1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS("DMA_BUF"); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 case AMDGPU_PL_MMIO_REMAP: 127 placement->num_placement = 0; 128 return; 129 130 case TTM_PL_VRAM: 131 if (!adev->mman.buffer_funcs_enabled) { 132 /* Move to system memory */ 133 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 134 135 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 136 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 137 amdgpu_res_cpu_visible(adev, bo->resource)) { 138 139 /* Try evicting to the CPU inaccessible part of VRAM 140 * first, but only set GTT as busy placement, so this 141 * BO will be evicted to GTT rather than causing other 142 * BOs to be evicted from VRAM 143 */ 144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 145 AMDGPU_GEM_DOMAIN_GTT | 146 AMDGPU_GEM_DOMAIN_CPU); 147 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 148 abo->placements[0].lpfn = 0; 149 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 150 } else { 151 /* Move to GTT memory */ 152 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 153 AMDGPU_GEM_DOMAIN_CPU); 154 } 155 break; 156 case TTM_PL_TT: 157 case AMDGPU_PL_PREEMPT: 158 default: 159 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 160 break; 161 } 162 *placement = abo->placement; 163 } 164 165 /** 166 * amdgpu_ttm_map_buffer - Map memory into the GART windows 167 * @bo: buffer object to map 168 * @mem: memory object to map 169 * @mm_cur: range to map 170 * @window: which GART window to use 171 * @ring: DMA ring to use for the copy 172 * @tmz: if we should setup a TMZ enabled mapping 173 * @size: in number of bytes to map, out number of bytes mapped 174 * @addr: resulting address inside the MC address space 175 * 176 * Setup one of the GART windows to access a specific piece of memory or return 177 * the physical address for local memory. 178 */ 179 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 180 struct ttm_resource *mem, 181 struct amdgpu_res_cursor *mm_cur, 182 unsigned int window, struct amdgpu_ring *ring, 183 bool tmz, uint64_t *size, uint64_t *addr) 184 { 185 struct amdgpu_device *adev = ring->adev; 186 unsigned int offset, num_pages, num_dw, num_bytes; 187 uint64_t src_addr, dst_addr; 188 struct amdgpu_job *job; 189 void *cpu_addr; 190 uint64_t flags; 191 unsigned int i; 192 int r; 193 194 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 195 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 196 197 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 198 return -EINVAL; 199 200 /* Map only what can't be accessed directly */ 201 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 202 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 203 mm_cur->start; 204 return 0; 205 } 206 207 208 /* 209 * If start begins at an offset inside the page, then adjust the size 210 * and addr accordingly 211 */ 212 offset = mm_cur->start & ~PAGE_MASK; 213 214 num_pages = PFN_UP(*size + offset); 215 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 216 217 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 218 219 *addr = adev->gmc.gart_start; 220 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 221 AMDGPU_GPU_PAGE_SIZE; 222 *addr += offset; 223 224 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 225 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 226 227 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 228 AMDGPU_FENCE_OWNER_UNDEFINED, 229 num_dw * 4 + num_bytes, 230 AMDGPU_IB_POOL_DELAYED, &job, 231 AMDGPU_KERNEL_JOB_ID_TTM_MAP_BUFFER); 232 if (r) 233 return r; 234 235 src_addr = num_dw * 4; 236 src_addr += job->ibs[0].gpu_addr; 237 238 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 239 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 240 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 241 dst_addr, num_bytes, 0); 242 243 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 244 WARN_ON(job->ibs[0].length_dw > num_dw); 245 246 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 247 if (tmz) 248 flags |= AMDGPU_PTE_TMZ; 249 250 cpu_addr = &job->ibs[0].ptr[num_dw]; 251 252 if (mem->mem_type == TTM_PL_TT) { 253 dma_addr_t *dma_addr; 254 255 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 256 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 257 } else { 258 dma_addr_t dma_address; 259 260 dma_address = mm_cur->start; 261 dma_address += adev->vm_manager.vram_base_offset; 262 263 for (i = 0; i < num_pages; ++i) { 264 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 265 flags, cpu_addr); 266 dma_address += PAGE_SIZE; 267 } 268 } 269 270 dma_fence_put(amdgpu_job_submit(job)); 271 return 0; 272 } 273 274 /** 275 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 276 * @adev: amdgpu device 277 * @src: buffer/address where to read from 278 * @dst: buffer/address where to write to 279 * @size: number of bytes to copy 280 * @tmz: if a secure copy should be used 281 * @resv: resv object to sync to 282 * @f: Returns the last fence if multiple jobs are submitted. 283 * 284 * The function copies @size bytes from {src->mem + src->offset} to 285 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 286 * move and different for a BO to BO copy. 287 * 288 */ 289 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 290 const struct amdgpu_copy_mem *src, 291 const struct amdgpu_copy_mem *dst, 292 uint64_t size, bool tmz, 293 struct dma_resv *resv, 294 struct dma_fence **f) 295 { 296 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 297 struct amdgpu_res_cursor src_mm, dst_mm; 298 struct dma_fence *fence = NULL; 299 int r = 0; 300 uint32_t copy_flags = 0; 301 struct amdgpu_bo *abo_src, *abo_dst; 302 303 if (!adev->mman.buffer_funcs_enabled) { 304 dev_err(adev->dev, 305 "Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size, tiling_flags; 315 uint32_t num_type, data_format, max_com, write_compress_disable; 316 struct dma_fence *next; 317 318 /* Never copy more than 256MiB at once to avoid a timeout */ 319 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 320 321 /* Map src to window 0 and dst to window 1. */ 322 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 323 0, ring, tmz, &cur_size, &from); 324 if (r) 325 goto error; 326 327 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 328 1, ring, tmz, &cur_size, &to); 329 if (r) 330 goto error; 331 332 abo_src = ttm_to_amdgpu_bo(src->bo); 333 abo_dst = ttm_to_amdgpu_bo(dst->bo); 334 if (tmz) 335 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 336 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 337 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM)) 338 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED; 339 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 340 (dst->mem->mem_type == TTM_PL_VRAM)) { 341 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED; 342 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags); 343 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK); 344 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE); 345 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT); 346 write_compress_disable = 347 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE); 348 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) | 349 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) | 350 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) | 351 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE, 352 write_compress_disable)); 353 } 354 355 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 356 &next, false, true, copy_flags); 357 if (r) 358 goto error; 359 360 dma_fence_put(fence); 361 fence = next; 362 363 amdgpu_res_next(&src_mm, cur_size); 364 amdgpu_res_next(&dst_mm, cur_size); 365 } 366 error: 367 mutex_unlock(&adev->mman.gtt_window_lock); 368 if (f) 369 *f = dma_fence_get(fence); 370 dma_fence_put(fence); 371 return r; 372 } 373 374 /* 375 * amdgpu_move_blit - Copy an entire buffer to another buffer 376 * 377 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 378 * help move buffers to and from VRAM. 379 */ 380 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 381 bool evict, 382 struct ttm_resource *new_mem, 383 struct ttm_resource *old_mem) 384 { 385 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 386 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 387 struct amdgpu_copy_mem src, dst; 388 struct dma_fence *fence = NULL; 389 int r; 390 391 src.bo = bo; 392 dst.bo = bo; 393 src.mem = old_mem; 394 dst.mem = new_mem; 395 src.offset = 0; 396 dst.offset = 0; 397 398 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 399 new_mem->size, 400 amdgpu_bo_encrypted(abo), 401 bo->base.resv, &fence); 402 if (r) 403 goto error; 404 405 /* clear the space being freed */ 406 if (old_mem->mem_type == TTM_PL_VRAM && 407 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 408 struct dma_fence *wipe_fence = NULL; 409 410 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 411 false, AMDGPU_KERNEL_JOB_ID_MOVE_BLIT); 412 if (r) { 413 goto error; 414 } else if (wipe_fence) { 415 amdgpu_vram_mgr_set_cleared(bo->resource); 416 dma_fence_put(fence); 417 fence = wipe_fence; 418 } 419 } 420 421 /* Always block for VM page tables before committing the new location */ 422 if (bo->type == ttm_bo_type_kernel) 423 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 424 else 425 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 426 dma_fence_put(fence); 427 return r; 428 429 error: 430 if (fence) 431 dma_fence_wait(fence, false); 432 dma_fence_put(fence); 433 return r; 434 } 435 436 /** 437 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 438 * @adev: amdgpu device 439 * @res: the resource to check 440 * 441 * Returns: true if the full resource is CPU visible, false otherwise. 442 */ 443 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 444 struct ttm_resource *res) 445 { 446 struct amdgpu_res_cursor cursor; 447 448 if (!res) 449 return false; 450 451 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 452 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL || 453 res->mem_type == AMDGPU_PL_MMIO_REMAP) 454 return true; 455 456 if (res->mem_type != TTM_PL_VRAM) 457 return false; 458 459 amdgpu_res_first(res, 0, res->size, &cursor); 460 while (cursor.remaining) { 461 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 462 return false; 463 amdgpu_res_next(&cursor, cursor.size); 464 } 465 466 return true; 467 } 468 469 /* 470 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 471 * 472 * Called by amdgpu_bo_move() 473 */ 474 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 475 struct ttm_resource *mem) 476 { 477 if (!amdgpu_res_cpu_visible(adev, mem)) 478 return false; 479 480 /* ttm_resource_ioremap only supports contiguous memory */ 481 if (mem->mem_type == TTM_PL_VRAM && 482 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 483 return false; 484 485 return true; 486 } 487 488 /* 489 * amdgpu_bo_move - Move a buffer object to a new memory location 490 * 491 * Called by ttm_bo_handle_move_mem() 492 */ 493 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 494 struct ttm_operation_ctx *ctx, 495 struct ttm_resource *new_mem, 496 struct ttm_place *hop) 497 { 498 struct amdgpu_device *adev; 499 struct amdgpu_bo *abo; 500 struct ttm_resource *old_mem = bo->resource; 501 int r; 502 503 if (new_mem->mem_type == TTM_PL_TT || 504 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 505 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 506 if (r) 507 return r; 508 } 509 510 abo = ttm_to_amdgpu_bo(bo); 511 adev = amdgpu_ttm_adev(bo->bdev); 512 513 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 514 bo->ttm == NULL)) { 515 amdgpu_bo_move_notify(bo, evict, new_mem); 516 ttm_bo_move_null(bo, new_mem); 517 return 0; 518 } 519 if (old_mem->mem_type == TTM_PL_SYSTEM && 520 (new_mem->mem_type == TTM_PL_TT || 521 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 522 amdgpu_bo_move_notify(bo, evict, new_mem); 523 ttm_bo_move_null(bo, new_mem); 524 return 0; 525 } 526 if ((old_mem->mem_type == TTM_PL_TT || 527 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 528 new_mem->mem_type == TTM_PL_SYSTEM) { 529 r = ttm_bo_wait_ctx(bo, ctx); 530 if (r) 531 return r; 532 533 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 534 amdgpu_bo_move_notify(bo, evict, new_mem); 535 ttm_resource_free(bo, &bo->resource); 536 ttm_bo_assign_mem(bo, new_mem); 537 return 0; 538 } 539 540 if (old_mem->mem_type == AMDGPU_PL_GDS || 541 old_mem->mem_type == AMDGPU_PL_GWS || 542 old_mem->mem_type == AMDGPU_PL_OA || 543 old_mem->mem_type == AMDGPU_PL_DOORBELL || 544 old_mem->mem_type == AMDGPU_PL_MMIO_REMAP || 545 new_mem->mem_type == AMDGPU_PL_GDS || 546 new_mem->mem_type == AMDGPU_PL_GWS || 547 new_mem->mem_type == AMDGPU_PL_OA || 548 new_mem->mem_type == AMDGPU_PL_DOORBELL || 549 new_mem->mem_type == AMDGPU_PL_MMIO_REMAP) { 550 /* Nothing to save here */ 551 amdgpu_bo_move_notify(bo, evict, new_mem); 552 ttm_bo_move_null(bo, new_mem); 553 return 0; 554 } 555 556 if (bo->type == ttm_bo_type_device && 557 new_mem->mem_type == TTM_PL_VRAM && 558 old_mem->mem_type != TTM_PL_VRAM) { 559 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 560 * accesses the BO after it's moved. 561 */ 562 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 563 } 564 565 if (adev->mman.buffer_funcs_enabled && 566 ((old_mem->mem_type == TTM_PL_SYSTEM && 567 new_mem->mem_type == TTM_PL_VRAM) || 568 (old_mem->mem_type == TTM_PL_VRAM && 569 new_mem->mem_type == TTM_PL_SYSTEM))) { 570 hop->fpfn = 0; 571 hop->lpfn = 0; 572 hop->mem_type = TTM_PL_TT; 573 hop->flags = TTM_PL_FLAG_TEMPORARY; 574 return -EMULTIHOP; 575 } 576 577 amdgpu_bo_move_notify(bo, evict, new_mem); 578 if (adev->mman.buffer_funcs_enabled) 579 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 580 else 581 r = -ENODEV; 582 583 if (r) { 584 /* Check that all memory is CPU accessible */ 585 if (!amdgpu_res_copyable(adev, old_mem) || 586 !amdgpu_res_copyable(adev, new_mem)) { 587 pr_err("Move buffer fallback to memcpy unavailable\n"); 588 return r; 589 } 590 591 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 592 if (r) 593 return r; 594 } 595 596 /* update statistics after the move */ 597 if (evict) 598 atomic64_inc(&adev->num_evictions); 599 atomic64_add(bo->base.size, &adev->num_bytes_moved); 600 return 0; 601 } 602 603 /* 604 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 605 * 606 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 607 */ 608 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 609 struct ttm_resource *mem) 610 { 611 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 612 613 switch (mem->mem_type) { 614 case TTM_PL_SYSTEM: 615 /* system memory */ 616 return 0; 617 case TTM_PL_TT: 618 case AMDGPU_PL_PREEMPT: 619 break; 620 case TTM_PL_VRAM: 621 mem->bus.offset = mem->start << PAGE_SHIFT; 622 623 if (adev->mman.aper_base_kaddr && 624 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 625 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 626 mem->bus.offset; 627 628 mem->bus.offset += adev->gmc.aper_base; 629 mem->bus.is_iomem = true; 630 break; 631 case AMDGPU_PL_DOORBELL: 632 mem->bus.offset = mem->start << PAGE_SHIFT; 633 mem->bus.offset += adev->doorbell.base; 634 mem->bus.is_iomem = true; 635 mem->bus.caching = ttm_uncached; 636 break; 637 case AMDGPU_PL_MMIO_REMAP: 638 mem->bus.offset = mem->start << PAGE_SHIFT; 639 mem->bus.offset += adev->rmmio_remap.bus_addr; 640 mem->bus.is_iomem = true; 641 mem->bus.caching = ttm_uncached; 642 break; 643 default: 644 return -EINVAL; 645 } 646 return 0; 647 } 648 649 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 650 unsigned long page_offset) 651 { 652 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 653 struct amdgpu_res_cursor cursor; 654 655 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 656 &cursor); 657 658 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 659 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 660 else if (bo->resource->mem_type == AMDGPU_PL_MMIO_REMAP) 661 return ((uint64_t)(adev->rmmio_remap.bus_addr + cursor.start)) >> PAGE_SHIFT; 662 663 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 664 } 665 666 /** 667 * amdgpu_ttm_domain_start - Returns GPU start address 668 * @adev: amdgpu device object 669 * @type: type of the memory 670 * 671 * Returns: 672 * GPU start address of a memory domain 673 */ 674 675 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 676 { 677 switch (type) { 678 case TTM_PL_TT: 679 return adev->gmc.gart_start; 680 case TTM_PL_VRAM: 681 return adev->gmc.vram_start; 682 } 683 684 return 0; 685 } 686 687 /* 688 * TTM backend functions. 689 */ 690 struct amdgpu_ttm_tt { 691 struct ttm_tt ttm; 692 struct drm_gem_object *gobj; 693 u64 offset; 694 uint64_t userptr; 695 struct task_struct *usertask; 696 uint32_t userflags; 697 bool bound; 698 int32_t pool_id; 699 }; 700 701 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 702 703 #ifdef CONFIG_DRM_AMDGPU_USERPTR 704 /* 705 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 706 * memory and start HMM tracking CPU page table update 707 * 708 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 709 * once afterwards to stop HMM tracking 710 */ 711 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, 712 struct hmm_range **range) 713 { 714 struct ttm_tt *ttm = bo->tbo.ttm; 715 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 716 unsigned long start = gtt->userptr; 717 struct vm_area_struct *vma; 718 struct mm_struct *mm; 719 bool readonly; 720 int r = 0; 721 722 /* Make sure get_user_pages_done() can cleanup gracefully */ 723 *range = NULL; 724 725 mm = bo->notifier.mm; 726 if (unlikely(!mm)) { 727 DRM_DEBUG_DRIVER("BO is not registered?\n"); 728 return -EFAULT; 729 } 730 731 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 732 return -ESRCH; 733 734 mmap_read_lock(mm); 735 vma = vma_lookup(mm, start); 736 if (unlikely(!vma)) { 737 r = -EFAULT; 738 goto out_unlock; 739 } 740 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 741 vma->vm_file)) { 742 r = -EPERM; 743 goto out_unlock; 744 } 745 746 readonly = amdgpu_ttm_tt_is_readonly(ttm); 747 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 748 readonly, NULL, range); 749 out_unlock: 750 mmap_read_unlock(mm); 751 if (r) 752 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 753 754 mmput(mm); 755 756 return r; 757 } 758 759 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 760 */ 761 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 762 struct hmm_range *range) 763 { 764 struct amdgpu_ttm_tt *gtt = (void *)ttm; 765 766 if (gtt && gtt->userptr && range) 767 amdgpu_hmm_range_get_pages_done(range); 768 } 769 770 /* 771 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 772 * Check if the pages backing this ttm range have been invalidated 773 * 774 * Returns: true if pages are still valid 775 */ 776 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 777 struct hmm_range *range) 778 { 779 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 780 781 if (!gtt || !gtt->userptr || !range) 782 return false; 783 784 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 785 gtt->userptr, ttm->num_pages); 786 787 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 788 789 return !amdgpu_hmm_range_get_pages_done(range); 790 } 791 #endif 792 793 /* 794 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 795 * 796 * Called by amdgpu_cs_list_validate(). This creates the page list 797 * that backs user memory and will ultimately be mapped into the device 798 * address space. 799 */ 800 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct hmm_range *range) 801 { 802 unsigned long i; 803 804 for (i = 0; i < ttm->num_pages; ++i) 805 ttm->pages[i] = range ? hmm_pfn_to_page(range->hmm_pfns[i]) : NULL; 806 } 807 808 /* 809 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 810 * 811 * Called by amdgpu_ttm_backend_bind() 812 **/ 813 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 814 struct ttm_tt *ttm) 815 { 816 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 817 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 818 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 819 enum dma_data_direction direction = write ? 820 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 821 int r; 822 823 /* Allocate an SG array and squash pages into it */ 824 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 825 (u64)ttm->num_pages << PAGE_SHIFT, 826 GFP_KERNEL); 827 if (r) 828 goto release_sg; 829 830 /* Map SG to device */ 831 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 832 if (r) 833 goto release_sg_table; 834 835 /* convert SG to linear array of pages and dma addresses */ 836 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 837 ttm->num_pages); 838 839 return 0; 840 841 release_sg_table: 842 sg_free_table(ttm->sg); 843 release_sg: 844 kfree(ttm->sg); 845 ttm->sg = NULL; 846 return r; 847 } 848 849 /* 850 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 851 */ 852 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 853 struct ttm_tt *ttm) 854 { 855 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 856 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 857 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 858 enum dma_data_direction direction = write ? 859 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 860 861 /* double check that we don't free the table twice */ 862 if (!ttm->sg || !ttm->sg->sgl) 863 return; 864 865 /* unmap the pages mapped to the device */ 866 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 867 sg_free_table(ttm->sg); 868 } 869 870 /* 871 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 872 * MQDn+CtrlStackn where n is the number of XCCs per partition. 873 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 874 * and uses memory type default, UC. The rest of pages_per_xcc are 875 * Ctrl stack and modify their memory type to NC. 876 */ 877 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 878 struct ttm_tt *ttm, uint64_t flags) 879 { 880 struct amdgpu_ttm_tt *gtt = (void *)ttm; 881 uint64_t total_pages = ttm->num_pages; 882 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 883 uint64_t page_idx, pages_per_xcc; 884 int i; 885 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC); 886 887 pages_per_xcc = total_pages; 888 do_div(pages_per_xcc, num_xcc); 889 890 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 891 /* MQD page: use default flags */ 892 amdgpu_gart_bind(adev, 893 gtt->offset + (page_idx << PAGE_SHIFT), 894 1, >t->ttm.dma_address[page_idx], flags); 895 /* 896 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 897 * the second page of the BO onward. 898 */ 899 amdgpu_gart_bind(adev, 900 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 901 pages_per_xcc - 1, 902 >t->ttm.dma_address[page_idx + 1], 903 ctrl_flags); 904 } 905 } 906 907 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 908 struct ttm_buffer_object *tbo, 909 uint64_t flags) 910 { 911 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 912 struct ttm_tt *ttm = tbo->ttm; 913 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 914 915 if (amdgpu_bo_encrypted(abo)) 916 flags |= AMDGPU_PTE_TMZ; 917 918 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 919 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 920 } else { 921 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 922 gtt->ttm.dma_address, flags); 923 } 924 gtt->bound = true; 925 } 926 927 /* 928 * amdgpu_ttm_backend_bind - Bind GTT memory 929 * 930 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 931 * This handles binding GTT memory to the device address space. 932 */ 933 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 934 struct ttm_tt *ttm, 935 struct ttm_resource *bo_mem) 936 { 937 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 938 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 939 uint64_t flags; 940 int r; 941 942 if (!bo_mem) 943 return -EINVAL; 944 945 if (gtt->bound) 946 return 0; 947 948 if (gtt->userptr) { 949 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 950 if (r) { 951 dev_err(adev->dev, "failed to pin userptr\n"); 952 return r; 953 } 954 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 955 if (!ttm->sg) { 956 struct dma_buf_attachment *attach; 957 struct sg_table *sgt; 958 959 attach = gtt->gobj->import_attach; 960 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 961 if (IS_ERR(sgt)) 962 return PTR_ERR(sgt); 963 964 ttm->sg = sgt; 965 } 966 967 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 968 ttm->num_pages); 969 } 970 971 if (!ttm->num_pages) { 972 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 973 ttm->num_pages, bo_mem, ttm); 974 } 975 976 if (bo_mem->mem_type != TTM_PL_TT || 977 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 978 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 979 return 0; 980 } 981 982 /* compute PTE flags relevant to this BO memory */ 983 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 984 985 /* bind pages into GART page tables */ 986 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 987 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 988 gtt->ttm.dma_address, flags); 989 gtt->bound = true; 990 return 0; 991 } 992 993 /* 994 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 995 * through AGP or GART aperture. 996 * 997 * If bo is accessible through AGP aperture, then use AGP aperture 998 * to access bo; otherwise allocate logical space in GART aperture 999 * and map bo to GART aperture. 1000 */ 1001 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1002 { 1003 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1004 struct ttm_operation_ctx ctx = { false, false }; 1005 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1006 struct ttm_placement placement; 1007 struct ttm_place placements; 1008 struct ttm_resource *tmp; 1009 uint64_t addr, flags; 1010 int r; 1011 1012 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 1013 return 0; 1014 1015 addr = amdgpu_gmc_agp_addr(bo); 1016 if (addr != AMDGPU_BO_INVALID_OFFSET) 1017 return 0; 1018 1019 /* allocate GART space */ 1020 placement.num_placement = 1; 1021 placement.placement = &placements; 1022 placements.fpfn = 0; 1023 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1024 placements.mem_type = TTM_PL_TT; 1025 placements.flags = bo->resource->placement; 1026 1027 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1028 if (unlikely(r)) 1029 return r; 1030 1031 /* compute PTE flags for this buffer object */ 1032 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 1033 1034 /* Bind pages */ 1035 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1036 amdgpu_ttm_gart_bind(adev, bo, flags); 1037 amdgpu_gart_invalidate_tlb(adev); 1038 ttm_resource_free(bo, &bo->resource); 1039 ttm_bo_assign_mem(bo, tmp); 1040 1041 return 0; 1042 } 1043 1044 /* 1045 * amdgpu_ttm_recover_gart - Rebind GTT pages 1046 * 1047 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1048 * rebind GTT pages during a GPU reset. 1049 */ 1050 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1051 { 1052 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1053 uint64_t flags; 1054 1055 if (!tbo->ttm) 1056 return; 1057 1058 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1059 amdgpu_ttm_gart_bind(adev, tbo, flags); 1060 } 1061 1062 /* 1063 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1064 * 1065 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1066 * ttm_tt_destroy(). 1067 */ 1068 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1069 struct ttm_tt *ttm) 1070 { 1071 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1072 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1073 1074 /* if the pages have userptr pinning then clear that first */ 1075 if (gtt->userptr) { 1076 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1077 } else if (ttm->sg && drm_gem_is_imported(gtt->gobj)) { 1078 struct dma_buf_attachment *attach; 1079 1080 attach = gtt->gobj->import_attach; 1081 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1082 ttm->sg = NULL; 1083 } 1084 1085 if (!gtt->bound) 1086 return; 1087 1088 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1089 return; 1090 1091 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1092 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1093 gtt->bound = false; 1094 } 1095 1096 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1097 struct ttm_tt *ttm) 1098 { 1099 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1100 1101 if (gtt->usertask) 1102 put_task_struct(gtt->usertask); 1103 1104 ttm_tt_fini(>t->ttm); 1105 kfree(gtt); 1106 } 1107 1108 /** 1109 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1110 * 1111 * @bo: The buffer object to create a GTT ttm_tt object around 1112 * @page_flags: Page flags to be added to the ttm_tt object 1113 * 1114 * Called by ttm_tt_create(). 1115 */ 1116 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1117 uint32_t page_flags) 1118 { 1119 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1120 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1121 struct amdgpu_ttm_tt *gtt; 1122 enum ttm_caching caching; 1123 1124 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1125 if (!gtt) 1126 return NULL; 1127 1128 gtt->gobj = &bo->base; 1129 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1130 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1131 else 1132 gtt->pool_id = abo->xcp_id; 1133 1134 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1135 caching = ttm_write_combined; 1136 else 1137 caching = ttm_cached; 1138 1139 /* allocate space for the uninitialized page entries */ 1140 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1141 kfree(gtt); 1142 return NULL; 1143 } 1144 return >t->ttm; 1145 } 1146 1147 /* 1148 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1149 * 1150 * Map the pages of a ttm_tt object to an address space visible 1151 * to the underlying device. 1152 */ 1153 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1154 struct ttm_tt *ttm, 1155 struct ttm_operation_ctx *ctx) 1156 { 1157 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1158 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1159 struct ttm_pool *pool; 1160 pgoff_t i; 1161 int ret; 1162 1163 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1164 if (gtt->userptr) { 1165 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1166 if (!ttm->sg) 1167 return -ENOMEM; 1168 return 0; 1169 } 1170 1171 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1172 return 0; 1173 1174 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1175 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1176 else 1177 pool = &adev->mman.bdev.pool; 1178 ret = ttm_pool_alloc(pool, ttm, ctx); 1179 if (ret) 1180 return ret; 1181 1182 for (i = 0; i < ttm->num_pages; ++i) 1183 ttm->pages[i]->mapping = bdev->dev_mapping; 1184 1185 return 0; 1186 } 1187 1188 /* 1189 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1190 * 1191 * Unmaps pages of a ttm_tt object from the device address space and 1192 * unpopulates the page array backing it. 1193 */ 1194 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1195 struct ttm_tt *ttm) 1196 { 1197 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1198 struct amdgpu_device *adev; 1199 struct ttm_pool *pool; 1200 pgoff_t i; 1201 1202 amdgpu_ttm_backend_unbind(bdev, ttm); 1203 1204 if (gtt->userptr) { 1205 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1206 kfree(ttm->sg); 1207 ttm->sg = NULL; 1208 return; 1209 } 1210 1211 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1212 return; 1213 1214 for (i = 0; i < ttm->num_pages; ++i) 1215 ttm->pages[i]->mapping = NULL; 1216 1217 adev = amdgpu_ttm_adev(bdev); 1218 1219 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1220 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1221 else 1222 pool = &adev->mman.bdev.pool; 1223 1224 return ttm_pool_free(pool, ttm); 1225 } 1226 1227 /** 1228 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1229 * task 1230 * 1231 * @tbo: The ttm_buffer_object that contains the userptr 1232 * @user_addr: The returned value 1233 */ 1234 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1235 uint64_t *user_addr) 1236 { 1237 struct amdgpu_ttm_tt *gtt; 1238 1239 if (!tbo->ttm) 1240 return -EINVAL; 1241 1242 gtt = (void *)tbo->ttm; 1243 *user_addr = gtt->userptr; 1244 return 0; 1245 } 1246 1247 /** 1248 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1249 * task 1250 * 1251 * @bo: The ttm_buffer_object to bind this userptr to 1252 * @addr: The address in the current tasks VM space to use 1253 * @flags: Requirements of userptr object. 1254 * 1255 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1256 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1257 * initialize GPU VM for a KFD process. 1258 */ 1259 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1260 uint64_t addr, uint32_t flags) 1261 { 1262 struct amdgpu_ttm_tt *gtt; 1263 1264 if (!bo->ttm) { 1265 /* TODO: We want a separate TTM object type for userptrs */ 1266 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1267 if (bo->ttm == NULL) 1268 return -ENOMEM; 1269 } 1270 1271 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1272 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1273 1274 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1275 gtt->userptr = addr; 1276 gtt->userflags = flags; 1277 1278 if (gtt->usertask) 1279 put_task_struct(gtt->usertask); 1280 gtt->usertask = current->group_leader; 1281 get_task_struct(gtt->usertask); 1282 1283 return 0; 1284 } 1285 1286 /* 1287 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1288 */ 1289 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1290 { 1291 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1292 1293 if (gtt == NULL) 1294 return NULL; 1295 1296 if (gtt->usertask == NULL) 1297 return NULL; 1298 1299 return gtt->usertask->mm; 1300 } 1301 1302 /* 1303 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1304 * address range for the current task. 1305 * 1306 */ 1307 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1308 unsigned long end, unsigned long *userptr) 1309 { 1310 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1311 unsigned long size; 1312 1313 if (gtt == NULL || !gtt->userptr) 1314 return false; 1315 1316 /* Return false if no part of the ttm_tt object lies within 1317 * the range 1318 */ 1319 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1320 if (gtt->userptr > end || gtt->userptr + size <= start) 1321 return false; 1322 1323 if (userptr) 1324 *userptr = gtt->userptr; 1325 return true; 1326 } 1327 1328 /* 1329 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1330 */ 1331 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1332 { 1333 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1334 1335 if (gtt == NULL || !gtt->userptr) 1336 return false; 1337 1338 return true; 1339 } 1340 1341 /* 1342 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1343 */ 1344 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1345 { 1346 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1347 1348 if (gtt == NULL) 1349 return false; 1350 1351 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1352 } 1353 1354 /** 1355 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1356 * 1357 * @ttm: The ttm_tt object to compute the flags for 1358 * @mem: The memory registry backing this ttm_tt object 1359 * 1360 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1361 */ 1362 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1363 { 1364 uint64_t flags = 0; 1365 1366 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1367 flags |= AMDGPU_PTE_VALID; 1368 1369 if (mem && (mem->mem_type == TTM_PL_TT || 1370 mem->mem_type == AMDGPU_PL_DOORBELL || 1371 mem->mem_type == AMDGPU_PL_PREEMPT || 1372 mem->mem_type == AMDGPU_PL_MMIO_REMAP)) { 1373 flags |= AMDGPU_PTE_SYSTEM; 1374 1375 if (ttm->caching == ttm_cached) 1376 flags |= AMDGPU_PTE_SNOOPED; 1377 } 1378 1379 if (mem && mem->mem_type == TTM_PL_VRAM && 1380 mem->bus.caching == ttm_cached) 1381 flags |= AMDGPU_PTE_SNOOPED; 1382 1383 return flags; 1384 } 1385 1386 /** 1387 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1388 * 1389 * @adev: amdgpu_device pointer 1390 * @ttm: The ttm_tt object to compute the flags for 1391 * @mem: The memory registry backing this ttm_tt object 1392 * 1393 * Figure out the flags to use for a VM PTE (Page Table Entry). 1394 */ 1395 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1396 struct ttm_resource *mem) 1397 { 1398 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1399 1400 flags |= adev->gart.gart_pte_flags; 1401 flags |= AMDGPU_PTE_READABLE; 1402 1403 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1404 flags |= AMDGPU_PTE_WRITEABLE; 1405 1406 return flags; 1407 } 1408 1409 /* 1410 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1411 * object. 1412 * 1413 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1414 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1415 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1416 * used to clean out a memory space. 1417 */ 1418 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1419 const struct ttm_place *place) 1420 { 1421 struct dma_resv_iter resv_cursor; 1422 struct dma_fence *f; 1423 1424 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1425 return ttm_bo_eviction_valuable(bo, place); 1426 1427 /* Swapout? */ 1428 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1429 return true; 1430 1431 if (bo->type == ttm_bo_type_kernel && 1432 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1433 return false; 1434 1435 /* If bo is a KFD BO, check if the bo belongs to the current process. 1436 * If true, then return false as any KFD process needs all its BOs to 1437 * be resident to run successfully 1438 */ 1439 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1440 DMA_RESV_USAGE_BOOKKEEP, f) { 1441 if (amdkfd_fence_check_mm(f, current->mm) && 1442 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1443 return false; 1444 } 1445 1446 /* Preemptible BOs don't own system resources managed by the 1447 * driver (pages, VRAM, GART space). They point to resources 1448 * owned by someone else (e.g. pageable memory in user mode 1449 * or a DMABuf). They are used in a preemptible context so we 1450 * can guarantee no deadlocks and good QoS in case of MMU 1451 * notifiers or DMABuf move notifiers from the resource owner. 1452 */ 1453 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1454 return false; 1455 1456 if (bo->resource->mem_type == TTM_PL_TT && 1457 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1458 return false; 1459 1460 return ttm_bo_eviction_valuable(bo, place); 1461 } 1462 1463 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1464 void *buf, size_t size, bool write) 1465 { 1466 while (size) { 1467 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1468 uint64_t bytes = 4 - (pos & 0x3); 1469 uint32_t shift = (pos & 0x3) * 8; 1470 uint32_t mask = 0xffffffff << shift; 1471 uint32_t value = 0; 1472 1473 if (size < bytes) { 1474 mask &= 0xffffffff >> (bytes - size) * 8; 1475 bytes = size; 1476 } 1477 1478 if (mask != 0xffffffff) { 1479 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1480 if (write) { 1481 value &= ~mask; 1482 value |= (*(uint32_t *)buf << shift) & mask; 1483 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1484 } else { 1485 value = (value & mask) >> shift; 1486 memcpy(buf, &value, bytes); 1487 } 1488 } else { 1489 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1490 } 1491 1492 pos += bytes; 1493 buf += bytes; 1494 size -= bytes; 1495 } 1496 } 1497 1498 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1499 unsigned long offset, void *buf, 1500 int len, int write) 1501 { 1502 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1503 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1504 struct amdgpu_res_cursor src_mm; 1505 struct amdgpu_job *job; 1506 struct dma_fence *fence; 1507 uint64_t src_addr, dst_addr; 1508 unsigned int num_dw; 1509 int r, idx; 1510 1511 if (len != PAGE_SIZE) 1512 return -EINVAL; 1513 1514 if (!adev->mman.sdma_access_ptr) 1515 return -EACCES; 1516 1517 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1518 return -ENODEV; 1519 1520 if (write) 1521 memcpy(adev->mman.sdma_access_ptr, buf, len); 1522 1523 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1524 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1525 AMDGPU_FENCE_OWNER_UNDEFINED, 1526 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1527 &job, 1528 AMDGPU_KERNEL_JOB_ID_TTM_ACCESS_MEMORY_SDMA); 1529 if (r) 1530 goto out; 1531 1532 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1533 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1534 src_mm.start; 1535 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1536 if (write) 1537 swap(src_addr, dst_addr); 1538 1539 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1540 PAGE_SIZE, 0); 1541 1542 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1543 WARN_ON(job->ibs[0].length_dw > num_dw); 1544 1545 fence = amdgpu_job_submit(job); 1546 1547 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1548 r = -ETIMEDOUT; 1549 dma_fence_put(fence); 1550 1551 if (!(r || write)) 1552 memcpy(buf, adev->mman.sdma_access_ptr, len); 1553 out: 1554 drm_dev_exit(idx); 1555 return r; 1556 } 1557 1558 /** 1559 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1560 * 1561 * @bo: The buffer object to read/write 1562 * @offset: Offset into buffer object 1563 * @buf: Secondary buffer to write/read from 1564 * @len: Length in bytes of access 1565 * @write: true if writing 1566 * 1567 * This is used to access VRAM that backs a buffer object via MMIO 1568 * access for debugging purposes. 1569 */ 1570 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1571 unsigned long offset, void *buf, int len, 1572 int write) 1573 { 1574 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1575 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1576 struct amdgpu_res_cursor cursor; 1577 int ret = 0; 1578 1579 if (bo->resource->mem_type != TTM_PL_VRAM) 1580 return -EIO; 1581 1582 if (amdgpu_device_has_timeouts_enabled(adev) && 1583 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1584 return len; 1585 1586 amdgpu_res_first(bo->resource, offset, len, &cursor); 1587 while (cursor.remaining) { 1588 size_t count, size = cursor.size; 1589 loff_t pos = cursor.start; 1590 1591 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1592 size -= count; 1593 if (size) { 1594 /* using MM to access rest vram and handle un-aligned address */ 1595 pos += count; 1596 buf += count; 1597 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1598 } 1599 1600 ret += cursor.size; 1601 buf += cursor.size; 1602 amdgpu_res_next(&cursor, cursor.size); 1603 } 1604 1605 return ret; 1606 } 1607 1608 static void 1609 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1610 { 1611 amdgpu_bo_move_notify(bo, false, NULL); 1612 } 1613 1614 static struct ttm_device_funcs amdgpu_bo_driver = { 1615 .ttm_tt_create = &amdgpu_ttm_tt_create, 1616 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1617 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1618 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1619 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1620 .evict_flags = &amdgpu_evict_flags, 1621 .move = &amdgpu_bo_move, 1622 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1623 .release_notify = &amdgpu_bo_release_notify, 1624 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1625 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1626 .access_memory = &amdgpu_ttm_access_memory, 1627 }; 1628 1629 /* 1630 * Firmware Reservation functions 1631 */ 1632 /** 1633 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1634 * 1635 * @adev: amdgpu_device pointer 1636 * 1637 * free fw reserved vram if it has been reserved. 1638 */ 1639 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1640 { 1641 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1642 NULL, &adev->mman.fw_vram_usage_va); 1643 } 1644 1645 /* 1646 * Driver Reservation functions 1647 */ 1648 /** 1649 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1650 * 1651 * @adev: amdgpu_device pointer 1652 * 1653 * free drv reserved vram if it has been reserved. 1654 */ 1655 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1656 { 1657 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1658 NULL, 1659 &adev->mman.drv_vram_usage_va); 1660 } 1661 1662 /** 1663 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1664 * 1665 * @adev: amdgpu_device pointer 1666 * 1667 * create bo vram reservation from fw. 1668 */ 1669 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1670 { 1671 uint64_t vram_size = adev->gmc.visible_vram_size; 1672 1673 adev->mman.fw_vram_usage_va = NULL; 1674 adev->mman.fw_vram_usage_reserved_bo = NULL; 1675 1676 if (adev->mman.fw_vram_usage_size == 0 || 1677 adev->mman.fw_vram_usage_size > vram_size) 1678 return 0; 1679 1680 return amdgpu_bo_create_kernel_at(adev, 1681 adev->mman.fw_vram_usage_start_offset, 1682 adev->mman.fw_vram_usage_size, 1683 &adev->mman.fw_vram_usage_reserved_bo, 1684 &adev->mman.fw_vram_usage_va); 1685 } 1686 1687 /** 1688 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1689 * 1690 * @adev: amdgpu_device pointer 1691 * 1692 * create bo vram reservation from drv. 1693 */ 1694 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1695 { 1696 u64 vram_size = adev->gmc.visible_vram_size; 1697 1698 adev->mman.drv_vram_usage_va = NULL; 1699 adev->mman.drv_vram_usage_reserved_bo = NULL; 1700 1701 if (adev->mman.drv_vram_usage_size == 0 || 1702 adev->mman.drv_vram_usage_size > vram_size) 1703 return 0; 1704 1705 return amdgpu_bo_create_kernel_at(adev, 1706 adev->mman.drv_vram_usage_start_offset, 1707 adev->mman.drv_vram_usage_size, 1708 &adev->mman.drv_vram_usage_reserved_bo, 1709 &adev->mman.drv_vram_usage_va); 1710 } 1711 1712 /* 1713 * Memoy training reservation functions 1714 */ 1715 1716 /** 1717 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1718 * 1719 * @adev: amdgpu_device pointer 1720 * 1721 * free memory training reserved vram if it has been reserved. 1722 */ 1723 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1724 { 1725 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1726 1727 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1728 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1729 ctx->c2p_bo = NULL; 1730 1731 return 0; 1732 } 1733 1734 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1735 uint32_t reserve_size) 1736 { 1737 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1738 1739 memset(ctx, 0, sizeof(*ctx)); 1740 1741 ctx->c2p_train_data_offset = 1742 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1743 ctx->p2c_train_data_offset = 1744 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1745 ctx->train_data_size = 1746 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1747 1748 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1749 ctx->train_data_size, 1750 ctx->p2c_train_data_offset, 1751 ctx->c2p_train_data_offset); 1752 } 1753 1754 /* 1755 * reserve TMR memory at the top of VRAM which holds 1756 * IP Discovery data and is protected by PSP. 1757 */ 1758 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1759 { 1760 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1761 bool mem_train_support = false; 1762 uint32_t reserve_size = 0; 1763 int ret; 1764 1765 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1766 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1767 mem_train_support = true; 1768 else 1769 DRM_DEBUG("memory training does not support!\n"); 1770 } 1771 1772 /* 1773 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1774 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1775 * 1776 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1777 * discovery data and G6 memory training data respectively 1778 */ 1779 if (adev->bios) 1780 reserve_size = 1781 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1782 1783 if (!adev->bios && 1784 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1785 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) || 1786 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0))) 1787 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1788 else if (!reserve_size) 1789 reserve_size = DISCOVERY_TMR_OFFSET; 1790 1791 if (mem_train_support) { 1792 /* reserve vram for mem train according to TMR location */ 1793 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1794 ret = amdgpu_bo_create_kernel_at(adev, 1795 ctx->c2p_train_data_offset, 1796 ctx->train_data_size, 1797 &ctx->c2p_bo, 1798 NULL); 1799 if (ret) { 1800 dev_err(adev->dev, "alloc c2p_bo failed(%d)!\n", ret); 1801 amdgpu_ttm_training_reserve_vram_fini(adev); 1802 return ret; 1803 } 1804 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1805 } 1806 1807 if (!adev->gmc.is_app_apu) { 1808 ret = amdgpu_bo_create_kernel_at( 1809 adev, adev->gmc.real_vram_size - reserve_size, 1810 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1811 if (ret) { 1812 dev_err(adev->dev, "alloc tmr failed(%d)!\n", ret); 1813 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1814 NULL, NULL); 1815 return ret; 1816 } 1817 } else { 1818 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1819 } 1820 1821 return 0; 1822 } 1823 1824 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1825 { 1826 int i; 1827 1828 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1829 return 0; 1830 1831 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1832 sizeof(*adev->mman.ttm_pools), 1833 GFP_KERNEL); 1834 if (!adev->mman.ttm_pools) 1835 return -ENOMEM; 1836 1837 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1838 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1839 adev->gmc.mem_partitions[i].numa.node, 1840 false, false); 1841 } 1842 return 0; 1843 } 1844 1845 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1846 { 1847 int i; 1848 1849 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1850 return; 1851 1852 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1853 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1854 1855 kfree(adev->mman.ttm_pools); 1856 adev->mman.ttm_pools = NULL; 1857 } 1858 1859 /** 1860 * amdgpu_ttm_mmio_remap_bo_init - Allocate the singleton 4K MMIO_REMAP BO 1861 * @adev: amdgpu device 1862 * 1863 * Allocates a one-page (4K) GEM BO in AMDGPU_GEM_DOMAIN_MMIO_REMAP when the 1864 * hardware exposes a remap base (adev->rmmio_remap.bus_addr) and the host 1865 * PAGE_SIZE is <= AMDGPU_GPU_PAGE_SIZE (4K). The BO is created as a regular 1866 * GEM object (amdgpu_bo_create). 1867 * 1868 * Return: 1869 * * 0 on success or intentional skip (feature not present/unsupported) 1870 * * negative errno on allocation failure 1871 */ 1872 static int amdgpu_ttm_mmio_remap_bo_init(struct amdgpu_device *adev) 1873 { 1874 struct amdgpu_bo_param bp; 1875 int r; 1876 1877 /* Skip if HW doesn't expose remap, or if PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE (4K). */ 1878 if (!adev->rmmio_remap.bus_addr || PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE) 1879 return 0; 1880 1881 memset(&bp, 0, sizeof(bp)); 1882 1883 /* Create exactly one GEM BO in the MMIO_REMAP domain. */ 1884 bp.type = ttm_bo_type_device; /* userspace-mappable GEM */ 1885 bp.size = AMDGPU_GPU_PAGE_SIZE; /* 4K */ 1886 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 1887 bp.domain = AMDGPU_GEM_DOMAIN_MMIO_REMAP; 1888 bp.flags = 0; 1889 bp.resv = NULL; 1890 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 1891 1892 r = amdgpu_bo_create(adev, &bp, &adev->rmmio_remap.bo); 1893 if (r) 1894 return r; 1895 1896 return 0; 1897 } 1898 1899 /** 1900 * amdgpu_ttm_mmio_remap_bo_fini - Free the singleton MMIO_REMAP BO 1901 * @adev: amdgpu device 1902 * 1903 * Frees the kernel-owned MMIO_REMAP BO if it was allocated by 1904 * amdgpu_ttm_mmio_remap_bo_init(). 1905 */ 1906 static void amdgpu_ttm_mmio_remap_bo_fini(struct amdgpu_device *adev) 1907 { 1908 amdgpu_bo_unref(&adev->rmmio_remap.bo); 1909 adev->rmmio_remap.bo = NULL; 1910 } 1911 1912 /* 1913 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1914 * gtt/vram related fields. 1915 * 1916 * This initializes all of the memory space pools that the TTM layer 1917 * will need such as the GTT space (system memory mapped to the device), 1918 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1919 * can be mapped per VMID. 1920 */ 1921 int amdgpu_ttm_init(struct amdgpu_device *adev) 1922 { 1923 uint64_t gtt_size; 1924 int r; 1925 1926 mutex_init(&adev->mman.gtt_window_lock); 1927 1928 dma_set_max_seg_size(adev->dev, UINT_MAX); 1929 /* No others user of address space so set it to 0 */ 1930 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1931 adev_to_drm(adev)->anon_inode->i_mapping, 1932 adev_to_drm(adev)->vma_offset_manager, 1933 adev->need_swiotlb, 1934 dma_addressing_limited(adev->dev)); 1935 if (r) { 1936 dev_err(adev->dev, 1937 "failed initializing buffer object driver(%d).\n", r); 1938 return r; 1939 } 1940 1941 r = amdgpu_ttm_pools_init(adev); 1942 if (r) { 1943 dev_err(adev->dev, "failed to init ttm pools(%d).\n", r); 1944 return r; 1945 } 1946 adev->mman.initialized = true; 1947 1948 if (!adev->gmc.is_app_apu) { 1949 /* Initialize VRAM pool with all of VRAM divided into pages */ 1950 r = amdgpu_vram_mgr_init(adev); 1951 if (r) { 1952 dev_err(adev->dev, "Failed initializing VRAM heap.\n"); 1953 return r; 1954 } 1955 } 1956 1957 /* Change the size here instead of the init above so only lpfn is affected */ 1958 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1959 #ifdef CONFIG_64BIT 1960 #ifdef CONFIG_X86 1961 if (adev->gmc.xgmi.connected_to_cpu) 1962 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1963 adev->gmc.visible_vram_size); 1964 1965 else if (adev->gmc.is_app_apu) 1966 DRM_DEBUG_DRIVER( 1967 "No need to ioremap when real vram size is 0\n"); 1968 else 1969 #endif 1970 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1971 adev->gmc.visible_vram_size); 1972 #endif 1973 1974 /* 1975 *The reserved vram for firmware must be pinned to the specified 1976 *place on the VRAM, so reserve it early. 1977 */ 1978 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1979 if (r) 1980 return r; 1981 1982 /* 1983 *The reserved vram for driver must be pinned to the specified 1984 *place on the VRAM, so reserve it early. 1985 */ 1986 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1987 if (r) 1988 return r; 1989 1990 /* 1991 * only NAVI10 and onwards ASIC support for IP discovery. 1992 * If IP discovery enabled, a block of memory should be 1993 * reserved for IP discovey. 1994 */ 1995 if (adev->mman.discovery_bin) { 1996 r = amdgpu_ttm_reserve_tmr(adev); 1997 if (r) 1998 return r; 1999 } 2000 2001 /* allocate memory as required for VGA 2002 * This is used for VGA emulation and pre-OS scanout buffers to 2003 * avoid display artifacts while transitioning between pre-OS 2004 * and driver. 2005 */ 2006 if (!adev->gmc.is_app_apu) { 2007 r = amdgpu_bo_create_kernel_at(adev, 0, 2008 adev->mman.stolen_vga_size, 2009 &adev->mman.stolen_vga_memory, 2010 NULL); 2011 if (r) 2012 return r; 2013 2014 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 2015 adev->mman.stolen_extended_size, 2016 &adev->mman.stolen_extended_memory, 2017 NULL); 2018 2019 if (r) 2020 return r; 2021 2022 r = amdgpu_bo_create_kernel_at(adev, 2023 adev->mman.stolen_reserved_offset, 2024 adev->mman.stolen_reserved_size, 2025 &adev->mman.stolen_reserved_memory, 2026 NULL); 2027 if (r) 2028 return r; 2029 } else { 2030 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 2031 } 2032 2033 dev_info(adev->dev, "amdgpu: %uM of VRAM memory ready\n", 2034 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 2035 2036 /* Compute GTT size, either based on TTM limit 2037 * or whatever the user passed on module init. 2038 */ 2039 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 2040 if (amdgpu_gtt_size != -1) { 2041 uint64_t configured_size = (uint64_t)amdgpu_gtt_size << 20; 2042 2043 drm_warn(&adev->ddev, 2044 "Configuring gttsize via module parameter is deprecated, please use ttm.pages_limit\n"); 2045 if (gtt_size != configured_size) 2046 drm_warn(&adev->ddev, 2047 "GTT size has been set as %llu but TTM size has been set as %llu, this is unusual\n", 2048 configured_size, gtt_size); 2049 2050 gtt_size = configured_size; 2051 } 2052 2053 /* Initialize GTT memory pool */ 2054 r = amdgpu_gtt_mgr_init(adev, gtt_size); 2055 if (r) { 2056 dev_err(adev->dev, "Failed initializing GTT heap.\n"); 2057 return r; 2058 } 2059 dev_info(adev->dev, "amdgpu: %uM of GTT memory ready.\n", 2060 (unsigned int)(gtt_size / (1024 * 1024))); 2061 2062 if (adev->flags & AMD_IS_APU) { 2063 if (adev->gmc.real_vram_size < gtt_size) 2064 adev->apu_prefer_gtt = true; 2065 } 2066 2067 /* Initialize doorbell pool on PCI BAR */ 2068 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 2069 if (r) { 2070 dev_err(adev->dev, "Failed initializing doorbell heap.\n"); 2071 return r; 2072 } 2073 2074 /* Create a boorbell page for kernel usages */ 2075 r = amdgpu_doorbell_create_kernel_doorbells(adev); 2076 if (r) { 2077 dev_err(adev->dev, "Failed to initialize kernel doorbells.\n"); 2078 return r; 2079 } 2080 2081 /* Initialize MMIO-remap pool (single page 4K) */ 2082 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_MMIO_REMAP, 1); 2083 if (r) { 2084 dev_err(adev->dev, "Failed initializing MMIO-remap heap.\n"); 2085 return r; 2086 } 2087 2088 /* Allocate the singleton MMIO_REMAP BO (4K) if supported */ 2089 r = amdgpu_ttm_mmio_remap_bo_init(adev); 2090 if (r) 2091 return r; 2092 2093 /* Initialize preemptible memory pool */ 2094 r = amdgpu_preempt_mgr_init(adev); 2095 if (r) { 2096 dev_err(adev->dev, "Failed initializing PREEMPT heap.\n"); 2097 return r; 2098 } 2099 2100 /* Initialize various on-chip memory pools */ 2101 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 2102 if (r) { 2103 dev_err(adev->dev, "Failed initializing GDS heap.\n"); 2104 return r; 2105 } 2106 2107 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 2108 if (r) { 2109 dev_err(adev->dev, "Failed initializing gws heap.\n"); 2110 return r; 2111 } 2112 2113 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 2114 if (r) { 2115 dev_err(adev->dev, "Failed initializing oa heap.\n"); 2116 return r; 2117 } 2118 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2119 AMDGPU_GEM_DOMAIN_GTT, 2120 &adev->mman.sdma_access_bo, NULL, 2121 &adev->mman.sdma_access_ptr)) 2122 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2123 2124 return 0; 2125 } 2126 2127 /* 2128 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2129 */ 2130 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2131 { 2132 int idx; 2133 2134 if (!adev->mman.initialized) 2135 return; 2136 2137 amdgpu_ttm_pools_fini(adev); 2138 2139 amdgpu_ttm_training_reserve_vram_fini(adev); 2140 /* return the stolen vga memory back to VRAM */ 2141 if (!adev->gmc.is_app_apu) { 2142 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2143 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2144 /* return the FW reserved memory back to VRAM */ 2145 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2146 NULL); 2147 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory_extend, NULL, 2148 NULL); 2149 if (adev->mman.stolen_reserved_size) 2150 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2151 NULL, NULL); 2152 } 2153 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2154 &adev->mman.sdma_access_ptr); 2155 2156 amdgpu_ttm_mmio_remap_bo_fini(adev); 2157 amdgpu_ttm_fw_reserve_vram_fini(adev); 2158 amdgpu_ttm_drv_reserve_vram_fini(adev); 2159 2160 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2161 2162 if (adev->mman.aper_base_kaddr) 2163 iounmap(adev->mman.aper_base_kaddr); 2164 adev->mman.aper_base_kaddr = NULL; 2165 2166 drm_dev_exit(idx); 2167 } 2168 2169 if (!adev->gmc.is_app_apu) 2170 amdgpu_vram_mgr_fini(adev); 2171 amdgpu_gtt_mgr_fini(adev); 2172 amdgpu_preempt_mgr_fini(adev); 2173 amdgpu_doorbell_fini(adev); 2174 2175 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2176 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2177 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2178 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL); 2179 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_MMIO_REMAP); 2180 ttm_device_fini(&adev->mman.bdev); 2181 adev->mman.initialized = false; 2182 dev_info(adev->dev, "amdgpu: ttm finalized\n"); 2183 } 2184 2185 /** 2186 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2187 * 2188 * @adev: amdgpu_device pointer 2189 * @enable: true when we can use buffer functions. 2190 * 2191 * Enable/disable use of buffer functions during suspend/resume. This should 2192 * only be called at bootup or when userspace isn't running. 2193 */ 2194 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2195 { 2196 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2197 uint64_t size; 2198 int r; 2199 2200 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2201 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2202 return; 2203 2204 if (enable) { 2205 struct amdgpu_ring *ring; 2206 struct drm_gpu_scheduler *sched; 2207 2208 ring = adev->mman.buffer_funcs_ring; 2209 sched = &ring->sched; 2210 r = drm_sched_entity_init(&adev->mman.high_pr, 2211 DRM_SCHED_PRIORITY_KERNEL, &sched, 2212 1, NULL); 2213 if (r) { 2214 dev_err(adev->dev, 2215 "Failed setting up TTM BO move entity (%d)\n", 2216 r); 2217 return; 2218 } 2219 2220 r = drm_sched_entity_init(&adev->mman.low_pr, 2221 DRM_SCHED_PRIORITY_NORMAL, &sched, 2222 1, NULL); 2223 if (r) { 2224 dev_err(adev->dev, 2225 "Failed setting up TTM BO move entity (%d)\n", 2226 r); 2227 goto error_free_entity; 2228 } 2229 } else { 2230 drm_sched_entity_destroy(&adev->mman.high_pr); 2231 drm_sched_entity_destroy(&adev->mman.low_pr); 2232 dma_fence_put(man->move); 2233 man->move = NULL; 2234 } 2235 2236 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2237 if (enable) 2238 size = adev->gmc.real_vram_size; 2239 else 2240 size = adev->gmc.visible_vram_size; 2241 man->size = size; 2242 adev->mman.buffer_funcs_enabled = enable; 2243 2244 return; 2245 2246 error_free_entity: 2247 drm_sched_entity_destroy(&adev->mman.high_pr); 2248 } 2249 2250 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2251 bool direct_submit, 2252 unsigned int num_dw, 2253 struct dma_resv *resv, 2254 bool vm_needs_flush, 2255 struct amdgpu_job **job, 2256 bool delayed, u64 k_job_id) 2257 { 2258 enum amdgpu_ib_pool_type pool = direct_submit ? 2259 AMDGPU_IB_POOL_DIRECT : 2260 AMDGPU_IB_POOL_DELAYED; 2261 int r; 2262 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2263 &adev->mman.high_pr; 2264 r = amdgpu_job_alloc_with_ib(adev, entity, 2265 AMDGPU_FENCE_OWNER_UNDEFINED, 2266 num_dw * 4, pool, job, k_job_id); 2267 if (r) 2268 return r; 2269 2270 if (vm_needs_flush) { 2271 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2272 adev->gmc.pdb0_bo : 2273 adev->gart.bo); 2274 (*job)->vm_needs_flush = true; 2275 } 2276 if (!resv) 2277 return 0; 2278 2279 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2280 DMA_RESV_USAGE_BOOKKEEP); 2281 } 2282 2283 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2284 uint64_t dst_offset, uint32_t byte_count, 2285 struct dma_resv *resv, 2286 struct dma_fence **fence, bool direct_submit, 2287 bool vm_needs_flush, uint32_t copy_flags) 2288 { 2289 struct amdgpu_device *adev = ring->adev; 2290 unsigned int num_loops, num_dw; 2291 struct amdgpu_job *job; 2292 uint32_t max_bytes; 2293 unsigned int i; 2294 int r; 2295 2296 if (!direct_submit && !ring->sched.ready) { 2297 dev_err(adev->dev, 2298 "Trying to move memory with ring turned off.\n"); 2299 return -EINVAL; 2300 } 2301 2302 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2303 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2304 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2305 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2306 resv, vm_needs_flush, &job, false, 2307 AMDGPU_KERNEL_JOB_ID_TTM_COPY_BUFFER); 2308 if (r) 2309 return r; 2310 2311 for (i = 0; i < num_loops; i++) { 2312 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2313 2314 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2315 dst_offset, cur_size_in_bytes, copy_flags); 2316 src_offset += cur_size_in_bytes; 2317 dst_offset += cur_size_in_bytes; 2318 byte_count -= cur_size_in_bytes; 2319 } 2320 2321 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2322 WARN_ON(job->ibs[0].length_dw > num_dw); 2323 if (direct_submit) 2324 r = amdgpu_job_submit_direct(job, ring, fence); 2325 else 2326 *fence = amdgpu_job_submit(job); 2327 if (r) 2328 goto error_free; 2329 2330 return r; 2331 2332 error_free: 2333 amdgpu_job_free(job); 2334 dev_err(adev->dev, "Error scheduling IBs (%d)\n", r); 2335 return r; 2336 } 2337 2338 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2339 uint64_t dst_addr, uint32_t byte_count, 2340 struct dma_resv *resv, 2341 struct dma_fence **fence, 2342 bool vm_needs_flush, bool delayed, 2343 u64 k_job_id) 2344 { 2345 struct amdgpu_device *adev = ring->adev; 2346 unsigned int num_loops, num_dw; 2347 struct amdgpu_job *job; 2348 uint32_t max_bytes; 2349 unsigned int i; 2350 int r; 2351 2352 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2353 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2354 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2355 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2356 &job, delayed, k_job_id); 2357 if (r) 2358 return r; 2359 2360 for (i = 0; i < num_loops; i++) { 2361 uint32_t cur_size = min(byte_count, max_bytes); 2362 2363 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2364 cur_size); 2365 2366 dst_addr += cur_size; 2367 byte_count -= cur_size; 2368 } 2369 2370 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2371 WARN_ON(job->ibs[0].length_dw > num_dw); 2372 *fence = amdgpu_job_submit(job); 2373 return 0; 2374 } 2375 2376 /** 2377 * amdgpu_ttm_clear_buffer - clear memory buffers 2378 * @bo: amdgpu buffer object 2379 * @resv: reservation object 2380 * @fence: dma_fence associated with the operation 2381 * 2382 * Clear the memory buffer resource. 2383 * 2384 * Returns: 2385 * 0 for success or a negative error code on failure. 2386 */ 2387 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2388 struct dma_resv *resv, 2389 struct dma_fence **fence) 2390 { 2391 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2392 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2393 struct amdgpu_res_cursor cursor; 2394 u64 addr; 2395 int r = 0; 2396 2397 if (!adev->mman.buffer_funcs_enabled) 2398 return -EINVAL; 2399 2400 if (!fence) 2401 return -EINVAL; 2402 2403 *fence = dma_fence_get_stub(); 2404 2405 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2406 2407 mutex_lock(&adev->mman.gtt_window_lock); 2408 while (cursor.remaining) { 2409 struct dma_fence *next = NULL; 2410 u64 size; 2411 2412 if (amdgpu_res_cleared(&cursor)) { 2413 amdgpu_res_next(&cursor, cursor.size); 2414 continue; 2415 } 2416 2417 /* Never clear more than 256MiB at once to avoid timeouts */ 2418 size = min(cursor.size, 256ULL << 20); 2419 2420 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2421 1, ring, false, &size, &addr); 2422 if (r) 2423 goto err; 2424 2425 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2426 &next, true, true, 2427 AMDGPU_KERNEL_JOB_ID_TTM_CLEAR_BUFFER); 2428 if (r) 2429 goto err; 2430 2431 dma_fence_put(*fence); 2432 *fence = next; 2433 2434 amdgpu_res_next(&cursor, size); 2435 } 2436 err: 2437 mutex_unlock(&adev->mman.gtt_window_lock); 2438 2439 return r; 2440 } 2441 2442 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2443 uint32_t src_data, 2444 struct dma_resv *resv, 2445 struct dma_fence **f, 2446 bool delayed, 2447 u64 k_job_id) 2448 { 2449 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2450 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2451 struct dma_fence *fence = NULL; 2452 struct amdgpu_res_cursor dst; 2453 int r; 2454 2455 if (!adev->mman.buffer_funcs_enabled) { 2456 dev_err(adev->dev, 2457 "Trying to clear memory with ring turned off.\n"); 2458 return -EINVAL; 2459 } 2460 2461 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2462 2463 mutex_lock(&adev->mman.gtt_window_lock); 2464 while (dst.remaining) { 2465 struct dma_fence *next; 2466 uint64_t cur_size, to; 2467 2468 /* Never fill more than 256MiB at once to avoid timeouts */ 2469 cur_size = min(dst.size, 256ULL << 20); 2470 2471 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2472 1, ring, false, &cur_size, &to); 2473 if (r) 2474 goto error; 2475 2476 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2477 &next, true, delayed, k_job_id); 2478 if (r) 2479 goto error; 2480 2481 dma_fence_put(fence); 2482 fence = next; 2483 2484 amdgpu_res_next(&dst, cur_size); 2485 } 2486 error: 2487 mutex_unlock(&adev->mman.gtt_window_lock); 2488 if (f) 2489 *f = dma_fence_get(fence); 2490 dma_fence_put(fence); 2491 return r; 2492 } 2493 2494 /** 2495 * amdgpu_ttm_evict_resources - evict memory buffers 2496 * @adev: amdgpu device object 2497 * @mem_type: evicted BO's memory type 2498 * 2499 * Evicts all @mem_type buffers on the lru list of the memory type. 2500 * 2501 * Returns: 2502 * 0 for success or a negative error code on failure. 2503 */ 2504 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2505 { 2506 struct ttm_resource_manager *man; 2507 2508 switch (mem_type) { 2509 case TTM_PL_VRAM: 2510 case TTM_PL_TT: 2511 case AMDGPU_PL_GWS: 2512 case AMDGPU_PL_GDS: 2513 case AMDGPU_PL_OA: 2514 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2515 break; 2516 default: 2517 dev_err(adev->dev, "Trying to evict invalid memory type\n"); 2518 return -EINVAL; 2519 } 2520 2521 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2522 } 2523 2524 #if defined(CONFIG_DEBUG_FS) 2525 2526 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2527 { 2528 struct amdgpu_device *adev = m->private; 2529 2530 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2531 } 2532 2533 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2534 2535 /* 2536 * amdgpu_ttm_vram_read - Linear read access to VRAM 2537 * 2538 * Accesses VRAM via MMIO for debugging purposes. 2539 */ 2540 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2541 size_t size, loff_t *pos) 2542 { 2543 struct amdgpu_device *adev = file_inode(f)->i_private; 2544 ssize_t result = 0; 2545 2546 if (size & 0x3 || *pos & 0x3) 2547 return -EINVAL; 2548 2549 if (*pos >= adev->gmc.mc_vram_size) 2550 return -ENXIO; 2551 2552 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2553 while (size) { 2554 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2555 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2556 2557 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2558 if (copy_to_user(buf, value, bytes)) 2559 return -EFAULT; 2560 2561 result += bytes; 2562 buf += bytes; 2563 *pos += bytes; 2564 size -= bytes; 2565 } 2566 2567 return result; 2568 } 2569 2570 /* 2571 * amdgpu_ttm_vram_write - Linear write access to VRAM 2572 * 2573 * Accesses VRAM via MMIO for debugging purposes. 2574 */ 2575 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2576 size_t size, loff_t *pos) 2577 { 2578 struct amdgpu_device *adev = file_inode(f)->i_private; 2579 ssize_t result = 0; 2580 int r; 2581 2582 if (size & 0x3 || *pos & 0x3) 2583 return -EINVAL; 2584 2585 if (*pos >= adev->gmc.mc_vram_size) 2586 return -ENXIO; 2587 2588 while (size) { 2589 uint32_t value; 2590 2591 if (*pos >= adev->gmc.mc_vram_size) 2592 return result; 2593 2594 r = get_user(value, (uint32_t *)buf); 2595 if (r) 2596 return r; 2597 2598 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2599 2600 result += 4; 2601 buf += 4; 2602 *pos += 4; 2603 size -= 4; 2604 } 2605 2606 return result; 2607 } 2608 2609 static const struct file_operations amdgpu_ttm_vram_fops = { 2610 .owner = THIS_MODULE, 2611 .read = amdgpu_ttm_vram_read, 2612 .write = amdgpu_ttm_vram_write, 2613 .llseek = default_llseek, 2614 }; 2615 2616 /* 2617 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2618 * 2619 * This function is used to read memory that has been mapped to the 2620 * GPU and the known addresses are not physical addresses but instead 2621 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2622 */ 2623 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2624 size_t size, loff_t *pos) 2625 { 2626 struct amdgpu_device *adev = file_inode(f)->i_private; 2627 struct iommu_domain *dom; 2628 ssize_t result = 0; 2629 int r; 2630 2631 /* retrieve the IOMMU domain if any for this device */ 2632 dom = iommu_get_domain_for_dev(adev->dev); 2633 2634 while (size) { 2635 phys_addr_t addr = *pos & PAGE_MASK; 2636 loff_t off = *pos & ~PAGE_MASK; 2637 size_t bytes = PAGE_SIZE - off; 2638 unsigned long pfn; 2639 struct page *p; 2640 void *ptr; 2641 2642 bytes = min(bytes, size); 2643 2644 /* Translate the bus address to a physical address. If 2645 * the domain is NULL it means there is no IOMMU active 2646 * and the address translation is the identity 2647 */ 2648 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2649 2650 pfn = addr >> PAGE_SHIFT; 2651 if (!pfn_valid(pfn)) 2652 return -EPERM; 2653 2654 p = pfn_to_page(pfn); 2655 if (p->mapping != adev->mman.bdev.dev_mapping) 2656 return -EPERM; 2657 2658 ptr = kmap_local_page(p); 2659 r = copy_to_user(buf, ptr + off, bytes); 2660 kunmap_local(ptr); 2661 if (r) 2662 return -EFAULT; 2663 2664 size -= bytes; 2665 *pos += bytes; 2666 result += bytes; 2667 } 2668 2669 return result; 2670 } 2671 2672 /* 2673 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2674 * 2675 * This function is used to write memory that has been mapped to the 2676 * GPU and the known addresses are not physical addresses but instead 2677 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2678 */ 2679 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2680 size_t size, loff_t *pos) 2681 { 2682 struct amdgpu_device *adev = file_inode(f)->i_private; 2683 struct iommu_domain *dom; 2684 ssize_t result = 0; 2685 int r; 2686 2687 dom = iommu_get_domain_for_dev(adev->dev); 2688 2689 while (size) { 2690 phys_addr_t addr = *pos & PAGE_MASK; 2691 loff_t off = *pos & ~PAGE_MASK; 2692 size_t bytes = PAGE_SIZE - off; 2693 unsigned long pfn; 2694 struct page *p; 2695 void *ptr; 2696 2697 bytes = min(bytes, size); 2698 2699 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2700 2701 pfn = addr >> PAGE_SHIFT; 2702 if (!pfn_valid(pfn)) 2703 return -EPERM; 2704 2705 p = pfn_to_page(pfn); 2706 if (p->mapping != adev->mman.bdev.dev_mapping) 2707 return -EPERM; 2708 2709 ptr = kmap_local_page(p); 2710 r = copy_from_user(ptr + off, buf, bytes); 2711 kunmap_local(ptr); 2712 if (r) 2713 return -EFAULT; 2714 2715 size -= bytes; 2716 *pos += bytes; 2717 result += bytes; 2718 } 2719 2720 return result; 2721 } 2722 2723 static const struct file_operations amdgpu_ttm_iomem_fops = { 2724 .owner = THIS_MODULE, 2725 .read = amdgpu_iomem_read, 2726 .write = amdgpu_iomem_write, 2727 .llseek = default_llseek 2728 }; 2729 2730 #endif 2731 2732 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2733 { 2734 #if defined(CONFIG_DEBUG_FS) 2735 struct drm_minor *minor = adev_to_drm(adev)->primary; 2736 struct dentry *root = minor->debugfs_root; 2737 2738 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2739 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2740 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2741 &amdgpu_ttm_iomem_fops); 2742 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2743 &amdgpu_ttm_page_pool_fops); 2744 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2745 TTM_PL_VRAM), 2746 root, "amdgpu_vram_mm"); 2747 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2748 TTM_PL_TT), 2749 root, "amdgpu_gtt_mm"); 2750 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2751 AMDGPU_PL_GDS), 2752 root, "amdgpu_gds_mm"); 2753 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2754 AMDGPU_PL_GWS), 2755 root, "amdgpu_gws_mm"); 2756 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2757 AMDGPU_PL_OA), 2758 root, "amdgpu_oa_mm"); 2759 2760 #endif 2761 } 2762