	struct iommu_domain *dom;
2311 	ssize_t result = 0;
2312 	int r;
2313 
2314 	/* retrieve the IOMMU domain if any for this device */
2315 	dom = iommu_get_domain_for_dev(adev->dev);
2316 
2317 	while (size) {
2318 		phys_addr_t addr = *pos & PAGE_MASK;
2319 		loff_t off = *pos & ~PAGE_MASK;
2320 		size_t bytes = PAGE_SIZE - off;
2321 		unsigned long pfn;
2322 		struct page *p;
2323 		void *ptr;
2324 
2325 		bytes = bytes < size ? bytes : size;
2326 
2327 		/* Translate the bus address to a physical address.  If
2328 		 * the domain is NULL it means there is no IOMMU active
2329 		 * and the address translation is the identity
2330 		 */
2331 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2332 
2333 		pfn = addr >> PAGE_SHIFT;
2334 		if (!pfn_valid(pfn))
2335 			return -EPERM;
2336 
2337 		p = pfn_to_page(pfn);
2338 		if (p->mapping != adev->mman.bdev.dev_mapping)
2339 			return -EPERM;
2340 
2341 		ptr = kmap(p);
2342 		r = copy_to_user(buf, ptr + off, bytes);
2343 		kunmap(p);
2344 		if (r)
2345 			return -EFAULT;
2346 
2347 		size -= bytes;
2348 		*pos += bytes;
2349 		result += bytes;
2350 	}
2351 
2352 	return result;
2353 }
2354 
2355 /**
2356  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2357  *
2358  * This function is used to write memory that has been mapped to the
2359  * GPU and the known addresses are not physical addresses but instead
2360  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2361  */
2362 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2363 				 size_t size, loff_t *pos)
2364 {
2365 	struct amdgpu_device *adev = file_inode(f)->i_private;
2366 	struct iommu_domain *dom;
2367 	ssize_t result = 0;
2368 	int r;
2369 
2370 	dom = iommu_get_domain_for_dev(adev->dev);
2371 
2372 	while (size) {
2373 		phys_addr_t addr = *pos & PAGE_MASK;
2374 		loff_t off = *pos & ~PAGE_MASK;
2375 		size_t bytes = PAGE_SIZE - off;
2376 		unsigned long pfn;
2377 		struct page *p;
2378 		void *ptr;
2379 
2380 		bytes = bytes < size ? bytes : size;
2381 
2382 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2383 
2384 		pfn = addr >> PAGE_SHIFT;
2385 		if (!pfn_valid(pfn))
2386 			return -EPERM;
2387 
2388 		p = pfn_to_page(pfn);
2389 		if (p->mapping != adev->mman.bdev.dev_mapping)
2390 			return -EPERM;
2391 
2392 		ptr = kmap(p);
2393 		r = copy_from_user(ptr + off, buf, bytes);
2394 		kunmap(p);
2395 		if (r)
2396 			return -EFAULT;
2397 
2398 		size -= bytes;
2399 		*pos += bytes;
2400 		result += bytes;
2401 	}
2402 
2403 	return result;
2404 }
2405 
2406 static const struct file_operations amdgpu_ttm_iomem_fops = {
2407 	.owner = THIS_MODULE,
2408 	.read = amdgpu_iomem_read,
2409 	.write = amdgpu_iomem_write,
2410 	.llseek = default_llseek
2411 };
2412 
2413 static const struct {
2414 	char *name;
2415 	const struct file_operations *fops;
2416 	int domain;
2417 } ttm_debugfs_entries[] = {
2418 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2419 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2420 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2421 #endif
2422 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2423 };
2424 
2425 #endif
2426 
2427 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2428 {
2429 #if defined(CONFIG_DEBUG_FS)
2430 	unsigned count;
2431 
2432 	struct drm_minor *minor = adev->ddev->primary;
2433 	struct dentry *ent, *root = minor->debugfs_root;
2434 
2435 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2436 		ent = debugfs_create_file(
2437 				ttm_debugfs_entries[count].name,
2438 				S_IFREG | S_IRUGO, root,
2439 				adev,
2440 				ttm_debugfs_entries[count].fops);
2441 		if (IS_ERR(ent))
2442 			return PTR_ERR(ent);
2443 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2444 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2445 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2446 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2447 		adev->mman.debugfs_entries[count] = ent;
2448 	}
2449 
2450 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2451 
2452 #ifdef CONFIG_SWIOTLB
2453 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2454 		--count;
2455 #endif
2456 
2457 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2458 #else
2459 	return 0;
2460 #endif
2461 }
2462 
2463 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2464 {
2465 #if defined(CONFIG_DEBUG_FS)
2466 	unsigned i;
2467 
2468 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2469 		debugfs_remove(adev->mman.debugfs_entries[i]);
2470 #endif
2471 }
2472