xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 272d70895113ef00c03ab325787d159ee51718c8)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "bif/bif_4_1_d.h"
63 
64 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
65 
66 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
67 				   struct ttm_tt *ttm,
68 				   struct ttm_resource *bo_mem);
69 
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71 				    unsigned int type,
72 				    uint64_t size)
73 {
74 	return ttm_range_man_init(&adev->mman.bdev, type,
75 				  false, size >> PAGE_SHIFT);
76 }
77 
78 /**
79  * amdgpu_evict_flags - Compute placement flags
80  *
81  * @bo: The buffer object to evict
82  * @placement: Possible destination(s) for evicted BO
83  *
84  * Fill in placement data when ttm_bo_evict() is called
85  */
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 				struct ttm_placement *placement)
88 {
89 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 	struct amdgpu_bo *abo;
91 	static const struct ttm_place placements = {
92 		.fpfn = 0,
93 		.lpfn = 0,
94 		.mem_type = TTM_PL_SYSTEM,
95 		.flags = TTM_PL_MASK_CACHING
96 	};
97 
98 	/* Don't handle scatter gather BOs */
99 	if (bo->type == ttm_bo_type_sg) {
100 		placement->num_placement = 0;
101 		placement->num_busy_placement = 0;
102 		return;
103 	}
104 
105 	/* Object isn't an AMDGPU object so ignore */
106 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 		placement->placement = &placements;
108 		placement->busy_placement = &placements;
109 		placement->num_placement = 1;
110 		placement->num_busy_placement = 1;
111 		return;
112 	}
113 
114 	abo = ttm_to_amdgpu_bo(bo);
115 	switch (bo->mem.mem_type) {
116 	case AMDGPU_PL_GDS:
117 	case AMDGPU_PL_GWS:
118 	case AMDGPU_PL_OA:
119 		placement->num_placement = 0;
120 		placement->num_busy_placement = 0;
121 		return;
122 
123 	case TTM_PL_VRAM:
124 		if (!adev->mman.buffer_funcs_enabled) {
125 			/* Move to system memory */
126 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
127 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
128 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
129 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
130 
131 			/* Try evicting to the CPU inaccessible part of VRAM
132 			 * first, but only set GTT as busy placement, so this
133 			 * BO will be evicted to GTT rather than causing other
134 			 * BOs to be evicted from VRAM
135 			 */
136 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
137 							 AMDGPU_GEM_DOMAIN_GTT);
138 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
139 			abo->placements[0].lpfn = 0;
140 			abo->placement.busy_placement = &abo->placements[1];
141 			abo->placement.num_busy_placement = 1;
142 		} else {
143 			/* Move to GTT memory */
144 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
145 		}
146 		break;
147 	case TTM_PL_TT:
148 	default:
149 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
150 		break;
151 	}
152 	*placement = abo->placement;
153 }
154 
155 /**
156  * amdgpu_verify_access - Verify access for a mmap call
157  *
158  * @bo:	The buffer object to map
159  * @filp: The file pointer from the process performing the mmap
160  *
161  * This is called by ttm_bo_mmap() to verify whether a process
162  * has the right to mmap a BO to their process space.
163  */
164 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
165 {
166 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
167 
168 	/*
169 	 * Don't verify access for KFD BOs. They don't have a GEM
170 	 * object associated with them.
171 	 */
172 	if (abo->kfd_bo)
173 		return 0;
174 
175 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
176 		return -EPERM;
177 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
178 					  filp->private_data);
179 }
180 
181 /**
182  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
183  *
184  * @bo: The bo to assign the memory to.
185  * @mm_node: Memory manager node for drm allocator.
186  * @mem: The region where the bo resides.
187  *
188  */
189 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
190 				    struct drm_mm_node *mm_node,
191 				    struct ttm_resource *mem)
192 {
193 	uint64_t addr = 0;
194 
195 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
196 		addr = mm_node->start << PAGE_SHIFT;
197 		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
198 						mem->mem_type);
199 	}
200 	return addr;
201 }
202 
203 /**
204  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
205  * @offset. It also modifies the offset to be within the drm_mm_node returned
206  *
207  * @mem: The region where the bo resides.
208  * @offset: The offset that drm_mm_node is used for finding.
209  *
210  */
211 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
212 					       uint64_t *offset)
213 {
214 	struct drm_mm_node *mm_node = mem->mm_node;
215 
216 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
217 		*offset -= (mm_node->size << PAGE_SHIFT);
218 		++mm_node;
219 	}
220 	return mm_node;
221 }
222 
223 /**
224  * amdgpu_ttm_map_buffer - Map memory into the GART windows
225  * @bo: buffer object to map
226  * @mem: memory object to map
227  * @mm_node: drm_mm node object to map
228  * @num_pages: number of pages to map
229  * @offset: offset into @mm_node where to start
230  * @window: which GART window to use
231  * @ring: DMA ring to use for the copy
232  * @tmz: if we should setup a TMZ enabled mapping
233  * @addr: resulting address inside the MC address space
234  *
235  * Setup one of the GART windows to access a specific piece of memory or return
236  * the physical address for local memory.
237  */
238 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
239 				 struct ttm_resource *mem,
240 				 struct drm_mm_node *mm_node,
241 				 unsigned num_pages, uint64_t offset,
242 				 unsigned window, struct amdgpu_ring *ring,
243 				 bool tmz, uint64_t *addr)
244 {
245 	struct amdgpu_device *adev = ring->adev;
246 	struct amdgpu_job *job;
247 	unsigned num_dw, num_bytes;
248 	struct dma_fence *fence;
249 	uint64_t src_addr, dst_addr;
250 	void *cpu_addr;
251 	uint64_t flags;
252 	unsigned int i;
253 	int r;
254 
255 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
256 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
257 
258 	/* Map only what can't be accessed directly */
259 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
260 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
261 		return 0;
262 	}
263 
264 	*addr = adev->gmc.gart_start;
265 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
266 		AMDGPU_GPU_PAGE_SIZE;
267 	*addr += offset & ~PAGE_MASK;
268 
269 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
270 	num_bytes = num_pages * 8;
271 
272 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
273 				     AMDGPU_IB_POOL_DELAYED, &job);
274 	if (r)
275 		return r;
276 
277 	src_addr = num_dw * 4;
278 	src_addr += job->ibs[0].gpu_addr;
279 
280 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
281 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
282 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
283 				dst_addr, num_bytes, false);
284 
285 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
286 	WARN_ON(job->ibs[0].length_dw > num_dw);
287 
288 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
289 	if (tmz)
290 		flags |= AMDGPU_PTE_TMZ;
291 
292 	cpu_addr = &job->ibs[0].ptr[num_dw];
293 
294 	if (mem->mem_type == TTM_PL_TT) {
295 		struct ttm_dma_tt *dma;
296 		dma_addr_t *dma_address;
297 
298 		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
299 		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
300 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
301 				    cpu_addr);
302 		if (r)
303 			goto error_free;
304 	} else {
305 		dma_addr_t dma_address;
306 
307 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
308 		dma_address += adev->vm_manager.vram_base_offset;
309 
310 		for (i = 0; i < num_pages; ++i) {
311 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
312 					    &dma_address, flags, cpu_addr);
313 			if (r)
314 				goto error_free;
315 
316 			dma_address += PAGE_SIZE;
317 		}
318 	}
319 
320 	r = amdgpu_job_submit(job, &adev->mman.entity,
321 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
322 	if (r)
323 		goto error_free;
324 
325 	dma_fence_put(fence);
326 
327 	return r;
328 
329 error_free:
330 	amdgpu_job_free(job);
331 	return r;
332 }
333 
334 /**
335  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
336  * @adev: amdgpu device
337  * @src: buffer/address where to read from
338  * @dst: buffer/address where to write to
339  * @size: number of bytes to copy
340  * @tmz: if a secure copy should be used
341  * @resv: resv object to sync to
342  * @f: Returns the last fence if multiple jobs are submitted.
343  *
344  * The function copies @size bytes from {src->mem + src->offset} to
345  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
346  * move and different for a BO to BO copy.
347  *
348  */
349 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
350 			       const struct amdgpu_copy_mem *src,
351 			       const struct amdgpu_copy_mem *dst,
352 			       uint64_t size, bool tmz,
353 			       struct dma_resv *resv,
354 			       struct dma_fence **f)
355 {
356 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
357 					AMDGPU_GPU_PAGE_SIZE);
358 
359 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
360 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
361 	struct drm_mm_node *src_mm, *dst_mm;
362 	struct dma_fence *fence = NULL;
363 	int r = 0;
364 
365 	if (!adev->mman.buffer_funcs_enabled) {
366 		DRM_ERROR("Trying to move memory with ring turned off.\n");
367 		return -EINVAL;
368 	}
369 
370 	src_offset = src->offset;
371 	if (src->mem->mm_node) {
372 		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
373 		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
374 	} else {
375 		src_mm = NULL;
376 		src_node_size = ULLONG_MAX;
377 	}
378 
379 	dst_offset = dst->offset;
380 	if (dst->mem->mm_node) {
381 		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
382 		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
383 	} else {
384 		dst_mm = NULL;
385 		dst_node_size = ULLONG_MAX;
386 	}
387 
388 	mutex_lock(&adev->mman.gtt_window_lock);
389 
390 	while (size) {
391 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
392 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
393 		struct dma_fence *next;
394 		uint32_t cur_size;
395 		uint64_t from, to;
396 
397 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
398 		 * begins at an offset, then adjust the size accordingly
399 		 */
400 		cur_size = max(src_page_offset, dst_page_offset);
401 		cur_size = min(min3(src_node_size, dst_node_size, size),
402 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
403 
404 		/* Map src to window 0 and dst to window 1. */
405 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
406 					  PFN_UP(cur_size + src_page_offset),
407 					  src_offset, 0, ring, tmz, &from);
408 		if (r)
409 			goto error;
410 
411 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
412 					  PFN_UP(cur_size + dst_page_offset),
413 					  dst_offset, 1, ring, tmz, &to);
414 		if (r)
415 			goto error;
416 
417 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
418 				       resv, &next, false, true, tmz);
419 		if (r)
420 			goto error;
421 
422 		dma_fence_put(fence);
423 		fence = next;
424 
425 		size -= cur_size;
426 		if (!size)
427 			break;
428 
429 		src_node_size -= cur_size;
430 		if (!src_node_size) {
431 			++src_mm;
432 			src_node_size = src_mm->size << PAGE_SHIFT;
433 			src_offset = 0;
434 		} else {
435 			src_offset += cur_size;
436 		}
437 
438 		dst_node_size -= cur_size;
439 		if (!dst_node_size) {
440 			++dst_mm;
441 			dst_node_size = dst_mm->size << PAGE_SHIFT;
442 			dst_offset = 0;
443 		} else {
444 			dst_offset += cur_size;
445 		}
446 	}
447 error:
448 	mutex_unlock(&adev->mman.gtt_window_lock);
449 	if (f)
450 		*f = dma_fence_get(fence);
451 	dma_fence_put(fence);
452 	return r;
453 }
454 
455 /**
456  * amdgpu_move_blit - Copy an entire buffer to another buffer
457  *
458  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
459  * help move buffers to and from VRAM.
460  */
461 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
462 			    bool evict,
463 			    struct ttm_resource *new_mem,
464 			    struct ttm_resource *old_mem)
465 {
466 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
467 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
468 	struct amdgpu_copy_mem src, dst;
469 	struct dma_fence *fence = NULL;
470 	int r;
471 
472 	src.bo = bo;
473 	dst.bo = bo;
474 	src.mem = old_mem;
475 	dst.mem = new_mem;
476 	src.offset = 0;
477 	dst.offset = 0;
478 
479 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
480 				       new_mem->num_pages << PAGE_SHIFT,
481 				       amdgpu_bo_encrypted(abo),
482 				       bo->base.resv, &fence);
483 	if (r)
484 		goto error;
485 
486 	/* clear the space being freed */
487 	if (old_mem->mem_type == TTM_PL_VRAM &&
488 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
489 		struct dma_fence *wipe_fence = NULL;
490 
491 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
492 				       NULL, &wipe_fence);
493 		if (r) {
494 			goto error;
495 		} else if (wipe_fence) {
496 			dma_fence_put(fence);
497 			fence = wipe_fence;
498 		}
499 	}
500 
501 	/* Always block for VM page tables before committing the new location */
502 	if (bo->type == ttm_bo_type_kernel)
503 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
504 	else
505 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
506 	dma_fence_put(fence);
507 	return r;
508 
509 error:
510 	if (fence)
511 		dma_fence_wait(fence, false);
512 	dma_fence_put(fence);
513 	return r;
514 }
515 
516 /**
517  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
518  *
519  * Called by amdgpu_bo_move().
520  */
521 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
522 				struct ttm_operation_ctx *ctx,
523 				struct ttm_resource *new_mem)
524 {
525 	struct ttm_resource *old_mem = &bo->mem;
526 	struct ttm_resource tmp_mem;
527 	struct ttm_place placements;
528 	struct ttm_placement placement;
529 	int r;
530 
531 	/* create space/pages for new_mem in GTT space */
532 	tmp_mem = *new_mem;
533 	tmp_mem.mm_node = NULL;
534 	placement.num_placement = 1;
535 	placement.placement = &placements;
536 	placement.num_busy_placement = 1;
537 	placement.busy_placement = &placements;
538 	placements.fpfn = 0;
539 	placements.lpfn = 0;
540 	placements.mem_type = TTM_PL_TT;
541 	placements.flags = TTM_PL_MASK_CACHING;
542 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
543 	if (unlikely(r)) {
544 		pr_err("Failed to find GTT space for blit from VRAM\n");
545 		return r;
546 	}
547 
548 	/* set caching flags */
549 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
550 	if (unlikely(r)) {
551 		goto out_cleanup;
552 	}
553 
554 	r = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
555 	if (unlikely(r))
556 		goto out_cleanup;
557 
558 	/* Bind the memory to the GTT space */
559 	r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, &tmp_mem);
560 	if (unlikely(r)) {
561 		goto out_cleanup;
562 	}
563 
564 	/* blit VRAM to GTT */
565 	r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem);
566 	if (unlikely(r)) {
567 		goto out_cleanup;
568 	}
569 
570 	/* move BO (in tmp_mem) to new_mem */
571 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
572 out_cleanup:
573 	ttm_resource_free(bo, &tmp_mem);
574 	return r;
575 }
576 
577 /**
578  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
579  *
580  * Called by amdgpu_bo_move().
581  */
582 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
583 				struct ttm_operation_ctx *ctx,
584 				struct ttm_resource *new_mem)
585 {
586 	struct ttm_resource *old_mem = &bo->mem;
587 	struct ttm_resource tmp_mem;
588 	struct ttm_placement placement;
589 	struct ttm_place placements;
590 	int r;
591 
592 	/* make space in GTT for old_mem buffer */
593 	tmp_mem = *new_mem;
594 	tmp_mem.mm_node = NULL;
595 	placement.num_placement = 1;
596 	placement.placement = &placements;
597 	placement.num_busy_placement = 1;
598 	placement.busy_placement = &placements;
599 	placements.fpfn = 0;
600 	placements.lpfn = 0;
601 	placements.mem_type = TTM_PL_TT;
602 	placements.flags = TTM_PL_MASK_CACHING;
603 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
604 	if (unlikely(r)) {
605 		pr_err("Failed to find GTT space for blit to VRAM\n");
606 		return r;
607 	}
608 
609 	/* move/bind old memory to GTT space */
610 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
611 	if (unlikely(r)) {
612 		goto out_cleanup;
613 	}
614 
615 	/* copy to VRAM */
616 	r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
617 	if (unlikely(r)) {
618 		goto out_cleanup;
619 	}
620 out_cleanup:
621 	ttm_resource_free(bo, &tmp_mem);
622 	return r;
623 }
624 
625 /**
626  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
627  *
628  * Called by amdgpu_bo_move()
629  */
630 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
631 			       struct ttm_resource *mem)
632 {
633 	struct drm_mm_node *nodes = mem->mm_node;
634 
635 	if (mem->mem_type == TTM_PL_SYSTEM ||
636 	    mem->mem_type == TTM_PL_TT)
637 		return true;
638 	if (mem->mem_type != TTM_PL_VRAM)
639 		return false;
640 
641 	/* ttm_resource_ioremap only supports contiguous memory */
642 	if (nodes->size != mem->num_pages)
643 		return false;
644 
645 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
646 		<= adev->gmc.visible_vram_size;
647 }
648 
649 /**
650  * amdgpu_bo_move - Move a buffer object to a new memory location
651  *
652  * Called by ttm_bo_handle_move_mem()
653  */
654 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
655 			  struct ttm_operation_ctx *ctx,
656 			  struct ttm_resource *new_mem)
657 {
658 	struct amdgpu_device *adev;
659 	struct amdgpu_bo *abo;
660 	struct ttm_resource *old_mem = &bo->mem;
661 	int r;
662 
663 	/* Can't move a pinned BO */
664 	abo = ttm_to_amdgpu_bo(bo);
665 	if (WARN_ON_ONCE(abo->pin_count > 0))
666 		return -EINVAL;
667 
668 	adev = amdgpu_ttm_adev(bo->bdev);
669 
670 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
671 		ttm_bo_move_null(bo, new_mem);
672 		return 0;
673 	}
674 	if ((old_mem->mem_type == TTM_PL_TT &&
675 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
676 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
677 	     new_mem->mem_type == TTM_PL_TT)) {
678 		/* bind is enough */
679 		ttm_bo_move_null(bo, new_mem);
680 		return 0;
681 	}
682 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
683 	    old_mem->mem_type == AMDGPU_PL_GWS ||
684 	    old_mem->mem_type == AMDGPU_PL_OA ||
685 	    new_mem->mem_type == AMDGPU_PL_GDS ||
686 	    new_mem->mem_type == AMDGPU_PL_GWS ||
687 	    new_mem->mem_type == AMDGPU_PL_OA) {
688 		/* Nothing to save here */
689 		ttm_bo_move_null(bo, new_mem);
690 		return 0;
691 	}
692 
693 	if (!adev->mman.buffer_funcs_enabled) {
694 		r = -ENODEV;
695 		goto memcpy;
696 	}
697 
698 	if (old_mem->mem_type == TTM_PL_VRAM &&
699 	    new_mem->mem_type == TTM_PL_SYSTEM) {
700 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
701 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
702 		   new_mem->mem_type == TTM_PL_VRAM) {
703 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
704 	} else {
705 		r = amdgpu_move_blit(bo, evict,
706 				     new_mem, old_mem);
707 	}
708 
709 	if (r) {
710 memcpy:
711 		/* Check that all memory is CPU accessible */
712 		if (!amdgpu_mem_visible(adev, old_mem) ||
713 		    !amdgpu_mem_visible(adev, new_mem)) {
714 			pr_err("Move buffer fallback to memcpy unavailable\n");
715 			return r;
716 		}
717 
718 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
719 		if (r)
720 			return r;
721 	}
722 
723 	if (bo->type == ttm_bo_type_device &&
724 	    new_mem->mem_type == TTM_PL_VRAM &&
725 	    old_mem->mem_type != TTM_PL_VRAM) {
726 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
727 		 * accesses the BO after it's moved.
728 		 */
729 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
730 	}
731 
732 	/* update statistics */
733 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
734 	return 0;
735 }
736 
737 /**
738  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
739  *
740  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
741  */
742 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
743 {
744 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
745 	struct drm_mm_node *mm_node = mem->mm_node;
746 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
747 
748 	switch (mem->mem_type) {
749 	case TTM_PL_SYSTEM:
750 		/* system memory */
751 		return 0;
752 	case TTM_PL_TT:
753 		break;
754 	case TTM_PL_VRAM:
755 		mem->bus.offset = mem->start << PAGE_SHIFT;
756 		/* check if it's visible */
757 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
758 			return -EINVAL;
759 		/* Only physically contiguous buffers apply. In a contiguous
760 		 * buffer, size of the first mm_node would match the number of
761 		 * pages in ttm_resource.
762 		 */
763 		if (adev->mman.aper_base_kaddr &&
764 		    (mm_node->size == mem->num_pages))
765 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
766 					mem->bus.offset;
767 
768 		mem->bus.offset += adev->gmc.aper_base;
769 		mem->bus.is_iomem = true;
770 		break;
771 	default:
772 		return -EINVAL;
773 	}
774 	return 0;
775 }
776 
777 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
778 					   unsigned long page_offset)
779 {
780 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
781 	uint64_t offset = (page_offset << PAGE_SHIFT);
782 	struct drm_mm_node *mm;
783 
784 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
785 	offset += adev->gmc.aper_base;
786 	return mm->start + (offset >> PAGE_SHIFT);
787 }
788 
789 /**
790  * amdgpu_ttm_domain_start - Returns GPU start address
791  * @adev: amdgpu device object
792  * @type: type of the memory
793  *
794  * Returns:
795  * GPU start address of a memory domain
796  */
797 
798 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
799 {
800 	switch (type) {
801 	case TTM_PL_TT:
802 		return adev->gmc.gart_start;
803 	case TTM_PL_VRAM:
804 		return adev->gmc.vram_start;
805 	}
806 
807 	return 0;
808 }
809 
810 /*
811  * TTM backend functions.
812  */
813 struct amdgpu_ttm_tt {
814 	struct ttm_dma_tt	ttm;
815 	struct drm_gem_object	*gobj;
816 	u64			offset;
817 	uint64_t		userptr;
818 	struct task_struct	*usertask;
819 	uint32_t		userflags;
820 	bool			bound;
821 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
822 	struct hmm_range	*range;
823 #endif
824 };
825 
826 #ifdef CONFIG_DRM_AMDGPU_USERPTR
827 /**
828  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
829  * memory and start HMM tracking CPU page table update
830  *
831  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
832  * once afterwards to stop HMM tracking
833  */
834 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
835 {
836 	struct ttm_tt *ttm = bo->tbo.ttm;
837 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
838 	unsigned long start = gtt->userptr;
839 	struct vm_area_struct *vma;
840 	struct hmm_range *range;
841 	unsigned long timeout;
842 	struct mm_struct *mm;
843 	unsigned long i;
844 	int r = 0;
845 
846 	mm = bo->notifier.mm;
847 	if (unlikely(!mm)) {
848 		DRM_DEBUG_DRIVER("BO is not registered?\n");
849 		return -EFAULT;
850 	}
851 
852 	/* Another get_user_pages is running at the same time?? */
853 	if (WARN_ON(gtt->range))
854 		return -EFAULT;
855 
856 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
857 		return -ESRCH;
858 
859 	range = kzalloc(sizeof(*range), GFP_KERNEL);
860 	if (unlikely(!range)) {
861 		r = -ENOMEM;
862 		goto out;
863 	}
864 	range->notifier = &bo->notifier;
865 	range->start = bo->notifier.interval_tree.start;
866 	range->end = bo->notifier.interval_tree.last + 1;
867 	range->default_flags = HMM_PFN_REQ_FAULT;
868 	if (!amdgpu_ttm_tt_is_readonly(ttm))
869 		range->default_flags |= HMM_PFN_REQ_WRITE;
870 
871 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
872 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
873 	if (unlikely(!range->hmm_pfns)) {
874 		r = -ENOMEM;
875 		goto out_free_ranges;
876 	}
877 
878 	mmap_read_lock(mm);
879 	vma = find_vma(mm, start);
880 	if (unlikely(!vma || start < vma->vm_start)) {
881 		r = -EFAULT;
882 		goto out_unlock;
883 	}
884 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
885 		vma->vm_file)) {
886 		r = -EPERM;
887 		goto out_unlock;
888 	}
889 	mmap_read_unlock(mm);
890 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
891 
892 retry:
893 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
894 
895 	mmap_read_lock(mm);
896 	r = hmm_range_fault(range);
897 	mmap_read_unlock(mm);
898 	if (unlikely(r)) {
899 		/*
900 		 * FIXME: This timeout should encompass the retry from
901 		 * mmu_interval_read_retry() as well.
902 		 */
903 		if (r == -EBUSY && !time_after(jiffies, timeout))
904 			goto retry;
905 		goto out_free_pfns;
906 	}
907 
908 	/*
909 	 * Due to default_flags, all pages are HMM_PFN_VALID or
910 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
911 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
912 	 */
913 	for (i = 0; i < ttm->num_pages; i++)
914 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
915 
916 	gtt->range = range;
917 	mmput(mm);
918 
919 	return 0;
920 
921 out_unlock:
922 	mmap_read_unlock(mm);
923 out_free_pfns:
924 	kvfree(range->hmm_pfns);
925 out_free_ranges:
926 	kfree(range);
927 out:
928 	mmput(mm);
929 	return r;
930 }
931 
932 /**
933  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
934  * Check if the pages backing this ttm range have been invalidated
935  *
936  * Returns: true if pages are still valid
937  */
938 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
939 {
940 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
941 	bool r = false;
942 
943 	if (!gtt || !gtt->userptr)
944 		return false;
945 
946 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
947 		gtt->userptr, ttm->num_pages);
948 
949 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
950 		"No user pages to check\n");
951 
952 	if (gtt->range) {
953 		/*
954 		 * FIXME: Must always hold notifier_lock for this, and must
955 		 * not ignore the return code.
956 		 */
957 		r = mmu_interval_read_retry(gtt->range->notifier,
958 					 gtt->range->notifier_seq);
959 		kvfree(gtt->range->hmm_pfns);
960 		kfree(gtt->range);
961 		gtt->range = NULL;
962 	}
963 
964 	return !r;
965 }
966 #endif
967 
968 /**
969  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
970  *
971  * Called by amdgpu_cs_list_validate(). This creates the page list
972  * that backs user memory and will ultimately be mapped into the device
973  * address space.
974  */
975 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
976 {
977 	unsigned long i;
978 
979 	for (i = 0; i < ttm->num_pages; ++i)
980 		ttm->pages[i] = pages ? pages[i] : NULL;
981 }
982 
983 /**
984  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
985  *
986  * Called by amdgpu_ttm_backend_bind()
987  **/
988 static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev,
989 				     struct ttm_tt *ttm)
990 {
991 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
992 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
993 	int r;
994 
995 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
996 	enum dma_data_direction direction = write ?
997 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
998 
999 	/* Allocate an SG array and squash pages into it */
1000 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1001 				      ttm->num_pages << PAGE_SHIFT,
1002 				      GFP_KERNEL);
1003 	if (r)
1004 		goto release_sg;
1005 
1006 	/* Map SG to device */
1007 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1008 	if (r)
1009 		goto release_sg;
1010 
1011 	/* convert SG to linear array of pages and dma addresses */
1012 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1013 					 gtt->ttm.dma_address, ttm->num_pages);
1014 
1015 	return 0;
1016 
1017 release_sg:
1018 	kfree(ttm->sg);
1019 	return r;
1020 }
1021 
1022 /**
1023  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1024  */
1025 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev,
1026 					struct ttm_tt *ttm)
1027 {
1028 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1029 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1030 
1031 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1032 	enum dma_data_direction direction = write ?
1033 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1034 
1035 	/* double check that we don't free the table twice */
1036 	if (!ttm->sg->sgl)
1037 		return;
1038 
1039 	/* unmap the pages mapped to the device */
1040 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1041 	sg_free_table(ttm->sg);
1042 
1043 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1044 	if (gtt->range) {
1045 		unsigned long i;
1046 
1047 		for (i = 0; i < ttm->num_pages; i++) {
1048 			if (ttm->pages[i] !=
1049 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1050 				break;
1051 		}
1052 
1053 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1054 	}
1055 #endif
1056 }
1057 
1058 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1059 				struct ttm_buffer_object *tbo,
1060 				uint64_t flags)
1061 {
1062 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1063 	struct ttm_tt *ttm = tbo->ttm;
1064 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1065 	int r;
1066 
1067 	if (amdgpu_bo_encrypted(abo))
1068 		flags |= AMDGPU_PTE_TMZ;
1069 
1070 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1071 		uint64_t page_idx = 1;
1072 
1073 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1074 				ttm->pages, gtt->ttm.dma_address, flags);
1075 		if (r)
1076 			goto gart_bind_fail;
1077 
1078 		/* The memory type of the first page defaults to UC. Now
1079 		 * modify the memory type to NC from the second page of
1080 		 * the BO onward.
1081 		 */
1082 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1083 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1084 
1085 		r = amdgpu_gart_bind(adev,
1086 				gtt->offset + (page_idx << PAGE_SHIFT),
1087 				ttm->num_pages - page_idx,
1088 				&ttm->pages[page_idx],
1089 				&(gtt->ttm.dma_address[page_idx]), flags);
1090 	} else {
1091 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1092 				     ttm->pages, gtt->ttm.dma_address, flags);
1093 	}
1094 
1095 gart_bind_fail:
1096 	if (r)
1097 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1098 			  ttm->num_pages, gtt->offset);
1099 
1100 	return r;
1101 }
1102 
1103 /**
1104  * amdgpu_ttm_backend_bind - Bind GTT memory
1105  *
1106  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1107  * This handles binding GTT memory to the device address space.
1108  */
1109 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
1110 				   struct ttm_tt *ttm,
1111 				   struct ttm_resource *bo_mem)
1112 {
1113 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1114 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1115 	uint64_t flags;
1116 	int r = 0;
1117 
1118 	if (!bo_mem)
1119 		return -EINVAL;
1120 
1121 	if (gtt->bound)
1122 		return 0;
1123 
1124 	if (gtt->userptr) {
1125 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
1126 		if (r) {
1127 			DRM_ERROR("failed to pin userptr\n");
1128 			return r;
1129 		}
1130 	}
1131 	if (!ttm->num_pages) {
1132 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1133 		     ttm->num_pages, bo_mem, ttm);
1134 	}
1135 
1136 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1137 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1138 	    bo_mem->mem_type == AMDGPU_PL_OA)
1139 		return -EINVAL;
1140 
1141 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1142 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1143 		return 0;
1144 	}
1145 
1146 	/* compute PTE flags relevant to this BO memory */
1147 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1148 
1149 	/* bind pages into GART page tables */
1150 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1151 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1152 		ttm->pages, gtt->ttm.dma_address, flags);
1153 
1154 	if (r)
1155 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1156 			  ttm->num_pages, gtt->offset);
1157 	gtt->bound = true;
1158 	return r;
1159 }
1160 
1161 /**
1162  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1163  */
1164 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1165 {
1166 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1167 	struct ttm_operation_ctx ctx = { false, false };
1168 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1169 	struct ttm_resource tmp;
1170 	struct ttm_placement placement;
1171 	struct ttm_place placements;
1172 	uint64_t addr, flags;
1173 	int r;
1174 
1175 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1176 		return 0;
1177 
1178 	addr = amdgpu_gmc_agp_addr(bo);
1179 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1180 		bo->mem.start = addr >> PAGE_SHIFT;
1181 	} else {
1182 
1183 		/* allocate GART space */
1184 		tmp = bo->mem;
1185 		tmp.mm_node = NULL;
1186 		placement.num_placement = 1;
1187 		placement.placement = &placements;
1188 		placement.num_busy_placement = 1;
1189 		placement.busy_placement = &placements;
1190 		placements.fpfn = 0;
1191 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1192 		placements.mem_type = TTM_PL_TT;
1193 		placements.flags = bo->mem.placement;
1194 
1195 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1196 		if (unlikely(r))
1197 			return r;
1198 
1199 		/* compute PTE flags for this buffer object */
1200 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1201 
1202 		/* Bind pages */
1203 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1204 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1205 		if (unlikely(r)) {
1206 			ttm_resource_free(bo, &tmp);
1207 			return r;
1208 		}
1209 
1210 		ttm_resource_free(bo, &bo->mem);
1211 		bo->mem = tmp;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 /**
1218  * amdgpu_ttm_recover_gart - Rebind GTT pages
1219  *
1220  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1221  * rebind GTT pages during a GPU reset.
1222  */
1223 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1224 {
1225 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1226 	uint64_t flags;
1227 	int r;
1228 
1229 	if (!tbo->ttm)
1230 		return 0;
1231 
1232 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1233 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1234 
1235 	return r;
1236 }
1237 
1238 /**
1239  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1240  *
1241  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1242  * ttm_tt_destroy().
1243  */
1244 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
1245 				      struct ttm_tt *ttm)
1246 {
1247 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1248 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1249 	int r;
1250 
1251 	if (!gtt->bound)
1252 		return;
1253 
1254 	/* if the pages have userptr pinning then clear that first */
1255 	if (gtt->userptr)
1256 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1257 
1258 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1259 		return;
1260 
1261 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1262 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1263 	if (r)
1264 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1265 			  gtt->ttm.ttm.num_pages, gtt->offset);
1266 	gtt->bound = false;
1267 }
1268 
1269 static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev,
1270 				       struct ttm_tt *ttm)
1271 {
1272 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1273 
1274 	amdgpu_ttm_backend_unbind(bdev, ttm);
1275 	ttm_tt_destroy_common(bdev, ttm);
1276 	if (gtt->usertask)
1277 		put_task_struct(gtt->usertask);
1278 
1279 	ttm_dma_tt_fini(&gtt->ttm);
1280 	kfree(gtt);
1281 }
1282 
1283 /**
1284  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1285  *
1286  * @bo: The buffer object to create a GTT ttm_tt object around
1287  *
1288  * Called by ttm_tt_create().
1289  */
1290 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1291 					   uint32_t page_flags)
1292 {
1293 	struct amdgpu_ttm_tt *gtt;
1294 
1295 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1296 	if (gtt == NULL) {
1297 		return NULL;
1298 	}
1299 	gtt->gobj = &bo->base;
1300 
1301 	/* allocate space for the uninitialized page entries */
1302 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1303 		kfree(gtt);
1304 		return NULL;
1305 	}
1306 	return &gtt->ttm.ttm;
1307 }
1308 
1309 /**
1310  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1311  *
1312  * Map the pages of a ttm_tt object to an address space visible
1313  * to the underlying device.
1314  */
1315 static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev,
1316 				  struct ttm_tt *ttm,
1317 				  struct ttm_operation_ctx *ctx)
1318 {
1319 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1320 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1321 
1322 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1323 	if (gtt && gtt->userptr) {
1324 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1325 		if (!ttm->sg)
1326 			return -ENOMEM;
1327 
1328 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1329 		ttm_tt_set_populated(ttm);
1330 		return 0;
1331 	}
1332 
1333 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1334 		if (!ttm->sg) {
1335 			struct dma_buf_attachment *attach;
1336 			struct sg_table *sgt;
1337 
1338 			attach = gtt->gobj->import_attach;
1339 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1340 			if (IS_ERR(sgt))
1341 				return PTR_ERR(sgt);
1342 
1343 			ttm->sg = sgt;
1344 		}
1345 
1346 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1347 						 gtt->ttm.dma_address,
1348 						 ttm->num_pages);
1349 		ttm_tt_set_populated(ttm);
1350 		return 0;
1351 	}
1352 
1353 #ifdef CONFIG_SWIOTLB
1354 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1355 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1356 	}
1357 #endif
1358 
1359 	/* fall back to generic helper to populate the page array
1360 	 * and map them to the device */
1361 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1362 }
1363 
1364 /**
1365  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1366  *
1367  * Unmaps pages of a ttm_tt object from the device address space and
1368  * unpopulates the page array backing it.
1369  */
1370 static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
1371 {
1372 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1373 	struct amdgpu_device *adev;
1374 
1375 	if (gtt && gtt->userptr) {
1376 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1377 		kfree(ttm->sg);
1378 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1379 		return;
1380 	}
1381 
1382 	if (ttm->sg && gtt->gobj->import_attach) {
1383 		struct dma_buf_attachment *attach;
1384 
1385 		attach = gtt->gobj->import_attach;
1386 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1387 		ttm->sg = NULL;
1388 		return;
1389 	}
1390 
1391 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1392 		return;
1393 
1394 	adev = amdgpu_ttm_adev(bdev);
1395 
1396 #ifdef CONFIG_SWIOTLB
1397 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1398 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1399 		return;
1400 	}
1401 #endif
1402 
1403 	/* fall back to generic helper to unmap and unpopulate array */
1404 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1405 }
1406 
1407 /**
1408  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1409  * task
1410  *
1411  * @bo: The ttm_buffer_object to bind this userptr to
1412  * @addr:  The address in the current tasks VM space to use
1413  * @flags: Requirements of userptr object.
1414  *
1415  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1416  * to current task
1417  */
1418 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1419 			      uint64_t addr, uint32_t flags)
1420 {
1421 	struct amdgpu_ttm_tt *gtt;
1422 
1423 	if (!bo->ttm) {
1424 		/* TODO: We want a separate TTM object type for userptrs */
1425 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1426 		if (bo->ttm == NULL)
1427 			return -ENOMEM;
1428 	}
1429 
1430 	gtt = (void*)bo->ttm;
1431 	gtt->userptr = addr;
1432 	gtt->userflags = flags;
1433 
1434 	if (gtt->usertask)
1435 		put_task_struct(gtt->usertask);
1436 	gtt->usertask = current->group_leader;
1437 	get_task_struct(gtt->usertask);
1438 
1439 	return 0;
1440 }
1441 
1442 /**
1443  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1444  */
1445 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1446 {
1447 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1448 
1449 	if (gtt == NULL)
1450 		return NULL;
1451 
1452 	if (gtt->usertask == NULL)
1453 		return NULL;
1454 
1455 	return gtt->usertask->mm;
1456 }
1457 
1458 /**
1459  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1460  * address range for the current task.
1461  *
1462  */
1463 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1464 				  unsigned long end)
1465 {
1466 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1467 	unsigned long size;
1468 
1469 	if (gtt == NULL || !gtt->userptr)
1470 		return false;
1471 
1472 	/* Return false if no part of the ttm_tt object lies within
1473 	 * the range
1474 	 */
1475 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1476 	if (gtt->userptr > end || gtt->userptr + size <= start)
1477 		return false;
1478 
1479 	return true;
1480 }
1481 
1482 /**
1483  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1484  */
1485 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1486 {
1487 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1488 
1489 	if (gtt == NULL || !gtt->userptr)
1490 		return false;
1491 
1492 	return true;
1493 }
1494 
1495 /**
1496  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1497  */
1498 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1499 {
1500 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1501 
1502 	if (gtt == NULL)
1503 		return false;
1504 
1505 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1506 }
1507 
1508 /**
1509  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1510  *
1511  * @ttm: The ttm_tt object to compute the flags for
1512  * @mem: The memory registry backing this ttm_tt object
1513  *
1514  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1515  */
1516 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1517 {
1518 	uint64_t flags = 0;
1519 
1520 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1521 		flags |= AMDGPU_PTE_VALID;
1522 
1523 	if (mem && mem->mem_type == TTM_PL_TT) {
1524 		flags |= AMDGPU_PTE_SYSTEM;
1525 
1526 		if (ttm->caching_state == tt_cached)
1527 			flags |= AMDGPU_PTE_SNOOPED;
1528 	}
1529 
1530 	return flags;
1531 }
1532 
1533 /**
1534  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1535  *
1536  * @ttm: The ttm_tt object to compute the flags for
1537  * @mem: The memory registry backing this ttm_tt object
1538 
1539  * Figure out the flags to use for a VM PTE (Page Table Entry).
1540  */
1541 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1542 				 struct ttm_resource *mem)
1543 {
1544 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1545 
1546 	flags |= adev->gart.gart_pte_flags;
1547 	flags |= AMDGPU_PTE_READABLE;
1548 
1549 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1550 		flags |= AMDGPU_PTE_WRITEABLE;
1551 
1552 	return flags;
1553 }
1554 
1555 /**
1556  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1557  * object.
1558  *
1559  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1560  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1561  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1562  * used to clean out a memory space.
1563  */
1564 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1565 					    const struct ttm_place *place)
1566 {
1567 	unsigned long num_pages = bo->mem.num_pages;
1568 	struct drm_mm_node *node = bo->mem.mm_node;
1569 	struct dma_resv_list *flist;
1570 	struct dma_fence *f;
1571 	int i;
1572 
1573 	if (bo->type == ttm_bo_type_kernel &&
1574 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1575 		return false;
1576 
1577 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1578 	 * If true, then return false as any KFD process needs all its BOs to
1579 	 * be resident to run successfully
1580 	 */
1581 	flist = dma_resv_get_list(bo->base.resv);
1582 	if (flist) {
1583 		for (i = 0; i < flist->shared_count; ++i) {
1584 			f = rcu_dereference_protected(flist->shared[i],
1585 				dma_resv_held(bo->base.resv));
1586 			if (amdkfd_fence_check_mm(f, current->mm))
1587 				return false;
1588 		}
1589 	}
1590 
1591 	switch (bo->mem.mem_type) {
1592 	case TTM_PL_TT:
1593 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1594 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1595 			return false;
1596 		return true;
1597 
1598 	case TTM_PL_VRAM:
1599 		/* Check each drm MM node individually */
1600 		while (num_pages) {
1601 			if (place->fpfn < (node->start + node->size) &&
1602 			    !(place->lpfn && place->lpfn <= node->start))
1603 				return true;
1604 
1605 			num_pages -= node->size;
1606 			++node;
1607 		}
1608 		return false;
1609 
1610 	default:
1611 		break;
1612 	}
1613 
1614 	return ttm_bo_eviction_valuable(bo, place);
1615 }
1616 
1617 /**
1618  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1619  *
1620  * @bo:  The buffer object to read/write
1621  * @offset:  Offset into buffer object
1622  * @buf:  Secondary buffer to write/read from
1623  * @len: Length in bytes of access
1624  * @write:  true if writing
1625  *
1626  * This is used to access VRAM that backs a buffer object via MMIO
1627  * access for debugging purposes.
1628  */
1629 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1630 				    unsigned long offset,
1631 				    void *buf, int len, int write)
1632 {
1633 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1634 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1635 	struct drm_mm_node *nodes;
1636 	uint32_t value = 0;
1637 	int ret = 0;
1638 	uint64_t pos;
1639 	unsigned long flags;
1640 
1641 	if (bo->mem.mem_type != TTM_PL_VRAM)
1642 		return -EIO;
1643 
1644 	pos = offset;
1645 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1646 	pos += (nodes->start << PAGE_SHIFT);
1647 
1648 	while (len && pos < adev->gmc.mc_vram_size) {
1649 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1650 		uint64_t bytes = 4 - (pos & 3);
1651 		uint32_t shift = (pos & 3) * 8;
1652 		uint32_t mask = 0xffffffff << shift;
1653 
1654 		if (len < bytes) {
1655 			mask &= 0xffffffff >> (bytes - len) * 8;
1656 			bytes = len;
1657 		}
1658 
1659 		if (mask != 0xffffffff) {
1660 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1661 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1662 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1663 			if (!write || mask != 0xffffffff)
1664 				value = RREG32_NO_KIQ(mmMM_DATA);
1665 			if (write) {
1666 				value &= ~mask;
1667 				value |= (*(uint32_t *)buf << shift) & mask;
1668 				WREG32_NO_KIQ(mmMM_DATA, value);
1669 			}
1670 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1671 			if (!write) {
1672 				value = (value & mask) >> shift;
1673 				memcpy(buf, &value, bytes);
1674 			}
1675 		} else {
1676 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1677 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1678 
1679 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1680 						  bytes, write);
1681 		}
1682 
1683 		ret += bytes;
1684 		buf = (uint8_t *)buf + bytes;
1685 		pos += bytes;
1686 		len -= bytes;
1687 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1688 			++nodes;
1689 			pos = (nodes->start << PAGE_SHIFT);
1690 		}
1691 	}
1692 
1693 	return ret;
1694 }
1695 
1696 static struct ttm_bo_driver amdgpu_bo_driver = {
1697 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1698 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1699 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1700 	.ttm_tt_bind = &amdgpu_ttm_backend_bind,
1701 	.ttm_tt_unbind = &amdgpu_ttm_backend_unbind,
1702 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1703 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1704 	.evict_flags = &amdgpu_evict_flags,
1705 	.move = &amdgpu_bo_move,
1706 	.verify_access = &amdgpu_verify_access,
1707 	.move_notify = &amdgpu_bo_move_notify,
1708 	.release_notify = &amdgpu_bo_release_notify,
1709 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1710 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1711 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1712 	.access_memory = &amdgpu_ttm_access_memory,
1713 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1714 };
1715 
1716 /*
1717  * Firmware Reservation functions
1718  */
1719 /**
1720  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1721  *
1722  * @adev: amdgpu_device pointer
1723  *
1724  * free fw reserved vram if it has been reserved.
1725  */
1726 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1727 {
1728 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1729 		NULL, &adev->mman.fw_vram_usage_va);
1730 }
1731 
1732 /**
1733  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1734  *
1735  * @adev: amdgpu_device pointer
1736  *
1737  * create bo vram reservation from fw.
1738  */
1739 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1740 {
1741 	uint64_t vram_size = adev->gmc.visible_vram_size;
1742 
1743 	adev->mman.fw_vram_usage_va = NULL;
1744 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1745 
1746 	if (adev->mman.fw_vram_usage_size == 0 ||
1747 	    adev->mman.fw_vram_usage_size > vram_size)
1748 		return 0;
1749 
1750 	return amdgpu_bo_create_kernel_at(adev,
1751 					  adev->mman.fw_vram_usage_start_offset,
1752 					  adev->mman.fw_vram_usage_size,
1753 					  AMDGPU_GEM_DOMAIN_VRAM,
1754 					  &adev->mman.fw_vram_usage_reserved_bo,
1755 					  &adev->mman.fw_vram_usage_va);
1756 }
1757 
1758 /*
1759  * Memoy training reservation functions
1760  */
1761 
1762 /**
1763  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1764  *
1765  * @adev: amdgpu_device pointer
1766  *
1767  * free memory training reserved vram if it has been reserved.
1768  */
1769 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1770 {
1771 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1772 
1773 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1774 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1775 	ctx->c2p_bo = NULL;
1776 
1777 	return 0;
1778 }
1779 
1780 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1781 {
1782 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1783 
1784 	memset(ctx, 0, sizeof(*ctx));
1785 
1786 	ctx->c2p_train_data_offset =
1787 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1788 	ctx->p2c_train_data_offset =
1789 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1790 	ctx->train_data_size =
1791 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1792 
1793 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1794 			ctx->train_data_size,
1795 			ctx->p2c_train_data_offset,
1796 			ctx->c2p_train_data_offset);
1797 }
1798 
1799 /*
1800  * reserve TMR memory at the top of VRAM which holds
1801  * IP Discovery data and is protected by PSP.
1802  */
1803 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1804 {
1805 	int ret;
1806 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1807 	bool mem_train_support = false;
1808 
1809 	if (!amdgpu_sriov_vf(adev)) {
1810 		ret = amdgpu_mem_train_support(adev);
1811 		if (ret == 1)
1812 			mem_train_support = true;
1813 		else if (ret == -1)
1814 			return -EINVAL;
1815 		else
1816 			DRM_DEBUG("memory training does not support!\n");
1817 	}
1818 
1819 	/*
1820 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1821 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1822 	 *
1823 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1824 	 * discovery data and G6 memory training data respectively
1825 	 */
1826 	adev->mman.discovery_tmr_size =
1827 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1828 	if (!adev->mman.discovery_tmr_size)
1829 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1830 
1831 	if (mem_train_support) {
1832 		/* reserve vram for mem train according to TMR location */
1833 		amdgpu_ttm_training_data_block_init(adev);
1834 		ret = amdgpu_bo_create_kernel_at(adev,
1835 					 ctx->c2p_train_data_offset,
1836 					 ctx->train_data_size,
1837 					 AMDGPU_GEM_DOMAIN_VRAM,
1838 					 &ctx->c2p_bo,
1839 					 NULL);
1840 		if (ret) {
1841 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1842 			amdgpu_ttm_training_reserve_vram_fini(adev);
1843 			return ret;
1844 		}
1845 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1846 	}
1847 
1848 	ret = amdgpu_bo_create_kernel_at(adev,
1849 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1850 				adev->mman.discovery_tmr_size,
1851 				AMDGPU_GEM_DOMAIN_VRAM,
1852 				&adev->mman.discovery_memory,
1853 				NULL);
1854 	if (ret) {
1855 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1856 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1857 		return ret;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 /**
1864  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1865  * gtt/vram related fields.
1866  *
1867  * This initializes all of the memory space pools that the TTM layer
1868  * will need such as the GTT space (system memory mapped to the device),
1869  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1870  * can be mapped per VMID.
1871  */
1872 int amdgpu_ttm_init(struct amdgpu_device *adev)
1873 {
1874 	uint64_t gtt_size;
1875 	int r;
1876 	u64 vis_vram_limit;
1877 
1878 	mutex_init(&adev->mman.gtt_window_lock);
1879 
1880 	/* No others user of address space so set it to 0 */
1881 	r = ttm_bo_device_init(&adev->mman.bdev,
1882 			       &amdgpu_bo_driver,
1883 			       adev_to_drm(adev)->anon_inode->i_mapping,
1884 			       adev_to_drm(adev)->vma_offset_manager,
1885 			       dma_addressing_limited(adev->dev));
1886 	if (r) {
1887 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1888 		return r;
1889 	}
1890 	adev->mman.initialized = true;
1891 
1892 	/* We opt to avoid OOM on system pages allocations */
1893 	adev->mman.bdev.no_retry = true;
1894 
1895 	/* Initialize VRAM pool with all of VRAM divided into pages */
1896 	r = amdgpu_vram_mgr_init(adev);
1897 	if (r) {
1898 		DRM_ERROR("Failed initializing VRAM heap.\n");
1899 		return r;
1900 	}
1901 
1902 	/* Reduce size of CPU-visible VRAM if requested */
1903 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1904 	if (amdgpu_vis_vram_limit > 0 &&
1905 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1906 		adev->gmc.visible_vram_size = vis_vram_limit;
1907 
1908 	/* Change the size here instead of the init above so only lpfn is affected */
1909 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1910 #ifdef CONFIG_64BIT
1911 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1912 						adev->gmc.visible_vram_size);
1913 #endif
1914 
1915 	/*
1916 	 *The reserved vram for firmware must be pinned to the specified
1917 	 *place on the VRAM, so reserve it early.
1918 	 */
1919 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1920 	if (r) {
1921 		return r;
1922 	}
1923 
1924 	/*
1925 	 * only NAVI10 and onwards ASIC support for IP discovery.
1926 	 * If IP discovery enabled, a block of memory should be
1927 	 * reserved for IP discovey.
1928 	 */
1929 	if (adev->mman.discovery_bin) {
1930 		r = amdgpu_ttm_reserve_tmr(adev);
1931 		if (r)
1932 			return r;
1933 	}
1934 
1935 	/* allocate memory as required for VGA
1936 	 * This is used for VGA emulation and pre-OS scanout buffers to
1937 	 * avoid display artifacts while transitioning between pre-OS
1938 	 * and driver.  */
1939 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1940 				       AMDGPU_GEM_DOMAIN_VRAM,
1941 				       &adev->mman.stolen_vga_memory,
1942 				       NULL);
1943 	if (r)
1944 		return r;
1945 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1946 				       adev->mman.stolen_extended_size,
1947 				       AMDGPU_GEM_DOMAIN_VRAM,
1948 				       &adev->mman.stolen_extended_memory,
1949 				       NULL);
1950 	if (r)
1951 		return r;
1952 
1953 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1954 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1955 
1956 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1957 	 * or whatever the user passed on module init */
1958 	if (amdgpu_gtt_size == -1) {
1959 		struct sysinfo si;
1960 
1961 		si_meminfo(&si);
1962 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1963 			       adev->gmc.mc_vram_size),
1964 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1965 	}
1966 	else
1967 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1968 
1969 	/* Initialize GTT memory pool */
1970 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1971 	if (r) {
1972 		DRM_ERROR("Failed initializing GTT heap.\n");
1973 		return r;
1974 	}
1975 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1976 		 (unsigned)(gtt_size / (1024 * 1024)));
1977 
1978 	/* Initialize various on-chip memory pools */
1979 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1980 	if (r) {
1981 		DRM_ERROR("Failed initializing GDS heap.\n");
1982 		return r;
1983 	}
1984 
1985 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1986 	if (r) {
1987 		DRM_ERROR("Failed initializing gws heap.\n");
1988 		return r;
1989 	}
1990 
1991 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1992 	if (r) {
1993 		DRM_ERROR("Failed initializing oa heap.\n");
1994 		return r;
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 /**
2001  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2002  */
2003 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2004 {
2005 	/* return the VGA stolen memory (if any) back to VRAM */
2006 	if (!adev->mman.keep_stolen_vga_memory)
2007 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2008 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2009 }
2010 
2011 /**
2012  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2013  */
2014 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2015 {
2016 	if (!adev->mman.initialized)
2017 		return;
2018 
2019 	amdgpu_ttm_training_reserve_vram_fini(adev);
2020 	/* return the stolen vga memory back to VRAM */
2021 	if (adev->mman.keep_stolen_vga_memory)
2022 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2023 	/* return the IP Discovery TMR memory back to VRAM */
2024 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
2025 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2026 
2027 	if (adev->mman.aper_base_kaddr)
2028 		iounmap(adev->mman.aper_base_kaddr);
2029 	adev->mman.aper_base_kaddr = NULL;
2030 
2031 	amdgpu_vram_mgr_fini(adev);
2032 	amdgpu_gtt_mgr_fini(adev);
2033 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2034 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2035 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2036 	ttm_bo_device_release(&adev->mman.bdev);
2037 	adev->mman.initialized = false;
2038 	DRM_INFO("amdgpu: ttm finalized\n");
2039 }
2040 
2041 /**
2042  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2043  *
2044  * @adev: amdgpu_device pointer
2045  * @enable: true when we can use buffer functions.
2046  *
2047  * Enable/disable use of buffer functions during suspend/resume. This should
2048  * only be called at bootup or when userspace isn't running.
2049  */
2050 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2051 {
2052 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2053 	uint64_t size;
2054 	int r;
2055 
2056 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2057 	    adev->mman.buffer_funcs_enabled == enable)
2058 		return;
2059 
2060 	if (enable) {
2061 		struct amdgpu_ring *ring;
2062 		struct drm_gpu_scheduler *sched;
2063 
2064 		ring = adev->mman.buffer_funcs_ring;
2065 		sched = &ring->sched;
2066 		r = drm_sched_entity_init(&adev->mman.entity,
2067 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2068 					  1, NULL);
2069 		if (r) {
2070 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2071 				  r);
2072 			return;
2073 		}
2074 	} else {
2075 		drm_sched_entity_destroy(&adev->mman.entity);
2076 		dma_fence_put(man->move);
2077 		man->move = NULL;
2078 	}
2079 
2080 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2081 	if (enable)
2082 		size = adev->gmc.real_vram_size;
2083 	else
2084 		size = adev->gmc.visible_vram_size;
2085 	man->size = size >> PAGE_SHIFT;
2086 	adev->mman.buffer_funcs_enabled = enable;
2087 }
2088 
2089 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2090 {
2091 	struct drm_file *file_priv = filp->private_data;
2092 	struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
2093 
2094 	if (adev == NULL)
2095 		return -EINVAL;
2096 
2097 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2098 }
2099 
2100 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2101 		       uint64_t dst_offset, uint32_t byte_count,
2102 		       struct dma_resv *resv,
2103 		       struct dma_fence **fence, bool direct_submit,
2104 		       bool vm_needs_flush, bool tmz)
2105 {
2106 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2107 		AMDGPU_IB_POOL_DELAYED;
2108 	struct amdgpu_device *adev = ring->adev;
2109 	struct amdgpu_job *job;
2110 
2111 	uint32_t max_bytes;
2112 	unsigned num_loops, num_dw;
2113 	unsigned i;
2114 	int r;
2115 
2116 	if (direct_submit && !ring->sched.ready) {
2117 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2118 		return -EINVAL;
2119 	}
2120 
2121 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2122 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2123 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2124 
2125 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2126 	if (r)
2127 		return r;
2128 
2129 	if (vm_needs_flush) {
2130 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2131 		job->vm_needs_flush = true;
2132 	}
2133 	if (resv) {
2134 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2135 				     AMDGPU_SYNC_ALWAYS,
2136 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2137 		if (r) {
2138 			DRM_ERROR("sync failed (%d).\n", r);
2139 			goto error_free;
2140 		}
2141 	}
2142 
2143 	for (i = 0; i < num_loops; i++) {
2144 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2145 
2146 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2147 					dst_offset, cur_size_in_bytes, tmz);
2148 
2149 		src_offset += cur_size_in_bytes;
2150 		dst_offset += cur_size_in_bytes;
2151 		byte_count -= cur_size_in_bytes;
2152 	}
2153 
2154 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2155 	WARN_ON(job->ibs[0].length_dw > num_dw);
2156 	if (direct_submit)
2157 		r = amdgpu_job_submit_direct(job, ring, fence);
2158 	else
2159 		r = amdgpu_job_submit(job, &adev->mman.entity,
2160 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2161 	if (r)
2162 		goto error_free;
2163 
2164 	return r;
2165 
2166 error_free:
2167 	amdgpu_job_free(job);
2168 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2169 	return r;
2170 }
2171 
2172 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2173 		       uint32_t src_data,
2174 		       struct dma_resv *resv,
2175 		       struct dma_fence **fence)
2176 {
2177 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2178 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2179 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2180 
2181 	struct drm_mm_node *mm_node;
2182 	unsigned long num_pages;
2183 	unsigned int num_loops, num_dw;
2184 
2185 	struct amdgpu_job *job;
2186 	int r;
2187 
2188 	if (!adev->mman.buffer_funcs_enabled) {
2189 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2190 		return -EINVAL;
2191 	}
2192 
2193 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2194 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2195 		if (r)
2196 			return r;
2197 	}
2198 
2199 	num_pages = bo->tbo.num_pages;
2200 	mm_node = bo->tbo.mem.mm_node;
2201 	num_loops = 0;
2202 	while (num_pages) {
2203 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2204 
2205 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2206 		num_pages -= mm_node->size;
2207 		++mm_node;
2208 	}
2209 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2210 
2211 	/* for IB padding */
2212 	num_dw += 64;
2213 
2214 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2215 				     &job);
2216 	if (r)
2217 		return r;
2218 
2219 	if (resv) {
2220 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2221 				     AMDGPU_SYNC_ALWAYS,
2222 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2223 		if (r) {
2224 			DRM_ERROR("sync failed (%d).\n", r);
2225 			goto error_free;
2226 		}
2227 	}
2228 
2229 	num_pages = bo->tbo.num_pages;
2230 	mm_node = bo->tbo.mem.mm_node;
2231 
2232 	while (num_pages) {
2233 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2234 		uint64_t dst_addr;
2235 
2236 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2237 		while (byte_count) {
2238 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2239 							   max_bytes);
2240 
2241 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2242 						dst_addr, cur_size_in_bytes);
2243 
2244 			dst_addr += cur_size_in_bytes;
2245 			byte_count -= cur_size_in_bytes;
2246 		}
2247 
2248 		num_pages -= mm_node->size;
2249 		++mm_node;
2250 	}
2251 
2252 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2253 	WARN_ON(job->ibs[0].length_dw > num_dw);
2254 	r = amdgpu_job_submit(job, &adev->mman.entity,
2255 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2256 	if (r)
2257 		goto error_free;
2258 
2259 	return 0;
2260 
2261 error_free:
2262 	amdgpu_job_free(job);
2263 	return r;
2264 }
2265 
2266 #if defined(CONFIG_DEBUG_FS)
2267 
2268 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2269 {
2270 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2271 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2272 	struct drm_device *dev = node->minor->dev;
2273 	struct amdgpu_device *adev = drm_to_adev(dev);
2274 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2275 	struct drm_printer p = drm_seq_file_printer(m);
2276 
2277 	man->func->debug(man, &p);
2278 	return 0;
2279 }
2280 
2281 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2282 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2283 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2284 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2285 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2286 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2287 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2288 #ifdef CONFIG_SWIOTLB
2289 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2290 #endif
2291 };
2292 
2293 /**
2294  * amdgpu_ttm_vram_read - Linear read access to VRAM
2295  *
2296  * Accesses VRAM via MMIO for debugging purposes.
2297  */
2298 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2299 				    size_t size, loff_t *pos)
2300 {
2301 	struct amdgpu_device *adev = file_inode(f)->i_private;
2302 	ssize_t result = 0;
2303 
2304 	if (size & 0x3 || *pos & 0x3)
2305 		return -EINVAL;
2306 
2307 	if (*pos >= adev->gmc.mc_vram_size)
2308 		return -ENXIO;
2309 
2310 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2311 	while (size) {
2312 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2313 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2314 
2315 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2316 		if (copy_to_user(buf, value, bytes))
2317 			return -EFAULT;
2318 
2319 		result += bytes;
2320 		buf += bytes;
2321 		*pos += bytes;
2322 		size -= bytes;
2323 	}
2324 
2325 	return result;
2326 }
2327 
2328 /**
2329  * amdgpu_ttm_vram_write - Linear write access to VRAM
2330  *
2331  * Accesses VRAM via MMIO for debugging purposes.
2332  */
2333 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2334 				    size_t size, loff_t *pos)
2335 {
2336 	struct amdgpu_device *adev = file_inode(f)->i_private;
2337 	ssize_t result = 0;
2338 	int r;
2339 
2340 	if (size & 0x3 || *pos & 0x3)
2341 		return -EINVAL;
2342 
2343 	if (*pos >= adev->gmc.mc_vram_size)
2344 		return -ENXIO;
2345 
2346 	while (size) {
2347 		unsigned long flags;
2348 		uint32_t value;
2349 
2350 		if (*pos >= adev->gmc.mc_vram_size)
2351 			return result;
2352 
2353 		r = get_user(value, (uint32_t *)buf);
2354 		if (r)
2355 			return r;
2356 
2357 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2358 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2359 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2360 		WREG32_NO_KIQ(mmMM_DATA, value);
2361 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2362 
2363 		result += 4;
2364 		buf += 4;
2365 		*pos += 4;
2366 		size -= 4;
2367 	}
2368 
2369 	return result;
2370 }
2371 
2372 static const struct file_operations amdgpu_ttm_vram_fops = {
2373 	.owner = THIS_MODULE,
2374 	.read = amdgpu_ttm_vram_read,
2375 	.write = amdgpu_ttm_vram_write,
2376 	.llseek = default_llseek,
2377 };
2378 
2379 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2380 
2381 /**
2382  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2383  */
2384 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2385 				   size_t size, loff_t *pos)
2386 {
2387 	struct amdgpu_device *adev = file_inode(f)->i_private;
2388 	ssize_t result = 0;
2389 	int r;
2390 
2391 	while (size) {
2392 		loff_t p = *pos / PAGE_SIZE;
2393 		unsigned off = *pos & ~PAGE_MASK;
2394 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2395 		struct page *page;
2396 		void *ptr;
2397 
2398 		if (p >= adev->gart.num_cpu_pages)
2399 			return result;
2400 
2401 		page = adev->gart.pages[p];
2402 		if (page) {
2403 			ptr = kmap(page);
2404 			ptr += off;
2405 
2406 			r = copy_to_user(buf, ptr, cur_size);
2407 			kunmap(adev->gart.pages[p]);
2408 		} else
2409 			r = clear_user(buf, cur_size);
2410 
2411 		if (r)
2412 			return -EFAULT;
2413 
2414 		result += cur_size;
2415 		buf += cur_size;
2416 		*pos += cur_size;
2417 		size -= cur_size;
2418 	}
2419 
2420 	return result;
2421 }
2422 
2423 static const struct file_operations amdgpu_ttm_gtt_fops = {
2424 	.owner = THIS_MODULE,
2425 	.read = amdgpu_ttm_gtt_read,
2426 	.llseek = default_llseek
2427 };
2428 
2429 #endif
2430 
2431 /**
2432  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2433  *
2434  * This function is used to read memory that has been mapped to the
2435  * GPU and the known addresses are not physical addresses but instead
2436  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2437  */
2438 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2439 				 size_t size, loff_t *pos)
2440 {
2441 	struct amdgpu_device *adev = file_inode(f)->i_private;
2442 	struct iommu_domain *dom;
2443 	ssize_t result = 0;
2444 	int r;
2445 
2446 	/* retrieve the IOMMU domain if any for this device */
2447 	dom = iommu_get_domain_for_dev(adev->dev);
2448 
2449 	while (size) {
2450 		phys_addr_t addr = *pos & PAGE_MASK;
2451 		loff_t off = *pos & ~PAGE_MASK;
2452 		size_t bytes = PAGE_SIZE - off;
2453 		unsigned long pfn;
2454 		struct page *p;
2455 		void *ptr;
2456 
2457 		bytes = bytes < size ? bytes : size;
2458 
2459 		/* Translate the bus address to a physical address.  If
2460 		 * the domain is NULL it means there is no IOMMU active
2461 		 * and the address translation is the identity
2462 		 */
2463 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2464 
2465 		pfn = addr >> PAGE_SHIFT;
2466 		if (!pfn_valid(pfn))
2467 			return -EPERM;
2468 
2469 		p = pfn_to_page(pfn);
2470 		if (p->mapping != adev->mman.bdev.dev_mapping)
2471 			return -EPERM;
2472 
2473 		ptr = kmap(p);
2474 		r = copy_to_user(buf, ptr + off, bytes);
2475 		kunmap(p);
2476 		if (r)
2477 			return -EFAULT;
2478 
2479 		size -= bytes;
2480 		*pos += bytes;
2481 		result += bytes;
2482 	}
2483 
2484 	return result;
2485 }
2486 
2487 /**
2488  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2489  *
2490  * This function is used to write memory that has been mapped to the
2491  * GPU and the known addresses are not physical addresses but instead
2492  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2493  */
2494 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2495 				 size_t size, loff_t *pos)
2496 {
2497 	struct amdgpu_device *adev = file_inode(f)->i_private;
2498 	struct iommu_domain *dom;
2499 	ssize_t result = 0;
2500 	int r;
2501 
2502 	dom = iommu_get_domain_for_dev(adev->dev);
2503 
2504 	while (size) {
2505 		phys_addr_t addr = *pos & PAGE_MASK;
2506 		loff_t off = *pos & ~PAGE_MASK;
2507 		size_t bytes = PAGE_SIZE - off;
2508 		unsigned long pfn;
2509 		struct page *p;
2510 		void *ptr;
2511 
2512 		bytes = bytes < size ? bytes : size;
2513 
2514 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2515 
2516 		pfn = addr >> PAGE_SHIFT;
2517 		if (!pfn_valid(pfn))
2518 			return -EPERM;
2519 
2520 		p = pfn_to_page(pfn);
2521 		if (p->mapping != adev->mman.bdev.dev_mapping)
2522 			return -EPERM;
2523 
2524 		ptr = kmap(p);
2525 		r = copy_from_user(ptr + off, buf, bytes);
2526 		kunmap(p);
2527 		if (r)
2528 			return -EFAULT;
2529 
2530 		size -= bytes;
2531 		*pos += bytes;
2532 		result += bytes;
2533 	}
2534 
2535 	return result;
2536 }
2537 
2538 static const struct file_operations amdgpu_ttm_iomem_fops = {
2539 	.owner = THIS_MODULE,
2540 	.read = amdgpu_iomem_read,
2541 	.write = amdgpu_iomem_write,
2542 	.llseek = default_llseek
2543 };
2544 
2545 static const struct {
2546 	char *name;
2547 	const struct file_operations *fops;
2548 	int domain;
2549 } ttm_debugfs_entries[] = {
2550 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2551 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2552 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2553 #endif
2554 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2555 };
2556 
2557 #endif
2558 
2559 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2560 {
2561 #if defined(CONFIG_DEBUG_FS)
2562 	unsigned count;
2563 
2564 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2565 	struct dentry *ent, *root = minor->debugfs_root;
2566 
2567 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2568 		ent = debugfs_create_file(
2569 				ttm_debugfs_entries[count].name,
2570 				S_IFREG | S_IRUGO, root,
2571 				adev,
2572 				ttm_debugfs_entries[count].fops);
2573 		if (IS_ERR(ent))
2574 			return PTR_ERR(ent);
2575 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2576 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2577 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2578 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2579 		adev->mman.debugfs_entries[count] = ent;
2580 	}
2581 
2582 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2583 
2584 #ifdef CONFIG_SWIOTLB
2585 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2586 		--count;
2587 #endif
2588 
2589 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2590 #else
2591 	return 0;
2592 #endif
2593 }
2594