1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_module.h> 50 #include <drm/ttm/ttm_page_alloc.h> 51 52 #include <drm/drm_debugfs.h> 53 #include <drm/amdgpu_drm.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "bif/bif_4_1_d.h" 62 63 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 64 struct ttm_mem_reg *mem, unsigned num_pages, 65 uint64_t offset, unsigned window, 66 struct amdgpu_ring *ring, 67 uint64_t *addr); 68 69 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 70 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 71 72 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 73 { 74 return 0; 75 } 76 77 /** 78 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 79 * memory request. 80 * 81 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 82 * @type: The type of memory requested 83 * @man: The memory type manager for each domain 84 * 85 * This is called by ttm_bo_init_mm() when a buffer object is being 86 * initialized. 87 */ 88 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 89 struct ttm_mem_type_manager *man) 90 { 91 struct amdgpu_device *adev; 92 93 adev = amdgpu_ttm_adev(bdev); 94 95 switch (type) { 96 case TTM_PL_SYSTEM: 97 /* System memory */ 98 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 99 man->available_caching = TTM_PL_MASK_CACHING; 100 man->default_caching = TTM_PL_FLAG_CACHED; 101 break; 102 case TTM_PL_TT: 103 /* GTT memory */ 104 man->func = &amdgpu_gtt_mgr_func; 105 man->gpu_offset = adev->gmc.gart_start; 106 man->available_caching = TTM_PL_MASK_CACHING; 107 man->default_caching = TTM_PL_FLAG_CACHED; 108 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 109 break; 110 case TTM_PL_VRAM: 111 /* "On-card" video ram */ 112 man->func = &amdgpu_vram_mgr_func; 113 man->gpu_offset = adev->gmc.vram_start; 114 man->flags = TTM_MEMTYPE_FLAG_FIXED | 115 TTM_MEMTYPE_FLAG_MAPPABLE; 116 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 117 man->default_caching = TTM_PL_FLAG_WC; 118 break; 119 case AMDGPU_PL_GDS: 120 case AMDGPU_PL_GWS: 121 case AMDGPU_PL_OA: 122 /* On-chip GDS memory*/ 123 man->func = &ttm_bo_manager_func; 124 man->gpu_offset = 0; 125 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 126 man->available_caching = TTM_PL_FLAG_UNCACHED; 127 man->default_caching = TTM_PL_FLAG_UNCACHED; 128 break; 129 default: 130 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 131 return -EINVAL; 132 } 133 return 0; 134 } 135 136 /** 137 * amdgpu_evict_flags - Compute placement flags 138 * 139 * @bo: The buffer object to evict 140 * @placement: Possible destination(s) for evicted BO 141 * 142 * Fill in placement data when ttm_bo_evict() is called 143 */ 144 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 145 struct ttm_placement *placement) 146 { 147 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 148 struct amdgpu_bo *abo; 149 static const struct ttm_place placements = { 150 .fpfn = 0, 151 .lpfn = 0, 152 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 153 }; 154 155 /* Don't handle scatter gather BOs */ 156 if (bo->type == ttm_bo_type_sg) { 157 placement->num_placement = 0; 158 placement->num_busy_placement = 0; 159 return; 160 } 161 162 /* Object isn't an AMDGPU object so ignore */ 163 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 164 placement->placement = &placements; 165 placement->busy_placement = &placements; 166 placement->num_placement = 1; 167 placement->num_busy_placement = 1; 168 return; 169 } 170 171 abo = ttm_to_amdgpu_bo(bo); 172 switch (bo->mem.mem_type) { 173 case AMDGPU_PL_GDS: 174 case AMDGPU_PL_GWS: 175 case AMDGPU_PL_OA: 176 placement->num_placement = 0; 177 placement->num_busy_placement = 0; 178 return; 179 180 case TTM_PL_VRAM: 181 if (!adev->mman.buffer_funcs_enabled) { 182 /* Move to system memory */ 183 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 184 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 185 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 186 amdgpu_bo_in_cpu_visible_vram(abo)) { 187 188 /* Try evicting to the CPU inaccessible part of VRAM 189 * first, but only set GTT as busy placement, so this 190 * BO will be evicted to GTT rather than causing other 191 * BOs to be evicted from VRAM 192 */ 193 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 194 AMDGPU_GEM_DOMAIN_GTT); 195 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 196 abo->placements[0].lpfn = 0; 197 abo->placement.busy_placement = &abo->placements[1]; 198 abo->placement.num_busy_placement = 1; 199 } else { 200 /* Move to GTT memory */ 201 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 202 } 203 break; 204 case TTM_PL_TT: 205 default: 206 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 207 break; 208 } 209 *placement = abo->placement; 210 } 211 212 /** 213 * amdgpu_verify_access - Verify access for a mmap call 214 * 215 * @bo: The buffer object to map 216 * @filp: The file pointer from the process performing the mmap 217 * 218 * This is called by ttm_bo_mmap() to verify whether a process 219 * has the right to mmap a BO to their process space. 220 */ 221 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 222 { 223 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 224 225 /* 226 * Don't verify access for KFD BOs. They don't have a GEM 227 * object associated with them. 228 */ 229 if (abo->kfd_bo) 230 return 0; 231 232 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 233 return -EPERM; 234 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 235 filp->private_data); 236 } 237 238 /** 239 * amdgpu_move_null - Register memory for a buffer object 240 * 241 * @bo: The bo to assign the memory to 242 * @new_mem: The memory to be assigned. 243 * 244 * Assign the memory from new_mem to the memory of the buffer object bo. 245 */ 246 static void amdgpu_move_null(struct ttm_buffer_object *bo, 247 struct ttm_mem_reg *new_mem) 248 { 249 struct ttm_mem_reg *old_mem = &bo->mem; 250 251 BUG_ON(old_mem->mm_node != NULL); 252 *old_mem = *new_mem; 253 new_mem->mm_node = NULL; 254 } 255 256 /** 257 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 258 * 259 * @bo: The bo to assign the memory to. 260 * @mm_node: Memory manager node for drm allocator. 261 * @mem: The region where the bo resides. 262 * 263 */ 264 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 265 struct drm_mm_node *mm_node, 266 struct ttm_mem_reg *mem) 267 { 268 uint64_t addr = 0; 269 270 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 271 addr = mm_node->start << PAGE_SHIFT; 272 addr += bo->bdev->man[mem->mem_type].gpu_offset; 273 } 274 return addr; 275 } 276 277 /** 278 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 279 * @offset. It also modifies the offset to be within the drm_mm_node returned 280 * 281 * @mem: The region where the bo resides. 282 * @offset: The offset that drm_mm_node is used for finding. 283 * 284 */ 285 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 286 unsigned long *offset) 287 { 288 struct drm_mm_node *mm_node = mem->mm_node; 289 290 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 291 *offset -= (mm_node->size << PAGE_SHIFT); 292 ++mm_node; 293 } 294 return mm_node; 295 } 296 297 /** 298 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 299 * 300 * The function copies @size bytes from {src->mem + src->offset} to 301 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 302 * move and different for a BO to BO copy. 303 * 304 * @f: Returns the last fence if multiple jobs are submitted. 305 */ 306 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 307 struct amdgpu_copy_mem *src, 308 struct amdgpu_copy_mem *dst, 309 uint64_t size, 310 struct dma_resv *resv, 311 struct dma_fence **f) 312 { 313 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 314 struct drm_mm_node *src_mm, *dst_mm; 315 uint64_t src_node_start, dst_node_start, src_node_size, 316 dst_node_size, src_page_offset, dst_page_offset; 317 struct dma_fence *fence = NULL; 318 int r = 0; 319 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 320 AMDGPU_GPU_PAGE_SIZE); 321 322 if (!adev->mman.buffer_funcs_enabled) { 323 DRM_ERROR("Trying to move memory with ring turned off.\n"); 324 return -EINVAL; 325 } 326 327 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 328 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 329 src->offset; 330 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 331 src_page_offset = src_node_start & (PAGE_SIZE - 1); 332 333 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 334 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 335 dst->offset; 336 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 337 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 338 339 mutex_lock(&adev->mman.gtt_window_lock); 340 341 while (size) { 342 unsigned long cur_size; 343 uint64_t from = src_node_start, to = dst_node_start; 344 struct dma_fence *next; 345 346 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 347 * begins at an offset, then adjust the size accordingly 348 */ 349 cur_size = min3(min(src_node_size, dst_node_size), size, 350 GTT_MAX_BYTES); 351 if (cur_size + src_page_offset > GTT_MAX_BYTES || 352 cur_size + dst_page_offset > GTT_MAX_BYTES) 353 cur_size -= max(src_page_offset, dst_page_offset); 354 355 /* Map only what needs to be accessed. Map src to window 0 and 356 * dst to window 1 357 */ 358 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 359 r = amdgpu_map_buffer(src->bo, src->mem, 360 PFN_UP(cur_size + src_page_offset), 361 src_node_start, 0, ring, 362 &from); 363 if (r) 364 goto error; 365 /* Adjust the offset because amdgpu_map_buffer returns 366 * start of mapped page 367 */ 368 from += src_page_offset; 369 } 370 371 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 372 r = amdgpu_map_buffer(dst->bo, dst->mem, 373 PFN_UP(cur_size + dst_page_offset), 374 dst_node_start, 1, ring, 375 &to); 376 if (r) 377 goto error; 378 to += dst_page_offset; 379 } 380 381 r = amdgpu_copy_buffer(ring, from, to, cur_size, 382 resv, &next, false, true); 383 if (r) 384 goto error; 385 386 dma_fence_put(fence); 387 fence = next; 388 389 size -= cur_size; 390 if (!size) 391 break; 392 393 src_node_size -= cur_size; 394 if (!src_node_size) { 395 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 396 src->mem); 397 src_node_size = (src_mm->size << PAGE_SHIFT); 398 src_page_offset = 0; 399 } else { 400 src_node_start += cur_size; 401 src_page_offset = src_node_start & (PAGE_SIZE - 1); 402 } 403 dst_node_size -= cur_size; 404 if (!dst_node_size) { 405 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 406 dst->mem); 407 dst_node_size = (dst_mm->size << PAGE_SHIFT); 408 dst_page_offset = 0; 409 } else { 410 dst_node_start += cur_size; 411 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 412 } 413 } 414 error: 415 mutex_unlock(&adev->mman.gtt_window_lock); 416 if (f) 417 *f = dma_fence_get(fence); 418 dma_fence_put(fence); 419 return r; 420 } 421 422 /** 423 * amdgpu_move_blit - Copy an entire buffer to another buffer 424 * 425 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 426 * help move buffers to and from VRAM. 427 */ 428 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 429 bool evict, bool no_wait_gpu, 430 struct ttm_mem_reg *new_mem, 431 struct ttm_mem_reg *old_mem) 432 { 433 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 434 struct amdgpu_copy_mem src, dst; 435 struct dma_fence *fence = NULL; 436 int r; 437 438 src.bo = bo; 439 dst.bo = bo; 440 src.mem = old_mem; 441 dst.mem = new_mem; 442 src.offset = 0; 443 dst.offset = 0; 444 445 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 446 new_mem->num_pages << PAGE_SHIFT, 447 bo->base.resv, &fence); 448 if (r) 449 goto error; 450 451 /* clear the space being freed */ 452 if (old_mem->mem_type == TTM_PL_VRAM && 453 (ttm_to_amdgpu_bo(bo)->flags & 454 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 455 struct dma_fence *wipe_fence = NULL; 456 457 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 458 NULL, &wipe_fence); 459 if (r) { 460 goto error; 461 } else if (wipe_fence) { 462 dma_fence_put(fence); 463 fence = wipe_fence; 464 } 465 } 466 467 /* Always block for VM page tables before committing the new location */ 468 if (bo->type == ttm_bo_type_kernel) 469 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 470 else 471 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 472 dma_fence_put(fence); 473 return r; 474 475 error: 476 if (fence) 477 dma_fence_wait(fence, false); 478 dma_fence_put(fence); 479 return r; 480 } 481 482 /** 483 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 484 * 485 * Called by amdgpu_bo_move(). 486 */ 487 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 488 struct ttm_operation_ctx *ctx, 489 struct ttm_mem_reg *new_mem) 490 { 491 struct ttm_mem_reg *old_mem = &bo->mem; 492 struct ttm_mem_reg tmp_mem; 493 struct ttm_place placements; 494 struct ttm_placement placement; 495 int r; 496 497 /* create space/pages for new_mem in GTT space */ 498 tmp_mem = *new_mem; 499 tmp_mem.mm_node = NULL; 500 placement.num_placement = 1; 501 placement.placement = &placements; 502 placement.num_busy_placement = 1; 503 placement.busy_placement = &placements; 504 placements.fpfn = 0; 505 placements.lpfn = 0; 506 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 507 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 508 if (unlikely(r)) { 509 pr_err("Failed to find GTT space for blit from VRAM\n"); 510 return r; 511 } 512 513 /* set caching flags */ 514 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 515 if (unlikely(r)) { 516 goto out_cleanup; 517 } 518 519 /* Bind the memory to the GTT space */ 520 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 521 if (unlikely(r)) { 522 goto out_cleanup; 523 } 524 525 /* blit VRAM to GTT */ 526 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 527 if (unlikely(r)) { 528 goto out_cleanup; 529 } 530 531 /* move BO (in tmp_mem) to new_mem */ 532 r = ttm_bo_move_ttm(bo, ctx, new_mem); 533 out_cleanup: 534 ttm_bo_mem_put(bo, &tmp_mem); 535 return r; 536 } 537 538 /** 539 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 540 * 541 * Called by amdgpu_bo_move(). 542 */ 543 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 544 struct ttm_operation_ctx *ctx, 545 struct ttm_mem_reg *new_mem) 546 { 547 struct ttm_mem_reg *old_mem = &bo->mem; 548 struct ttm_mem_reg tmp_mem; 549 struct ttm_placement placement; 550 struct ttm_place placements; 551 int r; 552 553 /* make space in GTT for old_mem buffer */ 554 tmp_mem = *new_mem; 555 tmp_mem.mm_node = NULL; 556 placement.num_placement = 1; 557 placement.placement = &placements; 558 placement.num_busy_placement = 1; 559 placement.busy_placement = &placements; 560 placements.fpfn = 0; 561 placements.lpfn = 0; 562 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 563 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 564 if (unlikely(r)) { 565 pr_err("Failed to find GTT space for blit to VRAM\n"); 566 return r; 567 } 568 569 /* move/bind old memory to GTT space */ 570 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 571 if (unlikely(r)) { 572 goto out_cleanup; 573 } 574 575 /* copy to VRAM */ 576 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 577 if (unlikely(r)) { 578 goto out_cleanup; 579 } 580 out_cleanup: 581 ttm_bo_mem_put(bo, &tmp_mem); 582 return r; 583 } 584 585 /** 586 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 587 * 588 * Called by amdgpu_bo_move() 589 */ 590 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 591 struct ttm_mem_reg *mem) 592 { 593 struct drm_mm_node *nodes = mem->mm_node; 594 595 if (mem->mem_type == TTM_PL_SYSTEM || 596 mem->mem_type == TTM_PL_TT) 597 return true; 598 if (mem->mem_type != TTM_PL_VRAM) 599 return false; 600 601 /* ttm_mem_reg_ioremap only supports contiguous memory */ 602 if (nodes->size != mem->num_pages) 603 return false; 604 605 return ((nodes->start + nodes->size) << PAGE_SHIFT) 606 <= adev->gmc.visible_vram_size; 607 } 608 609 /** 610 * amdgpu_bo_move - Move a buffer object to a new memory location 611 * 612 * Called by ttm_bo_handle_move_mem() 613 */ 614 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 615 struct ttm_operation_ctx *ctx, 616 struct ttm_mem_reg *new_mem) 617 { 618 struct amdgpu_device *adev; 619 struct amdgpu_bo *abo; 620 struct ttm_mem_reg *old_mem = &bo->mem; 621 int r; 622 623 /* Can't move a pinned BO */ 624 abo = ttm_to_amdgpu_bo(bo); 625 if (WARN_ON_ONCE(abo->pin_count > 0)) 626 return -EINVAL; 627 628 adev = amdgpu_ttm_adev(bo->bdev); 629 630 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 631 amdgpu_move_null(bo, new_mem); 632 return 0; 633 } 634 if ((old_mem->mem_type == TTM_PL_TT && 635 new_mem->mem_type == TTM_PL_SYSTEM) || 636 (old_mem->mem_type == TTM_PL_SYSTEM && 637 new_mem->mem_type == TTM_PL_TT)) { 638 /* bind is enough */ 639 amdgpu_move_null(bo, new_mem); 640 return 0; 641 } 642 if (old_mem->mem_type == AMDGPU_PL_GDS || 643 old_mem->mem_type == AMDGPU_PL_GWS || 644 old_mem->mem_type == AMDGPU_PL_OA || 645 new_mem->mem_type == AMDGPU_PL_GDS || 646 new_mem->mem_type == AMDGPU_PL_GWS || 647 new_mem->mem_type == AMDGPU_PL_OA) { 648 /* Nothing to save here */ 649 amdgpu_move_null(bo, new_mem); 650 return 0; 651 } 652 653 if (!adev->mman.buffer_funcs_enabled) { 654 r = -ENODEV; 655 goto memcpy; 656 } 657 658 if (old_mem->mem_type == TTM_PL_VRAM && 659 new_mem->mem_type == TTM_PL_SYSTEM) { 660 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 661 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 662 new_mem->mem_type == TTM_PL_VRAM) { 663 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 664 } else { 665 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 666 new_mem, old_mem); 667 } 668 669 if (r) { 670 memcpy: 671 /* Check that all memory is CPU accessible */ 672 if (!amdgpu_mem_visible(adev, old_mem) || 673 !amdgpu_mem_visible(adev, new_mem)) { 674 pr_err("Move buffer fallback to memcpy unavailable\n"); 675 return r; 676 } 677 678 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 679 if (r) 680 return r; 681 } 682 683 if (bo->type == ttm_bo_type_device && 684 new_mem->mem_type == TTM_PL_VRAM && 685 old_mem->mem_type != TTM_PL_VRAM) { 686 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 687 * accesses the BO after it's moved. 688 */ 689 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 690 } 691 692 /* update statistics */ 693 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 694 return 0; 695 } 696 697 /** 698 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 699 * 700 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 701 */ 702 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 703 { 704 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 705 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 706 struct drm_mm_node *mm_node = mem->mm_node; 707 708 mem->bus.addr = NULL; 709 mem->bus.offset = 0; 710 mem->bus.size = mem->num_pages << PAGE_SHIFT; 711 mem->bus.base = 0; 712 mem->bus.is_iomem = false; 713 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 714 return -EINVAL; 715 switch (mem->mem_type) { 716 case TTM_PL_SYSTEM: 717 /* system memory */ 718 return 0; 719 case TTM_PL_TT: 720 break; 721 case TTM_PL_VRAM: 722 mem->bus.offset = mem->start << PAGE_SHIFT; 723 /* check if it's visible */ 724 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 725 return -EINVAL; 726 /* Only physically contiguous buffers apply. In a contiguous 727 * buffer, size of the first mm_node would match the number of 728 * pages in ttm_mem_reg. 729 */ 730 if (adev->mman.aper_base_kaddr && 731 (mm_node->size == mem->num_pages)) 732 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 733 mem->bus.offset; 734 735 mem->bus.base = adev->gmc.aper_base; 736 mem->bus.is_iomem = true; 737 break; 738 default: 739 return -EINVAL; 740 } 741 return 0; 742 } 743 744 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 745 { 746 } 747 748 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 749 unsigned long page_offset) 750 { 751 struct drm_mm_node *mm; 752 unsigned long offset = (page_offset << PAGE_SHIFT); 753 754 mm = amdgpu_find_mm_node(&bo->mem, &offset); 755 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 756 (offset >> PAGE_SHIFT); 757 } 758 759 /* 760 * TTM backend functions. 761 */ 762 struct amdgpu_ttm_tt { 763 struct ttm_dma_tt ttm; 764 struct drm_gem_object *gobj; 765 u64 offset; 766 uint64_t userptr; 767 struct task_struct *usertask; 768 uint32_t userflags; 769 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 770 struct hmm_range *range; 771 #endif 772 }; 773 774 #ifdef CONFIG_DRM_AMDGPU_USERPTR 775 /* flags used by HMM internal, not related to CPU/GPU PTE flags */ 776 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = { 777 (1 << 0), /* HMM_PFN_VALID */ 778 (1 << 1), /* HMM_PFN_WRITE */ 779 }; 780 781 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = { 782 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */ 783 0, /* HMM_PFN_NONE */ 784 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */ 785 }; 786 787 /** 788 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 789 * memory and start HMM tracking CPU page table update 790 * 791 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 792 * once afterwards to stop HMM tracking 793 */ 794 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 795 { 796 struct ttm_tt *ttm = bo->tbo.ttm; 797 struct amdgpu_ttm_tt *gtt = (void *)ttm; 798 unsigned long start = gtt->userptr; 799 struct vm_area_struct *vma; 800 struct hmm_range *range; 801 unsigned long timeout; 802 struct mm_struct *mm; 803 unsigned long i; 804 int r = 0; 805 806 mm = bo->notifier.mm; 807 if (unlikely(!mm)) { 808 DRM_DEBUG_DRIVER("BO is not registered?\n"); 809 return -EFAULT; 810 } 811 812 /* Another get_user_pages is running at the same time?? */ 813 if (WARN_ON(gtt->range)) 814 return -EFAULT; 815 816 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 817 return -ESRCH; 818 819 range = kzalloc(sizeof(*range), GFP_KERNEL); 820 if (unlikely(!range)) { 821 r = -ENOMEM; 822 goto out; 823 } 824 range->notifier = &bo->notifier; 825 range->flags = hmm_range_flags; 826 range->values = hmm_range_values; 827 range->pfn_shift = PAGE_SHIFT; 828 range->start = bo->notifier.interval_tree.start; 829 range->end = bo->notifier.interval_tree.last + 1; 830 range->default_flags = hmm_range_flags[HMM_PFN_VALID]; 831 if (!amdgpu_ttm_tt_is_readonly(ttm)) 832 range->default_flags |= range->flags[HMM_PFN_WRITE]; 833 834 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns), 835 GFP_KERNEL); 836 if (unlikely(!range->pfns)) { 837 r = -ENOMEM; 838 goto out_free_ranges; 839 } 840 841 down_read(&mm->mmap_sem); 842 vma = find_vma(mm, start); 843 if (unlikely(!vma || start < vma->vm_start)) { 844 r = -EFAULT; 845 goto out_unlock; 846 } 847 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 848 vma->vm_file)) { 849 r = -EPERM; 850 goto out_unlock; 851 } 852 up_read(&mm->mmap_sem); 853 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 854 855 retry: 856 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 857 858 down_read(&mm->mmap_sem); 859 r = hmm_range_fault(range, 0); 860 up_read(&mm->mmap_sem); 861 if (unlikely(r <= 0)) { 862 /* 863 * FIXME: This timeout should encompass the retry from 864 * mmu_interval_read_retry() as well. 865 */ 866 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout)) 867 goto retry; 868 goto out_free_pfns; 869 } 870 871 for (i = 0; i < ttm->num_pages; i++) { 872 /* FIXME: The pages cannot be touched outside the notifier_lock */ 873 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]); 874 if (unlikely(!pages[i])) { 875 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 876 i, range->pfns[i]); 877 r = -ENOMEM; 878 879 goto out_free_pfns; 880 } 881 } 882 883 gtt->range = range; 884 mmput(mm); 885 886 return 0; 887 888 out_unlock: 889 up_read(&mm->mmap_sem); 890 out_free_pfns: 891 kvfree(range->pfns); 892 out_free_ranges: 893 kfree(range); 894 out: 895 mmput(mm); 896 return r; 897 } 898 899 /** 900 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 901 * Check if the pages backing this ttm range have been invalidated 902 * 903 * Returns: true if pages are still valid 904 */ 905 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 906 { 907 struct amdgpu_ttm_tt *gtt = (void *)ttm; 908 bool r = false; 909 910 if (!gtt || !gtt->userptr) 911 return false; 912 913 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 914 gtt->userptr, ttm->num_pages); 915 916 WARN_ONCE(!gtt->range || !gtt->range->pfns, 917 "No user pages to check\n"); 918 919 if (gtt->range) { 920 /* 921 * FIXME: Must always hold notifier_lock for this, and must 922 * not ignore the return code. 923 */ 924 r = mmu_interval_read_retry(gtt->range->notifier, 925 gtt->range->notifier_seq); 926 kvfree(gtt->range->pfns); 927 kfree(gtt->range); 928 gtt->range = NULL; 929 } 930 931 return !r; 932 } 933 #endif 934 935 /** 936 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 937 * 938 * Called by amdgpu_cs_list_validate(). This creates the page list 939 * that backs user memory and will ultimately be mapped into the device 940 * address space. 941 */ 942 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 943 { 944 unsigned long i; 945 946 for (i = 0; i < ttm->num_pages; ++i) 947 ttm->pages[i] = pages ? pages[i] : NULL; 948 } 949 950 /** 951 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 952 * 953 * Called by amdgpu_ttm_backend_bind() 954 **/ 955 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 956 { 957 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 958 struct amdgpu_ttm_tt *gtt = (void *)ttm; 959 unsigned nents; 960 int r; 961 962 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 963 enum dma_data_direction direction = write ? 964 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 965 966 /* Allocate an SG array and squash pages into it */ 967 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 968 ttm->num_pages << PAGE_SHIFT, 969 GFP_KERNEL); 970 if (r) 971 goto release_sg; 972 973 /* Map SG to device */ 974 r = -ENOMEM; 975 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 976 if (nents != ttm->sg->nents) 977 goto release_sg; 978 979 /* convert SG to linear array of pages and dma addresses */ 980 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 981 gtt->ttm.dma_address, ttm->num_pages); 982 983 return 0; 984 985 release_sg: 986 kfree(ttm->sg); 987 return r; 988 } 989 990 /** 991 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 992 */ 993 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 994 { 995 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 996 struct amdgpu_ttm_tt *gtt = (void *)ttm; 997 998 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 999 enum dma_data_direction direction = write ? 1000 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1001 1002 /* double check that we don't free the table twice */ 1003 if (!ttm->sg->sgl) 1004 return; 1005 1006 /* unmap the pages mapped to the device */ 1007 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 1008 1009 sg_free_table(ttm->sg); 1010 1011 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1012 if (gtt->range) { 1013 unsigned long i; 1014 1015 for (i = 0; i < ttm->num_pages; i++) { 1016 if (ttm->pages[i] != 1017 hmm_device_entry_to_page(gtt->range, 1018 gtt->range->pfns[i])) 1019 break; 1020 } 1021 1022 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 1023 } 1024 #endif 1025 } 1026 1027 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1028 struct ttm_buffer_object *tbo, 1029 uint64_t flags) 1030 { 1031 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1032 struct ttm_tt *ttm = tbo->ttm; 1033 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1034 int r; 1035 1036 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1037 uint64_t page_idx = 1; 1038 1039 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1040 ttm->pages, gtt->ttm.dma_address, flags); 1041 if (r) 1042 goto gart_bind_fail; 1043 1044 /* Patch mtype of the second part BO */ 1045 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1046 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1047 1048 r = amdgpu_gart_bind(adev, 1049 gtt->offset + (page_idx << PAGE_SHIFT), 1050 ttm->num_pages - page_idx, 1051 &ttm->pages[page_idx], 1052 &(gtt->ttm.dma_address[page_idx]), flags); 1053 } else { 1054 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1055 ttm->pages, gtt->ttm.dma_address, flags); 1056 } 1057 1058 gart_bind_fail: 1059 if (r) 1060 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1061 ttm->num_pages, gtt->offset); 1062 1063 return r; 1064 } 1065 1066 /** 1067 * amdgpu_ttm_backend_bind - Bind GTT memory 1068 * 1069 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1070 * This handles binding GTT memory to the device address space. 1071 */ 1072 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1073 struct ttm_mem_reg *bo_mem) 1074 { 1075 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1076 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1077 uint64_t flags; 1078 int r = 0; 1079 1080 if (gtt->userptr) { 1081 r = amdgpu_ttm_tt_pin_userptr(ttm); 1082 if (r) { 1083 DRM_ERROR("failed to pin userptr\n"); 1084 return r; 1085 } 1086 } 1087 if (!ttm->num_pages) { 1088 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1089 ttm->num_pages, bo_mem, ttm); 1090 } 1091 1092 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1093 bo_mem->mem_type == AMDGPU_PL_GWS || 1094 bo_mem->mem_type == AMDGPU_PL_OA) 1095 return -EINVAL; 1096 1097 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1098 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1099 return 0; 1100 } 1101 1102 /* compute PTE flags relevant to this BO memory */ 1103 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1104 1105 /* bind pages into GART page tables */ 1106 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1107 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1108 ttm->pages, gtt->ttm.dma_address, flags); 1109 1110 if (r) 1111 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1112 ttm->num_pages, gtt->offset); 1113 return r; 1114 } 1115 1116 /** 1117 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1118 */ 1119 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1120 { 1121 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1122 struct ttm_operation_ctx ctx = { false, false }; 1123 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1124 struct ttm_mem_reg tmp; 1125 struct ttm_placement placement; 1126 struct ttm_place placements; 1127 uint64_t addr, flags; 1128 int r; 1129 1130 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1131 return 0; 1132 1133 addr = amdgpu_gmc_agp_addr(bo); 1134 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1135 bo->mem.start = addr >> PAGE_SHIFT; 1136 } else { 1137 1138 /* allocate GART space */ 1139 tmp = bo->mem; 1140 tmp.mm_node = NULL; 1141 placement.num_placement = 1; 1142 placement.placement = &placements; 1143 placement.num_busy_placement = 1; 1144 placement.busy_placement = &placements; 1145 placements.fpfn = 0; 1146 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1147 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1148 TTM_PL_FLAG_TT; 1149 1150 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1151 if (unlikely(r)) 1152 return r; 1153 1154 /* compute PTE flags for this buffer object */ 1155 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1156 1157 /* Bind pages */ 1158 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1159 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1160 if (unlikely(r)) { 1161 ttm_bo_mem_put(bo, &tmp); 1162 return r; 1163 } 1164 1165 ttm_bo_mem_put(bo, &bo->mem); 1166 bo->mem = tmp; 1167 } 1168 1169 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1170 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * amdgpu_ttm_recover_gart - Rebind GTT pages 1177 * 1178 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1179 * rebind GTT pages during a GPU reset. 1180 */ 1181 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1182 { 1183 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1184 uint64_t flags; 1185 int r; 1186 1187 if (!tbo->ttm) 1188 return 0; 1189 1190 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1191 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1192 1193 return r; 1194 } 1195 1196 /** 1197 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1198 * 1199 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1200 * ttm_tt_destroy(). 1201 */ 1202 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1203 { 1204 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1205 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1206 int r; 1207 1208 /* if the pages have userptr pinning then clear that first */ 1209 if (gtt->userptr) 1210 amdgpu_ttm_tt_unpin_userptr(ttm); 1211 1212 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1213 return 0; 1214 1215 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1216 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1217 if (r) 1218 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1219 gtt->ttm.ttm.num_pages, gtt->offset); 1220 return r; 1221 } 1222 1223 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1224 { 1225 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1226 1227 if (gtt->usertask) 1228 put_task_struct(gtt->usertask); 1229 1230 ttm_dma_tt_fini(>t->ttm); 1231 kfree(gtt); 1232 } 1233 1234 static struct ttm_backend_func amdgpu_backend_func = { 1235 .bind = &amdgpu_ttm_backend_bind, 1236 .unbind = &amdgpu_ttm_backend_unbind, 1237 .destroy = &amdgpu_ttm_backend_destroy, 1238 }; 1239 1240 /** 1241 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1242 * 1243 * @bo: The buffer object to create a GTT ttm_tt object around 1244 * 1245 * Called by ttm_tt_create(). 1246 */ 1247 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1248 uint32_t page_flags) 1249 { 1250 struct amdgpu_ttm_tt *gtt; 1251 1252 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1253 if (gtt == NULL) { 1254 return NULL; 1255 } 1256 gtt->ttm.ttm.func = &amdgpu_backend_func; 1257 gtt->gobj = &bo->base; 1258 1259 /* allocate space for the uninitialized page entries */ 1260 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1261 kfree(gtt); 1262 return NULL; 1263 } 1264 return >t->ttm.ttm; 1265 } 1266 1267 /** 1268 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1269 * 1270 * Map the pages of a ttm_tt object to an address space visible 1271 * to the underlying device. 1272 */ 1273 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1274 struct ttm_operation_ctx *ctx) 1275 { 1276 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1277 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1278 1279 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1280 if (gtt && gtt->userptr) { 1281 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1282 if (!ttm->sg) 1283 return -ENOMEM; 1284 1285 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1286 ttm->state = tt_unbound; 1287 return 0; 1288 } 1289 1290 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1291 if (!ttm->sg) { 1292 struct dma_buf_attachment *attach; 1293 struct sg_table *sgt; 1294 1295 attach = gtt->gobj->import_attach; 1296 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1297 if (IS_ERR(sgt)) 1298 return PTR_ERR(sgt); 1299 1300 ttm->sg = sgt; 1301 } 1302 1303 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1304 gtt->ttm.dma_address, 1305 ttm->num_pages); 1306 ttm->state = tt_unbound; 1307 return 0; 1308 } 1309 1310 #ifdef CONFIG_SWIOTLB 1311 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1312 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1313 } 1314 #endif 1315 1316 /* fall back to generic helper to populate the page array 1317 * and map them to the device */ 1318 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1319 } 1320 1321 /** 1322 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1323 * 1324 * Unmaps pages of a ttm_tt object from the device address space and 1325 * unpopulates the page array backing it. 1326 */ 1327 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1328 { 1329 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1330 struct amdgpu_device *adev; 1331 1332 if (gtt && gtt->userptr) { 1333 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1334 kfree(ttm->sg); 1335 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1336 return; 1337 } 1338 1339 if (ttm->sg && gtt->gobj->import_attach) { 1340 struct dma_buf_attachment *attach; 1341 1342 attach = gtt->gobj->import_attach; 1343 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1344 ttm->sg = NULL; 1345 return; 1346 } 1347 1348 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1349 return; 1350 1351 adev = amdgpu_ttm_adev(ttm->bdev); 1352 1353 #ifdef CONFIG_SWIOTLB 1354 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1355 ttm_dma_unpopulate(>t->ttm, adev->dev); 1356 return; 1357 } 1358 #endif 1359 1360 /* fall back to generic helper to unmap and unpopulate array */ 1361 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1362 } 1363 1364 /** 1365 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1366 * task 1367 * 1368 * @ttm: The ttm_tt object to bind this userptr object to 1369 * @addr: The address in the current tasks VM space to use 1370 * @flags: Requirements of userptr object. 1371 * 1372 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1373 * to current task 1374 */ 1375 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1376 uint32_t flags) 1377 { 1378 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1379 1380 if (gtt == NULL) 1381 return -EINVAL; 1382 1383 gtt->userptr = addr; 1384 gtt->userflags = flags; 1385 1386 if (gtt->usertask) 1387 put_task_struct(gtt->usertask); 1388 gtt->usertask = current->group_leader; 1389 get_task_struct(gtt->usertask); 1390 1391 return 0; 1392 } 1393 1394 /** 1395 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1396 */ 1397 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1398 { 1399 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1400 1401 if (gtt == NULL) 1402 return NULL; 1403 1404 if (gtt->usertask == NULL) 1405 return NULL; 1406 1407 return gtt->usertask->mm; 1408 } 1409 1410 /** 1411 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1412 * address range for the current task. 1413 * 1414 */ 1415 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1416 unsigned long end) 1417 { 1418 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1419 unsigned long size; 1420 1421 if (gtt == NULL || !gtt->userptr) 1422 return false; 1423 1424 /* Return false if no part of the ttm_tt object lies within 1425 * the range 1426 */ 1427 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1428 if (gtt->userptr > end || gtt->userptr + size <= start) 1429 return false; 1430 1431 return true; 1432 } 1433 1434 /** 1435 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1436 */ 1437 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1438 { 1439 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1440 1441 if (gtt == NULL || !gtt->userptr) 1442 return false; 1443 1444 return true; 1445 } 1446 1447 /** 1448 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1449 */ 1450 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1451 { 1452 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1453 1454 if (gtt == NULL) 1455 return false; 1456 1457 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1458 } 1459 1460 /** 1461 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1462 * 1463 * @ttm: The ttm_tt object to compute the flags for 1464 * @mem: The memory registry backing this ttm_tt object 1465 * 1466 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1467 */ 1468 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1469 { 1470 uint64_t flags = 0; 1471 1472 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1473 flags |= AMDGPU_PTE_VALID; 1474 1475 if (mem && mem->mem_type == TTM_PL_TT) { 1476 flags |= AMDGPU_PTE_SYSTEM; 1477 1478 if (ttm->caching_state == tt_cached) 1479 flags |= AMDGPU_PTE_SNOOPED; 1480 } 1481 1482 return flags; 1483 } 1484 1485 /** 1486 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1487 * 1488 * @ttm: The ttm_tt object to compute the flags for 1489 * @mem: The memory registry backing this ttm_tt object 1490 1491 * Figure out the flags to use for a VM PTE (Page Table Entry). 1492 */ 1493 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1494 struct ttm_mem_reg *mem) 1495 { 1496 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1497 1498 flags |= adev->gart.gart_pte_flags; 1499 flags |= AMDGPU_PTE_READABLE; 1500 1501 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1502 flags |= AMDGPU_PTE_WRITEABLE; 1503 1504 return flags; 1505 } 1506 1507 /** 1508 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1509 * object. 1510 * 1511 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1512 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1513 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1514 * used to clean out a memory space. 1515 */ 1516 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1517 const struct ttm_place *place) 1518 { 1519 unsigned long num_pages = bo->mem.num_pages; 1520 struct drm_mm_node *node = bo->mem.mm_node; 1521 struct dma_resv_list *flist; 1522 struct dma_fence *f; 1523 int i; 1524 1525 if (bo->type == ttm_bo_type_kernel && 1526 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1527 return false; 1528 1529 /* If bo is a KFD BO, check if the bo belongs to the current process. 1530 * If true, then return false as any KFD process needs all its BOs to 1531 * be resident to run successfully 1532 */ 1533 flist = dma_resv_get_list(bo->base.resv); 1534 if (flist) { 1535 for (i = 0; i < flist->shared_count; ++i) { 1536 f = rcu_dereference_protected(flist->shared[i], 1537 dma_resv_held(bo->base.resv)); 1538 if (amdkfd_fence_check_mm(f, current->mm)) 1539 return false; 1540 } 1541 } 1542 1543 switch (bo->mem.mem_type) { 1544 case TTM_PL_TT: 1545 return true; 1546 1547 case TTM_PL_VRAM: 1548 /* Check each drm MM node individually */ 1549 while (num_pages) { 1550 if (place->fpfn < (node->start + node->size) && 1551 !(place->lpfn && place->lpfn <= node->start)) 1552 return true; 1553 1554 num_pages -= node->size; 1555 ++node; 1556 } 1557 return false; 1558 1559 default: 1560 break; 1561 } 1562 1563 return ttm_bo_eviction_valuable(bo, place); 1564 } 1565 1566 /** 1567 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1568 * 1569 * @bo: The buffer object to read/write 1570 * @offset: Offset into buffer object 1571 * @buf: Secondary buffer to write/read from 1572 * @len: Length in bytes of access 1573 * @write: true if writing 1574 * 1575 * This is used to access VRAM that backs a buffer object via MMIO 1576 * access for debugging purposes. 1577 */ 1578 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1579 unsigned long offset, 1580 void *buf, int len, int write) 1581 { 1582 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1583 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1584 struct drm_mm_node *nodes; 1585 uint32_t value = 0; 1586 int ret = 0; 1587 uint64_t pos; 1588 unsigned long flags; 1589 1590 if (bo->mem.mem_type != TTM_PL_VRAM) 1591 return -EIO; 1592 1593 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1594 pos = (nodes->start << PAGE_SHIFT) + offset; 1595 1596 while (len && pos < adev->gmc.mc_vram_size) { 1597 uint64_t aligned_pos = pos & ~(uint64_t)3; 1598 uint32_t bytes = 4 - (pos & 3); 1599 uint32_t shift = (pos & 3) * 8; 1600 uint32_t mask = 0xffffffff << shift; 1601 1602 if (len < bytes) { 1603 mask &= 0xffffffff >> (bytes - len) * 8; 1604 bytes = len; 1605 } 1606 1607 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1608 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1609 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1610 if (!write || mask != 0xffffffff) 1611 value = RREG32_NO_KIQ(mmMM_DATA); 1612 if (write) { 1613 value &= ~mask; 1614 value |= (*(uint32_t *)buf << shift) & mask; 1615 WREG32_NO_KIQ(mmMM_DATA, value); 1616 } 1617 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1618 if (!write) { 1619 value = (value & mask) >> shift; 1620 memcpy(buf, &value, bytes); 1621 } 1622 1623 ret += bytes; 1624 buf = (uint8_t *)buf + bytes; 1625 pos += bytes; 1626 len -= bytes; 1627 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1628 ++nodes; 1629 pos = (nodes->start << PAGE_SHIFT); 1630 } 1631 } 1632 1633 return ret; 1634 } 1635 1636 static struct ttm_bo_driver amdgpu_bo_driver = { 1637 .ttm_tt_create = &amdgpu_ttm_tt_create, 1638 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1639 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1640 .invalidate_caches = &amdgpu_invalidate_caches, 1641 .init_mem_type = &amdgpu_init_mem_type, 1642 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1643 .evict_flags = &amdgpu_evict_flags, 1644 .move = &amdgpu_bo_move, 1645 .verify_access = &amdgpu_verify_access, 1646 .move_notify = &amdgpu_bo_move_notify, 1647 .release_notify = &amdgpu_bo_release_notify, 1648 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1649 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1650 .io_mem_free = &amdgpu_ttm_io_mem_free, 1651 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1652 .access_memory = &amdgpu_ttm_access_memory, 1653 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1654 }; 1655 1656 /* 1657 * Firmware Reservation functions 1658 */ 1659 /** 1660 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1661 * 1662 * @adev: amdgpu_device pointer 1663 * 1664 * free fw reserved vram if it has been reserved. 1665 */ 1666 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1667 { 1668 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1669 NULL, &adev->fw_vram_usage.va); 1670 } 1671 1672 /** 1673 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1674 * 1675 * @adev: amdgpu_device pointer 1676 * 1677 * create bo vram reservation from fw. 1678 */ 1679 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1680 { 1681 uint64_t vram_size = adev->gmc.visible_vram_size; 1682 1683 adev->fw_vram_usage.va = NULL; 1684 adev->fw_vram_usage.reserved_bo = NULL; 1685 1686 if (adev->fw_vram_usage.size == 0 || 1687 adev->fw_vram_usage.size > vram_size) 1688 return 0; 1689 1690 return amdgpu_bo_create_kernel_at(adev, 1691 adev->fw_vram_usage.start_offset, 1692 adev->fw_vram_usage.size, 1693 AMDGPU_GEM_DOMAIN_VRAM, 1694 &adev->fw_vram_usage.reserved_bo, 1695 &adev->fw_vram_usage.va); 1696 } 1697 1698 /* 1699 * Memoy training reservation functions 1700 */ 1701 1702 /** 1703 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1704 * 1705 * @adev: amdgpu_device pointer 1706 * 1707 * free memory training reserved vram if it has been reserved. 1708 */ 1709 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1710 { 1711 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1712 1713 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1714 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1715 ctx->c2p_bo = NULL; 1716 1717 return 0; 1718 } 1719 1720 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size) 1721 { 1722 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) ) 1723 vram_size -= SZ_1M; 1724 1725 return ALIGN(vram_size, SZ_1M); 1726 } 1727 1728 /** 1729 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training 1730 * 1731 * @adev: amdgpu_device pointer 1732 * 1733 * create bo vram reservation from memory training. 1734 */ 1735 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev) 1736 { 1737 int ret; 1738 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1739 1740 memset(ctx, 0, sizeof(*ctx)); 1741 if (!adev->fw_vram_usage.mem_train_support) { 1742 DRM_DEBUG("memory training does not support!\n"); 1743 return 0; 1744 } 1745 1746 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size); 1747 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1748 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1749 1750 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1751 ctx->train_data_size, 1752 ctx->p2c_train_data_offset, 1753 ctx->c2p_train_data_offset); 1754 1755 ret = amdgpu_bo_create_kernel_at(adev, 1756 ctx->c2p_train_data_offset, 1757 ctx->train_data_size, 1758 AMDGPU_GEM_DOMAIN_VRAM, 1759 &ctx->c2p_bo, 1760 NULL); 1761 if (ret) { 1762 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1763 amdgpu_ttm_training_reserve_vram_fini(adev); 1764 return ret; 1765 } 1766 1767 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1768 return 0; 1769 } 1770 1771 /** 1772 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1773 * gtt/vram related fields. 1774 * 1775 * This initializes all of the memory space pools that the TTM layer 1776 * will need such as the GTT space (system memory mapped to the device), 1777 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1778 * can be mapped per VMID. 1779 */ 1780 int amdgpu_ttm_init(struct amdgpu_device *adev) 1781 { 1782 uint64_t gtt_size; 1783 int r; 1784 u64 vis_vram_limit; 1785 void *stolen_vga_buf; 1786 1787 mutex_init(&adev->mman.gtt_window_lock); 1788 1789 /* No others user of address space so set it to 0 */ 1790 r = ttm_bo_device_init(&adev->mman.bdev, 1791 &amdgpu_bo_driver, 1792 adev->ddev->anon_inode->i_mapping, 1793 adev->ddev->vma_offset_manager, 1794 dma_addressing_limited(adev->dev)); 1795 if (r) { 1796 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1797 return r; 1798 } 1799 adev->mman.initialized = true; 1800 1801 /* We opt to avoid OOM on system pages allocations */ 1802 adev->mman.bdev.no_retry = true; 1803 1804 /* Initialize VRAM pool with all of VRAM divided into pages */ 1805 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1806 adev->gmc.real_vram_size >> PAGE_SHIFT); 1807 if (r) { 1808 DRM_ERROR("Failed initializing VRAM heap.\n"); 1809 return r; 1810 } 1811 1812 /* Reduce size of CPU-visible VRAM if requested */ 1813 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1814 if (amdgpu_vis_vram_limit > 0 && 1815 vis_vram_limit <= adev->gmc.visible_vram_size) 1816 adev->gmc.visible_vram_size = vis_vram_limit; 1817 1818 /* Change the size here instead of the init above so only lpfn is affected */ 1819 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1820 #ifdef CONFIG_64BIT 1821 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1822 adev->gmc.visible_vram_size); 1823 #endif 1824 1825 /* 1826 *The reserved vram for firmware must be pinned to the specified 1827 *place on the VRAM, so reserve it early. 1828 */ 1829 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1830 if (r) { 1831 return r; 1832 } 1833 1834 /* 1835 *The reserved vram for memory training must be pinned to the specified 1836 *place on the VRAM, so reserve it early. 1837 */ 1838 r = amdgpu_ttm_training_reserve_vram_init(adev); 1839 if (r) 1840 return r; 1841 1842 /* allocate memory as required for VGA 1843 * This is used for VGA emulation and pre-OS scanout buffers to 1844 * avoid display artifacts while transitioning between pre-OS 1845 * and driver. */ 1846 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1847 AMDGPU_GEM_DOMAIN_VRAM, 1848 &adev->stolen_vga_memory, 1849 NULL, &stolen_vga_buf); 1850 if (r) 1851 return r; 1852 1853 /* 1854 * reserve one TMR (64K) memory at the top of VRAM which holds 1855 * IP Discovery data and is protected by PSP. 1856 */ 1857 r = amdgpu_bo_create_kernel_at(adev, 1858 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE, 1859 DISCOVERY_TMR_SIZE, 1860 AMDGPU_GEM_DOMAIN_VRAM, 1861 &adev->discovery_memory, 1862 NULL); 1863 if (r) 1864 return r; 1865 1866 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1867 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1868 1869 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1870 * or whatever the user passed on module init */ 1871 if (amdgpu_gtt_size == -1) { 1872 struct sysinfo si; 1873 1874 si_meminfo(&si); 1875 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1876 adev->gmc.mc_vram_size), 1877 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1878 } 1879 else 1880 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1881 1882 /* Initialize GTT memory pool */ 1883 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1884 if (r) { 1885 DRM_ERROR("Failed initializing GTT heap.\n"); 1886 return r; 1887 } 1888 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1889 (unsigned)(gtt_size / (1024 * 1024))); 1890 1891 /* Initialize various on-chip memory pools */ 1892 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1893 adev->gds.gds_size); 1894 if (r) { 1895 DRM_ERROR("Failed initializing GDS heap.\n"); 1896 return r; 1897 } 1898 1899 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1900 adev->gds.gws_size); 1901 if (r) { 1902 DRM_ERROR("Failed initializing gws heap.\n"); 1903 return r; 1904 } 1905 1906 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1907 adev->gds.oa_size); 1908 if (r) { 1909 DRM_ERROR("Failed initializing oa heap.\n"); 1910 return r; 1911 } 1912 1913 /* Register debugfs entries for amdgpu_ttm */ 1914 r = amdgpu_ttm_debugfs_init(adev); 1915 if (r) { 1916 DRM_ERROR("Failed to init debugfs\n"); 1917 return r; 1918 } 1919 return 0; 1920 } 1921 1922 /** 1923 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1924 */ 1925 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1926 { 1927 void *stolen_vga_buf; 1928 /* return the VGA stolen memory (if any) back to VRAM */ 1929 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); 1930 } 1931 1932 /** 1933 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1934 */ 1935 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1936 { 1937 if (!adev->mman.initialized) 1938 return; 1939 1940 amdgpu_ttm_debugfs_fini(adev); 1941 amdgpu_ttm_training_reserve_vram_fini(adev); 1942 /* return the IP Discovery TMR memory back to VRAM */ 1943 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); 1944 amdgpu_ttm_fw_reserve_vram_fini(adev); 1945 1946 if (adev->mman.aper_base_kaddr) 1947 iounmap(adev->mman.aper_base_kaddr); 1948 adev->mman.aper_base_kaddr = NULL; 1949 1950 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1951 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1952 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1953 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1954 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1955 ttm_bo_device_release(&adev->mman.bdev); 1956 adev->mman.initialized = false; 1957 DRM_INFO("amdgpu: ttm finalized\n"); 1958 } 1959 1960 /** 1961 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1962 * 1963 * @adev: amdgpu_device pointer 1964 * @enable: true when we can use buffer functions. 1965 * 1966 * Enable/disable use of buffer functions during suspend/resume. This should 1967 * only be called at bootup or when userspace isn't running. 1968 */ 1969 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1970 { 1971 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1972 uint64_t size; 1973 int r; 1974 1975 if (!adev->mman.initialized || adev->in_gpu_reset || 1976 adev->mman.buffer_funcs_enabled == enable) 1977 return; 1978 1979 if (enable) { 1980 struct amdgpu_ring *ring; 1981 struct drm_gpu_scheduler *sched; 1982 1983 ring = adev->mman.buffer_funcs_ring; 1984 sched = &ring->sched; 1985 r = drm_sched_entity_init(&adev->mman.entity, 1986 DRM_SCHED_PRIORITY_KERNEL, &sched, 1987 1, NULL); 1988 if (r) { 1989 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1990 r); 1991 return; 1992 } 1993 } else { 1994 drm_sched_entity_destroy(&adev->mman.entity); 1995 dma_fence_put(man->move); 1996 man->move = NULL; 1997 } 1998 1999 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2000 if (enable) 2001 size = adev->gmc.real_vram_size; 2002 else 2003 size = adev->gmc.visible_vram_size; 2004 man->size = size >> PAGE_SHIFT; 2005 adev->mman.buffer_funcs_enabled = enable; 2006 } 2007 2008 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2009 { 2010 struct drm_file *file_priv = filp->private_data; 2011 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 2012 2013 if (adev == NULL) 2014 return -EINVAL; 2015 2016 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2017 } 2018 2019 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 2020 struct ttm_mem_reg *mem, unsigned num_pages, 2021 uint64_t offset, unsigned window, 2022 struct amdgpu_ring *ring, 2023 uint64_t *addr) 2024 { 2025 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 2026 struct amdgpu_device *adev = ring->adev; 2027 struct ttm_tt *ttm = bo->ttm; 2028 struct amdgpu_job *job; 2029 unsigned num_dw, num_bytes; 2030 dma_addr_t *dma_address; 2031 struct dma_fence *fence; 2032 uint64_t src_addr, dst_addr; 2033 uint64_t flags; 2034 int r; 2035 2036 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 2037 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 2038 2039 *addr = adev->gmc.gart_start; 2040 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 2041 AMDGPU_GPU_PAGE_SIZE; 2042 2043 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 2044 num_bytes = num_pages * 8; 2045 2046 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 2047 if (r) 2048 return r; 2049 2050 src_addr = num_dw * 4; 2051 src_addr += job->ibs[0].gpu_addr; 2052 2053 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 2054 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 2055 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 2056 dst_addr, num_bytes); 2057 2058 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2059 WARN_ON(job->ibs[0].length_dw > num_dw); 2060 2061 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 2062 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 2063 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 2064 &job->ibs[0].ptr[num_dw]); 2065 if (r) 2066 goto error_free; 2067 2068 r = amdgpu_job_submit(job, &adev->mman.entity, 2069 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 2070 if (r) 2071 goto error_free; 2072 2073 dma_fence_put(fence); 2074 2075 return r; 2076 2077 error_free: 2078 amdgpu_job_free(job); 2079 return r; 2080 } 2081 2082 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2083 uint64_t dst_offset, uint32_t byte_count, 2084 struct dma_resv *resv, 2085 struct dma_fence **fence, bool direct_submit, 2086 bool vm_needs_flush) 2087 { 2088 struct amdgpu_device *adev = ring->adev; 2089 struct amdgpu_job *job; 2090 2091 uint32_t max_bytes; 2092 unsigned num_loops, num_dw; 2093 unsigned i; 2094 int r; 2095 2096 if (direct_submit && !ring->sched.ready) { 2097 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2098 return -EINVAL; 2099 } 2100 2101 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2102 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2103 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2104 2105 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2106 if (r) 2107 return r; 2108 2109 if (vm_needs_flush) { 2110 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2111 job->vm_needs_flush = true; 2112 } 2113 if (resv) { 2114 r = amdgpu_sync_resv(adev, &job->sync, resv, 2115 AMDGPU_FENCE_OWNER_UNDEFINED, 2116 false); 2117 if (r) { 2118 DRM_ERROR("sync failed (%d).\n", r); 2119 goto error_free; 2120 } 2121 } 2122 2123 for (i = 0; i < num_loops; i++) { 2124 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2125 2126 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2127 dst_offset, cur_size_in_bytes); 2128 2129 src_offset += cur_size_in_bytes; 2130 dst_offset += cur_size_in_bytes; 2131 byte_count -= cur_size_in_bytes; 2132 } 2133 2134 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2135 WARN_ON(job->ibs[0].length_dw > num_dw); 2136 if (direct_submit) 2137 r = amdgpu_job_submit_direct(job, ring, fence); 2138 else 2139 r = amdgpu_job_submit(job, &adev->mman.entity, 2140 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2141 if (r) 2142 goto error_free; 2143 2144 return r; 2145 2146 error_free: 2147 amdgpu_job_free(job); 2148 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2149 return r; 2150 } 2151 2152 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2153 uint32_t src_data, 2154 struct dma_resv *resv, 2155 struct dma_fence **fence) 2156 { 2157 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2158 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2159 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2160 2161 struct drm_mm_node *mm_node; 2162 unsigned long num_pages; 2163 unsigned int num_loops, num_dw; 2164 2165 struct amdgpu_job *job; 2166 int r; 2167 2168 if (!adev->mman.buffer_funcs_enabled) { 2169 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2170 return -EINVAL; 2171 } 2172 2173 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2174 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2175 if (r) 2176 return r; 2177 } 2178 2179 num_pages = bo->tbo.num_pages; 2180 mm_node = bo->tbo.mem.mm_node; 2181 num_loops = 0; 2182 while (num_pages) { 2183 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2184 2185 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2186 num_pages -= mm_node->size; 2187 ++mm_node; 2188 } 2189 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2190 2191 /* for IB padding */ 2192 num_dw += 64; 2193 2194 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2195 if (r) 2196 return r; 2197 2198 if (resv) { 2199 r = amdgpu_sync_resv(adev, &job->sync, resv, 2200 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2201 if (r) { 2202 DRM_ERROR("sync failed (%d).\n", r); 2203 goto error_free; 2204 } 2205 } 2206 2207 num_pages = bo->tbo.num_pages; 2208 mm_node = bo->tbo.mem.mm_node; 2209 2210 while (num_pages) { 2211 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2212 uint64_t dst_addr; 2213 2214 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2215 while (byte_count) { 2216 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2217 max_bytes); 2218 2219 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2220 dst_addr, cur_size_in_bytes); 2221 2222 dst_addr += cur_size_in_bytes; 2223 byte_count -= cur_size_in_bytes; 2224 } 2225 2226 num_pages -= mm_node->size; 2227 ++mm_node; 2228 } 2229 2230 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2231 WARN_ON(job->ibs[0].length_dw > num_dw); 2232 r = amdgpu_job_submit(job, &adev->mman.entity, 2233 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2234 if (r) 2235 goto error_free; 2236 2237 return 0; 2238 2239 error_free: 2240 amdgpu_job_free(job); 2241 return r; 2242 } 2243 2244 #if defined(CONFIG_DEBUG_FS) 2245 2246 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2247 { 2248 struct drm_info_node *node = (struct drm_info_node *)m->private; 2249 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2250 struct drm_device *dev = node->minor->dev; 2251 struct amdgpu_device *adev = dev->dev_private; 2252 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2253 struct drm_printer p = drm_seq_file_printer(m); 2254 2255 man->func->debug(man, &p); 2256 return 0; 2257 } 2258 2259 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2260 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2261 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2262 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2263 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2264 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2265 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2266 #ifdef CONFIG_SWIOTLB 2267 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2268 #endif 2269 }; 2270 2271 /** 2272 * amdgpu_ttm_vram_read - Linear read access to VRAM 2273 * 2274 * Accesses VRAM via MMIO for debugging purposes. 2275 */ 2276 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2277 size_t size, loff_t *pos) 2278 { 2279 struct amdgpu_device *adev = file_inode(f)->i_private; 2280 ssize_t result = 0; 2281 int r; 2282 2283 if (size & 0x3 || *pos & 0x3) 2284 return -EINVAL; 2285 2286 if (*pos >= adev->gmc.mc_vram_size) 2287 return -ENXIO; 2288 2289 while (size) { 2290 unsigned long flags; 2291 uint32_t value; 2292 2293 if (*pos >= adev->gmc.mc_vram_size) 2294 return result; 2295 2296 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2297 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2298 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2299 value = RREG32_NO_KIQ(mmMM_DATA); 2300 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2301 2302 r = put_user(value, (uint32_t *)buf); 2303 if (r) 2304 return r; 2305 2306 result += 4; 2307 buf += 4; 2308 *pos += 4; 2309 size -= 4; 2310 } 2311 2312 return result; 2313 } 2314 2315 /** 2316 * amdgpu_ttm_vram_write - Linear write access to VRAM 2317 * 2318 * Accesses VRAM via MMIO for debugging purposes. 2319 */ 2320 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2321 size_t size, loff_t *pos) 2322 { 2323 struct amdgpu_device *adev = file_inode(f)->i_private; 2324 ssize_t result = 0; 2325 int r; 2326 2327 if (size & 0x3 || *pos & 0x3) 2328 return -EINVAL; 2329 2330 if (*pos >= adev->gmc.mc_vram_size) 2331 return -ENXIO; 2332 2333 while (size) { 2334 unsigned long flags; 2335 uint32_t value; 2336 2337 if (*pos >= adev->gmc.mc_vram_size) 2338 return result; 2339 2340 r = get_user(value, (uint32_t *)buf); 2341 if (r) 2342 return r; 2343 2344 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2345 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2346 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2347 WREG32_NO_KIQ(mmMM_DATA, value); 2348 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2349 2350 result += 4; 2351 buf += 4; 2352 *pos += 4; 2353 size -= 4; 2354 } 2355 2356 return result; 2357 } 2358 2359 static const struct file_operations amdgpu_ttm_vram_fops = { 2360 .owner = THIS_MODULE, 2361 .read = amdgpu_ttm_vram_read, 2362 .write = amdgpu_ttm_vram_write, 2363 .llseek = default_llseek, 2364 }; 2365 2366 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2367 2368 /** 2369 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2370 */ 2371 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2372 size_t size, loff_t *pos) 2373 { 2374 struct amdgpu_device *adev = file_inode(f)->i_private; 2375 ssize_t result = 0; 2376 int r; 2377 2378 while (size) { 2379 loff_t p = *pos / PAGE_SIZE; 2380 unsigned off = *pos & ~PAGE_MASK; 2381 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2382 struct page *page; 2383 void *ptr; 2384 2385 if (p >= adev->gart.num_cpu_pages) 2386 return result; 2387 2388 page = adev->gart.pages[p]; 2389 if (page) { 2390 ptr = kmap(page); 2391 ptr += off; 2392 2393 r = copy_to_user(buf, ptr, cur_size); 2394 kunmap(adev->gart.pages[p]); 2395 } else 2396 r = clear_user(buf, cur_size); 2397 2398 if (r) 2399 return -EFAULT; 2400 2401 result += cur_size; 2402 buf += cur_size; 2403 *pos += cur_size; 2404 size -= cur_size; 2405 } 2406 2407 return result; 2408 } 2409 2410 static const struct file_operations amdgpu_ttm_gtt_fops = { 2411 .owner = THIS_MODULE, 2412 .read = amdgpu_ttm_gtt_read, 2413 .llseek = default_llseek 2414 }; 2415 2416 #endif 2417 2418 /** 2419 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2420 * 2421 * This function is used to read memory that has been mapped to the 2422 * GPU and the known addresses are not physical addresses but instead 2423 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2424 */ 2425 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2426 size_t size, loff_t *pos) 2427 { 2428 struct amdgpu_device *adev = file_inode(f)->i_private; 2429 struct iommu_domain *dom; 2430 ssize_t result = 0; 2431 int r; 2432 2433 /* retrieve the IOMMU domain if any for this device */ 2434 dom = iommu_get_domain_for_dev(adev->dev); 2435 2436 while (size) { 2437 phys_addr_t addr = *pos & PAGE_MASK; 2438 loff_t off = *pos & ~PAGE_MASK; 2439 size_t bytes = PAGE_SIZE - off; 2440 unsigned long pfn; 2441 struct page *p; 2442 void *ptr; 2443 2444 bytes = bytes < size ? bytes : size; 2445 2446 /* Translate the bus address to a physical address. If 2447 * the domain is NULL it means there is no IOMMU active 2448 * and the address translation is the identity 2449 */ 2450 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2451 2452 pfn = addr >> PAGE_SHIFT; 2453 if (!pfn_valid(pfn)) 2454 return -EPERM; 2455 2456 p = pfn_to_page(pfn); 2457 if (p->mapping != adev->mman.bdev.dev_mapping) 2458 return -EPERM; 2459 2460 ptr = kmap(p); 2461 r = copy_to_user(buf, ptr + off, bytes); 2462 kunmap(p); 2463 if (r) 2464 return -EFAULT; 2465 2466 size -= bytes; 2467 *pos += bytes; 2468 result += bytes; 2469 } 2470 2471 return result; 2472 } 2473 2474 /** 2475 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2476 * 2477 * This function is used to write memory that has been mapped to the 2478 * GPU and the known addresses are not physical addresses but instead 2479 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2480 */ 2481 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2482 size_t size, loff_t *pos) 2483 { 2484 struct amdgpu_device *adev = file_inode(f)->i_private; 2485 struct iommu_domain *dom; 2486 ssize_t result = 0; 2487 int r; 2488 2489 dom = iommu_get_domain_for_dev(adev->dev); 2490 2491 while (size) { 2492 phys_addr_t addr = *pos & PAGE_MASK; 2493 loff_t off = *pos & ~PAGE_MASK; 2494 size_t bytes = PAGE_SIZE - off; 2495 unsigned long pfn; 2496 struct page *p; 2497 void *ptr; 2498 2499 bytes = bytes < size ? bytes : size; 2500 2501 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2502 2503 pfn = addr >> PAGE_SHIFT; 2504 if (!pfn_valid(pfn)) 2505 return -EPERM; 2506 2507 p = pfn_to_page(pfn); 2508 if (p->mapping != adev->mman.bdev.dev_mapping) 2509 return -EPERM; 2510 2511 ptr = kmap(p); 2512 r = copy_from_user(ptr + off, buf, bytes); 2513 kunmap(p); 2514 if (r) 2515 return -EFAULT; 2516 2517 size -= bytes; 2518 *pos += bytes; 2519 result += bytes; 2520 } 2521 2522 return result; 2523 } 2524 2525 static const struct file_operations amdgpu_ttm_iomem_fops = { 2526 .owner = THIS_MODULE, 2527 .read = amdgpu_iomem_read, 2528 .write = amdgpu_iomem_write, 2529 .llseek = default_llseek 2530 }; 2531 2532 static const struct { 2533 char *name; 2534 const struct file_operations *fops; 2535 int domain; 2536 } ttm_debugfs_entries[] = { 2537 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2538 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2539 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2540 #endif 2541 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2542 }; 2543 2544 #endif 2545 2546 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2547 { 2548 #if defined(CONFIG_DEBUG_FS) 2549 unsigned count; 2550 2551 struct drm_minor *minor = adev->ddev->primary; 2552 struct dentry *ent, *root = minor->debugfs_root; 2553 2554 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2555 ent = debugfs_create_file( 2556 ttm_debugfs_entries[count].name, 2557 S_IFREG | S_IRUGO, root, 2558 adev, 2559 ttm_debugfs_entries[count].fops); 2560 if (IS_ERR(ent)) 2561 return PTR_ERR(ent); 2562 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2563 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2564 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2565 i_size_write(ent->d_inode, adev->gmc.gart_size); 2566 adev->mman.debugfs_entries[count] = ent; 2567 } 2568 2569 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2570 2571 #ifdef CONFIG_SWIOTLB 2572 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2573 --count; 2574 #endif 2575 2576 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2577 #else 2578 return 0; 2579 #endif 2580 } 2581 2582 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2583 { 2584 #if defined(CONFIG_DEBUG_FS) 2585 unsigned i; 2586 2587 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2588 debugfs_remove(adev->mman.debugfs_entries[i]); 2589 #endif 2590 } 2591