xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 0f657938e4345a77be871d906f3e0de3c58a7a49)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		placement->num_busy_placement = 0;
106 		return;
107 	}
108 
109 	/* Object isn't an AMDGPU object so ignore */
110 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 		placement->placement = &placements;
112 		placement->busy_placement = &placements;
113 		placement->num_placement = 1;
114 		placement->num_busy_placement = 1;
115 		return;
116 	}
117 
118 	abo = ttm_to_amdgpu_bo(bo);
119 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 		placement->num_placement = 0;
121 		placement->num_busy_placement = 0;
122 		return;
123 	}
124 
125 	switch (bo->resource->mem_type) {
126 	case AMDGPU_PL_GDS:
127 	case AMDGPU_PL_GWS:
128 	case AMDGPU_PL_OA:
129 	case AMDGPU_PL_DOORBELL:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned int window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned int offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct amdgpu_job *job;
193 	void *cpu_addr;
194 	uint64_t flags;
195 	unsigned int i;
196 	int r;
197 
198 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200 
201 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 		return -EINVAL;
203 
204 	/* Map only what can't be accessed directly */
205 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 			mm_cur->start;
208 		return 0;
209 	}
210 
211 
212 	/*
213 	 * If start begins at an offset inside the page, then adjust the size
214 	 * and addr accordingly
215 	 */
216 	offset = mm_cur->start & ~PAGE_MASK;
217 
218 	num_pages = PFN_UP(*size + offset);
219 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220 
221 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222 
223 	*addr = adev->gmc.gart_start;
224 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 		AMDGPU_GPU_PAGE_SIZE;
226 	*addr += offset;
227 
228 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230 
231 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 				     AMDGPU_FENCE_OWNER_UNDEFINED,
233 				     num_dw * 4 + num_bytes,
234 				     AMDGPU_IB_POOL_DELAYED, &job);
235 	if (r)
236 		return r;
237 
238 	src_addr = num_dw * 4;
239 	src_addr += job->ibs[0].gpu_addr;
240 
241 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 				dst_addr, num_bytes, false);
245 
246 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 	WARN_ON(job->ibs[0].length_dw > num_dw);
248 
249 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 	if (tmz)
251 		flags |= AMDGPU_PTE_TMZ;
252 
253 	cpu_addr = &job->ibs[0].ptr[num_dw];
254 
255 	if (mem->mem_type == TTM_PL_TT) {
256 		dma_addr_t *dma_addr;
257 
258 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 	} else {
261 		dma_addr_t dma_address;
262 
263 		dma_address = mm_cur->start;
264 		dma_address += adev->vm_manager.vram_base_offset;
265 
266 		for (i = 0; i < num_pages; ++i) {
267 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 					flags, cpu_addr);
269 			dma_address += PAGE_SIZE;
270 		}
271 	}
272 
273 	dma_fence_put(amdgpu_job_submit(job));
274 	return 0;
275 }
276 
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 			       const struct amdgpu_copy_mem *src,
294 			       const struct amdgpu_copy_mem *dst,
295 			       uint64_t size, bool tmz,
296 			       struct dma_resv *resv,
297 			       struct dma_fence **f)
298 {
299 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 	struct amdgpu_res_cursor src_mm, dst_mm;
301 	struct dma_fence *fence = NULL;
302 	int r = 0;
303 
304 	if (!adev->mman.buffer_funcs_enabled) {
305 		DRM_ERROR("Trying to move memory with ring turned off.\n");
306 		return -EINVAL;
307 	}
308 
309 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311 
312 	mutex_lock(&adev->mman.gtt_window_lock);
313 	while (src_mm.remaining) {
314 		uint64_t from, to, cur_size;
315 		struct dma_fence *next;
316 
317 		/* Never copy more than 256MiB at once to avoid a timeout */
318 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319 
320 		/* Map src to window 0 and dst to window 1. */
321 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 					  0, ring, tmz, &cur_size, &from);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 					  1, ring, tmz, &cur_size, &to);
328 		if (r)
329 			goto error;
330 
331 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 				       resv, &next, false, true, tmz);
333 		if (r)
334 			goto error;
335 
336 		dma_fence_put(fence);
337 		fence = next;
338 
339 		amdgpu_res_next(&src_mm, cur_size);
340 		amdgpu_res_next(&dst_mm, cur_size);
341 	}
342 error:
343 	mutex_unlock(&adev->mman.gtt_window_lock);
344 	if (f)
345 		*f = dma_fence_get(fence);
346 	dma_fence_put(fence);
347 	return r;
348 }
349 
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 			    bool evict,
358 			    struct ttm_resource *new_mem,
359 			    struct ttm_resource *old_mem)
360 {
361 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 	struct amdgpu_copy_mem src, dst;
364 	struct dma_fence *fence = NULL;
365 	int r;
366 
367 	src.bo = bo;
368 	dst.bo = bo;
369 	src.mem = old_mem;
370 	dst.mem = new_mem;
371 	src.offset = 0;
372 	dst.offset = 0;
373 
374 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 				       new_mem->size,
376 				       amdgpu_bo_encrypted(abo),
377 				       bo->base.resv, &fence);
378 	if (r)
379 		goto error;
380 
381 	/* clear the space being freed */
382 	if (old_mem->mem_type == TTM_PL_VRAM &&
383 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 		struct dma_fence *wipe_fence = NULL;
385 
386 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 					false);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /*
412  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413  *
414  * Called by amdgpu_bo_move()
415  */
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 			       struct ttm_resource *mem)
418 {
419 	u64 mem_size = (u64)mem->size;
420 	struct amdgpu_res_cursor cursor;
421 	u64 end;
422 
423 	if (mem->mem_type == TTM_PL_SYSTEM ||
424 	    mem->mem_type == TTM_PL_TT)
425 		return true;
426 	if (mem->mem_type != TTM_PL_VRAM)
427 		return false;
428 
429 	amdgpu_res_first(mem, 0, mem_size, &cursor);
430 	end = cursor.start + cursor.size;
431 	while (cursor.remaining) {
432 		amdgpu_res_next(&cursor, cursor.size);
433 
434 		if (!cursor.remaining)
435 			break;
436 
437 		/* ttm_resource_ioremap only supports contiguous memory */
438 		if (end != cursor.start)
439 			return false;
440 
441 		end = cursor.start + cursor.size;
442 	}
443 
444 	return end <= adev->gmc.visible_vram_size;
445 }
446 
447 /*
448  * amdgpu_bo_move - Move a buffer object to a new memory location
449  *
450  * Called by ttm_bo_handle_move_mem()
451  */
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 			  struct ttm_operation_ctx *ctx,
454 			  struct ttm_resource *new_mem,
455 			  struct ttm_place *hop)
456 {
457 	struct amdgpu_device *adev;
458 	struct amdgpu_bo *abo;
459 	struct ttm_resource *old_mem = bo->resource;
460 	int r;
461 
462 	if (new_mem->mem_type == TTM_PL_TT ||
463 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465 		if (r)
466 			return r;
467 	}
468 
469 	abo = ttm_to_amdgpu_bo(bo);
470 	adev = amdgpu_ttm_adev(bo->bdev);
471 
472 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473 			 bo->ttm == NULL)) {
474 		ttm_bo_move_null(bo, new_mem);
475 		goto out;
476 	}
477 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 	    (new_mem->mem_type == TTM_PL_TT ||
479 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 		ttm_bo_move_null(bo, new_mem);
481 		goto out;
482 	}
483 	if ((old_mem->mem_type == TTM_PL_TT ||
484 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 	    new_mem->mem_type == TTM_PL_SYSTEM) {
486 		r = ttm_bo_wait_ctx(bo, ctx);
487 		if (r)
488 			return r;
489 
490 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491 		ttm_resource_free(bo, &bo->resource);
492 		ttm_bo_assign_mem(bo, new_mem);
493 		goto out;
494 	}
495 
496 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 	    old_mem->mem_type == AMDGPU_PL_GWS ||
498 	    old_mem->mem_type == AMDGPU_PL_OA ||
499 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
500 	    new_mem->mem_type == AMDGPU_PL_GDS ||
501 	    new_mem->mem_type == AMDGPU_PL_GWS ||
502 	    new_mem->mem_type == AMDGPU_PL_OA ||
503 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
504 		/* Nothing to save here */
505 		ttm_bo_move_null(bo, new_mem);
506 		goto out;
507 	}
508 
509 	if (bo->type == ttm_bo_type_device &&
510 	    new_mem->mem_type == TTM_PL_VRAM &&
511 	    old_mem->mem_type != TTM_PL_VRAM) {
512 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
513 		 * accesses the BO after it's moved.
514 		 */
515 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 	}
517 
518 	if (adev->mman.buffer_funcs_enabled) {
519 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
520 		      new_mem->mem_type == TTM_PL_VRAM) ||
521 		     (old_mem->mem_type == TTM_PL_VRAM &&
522 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
523 			hop->fpfn = 0;
524 			hop->lpfn = 0;
525 			hop->mem_type = TTM_PL_TT;
526 			hop->flags = TTM_PL_FLAG_TEMPORARY;
527 			return -EMULTIHOP;
528 		}
529 
530 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
531 	} else {
532 		r = -ENODEV;
533 	}
534 
535 	if (r) {
536 		/* Check that all memory is CPU accessible */
537 		if (!amdgpu_mem_visible(adev, old_mem) ||
538 		    !amdgpu_mem_visible(adev, new_mem)) {
539 			pr_err("Move buffer fallback to memcpy unavailable\n");
540 			return r;
541 		}
542 
543 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
544 		if (r)
545 			return r;
546 	}
547 
548 	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
549 out:
550 	/* update statistics */
551 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
552 	amdgpu_bo_move_notify(bo, evict);
553 	return 0;
554 }
555 
556 /*
557  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
558  *
559  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
560  */
561 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
562 				     struct ttm_resource *mem)
563 {
564 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
565 	size_t bus_size = (size_t)mem->size;
566 
567 	switch (mem->mem_type) {
568 	case TTM_PL_SYSTEM:
569 		/* system memory */
570 		return 0;
571 	case TTM_PL_TT:
572 	case AMDGPU_PL_PREEMPT:
573 		break;
574 	case TTM_PL_VRAM:
575 		mem->bus.offset = mem->start << PAGE_SHIFT;
576 		/* check if it's visible */
577 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
578 			return -EINVAL;
579 
580 		if (adev->mman.aper_base_kaddr &&
581 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
582 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
583 					mem->bus.offset;
584 
585 		mem->bus.offset += adev->gmc.aper_base;
586 		mem->bus.is_iomem = true;
587 		break;
588 	case AMDGPU_PL_DOORBELL:
589 		mem->bus.offset = mem->start << PAGE_SHIFT;
590 		mem->bus.offset += adev->doorbell.base;
591 		mem->bus.is_iomem = true;
592 		mem->bus.caching = ttm_uncached;
593 		break;
594 	default:
595 		return -EINVAL;
596 	}
597 	return 0;
598 }
599 
600 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
601 					   unsigned long page_offset)
602 {
603 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
604 	struct amdgpu_res_cursor cursor;
605 
606 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
607 			 &cursor);
608 
609 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
610 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
611 
612 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
613 }
614 
615 /**
616  * amdgpu_ttm_domain_start - Returns GPU start address
617  * @adev: amdgpu device object
618  * @type: type of the memory
619  *
620  * Returns:
621  * GPU start address of a memory domain
622  */
623 
624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
625 {
626 	switch (type) {
627 	case TTM_PL_TT:
628 		return adev->gmc.gart_start;
629 	case TTM_PL_VRAM:
630 		return adev->gmc.vram_start;
631 	}
632 
633 	return 0;
634 }
635 
636 /*
637  * TTM backend functions.
638  */
639 struct amdgpu_ttm_tt {
640 	struct ttm_tt	ttm;
641 	struct drm_gem_object	*gobj;
642 	u64			offset;
643 	uint64_t		userptr;
644 	struct task_struct	*usertask;
645 	uint32_t		userflags;
646 	bool			bound;
647 	int32_t			pool_id;
648 };
649 
650 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
651 
652 #ifdef CONFIG_DRM_AMDGPU_USERPTR
653 /*
654  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
655  * memory and start HMM tracking CPU page table update
656  *
657  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
658  * once afterwards to stop HMM tracking
659  */
660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
661 				 struct hmm_range **range)
662 {
663 	struct ttm_tt *ttm = bo->tbo.ttm;
664 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
665 	unsigned long start = gtt->userptr;
666 	struct vm_area_struct *vma;
667 	struct mm_struct *mm;
668 	bool readonly;
669 	int r = 0;
670 
671 	/* Make sure get_user_pages_done() can cleanup gracefully */
672 	*range = NULL;
673 
674 	mm = bo->notifier.mm;
675 	if (unlikely(!mm)) {
676 		DRM_DEBUG_DRIVER("BO is not registered?\n");
677 		return -EFAULT;
678 	}
679 
680 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
681 		return -ESRCH;
682 
683 	mmap_read_lock(mm);
684 	vma = vma_lookup(mm, start);
685 	if (unlikely(!vma)) {
686 		r = -EFAULT;
687 		goto out_unlock;
688 	}
689 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
690 		vma->vm_file)) {
691 		r = -EPERM;
692 		goto out_unlock;
693 	}
694 
695 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
696 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
697 				       readonly, NULL, pages, range);
698 out_unlock:
699 	mmap_read_unlock(mm);
700 	if (r)
701 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
702 
703 	mmput(mm);
704 
705 	return r;
706 }
707 
708 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
709  */
710 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
711 				      struct hmm_range *range)
712 {
713 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
714 
715 	if (gtt && gtt->userptr && range)
716 		amdgpu_hmm_range_get_pages_done(range);
717 }
718 
719 /*
720  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
721  * Check if the pages backing this ttm range have been invalidated
722  *
723  * Returns: true if pages are still valid
724  */
725 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
726 				       struct hmm_range *range)
727 {
728 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
729 
730 	if (!gtt || !gtt->userptr || !range)
731 		return false;
732 
733 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
734 		gtt->userptr, ttm->num_pages);
735 
736 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
737 
738 	return !amdgpu_hmm_range_get_pages_done(range);
739 }
740 #endif
741 
742 /*
743  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
744  *
745  * Called by amdgpu_cs_list_validate(). This creates the page list
746  * that backs user memory and will ultimately be mapped into the device
747  * address space.
748  */
749 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
750 {
751 	unsigned long i;
752 
753 	for (i = 0; i < ttm->num_pages; ++i)
754 		ttm->pages[i] = pages ? pages[i] : NULL;
755 }
756 
757 /*
758  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
759  *
760  * Called by amdgpu_ttm_backend_bind()
761  **/
762 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
763 				     struct ttm_tt *ttm)
764 {
765 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
766 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
767 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
768 	enum dma_data_direction direction = write ?
769 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
770 	int r;
771 
772 	/* Allocate an SG array and squash pages into it */
773 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
774 				      (u64)ttm->num_pages << PAGE_SHIFT,
775 				      GFP_KERNEL);
776 	if (r)
777 		goto release_sg;
778 
779 	/* Map SG to device */
780 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
781 	if (r)
782 		goto release_sg;
783 
784 	/* convert SG to linear array of pages and dma addresses */
785 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
786 				       ttm->num_pages);
787 
788 	return 0;
789 
790 release_sg:
791 	kfree(ttm->sg);
792 	ttm->sg = NULL;
793 	return r;
794 }
795 
796 /*
797  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
798  */
799 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
800 					struct ttm_tt *ttm)
801 {
802 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
803 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
804 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
805 	enum dma_data_direction direction = write ?
806 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
807 
808 	/* double check that we don't free the table twice */
809 	if (!ttm->sg || !ttm->sg->sgl)
810 		return;
811 
812 	/* unmap the pages mapped to the device */
813 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
814 	sg_free_table(ttm->sg);
815 }
816 
817 /*
818  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
819  * MQDn+CtrlStackn where n is the number of XCCs per partition.
820  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
821  * and uses memory type default, UC. The rest of pages_per_xcc are
822  * Ctrl stack and modify their memory type to NC.
823  */
824 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
825 				struct ttm_tt *ttm, uint64_t flags)
826 {
827 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
828 	uint64_t total_pages = ttm->num_pages;
829 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
830 	uint64_t page_idx, pages_per_xcc;
831 	int i;
832 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
833 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
834 
835 	pages_per_xcc = total_pages;
836 	do_div(pages_per_xcc, num_xcc);
837 
838 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
839 		/* MQD page: use default flags */
840 		amdgpu_gart_bind(adev,
841 				gtt->offset + (page_idx << PAGE_SHIFT),
842 				1, &gtt->ttm.dma_address[page_idx], flags);
843 		/*
844 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
845 		 * the second page of the BO onward.
846 		 */
847 		amdgpu_gart_bind(adev,
848 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
849 				pages_per_xcc - 1,
850 				&gtt->ttm.dma_address[page_idx + 1],
851 				ctrl_flags);
852 	}
853 }
854 
855 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
856 				 struct ttm_buffer_object *tbo,
857 				 uint64_t flags)
858 {
859 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
860 	struct ttm_tt *ttm = tbo->ttm;
861 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
862 
863 	if (amdgpu_bo_encrypted(abo))
864 		flags |= AMDGPU_PTE_TMZ;
865 
866 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
867 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
868 	} else {
869 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
870 				 gtt->ttm.dma_address, flags);
871 	}
872 }
873 
874 /*
875  * amdgpu_ttm_backend_bind - Bind GTT memory
876  *
877  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
878  * This handles binding GTT memory to the device address space.
879  */
880 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
881 				   struct ttm_tt *ttm,
882 				   struct ttm_resource *bo_mem)
883 {
884 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
885 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
886 	uint64_t flags;
887 	int r;
888 
889 	if (!bo_mem)
890 		return -EINVAL;
891 
892 	if (gtt->bound)
893 		return 0;
894 
895 	if (gtt->userptr) {
896 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
897 		if (r) {
898 			DRM_ERROR("failed to pin userptr\n");
899 			return r;
900 		}
901 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
902 		if (!ttm->sg) {
903 			struct dma_buf_attachment *attach;
904 			struct sg_table *sgt;
905 
906 			attach = gtt->gobj->import_attach;
907 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
908 			if (IS_ERR(sgt))
909 				return PTR_ERR(sgt);
910 
911 			ttm->sg = sgt;
912 		}
913 
914 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
915 					       ttm->num_pages);
916 	}
917 
918 	if (!ttm->num_pages) {
919 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
920 		     ttm->num_pages, bo_mem, ttm);
921 	}
922 
923 	if (bo_mem->mem_type != TTM_PL_TT ||
924 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
925 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
926 		return 0;
927 	}
928 
929 	/* compute PTE flags relevant to this BO memory */
930 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
931 
932 	/* bind pages into GART page tables */
933 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
934 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
935 			 gtt->ttm.dma_address, flags);
936 	gtt->bound = true;
937 	return 0;
938 }
939 
940 /*
941  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
942  * through AGP or GART aperture.
943  *
944  * If bo is accessible through AGP aperture, then use AGP aperture
945  * to access bo; otherwise allocate logical space in GART aperture
946  * and map bo to GART aperture.
947  */
948 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
949 {
950 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
951 	struct ttm_operation_ctx ctx = { false, false };
952 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
953 	struct ttm_placement placement;
954 	struct ttm_place placements;
955 	struct ttm_resource *tmp;
956 	uint64_t addr, flags;
957 	int r;
958 
959 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
960 		return 0;
961 
962 	addr = amdgpu_gmc_agp_addr(bo);
963 	if (addr != AMDGPU_BO_INVALID_OFFSET)
964 		return 0;
965 
966 	/* allocate GART space */
967 	placement.num_placement = 1;
968 	placement.placement = &placements;
969 	placement.num_busy_placement = 1;
970 	placement.busy_placement = &placements;
971 	placements.fpfn = 0;
972 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
973 	placements.mem_type = TTM_PL_TT;
974 	placements.flags = bo->resource->placement;
975 
976 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
977 	if (unlikely(r))
978 		return r;
979 
980 	/* compute PTE flags for this buffer object */
981 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
982 
983 	/* Bind pages */
984 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
985 	amdgpu_ttm_gart_bind(adev, bo, flags);
986 	amdgpu_gart_invalidate_tlb(adev);
987 	ttm_resource_free(bo, &bo->resource);
988 	ttm_bo_assign_mem(bo, tmp);
989 
990 	return 0;
991 }
992 
993 /*
994  * amdgpu_ttm_recover_gart - Rebind GTT pages
995  *
996  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
997  * rebind GTT pages during a GPU reset.
998  */
999 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1000 {
1001 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1002 	uint64_t flags;
1003 
1004 	if (!tbo->ttm)
1005 		return;
1006 
1007 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1008 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1009 }
1010 
1011 /*
1012  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1013  *
1014  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1015  * ttm_tt_destroy().
1016  */
1017 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1018 				      struct ttm_tt *ttm)
1019 {
1020 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1021 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1022 
1023 	/* if the pages have userptr pinning then clear that first */
1024 	if (gtt->userptr) {
1025 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1026 	} else if (ttm->sg && gtt->gobj->import_attach) {
1027 		struct dma_buf_attachment *attach;
1028 
1029 		attach = gtt->gobj->import_attach;
1030 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1031 		ttm->sg = NULL;
1032 	}
1033 
1034 	if (!gtt->bound)
1035 		return;
1036 
1037 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1038 		return;
1039 
1040 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1041 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1042 	gtt->bound = false;
1043 }
1044 
1045 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1046 				       struct ttm_tt *ttm)
1047 {
1048 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1049 
1050 	if (gtt->usertask)
1051 		put_task_struct(gtt->usertask);
1052 
1053 	ttm_tt_fini(&gtt->ttm);
1054 	kfree(gtt);
1055 }
1056 
1057 /**
1058  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1059  *
1060  * @bo: The buffer object to create a GTT ttm_tt object around
1061  * @page_flags: Page flags to be added to the ttm_tt object
1062  *
1063  * Called by ttm_tt_create().
1064  */
1065 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1066 					   uint32_t page_flags)
1067 {
1068 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1069 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1070 	struct amdgpu_ttm_tt *gtt;
1071 	enum ttm_caching caching;
1072 
1073 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1074 	if (!gtt)
1075 		return NULL;
1076 
1077 	gtt->gobj = &bo->base;
1078 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1079 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1080 	else
1081 		gtt->pool_id = abo->xcp_id;
1082 
1083 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1084 		caching = ttm_write_combined;
1085 	else
1086 		caching = ttm_cached;
1087 
1088 	/* allocate space for the uninitialized page entries */
1089 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1090 		kfree(gtt);
1091 		return NULL;
1092 	}
1093 	return &gtt->ttm;
1094 }
1095 
1096 /*
1097  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1098  *
1099  * Map the pages of a ttm_tt object to an address space visible
1100  * to the underlying device.
1101  */
1102 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1103 				  struct ttm_tt *ttm,
1104 				  struct ttm_operation_ctx *ctx)
1105 {
1106 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1107 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1108 	struct ttm_pool *pool;
1109 	pgoff_t i;
1110 	int ret;
1111 
1112 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1113 	if (gtt->userptr) {
1114 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1115 		if (!ttm->sg)
1116 			return -ENOMEM;
1117 		return 0;
1118 	}
1119 
1120 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1121 		return 0;
1122 
1123 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1124 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1125 	else
1126 		pool = &adev->mman.bdev.pool;
1127 	ret = ttm_pool_alloc(pool, ttm, ctx);
1128 	if (ret)
1129 		return ret;
1130 
1131 	for (i = 0; i < ttm->num_pages; ++i)
1132 		ttm->pages[i]->mapping = bdev->dev_mapping;
1133 
1134 	return 0;
1135 }
1136 
1137 /*
1138  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139  *
1140  * Unmaps pages of a ttm_tt object from the device address space and
1141  * unpopulates the page array backing it.
1142  */
1143 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144 				     struct ttm_tt *ttm)
1145 {
1146 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1147 	struct amdgpu_device *adev;
1148 	struct ttm_pool *pool;
1149 	pgoff_t i;
1150 
1151 	amdgpu_ttm_backend_unbind(bdev, ttm);
1152 
1153 	if (gtt->userptr) {
1154 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1155 		kfree(ttm->sg);
1156 		ttm->sg = NULL;
1157 		return;
1158 	}
1159 
1160 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1161 		return;
1162 
1163 	for (i = 0; i < ttm->num_pages; ++i)
1164 		ttm->pages[i]->mapping = NULL;
1165 
1166 	adev = amdgpu_ttm_adev(bdev);
1167 
1168 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1169 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1170 	else
1171 		pool = &adev->mman.bdev.pool;
1172 
1173 	return ttm_pool_free(pool, ttm);
1174 }
1175 
1176 /**
1177  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1178  * task
1179  *
1180  * @tbo: The ttm_buffer_object that contains the userptr
1181  * @user_addr:  The returned value
1182  */
1183 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1184 			      uint64_t *user_addr)
1185 {
1186 	struct amdgpu_ttm_tt *gtt;
1187 
1188 	if (!tbo->ttm)
1189 		return -EINVAL;
1190 
1191 	gtt = (void *)tbo->ttm;
1192 	*user_addr = gtt->userptr;
1193 	return 0;
1194 }
1195 
1196 /**
1197  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1198  * task
1199  *
1200  * @bo: The ttm_buffer_object to bind this userptr to
1201  * @addr:  The address in the current tasks VM space to use
1202  * @flags: Requirements of userptr object.
1203  *
1204  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1205  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1206  * initialize GPU VM for a KFD process.
1207  */
1208 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1209 			      uint64_t addr, uint32_t flags)
1210 {
1211 	struct amdgpu_ttm_tt *gtt;
1212 
1213 	if (!bo->ttm) {
1214 		/* TODO: We want a separate TTM object type for userptrs */
1215 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1216 		if (bo->ttm == NULL)
1217 			return -ENOMEM;
1218 	}
1219 
1220 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1221 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1222 
1223 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1224 	gtt->userptr = addr;
1225 	gtt->userflags = flags;
1226 
1227 	if (gtt->usertask)
1228 		put_task_struct(gtt->usertask);
1229 	gtt->usertask = current->group_leader;
1230 	get_task_struct(gtt->usertask);
1231 
1232 	return 0;
1233 }
1234 
1235 /*
1236  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1237  */
1238 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1239 {
1240 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1241 
1242 	if (gtt == NULL)
1243 		return NULL;
1244 
1245 	if (gtt->usertask == NULL)
1246 		return NULL;
1247 
1248 	return gtt->usertask->mm;
1249 }
1250 
1251 /*
1252  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1253  * address range for the current task.
1254  *
1255  */
1256 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1257 				  unsigned long end, unsigned long *userptr)
1258 {
1259 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260 	unsigned long size;
1261 
1262 	if (gtt == NULL || !gtt->userptr)
1263 		return false;
1264 
1265 	/* Return false if no part of the ttm_tt object lies within
1266 	 * the range
1267 	 */
1268 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1269 	if (gtt->userptr > end || gtt->userptr + size <= start)
1270 		return false;
1271 
1272 	if (userptr)
1273 		*userptr = gtt->userptr;
1274 	return true;
1275 }
1276 
1277 /*
1278  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1279  */
1280 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1281 {
1282 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1283 
1284 	if (gtt == NULL || !gtt->userptr)
1285 		return false;
1286 
1287 	return true;
1288 }
1289 
1290 /*
1291  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1292  */
1293 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1294 {
1295 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1296 
1297 	if (gtt == NULL)
1298 		return false;
1299 
1300 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1301 }
1302 
1303 /**
1304  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1305  *
1306  * @ttm: The ttm_tt object to compute the flags for
1307  * @mem: The memory registry backing this ttm_tt object
1308  *
1309  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1310  */
1311 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1312 {
1313 	uint64_t flags = 0;
1314 
1315 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1316 		flags |= AMDGPU_PTE_VALID;
1317 
1318 	if (mem && (mem->mem_type == TTM_PL_TT ||
1319 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1320 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1321 		flags |= AMDGPU_PTE_SYSTEM;
1322 
1323 		if (ttm->caching == ttm_cached)
1324 			flags |= AMDGPU_PTE_SNOOPED;
1325 	}
1326 
1327 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1328 			mem->bus.caching == ttm_cached)
1329 		flags |= AMDGPU_PTE_SNOOPED;
1330 
1331 	return flags;
1332 }
1333 
1334 /**
1335  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1336  *
1337  * @adev: amdgpu_device pointer
1338  * @ttm: The ttm_tt object to compute the flags for
1339  * @mem: The memory registry backing this ttm_tt object
1340  *
1341  * Figure out the flags to use for a VM PTE (Page Table Entry).
1342  */
1343 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1344 				 struct ttm_resource *mem)
1345 {
1346 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1347 
1348 	flags |= adev->gart.gart_pte_flags;
1349 	flags |= AMDGPU_PTE_READABLE;
1350 
1351 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1352 		flags |= AMDGPU_PTE_WRITEABLE;
1353 
1354 	return flags;
1355 }
1356 
1357 /*
1358  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1359  * object.
1360  *
1361  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1362  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1363  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1364  * used to clean out a memory space.
1365  */
1366 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1367 					    const struct ttm_place *place)
1368 {
1369 	struct dma_resv_iter resv_cursor;
1370 	struct dma_fence *f;
1371 
1372 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1373 		return ttm_bo_eviction_valuable(bo, place);
1374 
1375 	/* Swapout? */
1376 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1377 		return true;
1378 
1379 	if (bo->type == ttm_bo_type_kernel &&
1380 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1381 		return false;
1382 
1383 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1384 	 * If true, then return false as any KFD process needs all its BOs to
1385 	 * be resident to run successfully
1386 	 */
1387 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1388 				DMA_RESV_USAGE_BOOKKEEP, f) {
1389 		if (amdkfd_fence_check_mm(f, current->mm))
1390 			return false;
1391 	}
1392 
1393 	/* Preemptible BOs don't own system resources managed by the
1394 	 * driver (pages, VRAM, GART space). They point to resources
1395 	 * owned by someone else (e.g. pageable memory in user mode
1396 	 * or a DMABuf). They are used in a preemptible context so we
1397 	 * can guarantee no deadlocks and good QoS in case of MMU
1398 	 * notifiers or DMABuf move notifiers from the resource owner.
1399 	 */
1400 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1401 		return false;
1402 
1403 	if (bo->resource->mem_type == TTM_PL_TT &&
1404 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1405 		return false;
1406 
1407 	return ttm_bo_eviction_valuable(bo, place);
1408 }
1409 
1410 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1411 				      void *buf, size_t size, bool write)
1412 {
1413 	while (size) {
1414 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1415 		uint64_t bytes = 4 - (pos & 0x3);
1416 		uint32_t shift = (pos & 0x3) * 8;
1417 		uint32_t mask = 0xffffffff << shift;
1418 		uint32_t value = 0;
1419 
1420 		if (size < bytes) {
1421 			mask &= 0xffffffff >> (bytes - size) * 8;
1422 			bytes = size;
1423 		}
1424 
1425 		if (mask != 0xffffffff) {
1426 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1427 			if (write) {
1428 				value &= ~mask;
1429 				value |= (*(uint32_t *)buf << shift) & mask;
1430 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1431 			} else {
1432 				value = (value & mask) >> shift;
1433 				memcpy(buf, &value, bytes);
1434 			}
1435 		} else {
1436 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1437 		}
1438 
1439 		pos += bytes;
1440 		buf += bytes;
1441 		size -= bytes;
1442 	}
1443 }
1444 
1445 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1446 					unsigned long offset, void *buf,
1447 					int len, int write)
1448 {
1449 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1450 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1451 	struct amdgpu_res_cursor src_mm;
1452 	struct amdgpu_job *job;
1453 	struct dma_fence *fence;
1454 	uint64_t src_addr, dst_addr;
1455 	unsigned int num_dw;
1456 	int r, idx;
1457 
1458 	if (len != PAGE_SIZE)
1459 		return -EINVAL;
1460 
1461 	if (!adev->mman.sdma_access_ptr)
1462 		return -EACCES;
1463 
1464 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1465 		return -ENODEV;
1466 
1467 	if (write)
1468 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1469 
1470 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1471 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1472 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1473 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1474 				     &job);
1475 	if (r)
1476 		goto out;
1477 
1478 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1479 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1480 		src_mm.start;
1481 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1482 	if (write)
1483 		swap(src_addr, dst_addr);
1484 
1485 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1486 				PAGE_SIZE, false);
1487 
1488 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1489 	WARN_ON(job->ibs[0].length_dw > num_dw);
1490 
1491 	fence = amdgpu_job_submit(job);
1492 
1493 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1494 		r = -ETIMEDOUT;
1495 	dma_fence_put(fence);
1496 
1497 	if (!(r || write))
1498 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1499 out:
1500 	drm_dev_exit(idx);
1501 	return r;
1502 }
1503 
1504 /**
1505  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1506  *
1507  * @bo:  The buffer object to read/write
1508  * @offset:  Offset into buffer object
1509  * @buf:  Secondary buffer to write/read from
1510  * @len: Length in bytes of access
1511  * @write:  true if writing
1512  *
1513  * This is used to access VRAM that backs a buffer object via MMIO
1514  * access for debugging purposes.
1515  */
1516 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1517 				    unsigned long offset, void *buf, int len,
1518 				    int write)
1519 {
1520 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1521 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1522 	struct amdgpu_res_cursor cursor;
1523 	int ret = 0;
1524 
1525 	if (bo->resource->mem_type != TTM_PL_VRAM)
1526 		return -EIO;
1527 
1528 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1529 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1530 		return len;
1531 
1532 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1533 	while (cursor.remaining) {
1534 		size_t count, size = cursor.size;
1535 		loff_t pos = cursor.start;
1536 
1537 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1538 		size -= count;
1539 		if (size) {
1540 			/* using MM to access rest vram and handle un-aligned address */
1541 			pos += count;
1542 			buf += count;
1543 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1544 		}
1545 
1546 		ret += cursor.size;
1547 		buf += cursor.size;
1548 		amdgpu_res_next(&cursor, cursor.size);
1549 	}
1550 
1551 	return ret;
1552 }
1553 
1554 static void
1555 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1556 {
1557 	amdgpu_bo_move_notify(bo, false);
1558 }
1559 
1560 static struct ttm_device_funcs amdgpu_bo_driver = {
1561 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1562 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1563 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1564 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1565 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1566 	.evict_flags = &amdgpu_evict_flags,
1567 	.move = &amdgpu_bo_move,
1568 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1569 	.release_notify = &amdgpu_bo_release_notify,
1570 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1571 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1572 	.access_memory = &amdgpu_ttm_access_memory,
1573 };
1574 
1575 /*
1576  * Firmware Reservation functions
1577  */
1578 /**
1579  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1580  *
1581  * @adev: amdgpu_device pointer
1582  *
1583  * free fw reserved vram if it has been reserved.
1584  */
1585 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1586 {
1587 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1588 		NULL, &adev->mman.fw_vram_usage_va);
1589 }
1590 
1591 /*
1592  * Driver Reservation functions
1593  */
1594 /**
1595  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1596  *
1597  * @adev: amdgpu_device pointer
1598  *
1599  * free drv reserved vram if it has been reserved.
1600  */
1601 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1602 {
1603 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1604 						  NULL,
1605 						  &adev->mman.drv_vram_usage_va);
1606 }
1607 
1608 /**
1609  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1610  *
1611  * @adev: amdgpu_device pointer
1612  *
1613  * create bo vram reservation from fw.
1614  */
1615 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1616 {
1617 	uint64_t vram_size = adev->gmc.visible_vram_size;
1618 
1619 	adev->mman.fw_vram_usage_va = NULL;
1620 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1621 
1622 	if (adev->mman.fw_vram_usage_size == 0 ||
1623 	    adev->mman.fw_vram_usage_size > vram_size)
1624 		return 0;
1625 
1626 	return amdgpu_bo_create_kernel_at(adev,
1627 					  adev->mman.fw_vram_usage_start_offset,
1628 					  adev->mman.fw_vram_usage_size,
1629 					  &adev->mman.fw_vram_usage_reserved_bo,
1630 					  &adev->mman.fw_vram_usage_va);
1631 }
1632 
1633 /**
1634  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1635  *
1636  * @adev: amdgpu_device pointer
1637  *
1638  * create bo vram reservation from drv.
1639  */
1640 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1641 {
1642 	u64 vram_size = adev->gmc.visible_vram_size;
1643 
1644 	adev->mman.drv_vram_usage_va = NULL;
1645 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1646 
1647 	if (adev->mman.drv_vram_usage_size == 0 ||
1648 	    adev->mman.drv_vram_usage_size > vram_size)
1649 		return 0;
1650 
1651 	return amdgpu_bo_create_kernel_at(adev,
1652 					  adev->mman.drv_vram_usage_start_offset,
1653 					  adev->mman.drv_vram_usage_size,
1654 					  &adev->mman.drv_vram_usage_reserved_bo,
1655 					  &adev->mman.drv_vram_usage_va);
1656 }
1657 
1658 /*
1659  * Memoy training reservation functions
1660  */
1661 
1662 /**
1663  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1664  *
1665  * @adev: amdgpu_device pointer
1666  *
1667  * free memory training reserved vram if it has been reserved.
1668  */
1669 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1670 {
1671 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1672 
1673 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1674 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1675 	ctx->c2p_bo = NULL;
1676 
1677 	return 0;
1678 }
1679 
1680 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1681 						uint32_t reserve_size)
1682 {
1683 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1684 
1685 	memset(ctx, 0, sizeof(*ctx));
1686 
1687 	ctx->c2p_train_data_offset =
1688 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1689 	ctx->p2c_train_data_offset =
1690 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1691 	ctx->train_data_size =
1692 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1693 
1694 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1695 			ctx->train_data_size,
1696 			ctx->p2c_train_data_offset,
1697 			ctx->c2p_train_data_offset);
1698 }
1699 
1700 /*
1701  * reserve TMR memory at the top of VRAM which holds
1702  * IP Discovery data and is protected by PSP.
1703  */
1704 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1705 {
1706 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1707 	bool mem_train_support = false;
1708 	uint32_t reserve_size = 0;
1709 	int ret;
1710 
1711 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1712 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1713 			mem_train_support = true;
1714 		else
1715 			DRM_DEBUG("memory training does not support!\n");
1716 	}
1717 
1718 	/*
1719 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1720 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1721 	 *
1722 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1723 	 * discovery data and G6 memory training data respectively
1724 	 */
1725 	if (adev->bios)
1726 		reserve_size =
1727 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1728 
1729 	if (!adev->bios &&
1730 	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1731 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732 	else if (!reserve_size)
1733 		reserve_size = DISCOVERY_TMR_OFFSET;
1734 
1735 	if (mem_train_support) {
1736 		/* reserve vram for mem train according to TMR location */
1737 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738 		ret = amdgpu_bo_create_kernel_at(adev,
1739 						 ctx->c2p_train_data_offset,
1740 						 ctx->train_data_size,
1741 						 &ctx->c2p_bo,
1742 						 NULL);
1743 		if (ret) {
1744 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745 			amdgpu_ttm_training_reserve_vram_fini(adev);
1746 			return ret;
1747 		}
1748 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749 	}
1750 
1751 	if (!adev->gmc.is_app_apu) {
1752 		ret = amdgpu_bo_create_kernel_at(
1753 			adev, adev->gmc.real_vram_size - reserve_size,
1754 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755 		if (ret) {
1756 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758 					      NULL, NULL);
1759 			return ret;
1760 		}
1761 	} else {
1762 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769 {
1770 	int i;
1771 
1772 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773 		return 0;
1774 
1775 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776 				       sizeof(*adev->mman.ttm_pools),
1777 				       GFP_KERNEL);
1778 	if (!adev->mman.ttm_pools)
1779 		return -ENOMEM;
1780 
1781 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783 			      adev->gmc.mem_partitions[i].numa.node,
1784 			      false, false);
1785 	}
1786 	return 0;
1787 }
1788 
1789 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790 {
1791 	int i;
1792 
1793 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794 		return;
1795 
1796 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798 
1799 	kfree(adev->mman.ttm_pools);
1800 	adev->mman.ttm_pools = NULL;
1801 }
1802 
1803 /*
1804  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805  * gtt/vram related fields.
1806  *
1807  * This initializes all of the memory space pools that the TTM layer
1808  * will need such as the GTT space (system memory mapped to the device),
1809  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810  * can be mapped per VMID.
1811  */
1812 int amdgpu_ttm_init(struct amdgpu_device *adev)
1813 {
1814 	uint64_t gtt_size;
1815 	int r;
1816 
1817 	mutex_init(&adev->mman.gtt_window_lock);
1818 
1819 	/* No others user of address space so set it to 0 */
1820 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821 			       adev_to_drm(adev)->anon_inode->i_mapping,
1822 			       adev_to_drm(adev)->vma_offset_manager,
1823 			       adev->need_swiotlb,
1824 			       dma_addressing_limited(adev->dev));
1825 	if (r) {
1826 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827 		return r;
1828 	}
1829 
1830 	r = amdgpu_ttm_pools_init(adev);
1831 	if (r) {
1832 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833 		return r;
1834 	}
1835 	adev->mman.initialized = true;
1836 
1837 	/* Initialize VRAM pool with all of VRAM divided into pages */
1838 	r = amdgpu_vram_mgr_init(adev);
1839 	if (r) {
1840 		DRM_ERROR("Failed initializing VRAM heap.\n");
1841 		return r;
1842 	}
1843 
1844 	/* Change the size here instead of the init above so only lpfn is affected */
1845 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846 #ifdef CONFIG_64BIT
1847 #ifdef CONFIG_X86
1848 	if (adev->gmc.xgmi.connected_to_cpu)
1849 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850 				adev->gmc.visible_vram_size);
1851 
1852 	else if (adev->gmc.is_app_apu)
1853 		DRM_DEBUG_DRIVER(
1854 			"No need to ioremap when real vram size is 0\n");
1855 	else
1856 #endif
1857 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858 				adev->gmc.visible_vram_size);
1859 #endif
1860 
1861 	/*
1862 	 *The reserved vram for firmware must be pinned to the specified
1863 	 *place on the VRAM, so reserve it early.
1864 	 */
1865 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866 	if (r)
1867 		return r;
1868 
1869 	/*
1870 	 *The reserved vram for driver must be pinned to the specified
1871 	 *place on the VRAM, so reserve it early.
1872 	 */
1873 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874 	if (r)
1875 		return r;
1876 
1877 	/*
1878 	 * only NAVI10 and onwards ASIC support for IP discovery.
1879 	 * If IP discovery enabled, a block of memory should be
1880 	 * reserved for IP discovey.
1881 	 */
1882 	if (adev->mman.discovery_bin) {
1883 		r = amdgpu_ttm_reserve_tmr(adev);
1884 		if (r)
1885 			return r;
1886 	}
1887 
1888 	/* allocate memory as required for VGA
1889 	 * This is used for VGA emulation and pre-OS scanout buffers to
1890 	 * avoid display artifacts while transitioning between pre-OS
1891 	 * and driver.
1892 	 */
1893 	if (!adev->gmc.is_app_apu) {
1894 		r = amdgpu_bo_create_kernel_at(adev, 0,
1895 					       adev->mman.stolen_vga_size,
1896 					       &adev->mman.stolen_vga_memory,
1897 					       NULL);
1898 		if (r)
1899 			return r;
1900 
1901 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902 					       adev->mman.stolen_extended_size,
1903 					       &adev->mman.stolen_extended_memory,
1904 					       NULL);
1905 
1906 		if (r)
1907 			return r;
1908 
1909 		r = amdgpu_bo_create_kernel_at(adev,
1910 					       adev->mman.stolen_reserved_offset,
1911 					       adev->mman.stolen_reserved_size,
1912 					       &adev->mman.stolen_reserved_memory,
1913 					       NULL);
1914 		if (r)
1915 			return r;
1916 	} else {
1917 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918 	}
1919 
1920 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922 
1923 	/* Compute GTT size, either based on TTM limit
1924 	 * or whatever the user passed on module init.
1925 	 */
1926 	if (amdgpu_gtt_size == -1)
1927 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1928 	else
1929 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930 
1931 	/* Initialize GTT memory pool */
1932 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933 	if (r) {
1934 		DRM_ERROR("Failed initializing GTT heap.\n");
1935 		return r;
1936 	}
1937 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938 		 (unsigned int)(gtt_size / (1024 * 1024)));
1939 
1940 	/* Initiailize doorbell pool on PCI BAR */
1941 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942 	if (r) {
1943 		DRM_ERROR("Failed initializing doorbell heap.\n");
1944 		return r;
1945 	}
1946 
1947 	/* Create a boorbell page for kernel usages */
1948 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949 	if (r) {
1950 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951 		return r;
1952 	}
1953 
1954 	/* Initialize preemptible memory pool */
1955 	r = amdgpu_preempt_mgr_init(adev);
1956 	if (r) {
1957 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958 		return r;
1959 	}
1960 
1961 	/* Initialize various on-chip memory pools */
1962 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1963 	if (r) {
1964 		DRM_ERROR("Failed initializing GDS heap.\n");
1965 		return r;
1966 	}
1967 
1968 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1969 	if (r) {
1970 		DRM_ERROR("Failed initializing gws heap.\n");
1971 		return r;
1972 	}
1973 
1974 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1975 	if (r) {
1976 		DRM_ERROR("Failed initializing oa heap.\n");
1977 		return r;
1978 	}
1979 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980 				AMDGPU_GEM_DOMAIN_GTT,
1981 				&adev->mman.sdma_access_bo, NULL,
1982 				&adev->mman.sdma_access_ptr))
1983 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984 
1985 	return 0;
1986 }
1987 
1988 /*
1989  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990  */
1991 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992 {
1993 	int idx;
1994 
1995 	if (!adev->mman.initialized)
1996 		return;
1997 
1998 	amdgpu_ttm_pools_fini(adev);
1999 
2000 	amdgpu_ttm_training_reserve_vram_fini(adev);
2001 	/* return the stolen vga memory back to VRAM */
2002 	if (!adev->gmc.is_app_apu) {
2003 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005 		/* return the FW reserved memory back to VRAM */
2006 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007 				      NULL);
2008 		if (adev->mman.stolen_reserved_size)
2009 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010 					      NULL, NULL);
2011 	}
2012 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013 					&adev->mman.sdma_access_ptr);
2014 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2015 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2016 
2017 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018 
2019 		if (adev->mman.aper_base_kaddr)
2020 			iounmap(adev->mman.aper_base_kaddr);
2021 		adev->mman.aper_base_kaddr = NULL;
2022 
2023 		drm_dev_exit(idx);
2024 	}
2025 
2026 	amdgpu_vram_mgr_fini(adev);
2027 	amdgpu_gtt_mgr_fini(adev);
2028 	amdgpu_preempt_mgr_fini(adev);
2029 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032 	ttm_device_fini(&adev->mman.bdev);
2033 	adev->mman.initialized = false;
2034 	DRM_INFO("amdgpu: ttm finalized\n");
2035 }
2036 
2037 /**
2038  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039  *
2040  * @adev: amdgpu_device pointer
2041  * @enable: true when we can use buffer functions.
2042  *
2043  * Enable/disable use of buffer functions during suspend/resume. This should
2044  * only be called at bootup or when userspace isn't running.
2045  */
2046 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047 {
2048 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049 	uint64_t size;
2050 	int r;
2051 
2052 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054 		return;
2055 
2056 	if (enable) {
2057 		struct amdgpu_ring *ring;
2058 		struct drm_gpu_scheduler *sched;
2059 
2060 		ring = adev->mman.buffer_funcs_ring;
2061 		sched = &ring->sched;
2062 		r = drm_sched_entity_init(&adev->mman.high_pr,
2063 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2064 					  1, NULL);
2065 		if (r) {
2066 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067 				  r);
2068 			return;
2069 		}
2070 
2071 		r = drm_sched_entity_init(&adev->mman.low_pr,
2072 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2073 					  1, NULL);
2074 		if (r) {
2075 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076 				  r);
2077 			goto error_free_entity;
2078 		}
2079 	} else {
2080 		drm_sched_entity_destroy(&adev->mman.high_pr);
2081 		drm_sched_entity_destroy(&adev->mman.low_pr);
2082 		dma_fence_put(man->move);
2083 		man->move = NULL;
2084 	}
2085 
2086 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087 	if (enable)
2088 		size = adev->gmc.real_vram_size;
2089 	else
2090 		size = adev->gmc.visible_vram_size;
2091 	man->size = size;
2092 	adev->mman.buffer_funcs_enabled = enable;
2093 
2094 	return;
2095 
2096 error_free_entity:
2097 	drm_sched_entity_destroy(&adev->mman.high_pr);
2098 }
2099 
2100 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101 				  bool direct_submit,
2102 				  unsigned int num_dw,
2103 				  struct dma_resv *resv,
2104 				  bool vm_needs_flush,
2105 				  struct amdgpu_job **job,
2106 				  bool delayed)
2107 {
2108 	enum amdgpu_ib_pool_type pool = direct_submit ?
2109 		AMDGPU_IB_POOL_DIRECT :
2110 		AMDGPU_IB_POOL_DELAYED;
2111 	int r;
2112 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113 						    &adev->mman.high_pr;
2114 	r = amdgpu_job_alloc_with_ib(adev, entity,
2115 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2116 				     num_dw * 4, pool, job);
2117 	if (r)
2118 		return r;
2119 
2120 	if (vm_needs_flush) {
2121 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122 							adev->gmc.pdb0_bo :
2123 							adev->gart.bo);
2124 		(*job)->vm_needs_flush = true;
2125 	}
2126 	if (!resv)
2127 		return 0;
2128 
2129 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130 						   DMA_RESV_USAGE_BOOKKEEP);
2131 }
2132 
2133 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134 		       uint64_t dst_offset, uint32_t byte_count,
2135 		       struct dma_resv *resv,
2136 		       struct dma_fence **fence, bool direct_submit,
2137 		       bool vm_needs_flush, bool tmz)
2138 {
2139 	struct amdgpu_device *adev = ring->adev;
2140 	unsigned int num_loops, num_dw;
2141 	struct amdgpu_job *job;
2142 	uint32_t max_bytes;
2143 	unsigned int i;
2144 	int r;
2145 
2146 	if (!direct_submit && !ring->sched.ready) {
2147 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2148 		return -EINVAL;
2149 	}
2150 
2151 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155 				   resv, vm_needs_flush, &job, false);
2156 	if (r)
2157 		return r;
2158 
2159 	for (i = 0; i < num_loops; i++) {
2160 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161 
2162 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163 					dst_offset, cur_size_in_bytes, tmz);
2164 
2165 		src_offset += cur_size_in_bytes;
2166 		dst_offset += cur_size_in_bytes;
2167 		byte_count -= cur_size_in_bytes;
2168 	}
2169 
2170 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171 	WARN_ON(job->ibs[0].length_dw > num_dw);
2172 	if (direct_submit)
2173 		r = amdgpu_job_submit_direct(job, ring, fence);
2174 	else
2175 		*fence = amdgpu_job_submit(job);
2176 	if (r)
2177 		goto error_free;
2178 
2179 	return r;
2180 
2181 error_free:
2182 	amdgpu_job_free(job);
2183 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184 	return r;
2185 }
2186 
2187 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188 			       uint64_t dst_addr, uint32_t byte_count,
2189 			       struct dma_resv *resv,
2190 			       struct dma_fence **fence,
2191 			       bool vm_needs_flush, bool delayed)
2192 {
2193 	struct amdgpu_device *adev = ring->adev;
2194 	unsigned int num_loops, num_dw;
2195 	struct amdgpu_job *job;
2196 	uint32_t max_bytes;
2197 	unsigned int i;
2198 	int r;
2199 
2200 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204 				   &job, delayed);
2205 	if (r)
2206 		return r;
2207 
2208 	for (i = 0; i < num_loops; i++) {
2209 		uint32_t cur_size = min(byte_count, max_bytes);
2210 
2211 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212 					cur_size);
2213 
2214 		dst_addr += cur_size;
2215 		byte_count -= cur_size;
2216 	}
2217 
2218 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219 	WARN_ON(job->ibs[0].length_dw > num_dw);
2220 	*fence = amdgpu_job_submit(job);
2221 	return 0;
2222 }
2223 
2224 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225 			uint32_t src_data,
2226 			struct dma_resv *resv,
2227 			struct dma_fence **f,
2228 			bool delayed)
2229 {
2230 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2231 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232 	struct dma_fence *fence = NULL;
2233 	struct amdgpu_res_cursor dst;
2234 	int r;
2235 
2236 	if (!adev->mman.buffer_funcs_enabled) {
2237 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238 		return -EINVAL;
2239 	}
2240 
2241 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2242 
2243 	mutex_lock(&adev->mman.gtt_window_lock);
2244 	while (dst.remaining) {
2245 		struct dma_fence *next;
2246 		uint64_t cur_size, to;
2247 
2248 		/* Never fill more than 256MiB at once to avoid timeouts */
2249 		cur_size = min(dst.size, 256ULL << 20);
2250 
2251 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252 					  1, ring, false, &cur_size, &to);
2253 		if (r)
2254 			goto error;
2255 
2256 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257 					&next, true, delayed);
2258 		if (r)
2259 			goto error;
2260 
2261 		dma_fence_put(fence);
2262 		fence = next;
2263 
2264 		amdgpu_res_next(&dst, cur_size);
2265 	}
2266 error:
2267 	mutex_unlock(&adev->mman.gtt_window_lock);
2268 	if (f)
2269 		*f = dma_fence_get(fence);
2270 	dma_fence_put(fence);
2271 	return r;
2272 }
2273 
2274 /**
2275  * amdgpu_ttm_evict_resources - evict memory buffers
2276  * @adev: amdgpu device object
2277  * @mem_type: evicted BO's memory type
2278  *
2279  * Evicts all @mem_type buffers on the lru list of the memory type.
2280  *
2281  * Returns:
2282  * 0 for success or a negative error code on failure.
2283  */
2284 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285 {
2286 	struct ttm_resource_manager *man;
2287 
2288 	switch (mem_type) {
2289 	case TTM_PL_VRAM:
2290 	case TTM_PL_TT:
2291 	case AMDGPU_PL_GWS:
2292 	case AMDGPU_PL_GDS:
2293 	case AMDGPU_PL_OA:
2294 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295 		break;
2296 	default:
2297 		DRM_ERROR("Trying to evict invalid memory type\n");
2298 		return -EINVAL;
2299 	}
2300 
2301 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2302 }
2303 
2304 #if defined(CONFIG_DEBUG_FS)
2305 
2306 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307 {
2308 	struct amdgpu_device *adev = m->private;
2309 
2310 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2311 }
2312 
2313 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2314 
2315 /*
2316  * amdgpu_ttm_vram_read - Linear read access to VRAM
2317  *
2318  * Accesses VRAM via MMIO for debugging purposes.
2319  */
2320 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321 				    size_t size, loff_t *pos)
2322 {
2323 	struct amdgpu_device *adev = file_inode(f)->i_private;
2324 	ssize_t result = 0;
2325 
2326 	if (size & 0x3 || *pos & 0x3)
2327 		return -EINVAL;
2328 
2329 	if (*pos >= adev->gmc.mc_vram_size)
2330 		return -ENXIO;
2331 
2332 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333 	while (size) {
2334 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336 
2337 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338 		if (copy_to_user(buf, value, bytes))
2339 			return -EFAULT;
2340 
2341 		result += bytes;
2342 		buf += bytes;
2343 		*pos += bytes;
2344 		size -= bytes;
2345 	}
2346 
2347 	return result;
2348 }
2349 
2350 /*
2351  * amdgpu_ttm_vram_write - Linear write access to VRAM
2352  *
2353  * Accesses VRAM via MMIO for debugging purposes.
2354  */
2355 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356 				    size_t size, loff_t *pos)
2357 {
2358 	struct amdgpu_device *adev = file_inode(f)->i_private;
2359 	ssize_t result = 0;
2360 	int r;
2361 
2362 	if (size & 0x3 || *pos & 0x3)
2363 		return -EINVAL;
2364 
2365 	if (*pos >= adev->gmc.mc_vram_size)
2366 		return -ENXIO;
2367 
2368 	while (size) {
2369 		uint32_t value;
2370 
2371 		if (*pos >= adev->gmc.mc_vram_size)
2372 			return result;
2373 
2374 		r = get_user(value, (uint32_t *)buf);
2375 		if (r)
2376 			return r;
2377 
2378 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2379 
2380 		result += 4;
2381 		buf += 4;
2382 		*pos += 4;
2383 		size -= 4;
2384 	}
2385 
2386 	return result;
2387 }
2388 
2389 static const struct file_operations amdgpu_ttm_vram_fops = {
2390 	.owner = THIS_MODULE,
2391 	.read = amdgpu_ttm_vram_read,
2392 	.write = amdgpu_ttm_vram_write,
2393 	.llseek = default_llseek,
2394 };
2395 
2396 /*
2397  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398  *
2399  * This function is used to read memory that has been mapped to the
2400  * GPU and the known addresses are not physical addresses but instead
2401  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402  */
2403 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404 				 size_t size, loff_t *pos)
2405 {
2406 	struct amdgpu_device *adev = file_inode(f)->i_private;
2407 	struct iommu_domain *dom;
2408 	ssize_t result = 0;
2409 	int r;
2410 
2411 	/* retrieve the IOMMU domain if any for this device */
2412 	dom = iommu_get_domain_for_dev(adev->dev);
2413 
2414 	while (size) {
2415 		phys_addr_t addr = *pos & PAGE_MASK;
2416 		loff_t off = *pos & ~PAGE_MASK;
2417 		size_t bytes = PAGE_SIZE - off;
2418 		unsigned long pfn;
2419 		struct page *p;
2420 		void *ptr;
2421 
2422 		bytes = min(bytes, size);
2423 
2424 		/* Translate the bus address to a physical address.  If
2425 		 * the domain is NULL it means there is no IOMMU active
2426 		 * and the address translation is the identity
2427 		 */
2428 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429 
2430 		pfn = addr >> PAGE_SHIFT;
2431 		if (!pfn_valid(pfn))
2432 			return -EPERM;
2433 
2434 		p = pfn_to_page(pfn);
2435 		if (p->mapping != adev->mman.bdev.dev_mapping)
2436 			return -EPERM;
2437 
2438 		ptr = kmap_local_page(p);
2439 		r = copy_to_user(buf, ptr + off, bytes);
2440 		kunmap_local(ptr);
2441 		if (r)
2442 			return -EFAULT;
2443 
2444 		size -= bytes;
2445 		*pos += bytes;
2446 		result += bytes;
2447 	}
2448 
2449 	return result;
2450 }
2451 
2452 /*
2453  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454  *
2455  * This function is used to write memory that has been mapped to the
2456  * GPU and the known addresses are not physical addresses but instead
2457  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458  */
2459 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460 				 size_t size, loff_t *pos)
2461 {
2462 	struct amdgpu_device *adev = file_inode(f)->i_private;
2463 	struct iommu_domain *dom;
2464 	ssize_t result = 0;
2465 	int r;
2466 
2467 	dom = iommu_get_domain_for_dev(adev->dev);
2468 
2469 	while (size) {
2470 		phys_addr_t addr = *pos & PAGE_MASK;
2471 		loff_t off = *pos & ~PAGE_MASK;
2472 		size_t bytes = PAGE_SIZE - off;
2473 		unsigned long pfn;
2474 		struct page *p;
2475 		void *ptr;
2476 
2477 		bytes = min(bytes, size);
2478 
2479 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480 
2481 		pfn = addr >> PAGE_SHIFT;
2482 		if (!pfn_valid(pfn))
2483 			return -EPERM;
2484 
2485 		p = pfn_to_page(pfn);
2486 		if (p->mapping != adev->mman.bdev.dev_mapping)
2487 			return -EPERM;
2488 
2489 		ptr = kmap_local_page(p);
2490 		r = copy_from_user(ptr + off, buf, bytes);
2491 		kunmap_local(ptr);
2492 		if (r)
2493 			return -EFAULT;
2494 
2495 		size -= bytes;
2496 		*pos += bytes;
2497 		result += bytes;
2498 	}
2499 
2500 	return result;
2501 }
2502 
2503 static const struct file_operations amdgpu_ttm_iomem_fops = {
2504 	.owner = THIS_MODULE,
2505 	.read = amdgpu_iomem_read,
2506 	.write = amdgpu_iomem_write,
2507 	.llseek = default_llseek
2508 };
2509 
2510 #endif
2511 
2512 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513 {
2514 #if defined(CONFIG_DEBUG_FS)
2515 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2516 	struct dentry *root = minor->debugfs_root;
2517 
2518 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521 			    &amdgpu_ttm_iomem_fops);
2522 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523 			    &amdgpu_ttm_page_pool_fops);
2524 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525 							     TTM_PL_VRAM),
2526 					    root, "amdgpu_vram_mm");
2527 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528 							     TTM_PL_TT),
2529 					    root, "amdgpu_gtt_mm");
2530 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531 							     AMDGPU_PL_GDS),
2532 					    root, "amdgpu_gds_mm");
2533 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534 							     AMDGPU_PL_GWS),
2535 					    root, "amdgpu_gws_mm");
2536 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537 							     AMDGPU_PL_OA),
2538 					    root, "amdgpu_oa_mm");
2539 
2540 #endif
2541 }
2542