1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 placement->num_busy_placement = 0; 106 return; 107 } 108 109 /* Object isn't an AMDGPU object so ignore */ 110 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 111 placement->placement = &placements; 112 placement->busy_placement = &placements; 113 placement->num_placement = 1; 114 placement->num_busy_placement = 1; 115 return; 116 } 117 118 abo = ttm_to_amdgpu_bo(bo); 119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 120 placement->num_placement = 0; 121 placement->num_busy_placement = 0; 122 return; 123 } 124 125 switch (bo->resource->mem_type) { 126 case AMDGPU_PL_GDS: 127 case AMDGPU_PL_GWS: 128 case AMDGPU_PL_OA: 129 case AMDGPU_PL_DOORBELL: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned int window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned int offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct amdgpu_job *job; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 202 return -EINVAL; 203 204 /* Map only what can't be accessed directly */ 205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 207 mm_cur->start; 208 return 0; 209 } 210 211 212 /* 213 * If start begins at an offset inside the page, then adjust the size 214 * and addr accordingly 215 */ 216 offset = mm_cur->start & ~PAGE_MASK; 217 218 num_pages = PFN_UP(*size + offset); 219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 220 221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 222 223 *addr = adev->gmc.gart_start; 224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 225 AMDGPU_GPU_PAGE_SIZE; 226 *addr += offset; 227 228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 230 231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 232 AMDGPU_FENCE_OWNER_UNDEFINED, 233 num_dw * 4 + num_bytes, 234 AMDGPU_IB_POOL_DELAYED, &job); 235 if (r) 236 return r; 237 238 src_addr = num_dw * 4; 239 src_addr += job->ibs[0].gpu_addr; 240 241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 244 dst_addr, num_bytes, false); 245 246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 247 WARN_ON(job->ibs[0].length_dw > num_dw); 248 249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 250 if (tmz) 251 flags |= AMDGPU_PTE_TMZ; 252 253 cpu_addr = &job->ibs[0].ptr[num_dw]; 254 255 if (mem->mem_type == TTM_PL_TT) { 256 dma_addr_t *dma_addr; 257 258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 268 flags, cpu_addr); 269 dma_address += PAGE_SIZE; 270 } 271 } 272 273 dma_fence_put(amdgpu_job_submit(job)); 274 return 0; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 300 struct amdgpu_res_cursor src_mm, dst_mm; 301 struct dma_fence *fence = NULL; 302 int r = 0; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 DRM_ERROR("Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, 332 resv, &next, false, true, tmz); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /* 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 413 * 414 * Called by amdgpu_bo_move() 415 */ 416 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 417 struct ttm_resource *mem) 418 { 419 u64 mem_size = (u64)mem->size; 420 struct amdgpu_res_cursor cursor; 421 u64 end; 422 423 if (mem->mem_type == TTM_PL_SYSTEM || 424 mem->mem_type == TTM_PL_TT) 425 return true; 426 if (mem->mem_type != TTM_PL_VRAM) 427 return false; 428 429 amdgpu_res_first(mem, 0, mem_size, &cursor); 430 end = cursor.start + cursor.size; 431 while (cursor.remaining) { 432 amdgpu_res_next(&cursor, cursor.size); 433 434 if (!cursor.remaining) 435 break; 436 437 /* ttm_resource_ioremap only supports contiguous memory */ 438 if (end != cursor.start) 439 return false; 440 441 end = cursor.start + cursor.size; 442 } 443 444 return end <= adev->gmc.visible_vram_size; 445 } 446 447 /* 448 * amdgpu_bo_move - Move a buffer object to a new memory location 449 * 450 * Called by ttm_bo_handle_move_mem() 451 */ 452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 453 struct ttm_operation_ctx *ctx, 454 struct ttm_resource *new_mem, 455 struct ttm_place *hop) 456 { 457 struct amdgpu_device *adev; 458 struct amdgpu_bo *abo; 459 struct ttm_resource *old_mem = bo->resource; 460 int r; 461 462 if (new_mem->mem_type == TTM_PL_TT || 463 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 465 if (r) 466 return r; 467 } 468 469 abo = ttm_to_amdgpu_bo(bo); 470 adev = amdgpu_ttm_adev(bo->bdev); 471 472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 473 bo->ttm == NULL)) { 474 ttm_bo_move_null(bo, new_mem); 475 goto out; 476 } 477 if (old_mem->mem_type == TTM_PL_SYSTEM && 478 (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 480 ttm_bo_move_null(bo, new_mem); 481 goto out; 482 } 483 if ((old_mem->mem_type == TTM_PL_TT || 484 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 485 new_mem->mem_type == TTM_PL_SYSTEM) { 486 r = ttm_bo_wait_ctx(bo, ctx); 487 if (r) 488 return r; 489 490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 491 ttm_resource_free(bo, &bo->resource); 492 ttm_bo_assign_mem(bo, new_mem); 493 goto out; 494 } 495 496 if (old_mem->mem_type == AMDGPU_PL_GDS || 497 old_mem->mem_type == AMDGPU_PL_GWS || 498 old_mem->mem_type == AMDGPU_PL_OA || 499 old_mem->mem_type == AMDGPU_PL_DOORBELL || 500 new_mem->mem_type == AMDGPU_PL_GDS || 501 new_mem->mem_type == AMDGPU_PL_GWS || 502 new_mem->mem_type == AMDGPU_PL_OA || 503 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 504 /* Nothing to save here */ 505 ttm_bo_move_null(bo, new_mem); 506 goto out; 507 } 508 509 if (bo->type == ttm_bo_type_device && 510 new_mem->mem_type == TTM_PL_VRAM && 511 old_mem->mem_type != TTM_PL_VRAM) { 512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 513 * accesses the BO after it's moved. 514 */ 515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 516 } 517 518 if (adev->mman.buffer_funcs_enabled) { 519 if (((old_mem->mem_type == TTM_PL_SYSTEM && 520 new_mem->mem_type == TTM_PL_VRAM) || 521 (old_mem->mem_type == TTM_PL_VRAM && 522 new_mem->mem_type == TTM_PL_SYSTEM))) { 523 hop->fpfn = 0; 524 hop->lpfn = 0; 525 hop->mem_type = TTM_PL_TT; 526 hop->flags = TTM_PL_FLAG_TEMPORARY; 527 return -EMULTIHOP; 528 } 529 530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 531 } else { 532 r = -ENODEV; 533 } 534 535 if (r) { 536 /* Check that all memory is CPU accessible */ 537 if (!amdgpu_mem_visible(adev, old_mem) || 538 !amdgpu_mem_visible(adev, new_mem)) { 539 pr_err("Move buffer fallback to memcpy unavailable\n"); 540 return r; 541 } 542 543 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 544 if (r) 545 return r; 546 } 547 548 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type); 549 out: 550 /* update statistics */ 551 atomic64_add(bo->base.size, &adev->num_bytes_moved); 552 amdgpu_bo_move_notify(bo, evict); 553 return 0; 554 } 555 556 /* 557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 558 * 559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 560 */ 561 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 562 struct ttm_resource *mem) 563 { 564 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 565 size_t bus_size = (size_t)mem->size; 566 567 switch (mem->mem_type) { 568 case TTM_PL_SYSTEM: 569 /* system memory */ 570 return 0; 571 case TTM_PL_TT: 572 case AMDGPU_PL_PREEMPT: 573 break; 574 case TTM_PL_VRAM: 575 mem->bus.offset = mem->start << PAGE_SHIFT; 576 /* check if it's visible */ 577 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 578 return -EINVAL; 579 580 if (adev->mman.aper_base_kaddr && 581 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 582 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 583 mem->bus.offset; 584 585 mem->bus.offset += adev->gmc.aper_base; 586 mem->bus.is_iomem = true; 587 break; 588 case AMDGPU_PL_DOORBELL: 589 mem->bus.offset = mem->start << PAGE_SHIFT; 590 mem->bus.offset += adev->doorbell.base; 591 mem->bus.is_iomem = true; 592 mem->bus.caching = ttm_uncached; 593 break; 594 default: 595 return -EINVAL; 596 } 597 return 0; 598 } 599 600 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 601 unsigned long page_offset) 602 { 603 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 604 struct amdgpu_res_cursor cursor; 605 606 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 607 &cursor); 608 609 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 610 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 611 612 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 613 } 614 615 /** 616 * amdgpu_ttm_domain_start - Returns GPU start address 617 * @adev: amdgpu device object 618 * @type: type of the memory 619 * 620 * Returns: 621 * GPU start address of a memory domain 622 */ 623 624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 625 { 626 switch (type) { 627 case TTM_PL_TT: 628 return adev->gmc.gart_start; 629 case TTM_PL_VRAM: 630 return adev->gmc.vram_start; 631 } 632 633 return 0; 634 } 635 636 /* 637 * TTM backend functions. 638 */ 639 struct amdgpu_ttm_tt { 640 struct ttm_tt ttm; 641 struct drm_gem_object *gobj; 642 u64 offset; 643 uint64_t userptr; 644 struct task_struct *usertask; 645 uint32_t userflags; 646 bool bound; 647 int32_t pool_id; 648 }; 649 650 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 651 652 #ifdef CONFIG_DRM_AMDGPU_USERPTR 653 /* 654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 655 * memory and start HMM tracking CPU page table update 656 * 657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 658 * once afterwards to stop HMM tracking 659 */ 660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 661 struct hmm_range **range) 662 { 663 struct ttm_tt *ttm = bo->tbo.ttm; 664 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 665 unsigned long start = gtt->userptr; 666 struct vm_area_struct *vma; 667 struct mm_struct *mm; 668 bool readonly; 669 int r = 0; 670 671 /* Make sure get_user_pages_done() can cleanup gracefully */ 672 *range = NULL; 673 674 mm = bo->notifier.mm; 675 if (unlikely(!mm)) { 676 DRM_DEBUG_DRIVER("BO is not registered?\n"); 677 return -EFAULT; 678 } 679 680 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 681 return -ESRCH; 682 683 mmap_read_lock(mm); 684 vma = vma_lookup(mm, start); 685 if (unlikely(!vma)) { 686 r = -EFAULT; 687 goto out_unlock; 688 } 689 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 690 vma->vm_file)) { 691 r = -EPERM; 692 goto out_unlock; 693 } 694 695 readonly = amdgpu_ttm_tt_is_readonly(ttm); 696 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 697 readonly, NULL, pages, range); 698 out_unlock: 699 mmap_read_unlock(mm); 700 if (r) 701 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 702 703 mmput(mm); 704 705 return r; 706 } 707 708 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 709 */ 710 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 711 struct hmm_range *range) 712 { 713 struct amdgpu_ttm_tt *gtt = (void *)ttm; 714 715 if (gtt && gtt->userptr && range) 716 amdgpu_hmm_range_get_pages_done(range); 717 } 718 719 /* 720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 721 * Check if the pages backing this ttm range have been invalidated 722 * 723 * Returns: true if pages are still valid 724 */ 725 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 726 struct hmm_range *range) 727 { 728 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 729 730 if (!gtt || !gtt->userptr || !range) 731 return false; 732 733 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 734 gtt->userptr, ttm->num_pages); 735 736 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 737 738 return !amdgpu_hmm_range_get_pages_done(range); 739 } 740 #endif 741 742 /* 743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 744 * 745 * Called by amdgpu_cs_list_validate(). This creates the page list 746 * that backs user memory and will ultimately be mapped into the device 747 * address space. 748 */ 749 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 750 { 751 unsigned long i; 752 753 for (i = 0; i < ttm->num_pages; ++i) 754 ttm->pages[i] = pages ? pages[i] : NULL; 755 } 756 757 /* 758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 759 * 760 * Called by amdgpu_ttm_backend_bind() 761 **/ 762 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 763 struct ttm_tt *ttm) 764 { 765 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 766 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 767 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 768 enum dma_data_direction direction = write ? 769 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 770 int r; 771 772 /* Allocate an SG array and squash pages into it */ 773 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 774 (u64)ttm->num_pages << PAGE_SHIFT, 775 GFP_KERNEL); 776 if (r) 777 goto release_sg; 778 779 /* Map SG to device */ 780 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 781 if (r) 782 goto release_sg; 783 784 /* convert SG to linear array of pages and dma addresses */ 785 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 786 ttm->num_pages); 787 788 return 0; 789 790 release_sg: 791 kfree(ttm->sg); 792 ttm->sg = NULL; 793 return r; 794 } 795 796 /* 797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 798 */ 799 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 800 struct ttm_tt *ttm) 801 { 802 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 803 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 804 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 805 enum dma_data_direction direction = write ? 806 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 807 808 /* double check that we don't free the table twice */ 809 if (!ttm->sg || !ttm->sg->sgl) 810 return; 811 812 /* unmap the pages mapped to the device */ 813 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 814 sg_free_table(ttm->sg); 815 } 816 817 /* 818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 819 * MQDn+CtrlStackn where n is the number of XCCs per partition. 820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 821 * and uses memory type default, UC. The rest of pages_per_xcc are 822 * Ctrl stack and modify their memory type to NC. 823 */ 824 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 825 struct ttm_tt *ttm, uint64_t flags) 826 { 827 struct amdgpu_ttm_tt *gtt = (void *)ttm; 828 uint64_t total_pages = ttm->num_pages; 829 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 830 uint64_t page_idx, pages_per_xcc; 831 int i; 832 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 833 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 834 835 pages_per_xcc = total_pages; 836 do_div(pages_per_xcc, num_xcc); 837 838 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 839 /* MQD page: use default flags */ 840 amdgpu_gart_bind(adev, 841 gtt->offset + (page_idx << PAGE_SHIFT), 842 1, >t->ttm.dma_address[page_idx], flags); 843 /* 844 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 845 * the second page of the BO onward. 846 */ 847 amdgpu_gart_bind(adev, 848 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 849 pages_per_xcc - 1, 850 >t->ttm.dma_address[page_idx + 1], 851 ctrl_flags); 852 } 853 } 854 855 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 856 struct ttm_buffer_object *tbo, 857 uint64_t flags) 858 { 859 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 860 struct ttm_tt *ttm = tbo->ttm; 861 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 862 863 if (amdgpu_bo_encrypted(abo)) 864 flags |= AMDGPU_PTE_TMZ; 865 866 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 867 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 868 } else { 869 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 870 gtt->ttm.dma_address, flags); 871 } 872 } 873 874 /* 875 * amdgpu_ttm_backend_bind - Bind GTT memory 876 * 877 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 878 * This handles binding GTT memory to the device address space. 879 */ 880 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 881 struct ttm_tt *ttm, 882 struct ttm_resource *bo_mem) 883 { 884 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 885 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 886 uint64_t flags; 887 int r; 888 889 if (!bo_mem) 890 return -EINVAL; 891 892 if (gtt->bound) 893 return 0; 894 895 if (gtt->userptr) { 896 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 897 if (r) { 898 DRM_ERROR("failed to pin userptr\n"); 899 return r; 900 } 901 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 902 if (!ttm->sg) { 903 struct dma_buf_attachment *attach; 904 struct sg_table *sgt; 905 906 attach = gtt->gobj->import_attach; 907 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 908 if (IS_ERR(sgt)) 909 return PTR_ERR(sgt); 910 911 ttm->sg = sgt; 912 } 913 914 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 915 ttm->num_pages); 916 } 917 918 if (!ttm->num_pages) { 919 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 920 ttm->num_pages, bo_mem, ttm); 921 } 922 923 if (bo_mem->mem_type != TTM_PL_TT || 924 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 925 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 926 return 0; 927 } 928 929 /* compute PTE flags relevant to this BO memory */ 930 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 931 932 /* bind pages into GART page tables */ 933 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 934 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 935 gtt->ttm.dma_address, flags); 936 gtt->bound = true; 937 return 0; 938 } 939 940 /* 941 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 942 * through AGP or GART aperture. 943 * 944 * If bo is accessible through AGP aperture, then use AGP aperture 945 * to access bo; otherwise allocate logical space in GART aperture 946 * and map bo to GART aperture. 947 */ 948 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 949 { 950 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 951 struct ttm_operation_ctx ctx = { false, false }; 952 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 953 struct ttm_placement placement; 954 struct ttm_place placements; 955 struct ttm_resource *tmp; 956 uint64_t addr, flags; 957 int r; 958 959 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 960 return 0; 961 962 addr = amdgpu_gmc_agp_addr(bo); 963 if (addr != AMDGPU_BO_INVALID_OFFSET) 964 return 0; 965 966 /* allocate GART space */ 967 placement.num_placement = 1; 968 placement.placement = &placements; 969 placement.num_busy_placement = 1; 970 placement.busy_placement = &placements; 971 placements.fpfn = 0; 972 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 973 placements.mem_type = TTM_PL_TT; 974 placements.flags = bo->resource->placement; 975 976 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 977 if (unlikely(r)) 978 return r; 979 980 /* compute PTE flags for this buffer object */ 981 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 982 983 /* Bind pages */ 984 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 985 amdgpu_ttm_gart_bind(adev, bo, flags); 986 amdgpu_gart_invalidate_tlb(adev); 987 ttm_resource_free(bo, &bo->resource); 988 ttm_bo_assign_mem(bo, tmp); 989 990 return 0; 991 } 992 993 /* 994 * amdgpu_ttm_recover_gart - Rebind GTT pages 995 * 996 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 997 * rebind GTT pages during a GPU reset. 998 */ 999 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1000 { 1001 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1002 uint64_t flags; 1003 1004 if (!tbo->ttm) 1005 return; 1006 1007 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1008 amdgpu_ttm_gart_bind(adev, tbo, flags); 1009 } 1010 1011 /* 1012 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1013 * 1014 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1015 * ttm_tt_destroy(). 1016 */ 1017 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1018 struct ttm_tt *ttm) 1019 { 1020 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1021 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1022 1023 /* if the pages have userptr pinning then clear that first */ 1024 if (gtt->userptr) { 1025 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1026 } else if (ttm->sg && gtt->gobj->import_attach) { 1027 struct dma_buf_attachment *attach; 1028 1029 attach = gtt->gobj->import_attach; 1030 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1031 ttm->sg = NULL; 1032 } 1033 1034 if (!gtt->bound) 1035 return; 1036 1037 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1038 return; 1039 1040 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1041 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1042 gtt->bound = false; 1043 } 1044 1045 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1046 struct ttm_tt *ttm) 1047 { 1048 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1049 1050 if (gtt->usertask) 1051 put_task_struct(gtt->usertask); 1052 1053 ttm_tt_fini(>t->ttm); 1054 kfree(gtt); 1055 } 1056 1057 /** 1058 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1059 * 1060 * @bo: The buffer object to create a GTT ttm_tt object around 1061 * @page_flags: Page flags to be added to the ttm_tt object 1062 * 1063 * Called by ttm_tt_create(). 1064 */ 1065 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1066 uint32_t page_flags) 1067 { 1068 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1069 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1070 struct amdgpu_ttm_tt *gtt; 1071 enum ttm_caching caching; 1072 1073 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1074 if (!gtt) 1075 return NULL; 1076 1077 gtt->gobj = &bo->base; 1078 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1079 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1080 else 1081 gtt->pool_id = abo->xcp_id; 1082 1083 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1084 caching = ttm_write_combined; 1085 else 1086 caching = ttm_cached; 1087 1088 /* allocate space for the uninitialized page entries */ 1089 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1090 kfree(gtt); 1091 return NULL; 1092 } 1093 return >t->ttm; 1094 } 1095 1096 /* 1097 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1098 * 1099 * Map the pages of a ttm_tt object to an address space visible 1100 * to the underlying device. 1101 */ 1102 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1103 struct ttm_tt *ttm, 1104 struct ttm_operation_ctx *ctx) 1105 { 1106 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1107 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1108 struct ttm_pool *pool; 1109 pgoff_t i; 1110 int ret; 1111 1112 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1113 if (gtt->userptr) { 1114 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1115 if (!ttm->sg) 1116 return -ENOMEM; 1117 return 0; 1118 } 1119 1120 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1121 return 0; 1122 1123 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1124 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1125 else 1126 pool = &adev->mman.bdev.pool; 1127 ret = ttm_pool_alloc(pool, ttm, ctx); 1128 if (ret) 1129 return ret; 1130 1131 for (i = 0; i < ttm->num_pages; ++i) 1132 ttm->pages[i]->mapping = bdev->dev_mapping; 1133 1134 return 0; 1135 } 1136 1137 /* 1138 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1139 * 1140 * Unmaps pages of a ttm_tt object from the device address space and 1141 * unpopulates the page array backing it. 1142 */ 1143 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1144 struct ttm_tt *ttm) 1145 { 1146 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1147 struct amdgpu_device *adev; 1148 struct ttm_pool *pool; 1149 pgoff_t i; 1150 1151 amdgpu_ttm_backend_unbind(bdev, ttm); 1152 1153 if (gtt->userptr) { 1154 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1155 kfree(ttm->sg); 1156 ttm->sg = NULL; 1157 return; 1158 } 1159 1160 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1161 return; 1162 1163 for (i = 0; i < ttm->num_pages; ++i) 1164 ttm->pages[i]->mapping = NULL; 1165 1166 adev = amdgpu_ttm_adev(bdev); 1167 1168 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1169 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1170 else 1171 pool = &adev->mman.bdev.pool; 1172 1173 return ttm_pool_free(pool, ttm); 1174 } 1175 1176 /** 1177 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1178 * task 1179 * 1180 * @tbo: The ttm_buffer_object that contains the userptr 1181 * @user_addr: The returned value 1182 */ 1183 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1184 uint64_t *user_addr) 1185 { 1186 struct amdgpu_ttm_tt *gtt; 1187 1188 if (!tbo->ttm) 1189 return -EINVAL; 1190 1191 gtt = (void *)tbo->ttm; 1192 *user_addr = gtt->userptr; 1193 return 0; 1194 } 1195 1196 /** 1197 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1198 * task 1199 * 1200 * @bo: The ttm_buffer_object to bind this userptr to 1201 * @addr: The address in the current tasks VM space to use 1202 * @flags: Requirements of userptr object. 1203 * 1204 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1205 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1206 * initialize GPU VM for a KFD process. 1207 */ 1208 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1209 uint64_t addr, uint32_t flags) 1210 { 1211 struct amdgpu_ttm_tt *gtt; 1212 1213 if (!bo->ttm) { 1214 /* TODO: We want a separate TTM object type for userptrs */ 1215 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1216 if (bo->ttm == NULL) 1217 return -ENOMEM; 1218 } 1219 1220 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1221 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1222 1223 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1224 gtt->userptr = addr; 1225 gtt->userflags = flags; 1226 1227 if (gtt->usertask) 1228 put_task_struct(gtt->usertask); 1229 gtt->usertask = current->group_leader; 1230 get_task_struct(gtt->usertask); 1231 1232 return 0; 1233 } 1234 1235 /* 1236 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1237 */ 1238 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1239 { 1240 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1241 1242 if (gtt == NULL) 1243 return NULL; 1244 1245 if (gtt->usertask == NULL) 1246 return NULL; 1247 1248 return gtt->usertask->mm; 1249 } 1250 1251 /* 1252 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1253 * address range for the current task. 1254 * 1255 */ 1256 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1257 unsigned long end, unsigned long *userptr) 1258 { 1259 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1260 unsigned long size; 1261 1262 if (gtt == NULL || !gtt->userptr) 1263 return false; 1264 1265 /* Return false if no part of the ttm_tt object lies within 1266 * the range 1267 */ 1268 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1269 if (gtt->userptr > end || gtt->userptr + size <= start) 1270 return false; 1271 1272 if (userptr) 1273 *userptr = gtt->userptr; 1274 return true; 1275 } 1276 1277 /* 1278 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1279 */ 1280 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1281 { 1282 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1283 1284 if (gtt == NULL || !gtt->userptr) 1285 return false; 1286 1287 return true; 1288 } 1289 1290 /* 1291 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1292 */ 1293 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1294 { 1295 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1296 1297 if (gtt == NULL) 1298 return false; 1299 1300 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1301 } 1302 1303 /** 1304 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1305 * 1306 * @ttm: The ttm_tt object to compute the flags for 1307 * @mem: The memory registry backing this ttm_tt object 1308 * 1309 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1310 */ 1311 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1312 { 1313 uint64_t flags = 0; 1314 1315 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1316 flags |= AMDGPU_PTE_VALID; 1317 1318 if (mem && (mem->mem_type == TTM_PL_TT || 1319 mem->mem_type == AMDGPU_PL_DOORBELL || 1320 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1321 flags |= AMDGPU_PTE_SYSTEM; 1322 1323 if (ttm->caching == ttm_cached) 1324 flags |= AMDGPU_PTE_SNOOPED; 1325 } 1326 1327 if (mem && mem->mem_type == TTM_PL_VRAM && 1328 mem->bus.caching == ttm_cached) 1329 flags |= AMDGPU_PTE_SNOOPED; 1330 1331 return flags; 1332 } 1333 1334 /** 1335 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1336 * 1337 * @adev: amdgpu_device pointer 1338 * @ttm: The ttm_tt object to compute the flags for 1339 * @mem: The memory registry backing this ttm_tt object 1340 * 1341 * Figure out the flags to use for a VM PTE (Page Table Entry). 1342 */ 1343 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1344 struct ttm_resource *mem) 1345 { 1346 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1347 1348 flags |= adev->gart.gart_pte_flags; 1349 flags |= AMDGPU_PTE_READABLE; 1350 1351 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1352 flags |= AMDGPU_PTE_WRITEABLE; 1353 1354 return flags; 1355 } 1356 1357 /* 1358 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1359 * object. 1360 * 1361 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1362 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1363 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1364 * used to clean out a memory space. 1365 */ 1366 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1367 const struct ttm_place *place) 1368 { 1369 struct dma_resv_iter resv_cursor; 1370 struct dma_fence *f; 1371 1372 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1373 return ttm_bo_eviction_valuable(bo, place); 1374 1375 /* Swapout? */ 1376 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1377 return true; 1378 1379 if (bo->type == ttm_bo_type_kernel && 1380 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1381 return false; 1382 1383 /* If bo is a KFD BO, check if the bo belongs to the current process. 1384 * If true, then return false as any KFD process needs all its BOs to 1385 * be resident to run successfully 1386 */ 1387 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1388 DMA_RESV_USAGE_BOOKKEEP, f) { 1389 if (amdkfd_fence_check_mm(f, current->mm)) 1390 return false; 1391 } 1392 1393 /* Preemptible BOs don't own system resources managed by the 1394 * driver (pages, VRAM, GART space). They point to resources 1395 * owned by someone else (e.g. pageable memory in user mode 1396 * or a DMABuf). They are used in a preemptible context so we 1397 * can guarantee no deadlocks and good QoS in case of MMU 1398 * notifiers or DMABuf move notifiers from the resource owner. 1399 */ 1400 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1401 return false; 1402 1403 if (bo->resource->mem_type == TTM_PL_TT && 1404 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1405 return false; 1406 1407 return ttm_bo_eviction_valuable(bo, place); 1408 } 1409 1410 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1411 void *buf, size_t size, bool write) 1412 { 1413 while (size) { 1414 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1415 uint64_t bytes = 4 - (pos & 0x3); 1416 uint32_t shift = (pos & 0x3) * 8; 1417 uint32_t mask = 0xffffffff << shift; 1418 uint32_t value = 0; 1419 1420 if (size < bytes) { 1421 mask &= 0xffffffff >> (bytes - size) * 8; 1422 bytes = size; 1423 } 1424 1425 if (mask != 0xffffffff) { 1426 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1427 if (write) { 1428 value &= ~mask; 1429 value |= (*(uint32_t *)buf << shift) & mask; 1430 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1431 } else { 1432 value = (value & mask) >> shift; 1433 memcpy(buf, &value, bytes); 1434 } 1435 } else { 1436 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1437 } 1438 1439 pos += bytes; 1440 buf += bytes; 1441 size -= bytes; 1442 } 1443 } 1444 1445 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1446 unsigned long offset, void *buf, 1447 int len, int write) 1448 { 1449 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1450 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1451 struct amdgpu_res_cursor src_mm; 1452 struct amdgpu_job *job; 1453 struct dma_fence *fence; 1454 uint64_t src_addr, dst_addr; 1455 unsigned int num_dw; 1456 int r, idx; 1457 1458 if (len != PAGE_SIZE) 1459 return -EINVAL; 1460 1461 if (!adev->mman.sdma_access_ptr) 1462 return -EACCES; 1463 1464 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1465 return -ENODEV; 1466 1467 if (write) 1468 memcpy(adev->mman.sdma_access_ptr, buf, len); 1469 1470 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1471 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1472 AMDGPU_FENCE_OWNER_UNDEFINED, 1473 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1474 &job); 1475 if (r) 1476 goto out; 1477 1478 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1479 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1480 src_mm.start; 1481 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1482 if (write) 1483 swap(src_addr, dst_addr); 1484 1485 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1486 PAGE_SIZE, false); 1487 1488 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1489 WARN_ON(job->ibs[0].length_dw > num_dw); 1490 1491 fence = amdgpu_job_submit(job); 1492 1493 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1494 r = -ETIMEDOUT; 1495 dma_fence_put(fence); 1496 1497 if (!(r || write)) 1498 memcpy(buf, adev->mman.sdma_access_ptr, len); 1499 out: 1500 drm_dev_exit(idx); 1501 return r; 1502 } 1503 1504 /** 1505 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1506 * 1507 * @bo: The buffer object to read/write 1508 * @offset: Offset into buffer object 1509 * @buf: Secondary buffer to write/read from 1510 * @len: Length in bytes of access 1511 * @write: true if writing 1512 * 1513 * This is used to access VRAM that backs a buffer object via MMIO 1514 * access for debugging purposes. 1515 */ 1516 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1517 unsigned long offset, void *buf, int len, 1518 int write) 1519 { 1520 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1521 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1522 struct amdgpu_res_cursor cursor; 1523 int ret = 0; 1524 1525 if (bo->resource->mem_type != TTM_PL_VRAM) 1526 return -EIO; 1527 1528 if (amdgpu_device_has_timeouts_enabled(adev) && 1529 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1530 return len; 1531 1532 amdgpu_res_first(bo->resource, offset, len, &cursor); 1533 while (cursor.remaining) { 1534 size_t count, size = cursor.size; 1535 loff_t pos = cursor.start; 1536 1537 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1538 size -= count; 1539 if (size) { 1540 /* using MM to access rest vram and handle un-aligned address */ 1541 pos += count; 1542 buf += count; 1543 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1544 } 1545 1546 ret += cursor.size; 1547 buf += cursor.size; 1548 amdgpu_res_next(&cursor, cursor.size); 1549 } 1550 1551 return ret; 1552 } 1553 1554 static void 1555 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1556 { 1557 amdgpu_bo_move_notify(bo, false); 1558 } 1559 1560 static struct ttm_device_funcs amdgpu_bo_driver = { 1561 .ttm_tt_create = &amdgpu_ttm_tt_create, 1562 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1563 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1564 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1565 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1566 .evict_flags = &amdgpu_evict_flags, 1567 .move = &amdgpu_bo_move, 1568 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1569 .release_notify = &amdgpu_bo_release_notify, 1570 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1571 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1572 .access_memory = &amdgpu_ttm_access_memory, 1573 }; 1574 1575 /* 1576 * Firmware Reservation functions 1577 */ 1578 /** 1579 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1580 * 1581 * @adev: amdgpu_device pointer 1582 * 1583 * free fw reserved vram if it has been reserved. 1584 */ 1585 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1586 { 1587 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1588 NULL, &adev->mman.fw_vram_usage_va); 1589 } 1590 1591 /* 1592 * Driver Reservation functions 1593 */ 1594 /** 1595 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1596 * 1597 * @adev: amdgpu_device pointer 1598 * 1599 * free drv reserved vram if it has been reserved. 1600 */ 1601 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1602 { 1603 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1604 NULL, 1605 &adev->mman.drv_vram_usage_va); 1606 } 1607 1608 /** 1609 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1610 * 1611 * @adev: amdgpu_device pointer 1612 * 1613 * create bo vram reservation from fw. 1614 */ 1615 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1616 { 1617 uint64_t vram_size = adev->gmc.visible_vram_size; 1618 1619 adev->mman.fw_vram_usage_va = NULL; 1620 adev->mman.fw_vram_usage_reserved_bo = NULL; 1621 1622 if (adev->mman.fw_vram_usage_size == 0 || 1623 adev->mman.fw_vram_usage_size > vram_size) 1624 return 0; 1625 1626 return amdgpu_bo_create_kernel_at(adev, 1627 adev->mman.fw_vram_usage_start_offset, 1628 adev->mman.fw_vram_usage_size, 1629 &adev->mman.fw_vram_usage_reserved_bo, 1630 &adev->mman.fw_vram_usage_va); 1631 } 1632 1633 /** 1634 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1635 * 1636 * @adev: amdgpu_device pointer 1637 * 1638 * create bo vram reservation from drv. 1639 */ 1640 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1641 { 1642 u64 vram_size = adev->gmc.visible_vram_size; 1643 1644 adev->mman.drv_vram_usage_va = NULL; 1645 adev->mman.drv_vram_usage_reserved_bo = NULL; 1646 1647 if (adev->mman.drv_vram_usage_size == 0 || 1648 adev->mman.drv_vram_usage_size > vram_size) 1649 return 0; 1650 1651 return amdgpu_bo_create_kernel_at(adev, 1652 adev->mman.drv_vram_usage_start_offset, 1653 adev->mman.drv_vram_usage_size, 1654 &adev->mman.drv_vram_usage_reserved_bo, 1655 &adev->mman.drv_vram_usage_va); 1656 } 1657 1658 /* 1659 * Memoy training reservation functions 1660 */ 1661 1662 /** 1663 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1664 * 1665 * @adev: amdgpu_device pointer 1666 * 1667 * free memory training reserved vram if it has been reserved. 1668 */ 1669 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1670 { 1671 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1672 1673 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1674 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1675 ctx->c2p_bo = NULL; 1676 1677 return 0; 1678 } 1679 1680 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1681 uint32_t reserve_size) 1682 { 1683 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1684 1685 memset(ctx, 0, sizeof(*ctx)); 1686 1687 ctx->c2p_train_data_offset = 1688 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1689 ctx->p2c_train_data_offset = 1690 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1691 ctx->train_data_size = 1692 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1693 1694 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1695 ctx->train_data_size, 1696 ctx->p2c_train_data_offset, 1697 ctx->c2p_train_data_offset); 1698 } 1699 1700 /* 1701 * reserve TMR memory at the top of VRAM which holds 1702 * IP Discovery data and is protected by PSP. 1703 */ 1704 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1705 { 1706 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1707 bool mem_train_support = false; 1708 uint32_t reserve_size = 0; 1709 int ret; 1710 1711 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1712 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1713 mem_train_support = true; 1714 else 1715 DRM_DEBUG("memory training does not support!\n"); 1716 } 1717 1718 /* 1719 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1720 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1721 * 1722 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1723 * discovery data and G6 memory training data respectively 1724 */ 1725 if (adev->bios) 1726 reserve_size = 1727 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1728 1729 if (!adev->bios && 1730 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3)) 1731 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1732 else if (!reserve_size) 1733 reserve_size = DISCOVERY_TMR_OFFSET; 1734 1735 if (mem_train_support) { 1736 /* reserve vram for mem train according to TMR location */ 1737 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1738 ret = amdgpu_bo_create_kernel_at(adev, 1739 ctx->c2p_train_data_offset, 1740 ctx->train_data_size, 1741 &ctx->c2p_bo, 1742 NULL); 1743 if (ret) { 1744 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1745 amdgpu_ttm_training_reserve_vram_fini(adev); 1746 return ret; 1747 } 1748 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1749 } 1750 1751 if (!adev->gmc.is_app_apu) { 1752 ret = amdgpu_bo_create_kernel_at( 1753 adev, adev->gmc.real_vram_size - reserve_size, 1754 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1755 if (ret) { 1756 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1757 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1758 NULL, NULL); 1759 return ret; 1760 } 1761 } else { 1762 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1763 } 1764 1765 return 0; 1766 } 1767 1768 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1769 { 1770 int i; 1771 1772 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1773 return 0; 1774 1775 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1776 sizeof(*adev->mman.ttm_pools), 1777 GFP_KERNEL); 1778 if (!adev->mman.ttm_pools) 1779 return -ENOMEM; 1780 1781 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1782 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1783 adev->gmc.mem_partitions[i].numa.node, 1784 false, false); 1785 } 1786 return 0; 1787 } 1788 1789 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1790 { 1791 int i; 1792 1793 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1794 return; 1795 1796 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1797 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1798 1799 kfree(adev->mman.ttm_pools); 1800 adev->mman.ttm_pools = NULL; 1801 } 1802 1803 /* 1804 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1805 * gtt/vram related fields. 1806 * 1807 * This initializes all of the memory space pools that the TTM layer 1808 * will need such as the GTT space (system memory mapped to the device), 1809 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1810 * can be mapped per VMID. 1811 */ 1812 int amdgpu_ttm_init(struct amdgpu_device *adev) 1813 { 1814 uint64_t gtt_size; 1815 int r; 1816 1817 mutex_init(&adev->mman.gtt_window_lock); 1818 1819 /* No others user of address space so set it to 0 */ 1820 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1821 adev_to_drm(adev)->anon_inode->i_mapping, 1822 adev_to_drm(adev)->vma_offset_manager, 1823 adev->need_swiotlb, 1824 dma_addressing_limited(adev->dev)); 1825 if (r) { 1826 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1827 return r; 1828 } 1829 1830 r = amdgpu_ttm_pools_init(adev); 1831 if (r) { 1832 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1833 return r; 1834 } 1835 adev->mman.initialized = true; 1836 1837 /* Initialize VRAM pool with all of VRAM divided into pages */ 1838 r = amdgpu_vram_mgr_init(adev); 1839 if (r) { 1840 DRM_ERROR("Failed initializing VRAM heap.\n"); 1841 return r; 1842 } 1843 1844 /* Change the size here instead of the init above so only lpfn is affected */ 1845 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1846 #ifdef CONFIG_64BIT 1847 #ifdef CONFIG_X86 1848 if (adev->gmc.xgmi.connected_to_cpu) 1849 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1850 adev->gmc.visible_vram_size); 1851 1852 else if (adev->gmc.is_app_apu) 1853 DRM_DEBUG_DRIVER( 1854 "No need to ioremap when real vram size is 0\n"); 1855 else 1856 #endif 1857 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1858 adev->gmc.visible_vram_size); 1859 #endif 1860 1861 /* 1862 *The reserved vram for firmware must be pinned to the specified 1863 *place on the VRAM, so reserve it early. 1864 */ 1865 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1866 if (r) 1867 return r; 1868 1869 /* 1870 *The reserved vram for driver must be pinned to the specified 1871 *place on the VRAM, so reserve it early. 1872 */ 1873 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1874 if (r) 1875 return r; 1876 1877 /* 1878 * only NAVI10 and onwards ASIC support for IP discovery. 1879 * If IP discovery enabled, a block of memory should be 1880 * reserved for IP discovey. 1881 */ 1882 if (adev->mman.discovery_bin) { 1883 r = amdgpu_ttm_reserve_tmr(adev); 1884 if (r) 1885 return r; 1886 } 1887 1888 /* allocate memory as required for VGA 1889 * This is used for VGA emulation and pre-OS scanout buffers to 1890 * avoid display artifacts while transitioning between pre-OS 1891 * and driver. 1892 */ 1893 if (!adev->gmc.is_app_apu) { 1894 r = amdgpu_bo_create_kernel_at(adev, 0, 1895 adev->mman.stolen_vga_size, 1896 &adev->mman.stolen_vga_memory, 1897 NULL); 1898 if (r) 1899 return r; 1900 1901 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1902 adev->mman.stolen_extended_size, 1903 &adev->mman.stolen_extended_memory, 1904 NULL); 1905 1906 if (r) 1907 return r; 1908 1909 r = amdgpu_bo_create_kernel_at(adev, 1910 adev->mman.stolen_reserved_offset, 1911 adev->mman.stolen_reserved_size, 1912 &adev->mman.stolen_reserved_memory, 1913 NULL); 1914 if (r) 1915 return r; 1916 } else { 1917 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1918 } 1919 1920 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1921 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1922 1923 /* Compute GTT size, either based on TTM limit 1924 * or whatever the user passed on module init. 1925 */ 1926 if (amdgpu_gtt_size == -1) 1927 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1928 else 1929 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1930 1931 /* Initialize GTT memory pool */ 1932 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1933 if (r) { 1934 DRM_ERROR("Failed initializing GTT heap.\n"); 1935 return r; 1936 } 1937 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1938 (unsigned int)(gtt_size / (1024 * 1024))); 1939 1940 /* Initiailize doorbell pool on PCI BAR */ 1941 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1942 if (r) { 1943 DRM_ERROR("Failed initializing doorbell heap.\n"); 1944 return r; 1945 } 1946 1947 /* Create a boorbell page for kernel usages */ 1948 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1949 if (r) { 1950 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1951 return r; 1952 } 1953 1954 /* Initialize preemptible memory pool */ 1955 r = amdgpu_preempt_mgr_init(adev); 1956 if (r) { 1957 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1958 return r; 1959 } 1960 1961 /* Initialize various on-chip memory pools */ 1962 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1963 if (r) { 1964 DRM_ERROR("Failed initializing GDS heap.\n"); 1965 return r; 1966 } 1967 1968 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1969 if (r) { 1970 DRM_ERROR("Failed initializing gws heap.\n"); 1971 return r; 1972 } 1973 1974 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1975 if (r) { 1976 DRM_ERROR("Failed initializing oa heap.\n"); 1977 return r; 1978 } 1979 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1980 AMDGPU_GEM_DOMAIN_GTT, 1981 &adev->mman.sdma_access_bo, NULL, 1982 &adev->mman.sdma_access_ptr)) 1983 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1984 1985 return 0; 1986 } 1987 1988 /* 1989 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1990 */ 1991 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1992 { 1993 int idx; 1994 1995 if (!adev->mman.initialized) 1996 return; 1997 1998 amdgpu_ttm_pools_fini(adev); 1999 2000 amdgpu_ttm_training_reserve_vram_fini(adev); 2001 /* return the stolen vga memory back to VRAM */ 2002 if (!adev->gmc.is_app_apu) { 2003 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2004 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2005 /* return the FW reserved memory back to VRAM */ 2006 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2007 NULL); 2008 if (adev->mman.stolen_reserved_size) 2009 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2010 NULL, NULL); 2011 } 2012 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2013 &adev->mman.sdma_access_ptr); 2014 amdgpu_ttm_fw_reserve_vram_fini(adev); 2015 amdgpu_ttm_drv_reserve_vram_fini(adev); 2016 2017 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2018 2019 if (adev->mman.aper_base_kaddr) 2020 iounmap(adev->mman.aper_base_kaddr); 2021 adev->mman.aper_base_kaddr = NULL; 2022 2023 drm_dev_exit(idx); 2024 } 2025 2026 amdgpu_vram_mgr_fini(adev); 2027 amdgpu_gtt_mgr_fini(adev); 2028 amdgpu_preempt_mgr_fini(adev); 2029 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2030 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2031 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2032 ttm_device_fini(&adev->mman.bdev); 2033 adev->mman.initialized = false; 2034 DRM_INFO("amdgpu: ttm finalized\n"); 2035 } 2036 2037 /** 2038 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2039 * 2040 * @adev: amdgpu_device pointer 2041 * @enable: true when we can use buffer functions. 2042 * 2043 * Enable/disable use of buffer functions during suspend/resume. This should 2044 * only be called at bootup or when userspace isn't running. 2045 */ 2046 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2047 { 2048 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2049 uint64_t size; 2050 int r; 2051 2052 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2053 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2054 return; 2055 2056 if (enable) { 2057 struct amdgpu_ring *ring; 2058 struct drm_gpu_scheduler *sched; 2059 2060 ring = adev->mman.buffer_funcs_ring; 2061 sched = &ring->sched; 2062 r = drm_sched_entity_init(&adev->mman.high_pr, 2063 DRM_SCHED_PRIORITY_KERNEL, &sched, 2064 1, NULL); 2065 if (r) { 2066 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2067 r); 2068 return; 2069 } 2070 2071 r = drm_sched_entity_init(&adev->mman.low_pr, 2072 DRM_SCHED_PRIORITY_NORMAL, &sched, 2073 1, NULL); 2074 if (r) { 2075 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2076 r); 2077 goto error_free_entity; 2078 } 2079 } else { 2080 drm_sched_entity_destroy(&adev->mman.high_pr); 2081 drm_sched_entity_destroy(&adev->mman.low_pr); 2082 dma_fence_put(man->move); 2083 man->move = NULL; 2084 } 2085 2086 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2087 if (enable) 2088 size = adev->gmc.real_vram_size; 2089 else 2090 size = adev->gmc.visible_vram_size; 2091 man->size = size; 2092 adev->mman.buffer_funcs_enabled = enable; 2093 2094 return; 2095 2096 error_free_entity: 2097 drm_sched_entity_destroy(&adev->mman.high_pr); 2098 } 2099 2100 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2101 bool direct_submit, 2102 unsigned int num_dw, 2103 struct dma_resv *resv, 2104 bool vm_needs_flush, 2105 struct amdgpu_job **job, 2106 bool delayed) 2107 { 2108 enum amdgpu_ib_pool_type pool = direct_submit ? 2109 AMDGPU_IB_POOL_DIRECT : 2110 AMDGPU_IB_POOL_DELAYED; 2111 int r; 2112 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2113 &adev->mman.high_pr; 2114 r = amdgpu_job_alloc_with_ib(adev, entity, 2115 AMDGPU_FENCE_OWNER_UNDEFINED, 2116 num_dw * 4, pool, job); 2117 if (r) 2118 return r; 2119 2120 if (vm_needs_flush) { 2121 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2122 adev->gmc.pdb0_bo : 2123 adev->gart.bo); 2124 (*job)->vm_needs_flush = true; 2125 } 2126 if (!resv) 2127 return 0; 2128 2129 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2130 DMA_RESV_USAGE_BOOKKEEP); 2131 } 2132 2133 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2134 uint64_t dst_offset, uint32_t byte_count, 2135 struct dma_resv *resv, 2136 struct dma_fence **fence, bool direct_submit, 2137 bool vm_needs_flush, bool tmz) 2138 { 2139 struct amdgpu_device *adev = ring->adev; 2140 unsigned int num_loops, num_dw; 2141 struct amdgpu_job *job; 2142 uint32_t max_bytes; 2143 unsigned int i; 2144 int r; 2145 2146 if (!direct_submit && !ring->sched.ready) { 2147 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2148 return -EINVAL; 2149 } 2150 2151 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2152 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2153 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2154 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2155 resv, vm_needs_flush, &job, false); 2156 if (r) 2157 return r; 2158 2159 for (i = 0; i < num_loops; i++) { 2160 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2161 2162 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2163 dst_offset, cur_size_in_bytes, tmz); 2164 2165 src_offset += cur_size_in_bytes; 2166 dst_offset += cur_size_in_bytes; 2167 byte_count -= cur_size_in_bytes; 2168 } 2169 2170 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2171 WARN_ON(job->ibs[0].length_dw > num_dw); 2172 if (direct_submit) 2173 r = amdgpu_job_submit_direct(job, ring, fence); 2174 else 2175 *fence = amdgpu_job_submit(job); 2176 if (r) 2177 goto error_free; 2178 2179 return r; 2180 2181 error_free: 2182 amdgpu_job_free(job); 2183 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2184 return r; 2185 } 2186 2187 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2188 uint64_t dst_addr, uint32_t byte_count, 2189 struct dma_resv *resv, 2190 struct dma_fence **fence, 2191 bool vm_needs_flush, bool delayed) 2192 { 2193 struct amdgpu_device *adev = ring->adev; 2194 unsigned int num_loops, num_dw; 2195 struct amdgpu_job *job; 2196 uint32_t max_bytes; 2197 unsigned int i; 2198 int r; 2199 2200 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2201 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2202 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2203 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2204 &job, delayed); 2205 if (r) 2206 return r; 2207 2208 for (i = 0; i < num_loops; i++) { 2209 uint32_t cur_size = min(byte_count, max_bytes); 2210 2211 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2212 cur_size); 2213 2214 dst_addr += cur_size; 2215 byte_count -= cur_size; 2216 } 2217 2218 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2219 WARN_ON(job->ibs[0].length_dw > num_dw); 2220 *fence = amdgpu_job_submit(job); 2221 return 0; 2222 } 2223 2224 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2225 uint32_t src_data, 2226 struct dma_resv *resv, 2227 struct dma_fence **f, 2228 bool delayed) 2229 { 2230 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2231 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2232 struct dma_fence *fence = NULL; 2233 struct amdgpu_res_cursor dst; 2234 int r; 2235 2236 if (!adev->mman.buffer_funcs_enabled) { 2237 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2238 return -EINVAL; 2239 } 2240 2241 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2242 2243 mutex_lock(&adev->mman.gtt_window_lock); 2244 while (dst.remaining) { 2245 struct dma_fence *next; 2246 uint64_t cur_size, to; 2247 2248 /* Never fill more than 256MiB at once to avoid timeouts */ 2249 cur_size = min(dst.size, 256ULL << 20); 2250 2251 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2252 1, ring, false, &cur_size, &to); 2253 if (r) 2254 goto error; 2255 2256 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2257 &next, true, delayed); 2258 if (r) 2259 goto error; 2260 2261 dma_fence_put(fence); 2262 fence = next; 2263 2264 amdgpu_res_next(&dst, cur_size); 2265 } 2266 error: 2267 mutex_unlock(&adev->mman.gtt_window_lock); 2268 if (f) 2269 *f = dma_fence_get(fence); 2270 dma_fence_put(fence); 2271 return r; 2272 } 2273 2274 /** 2275 * amdgpu_ttm_evict_resources - evict memory buffers 2276 * @adev: amdgpu device object 2277 * @mem_type: evicted BO's memory type 2278 * 2279 * Evicts all @mem_type buffers on the lru list of the memory type. 2280 * 2281 * Returns: 2282 * 0 for success or a negative error code on failure. 2283 */ 2284 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2285 { 2286 struct ttm_resource_manager *man; 2287 2288 switch (mem_type) { 2289 case TTM_PL_VRAM: 2290 case TTM_PL_TT: 2291 case AMDGPU_PL_GWS: 2292 case AMDGPU_PL_GDS: 2293 case AMDGPU_PL_OA: 2294 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2295 break; 2296 default: 2297 DRM_ERROR("Trying to evict invalid memory type\n"); 2298 return -EINVAL; 2299 } 2300 2301 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2302 } 2303 2304 #if defined(CONFIG_DEBUG_FS) 2305 2306 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2307 { 2308 struct amdgpu_device *adev = m->private; 2309 2310 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2311 } 2312 2313 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2314 2315 /* 2316 * amdgpu_ttm_vram_read - Linear read access to VRAM 2317 * 2318 * Accesses VRAM via MMIO for debugging purposes. 2319 */ 2320 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2321 size_t size, loff_t *pos) 2322 { 2323 struct amdgpu_device *adev = file_inode(f)->i_private; 2324 ssize_t result = 0; 2325 2326 if (size & 0x3 || *pos & 0x3) 2327 return -EINVAL; 2328 2329 if (*pos >= adev->gmc.mc_vram_size) 2330 return -ENXIO; 2331 2332 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2333 while (size) { 2334 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2335 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2336 2337 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2338 if (copy_to_user(buf, value, bytes)) 2339 return -EFAULT; 2340 2341 result += bytes; 2342 buf += bytes; 2343 *pos += bytes; 2344 size -= bytes; 2345 } 2346 2347 return result; 2348 } 2349 2350 /* 2351 * amdgpu_ttm_vram_write - Linear write access to VRAM 2352 * 2353 * Accesses VRAM via MMIO for debugging purposes. 2354 */ 2355 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2356 size_t size, loff_t *pos) 2357 { 2358 struct amdgpu_device *adev = file_inode(f)->i_private; 2359 ssize_t result = 0; 2360 int r; 2361 2362 if (size & 0x3 || *pos & 0x3) 2363 return -EINVAL; 2364 2365 if (*pos >= adev->gmc.mc_vram_size) 2366 return -ENXIO; 2367 2368 while (size) { 2369 uint32_t value; 2370 2371 if (*pos >= adev->gmc.mc_vram_size) 2372 return result; 2373 2374 r = get_user(value, (uint32_t *)buf); 2375 if (r) 2376 return r; 2377 2378 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2379 2380 result += 4; 2381 buf += 4; 2382 *pos += 4; 2383 size -= 4; 2384 } 2385 2386 return result; 2387 } 2388 2389 static const struct file_operations amdgpu_ttm_vram_fops = { 2390 .owner = THIS_MODULE, 2391 .read = amdgpu_ttm_vram_read, 2392 .write = amdgpu_ttm_vram_write, 2393 .llseek = default_llseek, 2394 }; 2395 2396 /* 2397 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2398 * 2399 * This function is used to read memory that has been mapped to the 2400 * GPU and the known addresses are not physical addresses but instead 2401 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2402 */ 2403 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2404 size_t size, loff_t *pos) 2405 { 2406 struct amdgpu_device *adev = file_inode(f)->i_private; 2407 struct iommu_domain *dom; 2408 ssize_t result = 0; 2409 int r; 2410 2411 /* retrieve the IOMMU domain if any for this device */ 2412 dom = iommu_get_domain_for_dev(adev->dev); 2413 2414 while (size) { 2415 phys_addr_t addr = *pos & PAGE_MASK; 2416 loff_t off = *pos & ~PAGE_MASK; 2417 size_t bytes = PAGE_SIZE - off; 2418 unsigned long pfn; 2419 struct page *p; 2420 void *ptr; 2421 2422 bytes = min(bytes, size); 2423 2424 /* Translate the bus address to a physical address. If 2425 * the domain is NULL it means there is no IOMMU active 2426 * and the address translation is the identity 2427 */ 2428 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2429 2430 pfn = addr >> PAGE_SHIFT; 2431 if (!pfn_valid(pfn)) 2432 return -EPERM; 2433 2434 p = pfn_to_page(pfn); 2435 if (p->mapping != adev->mman.bdev.dev_mapping) 2436 return -EPERM; 2437 2438 ptr = kmap_local_page(p); 2439 r = copy_to_user(buf, ptr + off, bytes); 2440 kunmap_local(ptr); 2441 if (r) 2442 return -EFAULT; 2443 2444 size -= bytes; 2445 *pos += bytes; 2446 result += bytes; 2447 } 2448 2449 return result; 2450 } 2451 2452 /* 2453 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2454 * 2455 * This function is used to write memory that has been mapped to the 2456 * GPU and the known addresses are not physical addresses but instead 2457 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2458 */ 2459 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2460 size_t size, loff_t *pos) 2461 { 2462 struct amdgpu_device *adev = file_inode(f)->i_private; 2463 struct iommu_domain *dom; 2464 ssize_t result = 0; 2465 int r; 2466 2467 dom = iommu_get_domain_for_dev(adev->dev); 2468 2469 while (size) { 2470 phys_addr_t addr = *pos & PAGE_MASK; 2471 loff_t off = *pos & ~PAGE_MASK; 2472 size_t bytes = PAGE_SIZE - off; 2473 unsigned long pfn; 2474 struct page *p; 2475 void *ptr; 2476 2477 bytes = min(bytes, size); 2478 2479 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2480 2481 pfn = addr >> PAGE_SHIFT; 2482 if (!pfn_valid(pfn)) 2483 return -EPERM; 2484 2485 p = pfn_to_page(pfn); 2486 if (p->mapping != adev->mman.bdev.dev_mapping) 2487 return -EPERM; 2488 2489 ptr = kmap_local_page(p); 2490 r = copy_from_user(ptr + off, buf, bytes); 2491 kunmap_local(ptr); 2492 if (r) 2493 return -EFAULT; 2494 2495 size -= bytes; 2496 *pos += bytes; 2497 result += bytes; 2498 } 2499 2500 return result; 2501 } 2502 2503 static const struct file_operations amdgpu_ttm_iomem_fops = { 2504 .owner = THIS_MODULE, 2505 .read = amdgpu_iomem_read, 2506 .write = amdgpu_iomem_write, 2507 .llseek = default_llseek 2508 }; 2509 2510 #endif 2511 2512 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2513 { 2514 #if defined(CONFIG_DEBUG_FS) 2515 struct drm_minor *minor = adev_to_drm(adev)->primary; 2516 struct dentry *root = minor->debugfs_root; 2517 2518 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2519 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2520 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2521 &amdgpu_ttm_iomem_fops); 2522 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2523 &amdgpu_ttm_page_pool_fops); 2524 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2525 TTM_PL_VRAM), 2526 root, "amdgpu_vram_mm"); 2527 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2528 TTM_PL_TT), 2529 root, "amdgpu_gtt_mm"); 2530 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2531 AMDGPU_PL_GDS), 2532 root, "amdgpu_gds_mm"); 2533 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2534 AMDGPU_PL_GWS), 2535 root, "amdgpu_gws_mm"); 2536 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2537 AMDGPU_PL_OA), 2538 root, "amdgpu_oa_mm"); 2539 2540 #endif 2541 } 2542