xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
61 
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
63 
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
65 				   struct ttm_tt *ttm,
66 				   struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
68 				      struct ttm_tt *ttm);
69 
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71 				    unsigned int type,
72 				    uint64_t size_in_page)
73 {
74 	return ttm_range_man_init(&adev->mman.bdev, type,
75 				  false, size_in_page);
76 }
77 
78 /**
79  * amdgpu_evict_flags - Compute placement flags
80  *
81  * @bo: The buffer object to evict
82  * @placement: Possible destination(s) for evicted BO
83  *
84  * Fill in placement data when ttm_bo_evict() is called
85  */
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 				struct ttm_placement *placement)
88 {
89 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 	struct amdgpu_bo *abo;
91 	static const struct ttm_place placements = {
92 		.fpfn = 0,
93 		.lpfn = 0,
94 		.mem_type = TTM_PL_SYSTEM,
95 		.flags = 0
96 	};
97 
98 	/* Don't handle scatter gather BOs */
99 	if (bo->type == ttm_bo_type_sg) {
100 		placement->num_placement = 0;
101 		placement->num_busy_placement = 0;
102 		return;
103 	}
104 
105 	/* Object isn't an AMDGPU object so ignore */
106 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 		placement->placement = &placements;
108 		placement->busy_placement = &placements;
109 		placement->num_placement = 1;
110 		placement->num_busy_placement = 1;
111 		return;
112 	}
113 
114 	abo = ttm_to_amdgpu_bo(bo);
115 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
116 		struct dma_fence *fence;
117 		struct dma_resv *resv = &bo->base._resv;
118 
119 		rcu_read_lock();
120 		fence = rcu_dereference(resv->fence_excl);
121 		if (fence && !fence->ops->signaled)
122 			dma_fence_enable_sw_signaling(fence);
123 
124 		placement->num_placement = 0;
125 		placement->num_busy_placement = 0;
126 		rcu_read_unlock();
127 		return;
128 	}
129 
130 	switch (bo->resource->mem_type) {
131 	case AMDGPU_PL_GDS:
132 	case AMDGPU_PL_GWS:
133 	case AMDGPU_PL_OA:
134 		placement->num_placement = 0;
135 		placement->num_busy_placement = 0;
136 		return;
137 
138 	case TTM_PL_VRAM:
139 		if (!adev->mman.buffer_funcs_enabled) {
140 			/* Move to system memory */
141 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
142 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
143 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
144 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
145 
146 			/* Try evicting to the CPU inaccessible part of VRAM
147 			 * first, but only set GTT as busy placement, so this
148 			 * BO will be evicted to GTT rather than causing other
149 			 * BOs to be evicted from VRAM
150 			 */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
152 							AMDGPU_GEM_DOMAIN_GTT |
153 							AMDGPU_GEM_DOMAIN_CPU);
154 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
155 			abo->placements[0].lpfn = 0;
156 			abo->placement.busy_placement = &abo->placements[1];
157 			abo->placement.num_busy_placement = 1;
158 		} else {
159 			/* Move to GTT memory */
160 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
161 							AMDGPU_GEM_DOMAIN_CPU);
162 		}
163 		break;
164 	case TTM_PL_TT:
165 	case AMDGPU_PL_PREEMPT:
166 	default:
167 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
168 		break;
169 	}
170 	*placement = abo->placement;
171 }
172 
173 /**
174  * amdgpu_ttm_map_buffer - Map memory into the GART windows
175  * @bo: buffer object to map
176  * @mem: memory object to map
177  * @mm_cur: range to map
178  * @num_pages: number of pages to map
179  * @window: which GART window to use
180  * @ring: DMA ring to use for the copy
181  * @tmz: if we should setup a TMZ enabled mapping
182  * @addr: resulting address inside the MC address space
183  *
184  * Setup one of the GART windows to access a specific piece of memory or return
185  * the physical address for local memory.
186  */
187 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
188 				 struct ttm_resource *mem,
189 				 struct amdgpu_res_cursor *mm_cur,
190 				 unsigned num_pages, unsigned window,
191 				 struct amdgpu_ring *ring, bool tmz,
192 				 uint64_t *addr)
193 {
194 	struct amdgpu_device *adev = ring->adev;
195 	struct amdgpu_job *job;
196 	unsigned num_dw, num_bytes;
197 	struct dma_fence *fence;
198 	uint64_t src_addr, dst_addr;
199 	void *cpu_addr;
200 	uint64_t flags;
201 	unsigned int i;
202 	int r;
203 
204 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
205 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
206 	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
207 
208 	/* Map only what can't be accessed directly */
209 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
210 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
211 			mm_cur->start;
212 		return 0;
213 	}
214 
215 	*addr = adev->gmc.gart_start;
216 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
217 		AMDGPU_GPU_PAGE_SIZE;
218 	*addr += mm_cur->start & ~PAGE_MASK;
219 
220 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
221 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
222 
223 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
224 				     AMDGPU_IB_POOL_DELAYED, &job);
225 	if (r)
226 		return r;
227 
228 	src_addr = num_dw * 4;
229 	src_addr += job->ibs[0].gpu_addr;
230 
231 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
232 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
233 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
234 				dst_addr, num_bytes, false);
235 
236 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
237 	WARN_ON(job->ibs[0].length_dw > num_dw);
238 
239 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
240 	if (tmz)
241 		flags |= AMDGPU_PTE_TMZ;
242 
243 	cpu_addr = &job->ibs[0].ptr[num_dw];
244 
245 	if (mem->mem_type == TTM_PL_TT) {
246 		dma_addr_t *dma_addr;
247 
248 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
249 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
250 				    cpu_addr);
251 		if (r)
252 			goto error_free;
253 	} else {
254 		dma_addr_t dma_address;
255 
256 		dma_address = mm_cur->start;
257 		dma_address += adev->vm_manager.vram_base_offset;
258 
259 		for (i = 0; i < num_pages; ++i) {
260 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
261 					    &dma_address, flags, cpu_addr);
262 			if (r)
263 				goto error_free;
264 
265 			dma_address += PAGE_SIZE;
266 		}
267 	}
268 
269 	r = amdgpu_job_submit(job, &adev->mman.entity,
270 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
271 	if (r)
272 		goto error_free;
273 
274 	dma_fence_put(fence);
275 
276 	return r;
277 
278 error_free:
279 	amdgpu_job_free(job);
280 	return r;
281 }
282 
283 /**
284  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
285  * @adev: amdgpu device
286  * @src: buffer/address where to read from
287  * @dst: buffer/address where to write to
288  * @size: number of bytes to copy
289  * @tmz: if a secure copy should be used
290  * @resv: resv object to sync to
291  * @f: Returns the last fence if multiple jobs are submitted.
292  *
293  * The function copies @size bytes from {src->mem + src->offset} to
294  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
295  * move and different for a BO to BO copy.
296  *
297  */
298 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
299 			       const struct amdgpu_copy_mem *src,
300 			       const struct amdgpu_copy_mem *dst,
301 			       uint64_t size, bool tmz,
302 			       struct dma_resv *resv,
303 			       struct dma_fence **f)
304 {
305 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
306 					AMDGPU_GPU_PAGE_SIZE);
307 
308 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 	struct amdgpu_res_cursor src_mm, dst_mm;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 
321 	mutex_lock(&adev->mman.gtt_window_lock);
322 	while (src_mm.remaining) {
323 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
324 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
325 		struct dma_fence *next;
326 		uint32_t cur_size;
327 		uint64_t from, to;
328 
329 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
330 		 * begins at an offset, then adjust the size accordingly
331 		 */
332 		cur_size = max(src_page_offset, dst_page_offset);
333 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
334 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
335 
336 		/* Map src to window 0 and dst to window 1. */
337 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
338 					  PFN_UP(cur_size + src_page_offset),
339 					  0, ring, tmz, &from);
340 		if (r)
341 			goto error;
342 
343 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
344 					  PFN_UP(cur_size + dst_page_offset),
345 					  1, ring, tmz, &to);
346 		if (r)
347 			goto error;
348 
349 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
350 				       resv, &next, false, true, tmz);
351 		if (r)
352 			goto error;
353 
354 		dma_fence_put(fence);
355 		fence = next;
356 
357 		amdgpu_res_next(&src_mm, cur_size);
358 		amdgpu_res_next(&dst_mm, cur_size);
359 	}
360 error:
361 	mutex_unlock(&adev->mman.gtt_window_lock);
362 	if (f)
363 		*f = dma_fence_get(fence);
364 	dma_fence_put(fence);
365 	return r;
366 }
367 
368 /*
369  * amdgpu_move_blit - Copy an entire buffer to another buffer
370  *
371  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
372  * help move buffers to and from VRAM.
373  */
374 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
375 			    bool evict,
376 			    struct ttm_resource *new_mem,
377 			    struct ttm_resource *old_mem)
378 {
379 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
380 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
381 	struct amdgpu_copy_mem src, dst;
382 	struct dma_fence *fence = NULL;
383 	int r;
384 
385 	src.bo = bo;
386 	dst.bo = bo;
387 	src.mem = old_mem;
388 	dst.mem = new_mem;
389 	src.offset = 0;
390 	dst.offset = 0;
391 
392 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
393 				       new_mem->num_pages << PAGE_SHIFT,
394 				       amdgpu_bo_encrypted(abo),
395 				       bo->base.resv, &fence);
396 	if (r)
397 		goto error;
398 
399 	/* clear the space being freed */
400 	if (old_mem->mem_type == TTM_PL_VRAM &&
401 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
402 		struct dma_fence *wipe_fence = NULL;
403 
404 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
405 				       NULL, &wipe_fence);
406 		if (r) {
407 			goto error;
408 		} else if (wipe_fence) {
409 			dma_fence_put(fence);
410 			fence = wipe_fence;
411 		}
412 	}
413 
414 	/* Always block for VM page tables before committing the new location */
415 	if (bo->type == ttm_bo_type_kernel)
416 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
417 	else
418 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
419 	dma_fence_put(fence);
420 	return r;
421 
422 error:
423 	if (fence)
424 		dma_fence_wait(fence, false);
425 	dma_fence_put(fence);
426 	return r;
427 }
428 
429 /*
430  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
431  *
432  * Called by amdgpu_bo_move()
433  */
434 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
435 			       struct ttm_resource *mem)
436 {
437 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
438 	struct amdgpu_res_cursor cursor;
439 
440 	if (mem->mem_type == TTM_PL_SYSTEM ||
441 	    mem->mem_type == TTM_PL_TT)
442 		return true;
443 	if (mem->mem_type != TTM_PL_VRAM)
444 		return false;
445 
446 	amdgpu_res_first(mem, 0, mem_size, &cursor);
447 
448 	/* ttm_resource_ioremap only supports contiguous memory */
449 	if (cursor.size != mem_size)
450 		return false;
451 
452 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
453 }
454 
455 /*
456  * amdgpu_bo_move - Move a buffer object to a new memory location
457  *
458  * Called by ttm_bo_handle_move_mem()
459  */
460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
461 			  struct ttm_operation_ctx *ctx,
462 			  struct ttm_resource *new_mem,
463 			  struct ttm_place *hop)
464 {
465 	struct amdgpu_device *adev;
466 	struct amdgpu_bo *abo;
467 	struct ttm_resource *old_mem = bo->resource;
468 	int r;
469 
470 	if (new_mem->mem_type == TTM_PL_TT ||
471 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
472 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
473 		if (r)
474 			return r;
475 	}
476 
477 	/* Can't move a pinned BO */
478 	abo = ttm_to_amdgpu_bo(bo);
479 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480 		return -EINVAL;
481 
482 	adev = amdgpu_ttm_adev(bo->bdev);
483 
484 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
485 		ttm_bo_move_null(bo, new_mem);
486 		goto out;
487 	}
488 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
489 	    (new_mem->mem_type == TTM_PL_TT ||
490 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
491 		ttm_bo_move_null(bo, new_mem);
492 		goto out;
493 	}
494 	if ((old_mem->mem_type == TTM_PL_TT ||
495 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
496 	    new_mem->mem_type == TTM_PL_SYSTEM) {
497 		r = ttm_bo_wait_ctx(bo, ctx);
498 		if (r)
499 			return r;
500 
501 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
502 		ttm_resource_free(bo, &bo->resource);
503 		ttm_bo_assign_mem(bo, new_mem);
504 		goto out;
505 	}
506 
507 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
508 	    old_mem->mem_type == AMDGPU_PL_GWS ||
509 	    old_mem->mem_type == AMDGPU_PL_OA ||
510 	    new_mem->mem_type == AMDGPU_PL_GDS ||
511 	    new_mem->mem_type == AMDGPU_PL_GWS ||
512 	    new_mem->mem_type == AMDGPU_PL_OA) {
513 		/* Nothing to save here */
514 		ttm_bo_move_null(bo, new_mem);
515 		goto out;
516 	}
517 
518 	if (bo->type == ttm_bo_type_device &&
519 	    new_mem->mem_type == TTM_PL_VRAM &&
520 	    old_mem->mem_type != TTM_PL_VRAM) {
521 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
522 		 * accesses the BO after it's moved.
523 		 */
524 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
525 	}
526 
527 	if (adev->mman.buffer_funcs_enabled) {
528 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
529 		      new_mem->mem_type == TTM_PL_VRAM) ||
530 		     (old_mem->mem_type == TTM_PL_VRAM &&
531 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
532 			hop->fpfn = 0;
533 			hop->lpfn = 0;
534 			hop->mem_type = TTM_PL_TT;
535 			hop->flags = TTM_PL_FLAG_TEMPORARY;
536 			return -EMULTIHOP;
537 		}
538 
539 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
540 	} else {
541 		r = -ENODEV;
542 	}
543 
544 	if (r) {
545 		/* Check that all memory is CPU accessible */
546 		if (!amdgpu_mem_visible(adev, old_mem) ||
547 		    !amdgpu_mem_visible(adev, new_mem)) {
548 			pr_err("Move buffer fallback to memcpy unavailable\n");
549 			return r;
550 		}
551 
552 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
553 		if (r)
554 			return r;
555 	}
556 
557 out:
558 	/* update statistics */
559 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
560 	amdgpu_bo_move_notify(bo, evict, new_mem);
561 	return 0;
562 }
563 
564 /*
565  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
566  *
567  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
568  */
569 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
570 				     struct ttm_resource *mem)
571 {
572 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
573 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
574 
575 	switch (mem->mem_type) {
576 	case TTM_PL_SYSTEM:
577 		/* system memory */
578 		return 0;
579 	case TTM_PL_TT:
580 	case AMDGPU_PL_PREEMPT:
581 		break;
582 	case TTM_PL_VRAM:
583 		mem->bus.offset = mem->start << PAGE_SHIFT;
584 		/* check if it's visible */
585 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
586 			return -EINVAL;
587 
588 		if (adev->mman.aper_base_kaddr &&
589 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
590 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
591 					mem->bus.offset;
592 
593 		mem->bus.offset += adev->gmc.aper_base;
594 		mem->bus.is_iomem = true;
595 		break;
596 	default:
597 		return -EINVAL;
598 	}
599 	return 0;
600 }
601 
602 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
603 					   unsigned long page_offset)
604 {
605 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
606 	struct amdgpu_res_cursor cursor;
607 
608 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
609 			 &cursor);
610 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
611 }
612 
613 /**
614  * amdgpu_ttm_domain_start - Returns GPU start address
615  * @adev: amdgpu device object
616  * @type: type of the memory
617  *
618  * Returns:
619  * GPU start address of a memory domain
620  */
621 
622 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
623 {
624 	switch (type) {
625 	case TTM_PL_TT:
626 		return adev->gmc.gart_start;
627 	case TTM_PL_VRAM:
628 		return adev->gmc.vram_start;
629 	}
630 
631 	return 0;
632 }
633 
634 /*
635  * TTM backend functions.
636  */
637 struct amdgpu_ttm_tt {
638 	struct ttm_tt	ttm;
639 	struct drm_gem_object	*gobj;
640 	u64			offset;
641 	uint64_t		userptr;
642 	struct task_struct	*usertask;
643 	uint32_t		userflags;
644 	bool			bound;
645 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
646 	struct hmm_range	*range;
647 #endif
648 };
649 
650 #ifdef CONFIG_DRM_AMDGPU_USERPTR
651 /*
652  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
653  * memory and start HMM tracking CPU page table update
654  *
655  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
656  * once afterwards to stop HMM tracking
657  */
658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
659 {
660 	struct ttm_tt *ttm = bo->tbo.ttm;
661 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
662 	unsigned long start = gtt->userptr;
663 	struct vm_area_struct *vma;
664 	struct mm_struct *mm;
665 	bool readonly;
666 	int r = 0;
667 
668 	mm = bo->notifier.mm;
669 	if (unlikely(!mm)) {
670 		DRM_DEBUG_DRIVER("BO is not registered?\n");
671 		return -EFAULT;
672 	}
673 
674 	/* Another get_user_pages is running at the same time?? */
675 	if (WARN_ON(gtt->range))
676 		return -EFAULT;
677 
678 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
679 		return -ESRCH;
680 
681 	mmap_read_lock(mm);
682 	vma = vma_lookup(mm, start);
683 	if (unlikely(!vma)) {
684 		r = -EFAULT;
685 		goto out_unlock;
686 	}
687 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688 		vma->vm_file)) {
689 		r = -EPERM;
690 		goto out_unlock;
691 	}
692 
693 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
694 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695 				       ttm->num_pages, &gtt->range, readonly,
696 				       true, NULL);
697 out_unlock:
698 	mmap_read_unlock(mm);
699 	mmput(mm);
700 
701 	return r;
702 }
703 
704 /*
705  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
706  * Check if the pages backing this ttm range have been invalidated
707  *
708  * Returns: true if pages are still valid
709  */
710 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
711 {
712 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
713 	bool r = false;
714 
715 	if (!gtt || !gtt->userptr)
716 		return false;
717 
718 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
719 		gtt->userptr, ttm->num_pages);
720 
721 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
722 		"No user pages to check\n");
723 
724 	if (gtt->range) {
725 		/*
726 		 * FIXME: Must always hold notifier_lock for this, and must
727 		 * not ignore the return code.
728 		 */
729 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
730 		gtt->range = NULL;
731 	}
732 
733 	return !r;
734 }
735 #endif
736 
737 /*
738  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
739  *
740  * Called by amdgpu_cs_list_validate(). This creates the page list
741  * that backs user memory and will ultimately be mapped into the device
742  * address space.
743  */
744 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
745 {
746 	unsigned long i;
747 
748 	for (i = 0; i < ttm->num_pages; ++i)
749 		ttm->pages[i] = pages ? pages[i] : NULL;
750 }
751 
752 /*
753  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
754  *
755  * Called by amdgpu_ttm_backend_bind()
756  **/
757 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
758 				     struct ttm_tt *ttm)
759 {
760 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
761 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
762 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
763 	enum dma_data_direction direction = write ?
764 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
765 	int r;
766 
767 	/* Allocate an SG array and squash pages into it */
768 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
769 				      (u64)ttm->num_pages << PAGE_SHIFT,
770 				      GFP_KERNEL);
771 	if (r)
772 		goto release_sg;
773 
774 	/* Map SG to device */
775 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
776 	if (r)
777 		goto release_sg;
778 
779 	/* convert SG to linear array of pages and dma addresses */
780 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
781 				       ttm->num_pages);
782 
783 	return 0;
784 
785 release_sg:
786 	kfree(ttm->sg);
787 	ttm->sg = NULL;
788 	return r;
789 }
790 
791 /*
792  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
793  */
794 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
795 					struct ttm_tt *ttm)
796 {
797 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
798 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
799 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
800 	enum dma_data_direction direction = write ?
801 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
802 
803 	/* double check that we don't free the table twice */
804 	if (!ttm->sg || !ttm->sg->sgl)
805 		return;
806 
807 	/* unmap the pages mapped to the device */
808 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
809 	sg_free_table(ttm->sg);
810 
811 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
812 	if (gtt->range) {
813 		unsigned long i;
814 
815 		for (i = 0; i < ttm->num_pages; i++) {
816 			if (ttm->pages[i] !=
817 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
818 				break;
819 		}
820 
821 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
822 	}
823 #endif
824 }
825 
826 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
827 				struct ttm_buffer_object *tbo,
828 				uint64_t flags)
829 {
830 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
831 	struct ttm_tt *ttm = tbo->ttm;
832 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
833 	int r;
834 
835 	if (amdgpu_bo_encrypted(abo))
836 		flags |= AMDGPU_PTE_TMZ;
837 
838 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
839 		uint64_t page_idx = 1;
840 
841 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
842 				gtt->ttm.dma_address, flags);
843 		if (r)
844 			goto gart_bind_fail;
845 
846 		/* The memory type of the first page defaults to UC. Now
847 		 * modify the memory type to NC from the second page of
848 		 * the BO onward.
849 		 */
850 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
851 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
852 
853 		r = amdgpu_gart_bind(adev,
854 				gtt->offset + (page_idx << PAGE_SHIFT),
855 				ttm->num_pages - page_idx,
856 				&(gtt->ttm.dma_address[page_idx]), flags);
857 	} else {
858 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
859 				     gtt->ttm.dma_address, flags);
860 	}
861 
862 gart_bind_fail:
863 	if (r)
864 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
865 			  ttm->num_pages, gtt->offset);
866 
867 	return r;
868 }
869 
870 /*
871  * amdgpu_ttm_backend_bind - Bind GTT memory
872  *
873  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
874  * This handles binding GTT memory to the device address space.
875  */
876 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
877 				   struct ttm_tt *ttm,
878 				   struct ttm_resource *bo_mem)
879 {
880 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
881 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
882 	uint64_t flags;
883 	int r = 0;
884 
885 	if (!bo_mem)
886 		return -EINVAL;
887 
888 	if (gtt->bound)
889 		return 0;
890 
891 	if (gtt->userptr) {
892 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
893 		if (r) {
894 			DRM_ERROR("failed to pin userptr\n");
895 			return r;
896 		}
897 	} else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
898 		if (!ttm->sg) {
899 			struct dma_buf_attachment *attach;
900 			struct sg_table *sgt;
901 
902 			attach = gtt->gobj->import_attach;
903 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
904 			if (IS_ERR(sgt))
905 				return PTR_ERR(sgt);
906 
907 			ttm->sg = sgt;
908 		}
909 
910 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
911 					       ttm->num_pages);
912 	}
913 
914 	if (!ttm->num_pages) {
915 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
916 		     ttm->num_pages, bo_mem, ttm);
917 	}
918 
919 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
920 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
921 	    bo_mem->mem_type == AMDGPU_PL_OA)
922 		return -EINVAL;
923 
924 	if (bo_mem->mem_type != TTM_PL_TT ||
925 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
926 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
927 		return 0;
928 	}
929 
930 	/* compute PTE flags relevant to this BO memory */
931 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
932 
933 	/* bind pages into GART page tables */
934 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
935 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
936 		gtt->ttm.dma_address, flags);
937 
938 	if (r)
939 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
940 			  ttm->num_pages, gtt->offset);
941 	gtt->bound = true;
942 	return r;
943 }
944 
945 /*
946  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
947  * through AGP or GART aperture.
948  *
949  * If bo is accessible through AGP aperture, then use AGP aperture
950  * to access bo; otherwise allocate logical space in GART aperture
951  * and map bo to GART aperture.
952  */
953 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
954 {
955 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
956 	struct ttm_operation_ctx ctx = { false, false };
957 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
958 	struct ttm_placement placement;
959 	struct ttm_place placements;
960 	struct ttm_resource *tmp;
961 	uint64_t addr, flags;
962 	int r;
963 
964 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
965 		return 0;
966 
967 	addr = amdgpu_gmc_agp_addr(bo);
968 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
969 		bo->resource->start = addr >> PAGE_SHIFT;
970 		return 0;
971 	}
972 
973 	/* allocate GART space */
974 	placement.num_placement = 1;
975 	placement.placement = &placements;
976 	placement.num_busy_placement = 1;
977 	placement.busy_placement = &placements;
978 	placements.fpfn = 0;
979 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
980 	placements.mem_type = TTM_PL_TT;
981 	placements.flags = bo->resource->placement;
982 
983 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
984 	if (unlikely(r))
985 		return r;
986 
987 	/* compute PTE flags for this buffer object */
988 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
989 
990 	/* Bind pages */
991 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
992 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
993 	if (unlikely(r)) {
994 		ttm_resource_free(bo, &tmp);
995 		return r;
996 	}
997 
998 	amdgpu_gart_invalidate_tlb(adev);
999 	ttm_resource_free(bo, &bo->resource);
1000 	ttm_bo_assign_mem(bo, tmp);
1001 
1002 	return 0;
1003 }
1004 
1005 /*
1006  * amdgpu_ttm_recover_gart - Rebind GTT pages
1007  *
1008  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1009  * rebind GTT pages during a GPU reset.
1010  */
1011 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1012 {
1013 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1014 	uint64_t flags;
1015 	int r;
1016 
1017 	if (!tbo->ttm)
1018 		return 0;
1019 
1020 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1021 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1022 
1023 	return r;
1024 }
1025 
1026 /*
1027  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1028  *
1029  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1030  * ttm_tt_destroy().
1031  */
1032 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1033 				      struct ttm_tt *ttm)
1034 {
1035 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1036 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1037 	int r;
1038 
1039 	/* if the pages have userptr pinning then clear that first */
1040 	if (gtt->userptr) {
1041 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1042 	} else if (ttm->sg && gtt->gobj->import_attach) {
1043 		struct dma_buf_attachment *attach;
1044 
1045 		attach = gtt->gobj->import_attach;
1046 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1047 		ttm->sg = NULL;
1048 	}
1049 
1050 	if (!gtt->bound)
1051 		return;
1052 
1053 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1054 		return;
1055 
1056 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1057 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1058 	if (r)
1059 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1060 			  gtt->ttm.num_pages, gtt->offset);
1061 	gtt->bound = false;
1062 }
1063 
1064 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1065 				       struct ttm_tt *ttm)
1066 {
1067 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1068 
1069 	if (gtt->usertask)
1070 		put_task_struct(gtt->usertask);
1071 
1072 	ttm_tt_fini(&gtt->ttm);
1073 	kfree(gtt);
1074 }
1075 
1076 /**
1077  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1078  *
1079  * @bo: The buffer object to create a GTT ttm_tt object around
1080  * @page_flags: Page flags to be added to the ttm_tt object
1081  *
1082  * Called by ttm_tt_create().
1083  */
1084 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1085 					   uint32_t page_flags)
1086 {
1087 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1088 	struct amdgpu_ttm_tt *gtt;
1089 	enum ttm_caching caching;
1090 
1091 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1092 	if (gtt == NULL) {
1093 		return NULL;
1094 	}
1095 	gtt->gobj = &bo->base;
1096 
1097 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1098 		caching = ttm_write_combined;
1099 	else
1100 		caching = ttm_cached;
1101 
1102 	/* allocate space for the uninitialized page entries */
1103 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1104 		kfree(gtt);
1105 		return NULL;
1106 	}
1107 	return &gtt->ttm;
1108 }
1109 
1110 /*
1111  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1112  *
1113  * Map the pages of a ttm_tt object to an address space visible
1114  * to the underlying device.
1115  */
1116 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1117 				  struct ttm_tt *ttm,
1118 				  struct ttm_operation_ctx *ctx)
1119 {
1120 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1121 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1122 
1123 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1124 	if (gtt->userptr) {
1125 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1126 		if (!ttm->sg)
1127 			return -ENOMEM;
1128 		return 0;
1129 	}
1130 
1131 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1132 		return 0;
1133 
1134 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1135 }
1136 
1137 /*
1138  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139  *
1140  * Unmaps pages of a ttm_tt object from the device address space and
1141  * unpopulates the page array backing it.
1142  */
1143 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144 				     struct ttm_tt *ttm)
1145 {
1146 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1147 	struct amdgpu_device *adev;
1148 
1149 	amdgpu_ttm_backend_unbind(bdev, ttm);
1150 
1151 	if (gtt->userptr) {
1152 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1153 		kfree(ttm->sg);
1154 		ttm->sg = NULL;
1155 		return;
1156 	}
1157 
1158 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1159 		return;
1160 
1161 	adev = amdgpu_ttm_adev(bdev);
1162 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1163 }
1164 
1165 /**
1166  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1167  * task
1168  *
1169  * @bo: The ttm_buffer_object to bind this userptr to
1170  * @addr:  The address in the current tasks VM space to use
1171  * @flags: Requirements of userptr object.
1172  *
1173  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1174  * to current task
1175  */
1176 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1177 			      uint64_t addr, uint32_t flags)
1178 {
1179 	struct amdgpu_ttm_tt *gtt;
1180 
1181 	if (!bo->ttm) {
1182 		/* TODO: We want a separate TTM object type for userptrs */
1183 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1184 		if (bo->ttm == NULL)
1185 			return -ENOMEM;
1186 	}
1187 
1188 	/* Set TTM_PAGE_FLAG_SG before populate but after create. */
1189 	bo->ttm->page_flags |= TTM_PAGE_FLAG_SG;
1190 
1191 	gtt = (void *)bo->ttm;
1192 	gtt->userptr = addr;
1193 	gtt->userflags = flags;
1194 
1195 	if (gtt->usertask)
1196 		put_task_struct(gtt->usertask);
1197 	gtt->usertask = current->group_leader;
1198 	get_task_struct(gtt->usertask);
1199 
1200 	return 0;
1201 }
1202 
1203 /*
1204  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1205  */
1206 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1207 {
1208 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1209 
1210 	if (gtt == NULL)
1211 		return NULL;
1212 
1213 	if (gtt->usertask == NULL)
1214 		return NULL;
1215 
1216 	return gtt->usertask->mm;
1217 }
1218 
1219 /*
1220  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1221  * address range for the current task.
1222  *
1223  */
1224 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1225 				  unsigned long end)
1226 {
1227 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1228 	unsigned long size;
1229 
1230 	if (gtt == NULL || !gtt->userptr)
1231 		return false;
1232 
1233 	/* Return false if no part of the ttm_tt object lies within
1234 	 * the range
1235 	 */
1236 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1237 	if (gtt->userptr > end || gtt->userptr + size <= start)
1238 		return false;
1239 
1240 	return true;
1241 }
1242 
1243 /*
1244  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1245  */
1246 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1247 {
1248 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1249 
1250 	if (gtt == NULL || !gtt->userptr)
1251 		return false;
1252 
1253 	return true;
1254 }
1255 
1256 /*
1257  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1258  */
1259 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1260 {
1261 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1262 
1263 	if (gtt == NULL)
1264 		return false;
1265 
1266 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1267 }
1268 
1269 /**
1270  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1271  *
1272  * @ttm: The ttm_tt object to compute the flags for
1273  * @mem: The memory registry backing this ttm_tt object
1274  *
1275  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1276  */
1277 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1278 {
1279 	uint64_t flags = 0;
1280 
1281 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1282 		flags |= AMDGPU_PTE_VALID;
1283 
1284 	if (mem && (mem->mem_type == TTM_PL_TT ||
1285 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1286 		flags |= AMDGPU_PTE_SYSTEM;
1287 
1288 		if (ttm->caching == ttm_cached)
1289 			flags |= AMDGPU_PTE_SNOOPED;
1290 	}
1291 
1292 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1293 			mem->bus.caching == ttm_cached)
1294 		flags |= AMDGPU_PTE_SNOOPED;
1295 
1296 	return flags;
1297 }
1298 
1299 /**
1300  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1301  *
1302  * @adev: amdgpu_device pointer
1303  * @ttm: The ttm_tt object to compute the flags for
1304  * @mem: The memory registry backing this ttm_tt object
1305  *
1306  * Figure out the flags to use for a VM PTE (Page Table Entry).
1307  */
1308 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1309 				 struct ttm_resource *mem)
1310 {
1311 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1312 
1313 	flags |= adev->gart.gart_pte_flags;
1314 	flags |= AMDGPU_PTE_READABLE;
1315 
1316 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1317 		flags |= AMDGPU_PTE_WRITEABLE;
1318 
1319 	return flags;
1320 }
1321 
1322 /*
1323  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1324  * object.
1325  *
1326  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1327  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1328  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1329  * used to clean out a memory space.
1330  */
1331 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1332 					    const struct ttm_place *place)
1333 {
1334 	unsigned long num_pages = bo->resource->num_pages;
1335 	struct amdgpu_res_cursor cursor;
1336 	struct dma_resv_list *flist;
1337 	struct dma_fence *f;
1338 	int i;
1339 
1340 	/* Swapout? */
1341 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1342 		return true;
1343 
1344 	if (bo->type == ttm_bo_type_kernel &&
1345 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1346 		return false;
1347 
1348 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1349 	 * If true, then return false as any KFD process needs all its BOs to
1350 	 * be resident to run successfully
1351 	 */
1352 	flist = dma_resv_shared_list(bo->base.resv);
1353 	if (flist) {
1354 		for (i = 0; i < flist->shared_count; ++i) {
1355 			f = rcu_dereference_protected(flist->shared[i],
1356 				dma_resv_held(bo->base.resv));
1357 			if (amdkfd_fence_check_mm(f, current->mm))
1358 				return false;
1359 		}
1360 	}
1361 
1362 	switch (bo->resource->mem_type) {
1363 	case AMDGPU_PL_PREEMPT:
1364 		/* Preemptible BOs don't own system resources managed by the
1365 		 * driver (pages, VRAM, GART space). They point to resources
1366 		 * owned by someone else (e.g. pageable memory in user mode
1367 		 * or a DMABuf). They are used in a preemptible context so we
1368 		 * can guarantee no deadlocks and good QoS in case of MMU
1369 		 * notifiers or DMABuf move notifiers from the resource owner.
1370 		 */
1371 		return false;
1372 	case TTM_PL_TT:
1373 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1374 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1375 			return false;
1376 		return true;
1377 
1378 	case TTM_PL_VRAM:
1379 		/* Check each drm MM node individually */
1380 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1381 				 &cursor);
1382 		while (cursor.remaining) {
1383 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1384 			    && !(place->lpfn &&
1385 				 place->lpfn <= PFN_DOWN(cursor.start)))
1386 				return true;
1387 
1388 			amdgpu_res_next(&cursor, cursor.size);
1389 		}
1390 		return false;
1391 
1392 	default:
1393 		break;
1394 	}
1395 
1396 	return ttm_bo_eviction_valuable(bo, place);
1397 }
1398 
1399 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1400 				      void *buf, size_t size, bool write)
1401 {
1402 	while (size) {
1403 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1404 		uint64_t bytes = 4 - (pos & 0x3);
1405 		uint32_t shift = (pos & 0x3) * 8;
1406 		uint32_t mask = 0xffffffff << shift;
1407 		uint32_t value = 0;
1408 
1409 		if (size < bytes) {
1410 			mask &= 0xffffffff >> (bytes - size) * 8;
1411 			bytes = size;
1412 		}
1413 
1414 		if (mask != 0xffffffff) {
1415 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1416 			if (write) {
1417 				value &= ~mask;
1418 				value |= (*(uint32_t *)buf << shift) & mask;
1419 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1420 			} else {
1421 				value = (value & mask) >> shift;
1422 				memcpy(buf, &value, bytes);
1423 			}
1424 		} else {
1425 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1426 		}
1427 
1428 		pos += bytes;
1429 		buf += bytes;
1430 		size -= bytes;
1431 	}
1432 }
1433 
1434 /**
1435  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1436  *
1437  * @bo:  The buffer object to read/write
1438  * @offset:  Offset into buffer object
1439  * @buf:  Secondary buffer to write/read from
1440  * @len: Length in bytes of access
1441  * @write:  true if writing
1442  *
1443  * This is used to access VRAM that backs a buffer object via MMIO
1444  * access for debugging purposes.
1445  */
1446 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1447 				    unsigned long offset, void *buf, int len,
1448 				    int write)
1449 {
1450 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1451 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1452 	struct amdgpu_res_cursor cursor;
1453 	int ret = 0;
1454 
1455 	if (bo->resource->mem_type != TTM_PL_VRAM)
1456 		return -EIO;
1457 
1458 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1459 	while (cursor.remaining) {
1460 		size_t count, size = cursor.size;
1461 		loff_t pos = cursor.start;
1462 
1463 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1464 		size -= count;
1465 		if (size) {
1466 			/* using MM to access rest vram and handle un-aligned address */
1467 			pos += count;
1468 			buf += count;
1469 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1470 		}
1471 
1472 		ret += cursor.size;
1473 		buf += cursor.size;
1474 		amdgpu_res_next(&cursor, cursor.size);
1475 	}
1476 
1477 	return ret;
1478 }
1479 
1480 static void
1481 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1482 {
1483 	amdgpu_bo_move_notify(bo, false, NULL);
1484 }
1485 
1486 static struct ttm_device_funcs amdgpu_bo_driver = {
1487 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1488 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1489 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1490 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1491 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1492 	.evict_flags = &amdgpu_evict_flags,
1493 	.move = &amdgpu_bo_move,
1494 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1495 	.release_notify = &amdgpu_bo_release_notify,
1496 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1497 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1498 	.access_memory = &amdgpu_ttm_access_memory,
1499 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1500 };
1501 
1502 /*
1503  * Firmware Reservation functions
1504  */
1505 /**
1506  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1507  *
1508  * @adev: amdgpu_device pointer
1509  *
1510  * free fw reserved vram if it has been reserved.
1511  */
1512 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1513 {
1514 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1515 		NULL, &adev->mman.fw_vram_usage_va);
1516 }
1517 
1518 /**
1519  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1520  *
1521  * @adev: amdgpu_device pointer
1522  *
1523  * create bo vram reservation from fw.
1524  */
1525 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1526 {
1527 	uint64_t vram_size = adev->gmc.visible_vram_size;
1528 
1529 	adev->mman.fw_vram_usage_va = NULL;
1530 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1531 
1532 	if (adev->mman.fw_vram_usage_size == 0 ||
1533 	    adev->mman.fw_vram_usage_size > vram_size)
1534 		return 0;
1535 
1536 	return amdgpu_bo_create_kernel_at(adev,
1537 					  adev->mman.fw_vram_usage_start_offset,
1538 					  adev->mman.fw_vram_usage_size,
1539 					  AMDGPU_GEM_DOMAIN_VRAM,
1540 					  &adev->mman.fw_vram_usage_reserved_bo,
1541 					  &adev->mman.fw_vram_usage_va);
1542 }
1543 
1544 /*
1545  * Memoy training reservation functions
1546  */
1547 
1548 /**
1549  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1550  *
1551  * @adev: amdgpu_device pointer
1552  *
1553  * free memory training reserved vram if it has been reserved.
1554  */
1555 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1556 {
1557 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1558 
1559 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1560 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1561 	ctx->c2p_bo = NULL;
1562 
1563 	return 0;
1564 }
1565 
1566 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1567 {
1568 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1569 
1570 	memset(ctx, 0, sizeof(*ctx));
1571 
1572 	ctx->c2p_train_data_offset =
1573 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1574 	ctx->p2c_train_data_offset =
1575 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1576 	ctx->train_data_size =
1577 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1578 
1579 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1580 			ctx->train_data_size,
1581 			ctx->p2c_train_data_offset,
1582 			ctx->c2p_train_data_offset);
1583 }
1584 
1585 /*
1586  * reserve TMR memory at the top of VRAM which holds
1587  * IP Discovery data and is protected by PSP.
1588  */
1589 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1590 {
1591 	int ret;
1592 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1593 	bool mem_train_support = false;
1594 
1595 	if (!amdgpu_sriov_vf(adev)) {
1596 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1597 			mem_train_support = true;
1598 		else
1599 			DRM_DEBUG("memory training does not support!\n");
1600 	}
1601 
1602 	/*
1603 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1604 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1605 	 *
1606 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1607 	 * discovery data and G6 memory training data respectively
1608 	 */
1609 	adev->mman.discovery_tmr_size =
1610 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1611 	if (!adev->mman.discovery_tmr_size)
1612 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1613 
1614 	if (mem_train_support) {
1615 		/* reserve vram for mem train according to TMR location */
1616 		amdgpu_ttm_training_data_block_init(adev);
1617 		ret = amdgpu_bo_create_kernel_at(adev,
1618 					 ctx->c2p_train_data_offset,
1619 					 ctx->train_data_size,
1620 					 AMDGPU_GEM_DOMAIN_VRAM,
1621 					 &ctx->c2p_bo,
1622 					 NULL);
1623 		if (ret) {
1624 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1625 			amdgpu_ttm_training_reserve_vram_fini(adev);
1626 			return ret;
1627 		}
1628 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1629 	}
1630 
1631 	ret = amdgpu_bo_create_kernel_at(adev,
1632 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1633 				adev->mman.discovery_tmr_size,
1634 				AMDGPU_GEM_DOMAIN_VRAM,
1635 				&adev->mman.discovery_memory,
1636 				NULL);
1637 	if (ret) {
1638 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1639 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1640 		return ret;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 /*
1647  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1648  * gtt/vram related fields.
1649  *
1650  * This initializes all of the memory space pools that the TTM layer
1651  * will need such as the GTT space (system memory mapped to the device),
1652  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1653  * can be mapped per VMID.
1654  */
1655 int amdgpu_ttm_init(struct amdgpu_device *adev)
1656 {
1657 	uint64_t gtt_size;
1658 	int r;
1659 	u64 vis_vram_limit;
1660 
1661 	mutex_init(&adev->mman.gtt_window_lock);
1662 
1663 	/* No others user of address space so set it to 0 */
1664 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1665 			       adev_to_drm(adev)->anon_inode->i_mapping,
1666 			       adev_to_drm(adev)->vma_offset_manager,
1667 			       adev->need_swiotlb,
1668 			       dma_addressing_limited(adev->dev));
1669 	if (r) {
1670 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1671 		return r;
1672 	}
1673 	adev->mman.initialized = true;
1674 
1675 	/* Initialize VRAM pool with all of VRAM divided into pages */
1676 	r = amdgpu_vram_mgr_init(adev);
1677 	if (r) {
1678 		DRM_ERROR("Failed initializing VRAM heap.\n");
1679 		return r;
1680 	}
1681 
1682 	/* Reduce size of CPU-visible VRAM if requested */
1683 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1684 	if (amdgpu_vis_vram_limit > 0 &&
1685 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1686 		adev->gmc.visible_vram_size = vis_vram_limit;
1687 
1688 	/* Change the size here instead of the init above so only lpfn is affected */
1689 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1690 #ifdef CONFIG_64BIT
1691 #ifdef CONFIG_X86
1692 	if (adev->gmc.xgmi.connected_to_cpu)
1693 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1694 				adev->gmc.visible_vram_size);
1695 
1696 	else
1697 #endif
1698 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1699 				adev->gmc.visible_vram_size);
1700 #endif
1701 
1702 	/*
1703 	 *The reserved vram for firmware must be pinned to the specified
1704 	 *place on the VRAM, so reserve it early.
1705 	 */
1706 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1707 	if (r) {
1708 		return r;
1709 	}
1710 
1711 	/*
1712 	 * only NAVI10 and onwards ASIC support for IP discovery.
1713 	 * If IP discovery enabled, a block of memory should be
1714 	 * reserved for IP discovey.
1715 	 */
1716 	if (adev->mman.discovery_bin) {
1717 		r = amdgpu_ttm_reserve_tmr(adev);
1718 		if (r)
1719 			return r;
1720 	}
1721 
1722 	/* allocate memory as required for VGA
1723 	 * This is used for VGA emulation and pre-OS scanout buffers to
1724 	 * avoid display artifacts while transitioning between pre-OS
1725 	 * and driver.  */
1726 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1727 				       AMDGPU_GEM_DOMAIN_VRAM,
1728 				       &adev->mman.stolen_vga_memory,
1729 				       NULL);
1730 	if (r)
1731 		return r;
1732 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1733 				       adev->mman.stolen_extended_size,
1734 				       AMDGPU_GEM_DOMAIN_VRAM,
1735 				       &adev->mman.stolen_extended_memory,
1736 				       NULL);
1737 	if (r)
1738 		return r;
1739 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1740 				       adev->mman.stolen_reserved_size,
1741 				       AMDGPU_GEM_DOMAIN_VRAM,
1742 				       &adev->mman.stolen_reserved_memory,
1743 				       NULL);
1744 	if (r)
1745 		return r;
1746 
1747 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1748 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1749 
1750 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1751 	 * or whatever the user passed on module init */
1752 	if (amdgpu_gtt_size == -1) {
1753 		struct sysinfo si;
1754 
1755 		si_meminfo(&si);
1756 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1757 			       adev->gmc.mc_vram_size),
1758 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1759 	}
1760 	else
1761 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1762 
1763 	/* Initialize GTT memory pool */
1764 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1765 	if (r) {
1766 		DRM_ERROR("Failed initializing GTT heap.\n");
1767 		return r;
1768 	}
1769 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1770 		 (unsigned)(gtt_size / (1024 * 1024)));
1771 
1772 	/* Initialize preemptible memory pool */
1773 	r = amdgpu_preempt_mgr_init(adev);
1774 	if (r) {
1775 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1776 		return r;
1777 	}
1778 
1779 	/* Initialize various on-chip memory pools */
1780 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1781 	if (r) {
1782 		DRM_ERROR("Failed initializing GDS heap.\n");
1783 		return r;
1784 	}
1785 
1786 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1787 	if (r) {
1788 		DRM_ERROR("Failed initializing gws heap.\n");
1789 		return r;
1790 	}
1791 
1792 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1793 	if (r) {
1794 		DRM_ERROR("Failed initializing oa heap.\n");
1795 		return r;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 /*
1802  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1803  */
1804 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1805 {
1806 	if (!adev->mman.initialized)
1807 		return;
1808 
1809 	amdgpu_ttm_training_reserve_vram_fini(adev);
1810 	/* return the stolen vga memory back to VRAM */
1811 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1812 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1813 	/* return the IP Discovery TMR memory back to VRAM */
1814 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1815 	if (adev->mman.stolen_reserved_size)
1816 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1817 				      NULL, NULL);
1818 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1819 
1820 	amdgpu_vram_mgr_fini(adev);
1821 	amdgpu_gtt_mgr_fini(adev);
1822 	amdgpu_preempt_mgr_fini(adev);
1823 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1824 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1825 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1826 	ttm_device_fini(&adev->mman.bdev);
1827 	adev->mman.initialized = false;
1828 	DRM_INFO("amdgpu: ttm finalized\n");
1829 }
1830 
1831 /**
1832  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1833  *
1834  * @adev: amdgpu_device pointer
1835  * @enable: true when we can use buffer functions.
1836  *
1837  * Enable/disable use of buffer functions during suspend/resume. This should
1838  * only be called at bootup or when userspace isn't running.
1839  */
1840 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1841 {
1842 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1843 	uint64_t size;
1844 	int r;
1845 
1846 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1847 	    adev->mman.buffer_funcs_enabled == enable)
1848 		return;
1849 
1850 	if (enable) {
1851 		struct amdgpu_ring *ring;
1852 		struct drm_gpu_scheduler *sched;
1853 
1854 		ring = adev->mman.buffer_funcs_ring;
1855 		sched = &ring->sched;
1856 		r = drm_sched_entity_init(&adev->mman.entity,
1857 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1858 					  1, NULL);
1859 		if (r) {
1860 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1861 				  r);
1862 			return;
1863 		}
1864 	} else {
1865 		drm_sched_entity_destroy(&adev->mman.entity);
1866 		dma_fence_put(man->move);
1867 		man->move = NULL;
1868 	}
1869 
1870 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1871 	if (enable)
1872 		size = adev->gmc.real_vram_size;
1873 	else
1874 		size = adev->gmc.visible_vram_size;
1875 	man->size = size >> PAGE_SHIFT;
1876 	adev->mman.buffer_funcs_enabled = enable;
1877 }
1878 
1879 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1880 		       uint64_t dst_offset, uint32_t byte_count,
1881 		       struct dma_resv *resv,
1882 		       struct dma_fence **fence, bool direct_submit,
1883 		       bool vm_needs_flush, bool tmz)
1884 {
1885 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1886 		AMDGPU_IB_POOL_DELAYED;
1887 	struct amdgpu_device *adev = ring->adev;
1888 	struct amdgpu_job *job;
1889 
1890 	uint32_t max_bytes;
1891 	unsigned num_loops, num_dw;
1892 	unsigned i;
1893 	int r;
1894 
1895 	if (direct_submit && !ring->sched.ready) {
1896 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1897 		return -EINVAL;
1898 	}
1899 
1900 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1901 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1902 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1903 
1904 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1905 	if (r)
1906 		return r;
1907 
1908 	if (vm_needs_flush) {
1909 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1910 					adev->gmc.pdb0_bo : adev->gart.bo);
1911 		job->vm_needs_flush = true;
1912 	}
1913 	if (resv) {
1914 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1915 				     AMDGPU_SYNC_ALWAYS,
1916 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1917 		if (r) {
1918 			DRM_ERROR("sync failed (%d).\n", r);
1919 			goto error_free;
1920 		}
1921 	}
1922 
1923 	for (i = 0; i < num_loops; i++) {
1924 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1925 
1926 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1927 					dst_offset, cur_size_in_bytes, tmz);
1928 
1929 		src_offset += cur_size_in_bytes;
1930 		dst_offset += cur_size_in_bytes;
1931 		byte_count -= cur_size_in_bytes;
1932 	}
1933 
1934 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1935 	WARN_ON(job->ibs[0].length_dw > num_dw);
1936 	if (direct_submit)
1937 		r = amdgpu_job_submit_direct(job, ring, fence);
1938 	else
1939 		r = amdgpu_job_submit(job, &adev->mman.entity,
1940 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1941 	if (r)
1942 		goto error_free;
1943 
1944 	return r;
1945 
1946 error_free:
1947 	amdgpu_job_free(job);
1948 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1949 	return r;
1950 }
1951 
1952 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1953 		       uint32_t src_data,
1954 		       struct dma_resv *resv,
1955 		       struct dma_fence **fence)
1956 {
1957 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1958 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1959 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1960 
1961 	struct amdgpu_res_cursor cursor;
1962 	unsigned int num_loops, num_dw;
1963 	uint64_t num_bytes;
1964 
1965 	struct amdgpu_job *job;
1966 	int r;
1967 
1968 	if (!adev->mman.buffer_funcs_enabled) {
1969 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1970 		return -EINVAL;
1971 	}
1972 
1973 	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1974 		DRM_ERROR("Trying to clear preemptible memory.\n");
1975 		return -EINVAL;
1976 	}
1977 
1978 	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1979 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1980 		if (r)
1981 			return r;
1982 	}
1983 
1984 	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1985 	num_loops = 0;
1986 
1987 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1988 	while (cursor.remaining) {
1989 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1990 		amdgpu_res_next(&cursor, cursor.size);
1991 	}
1992 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1993 
1994 	/* for IB padding */
1995 	num_dw += 64;
1996 
1997 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1998 				     &job);
1999 	if (r)
2000 		return r;
2001 
2002 	if (resv) {
2003 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2004 				     AMDGPU_SYNC_ALWAYS,
2005 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2006 		if (r) {
2007 			DRM_ERROR("sync failed (%d).\n", r);
2008 			goto error_free;
2009 		}
2010 	}
2011 
2012 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2013 	while (cursor.remaining) {
2014 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2015 		uint64_t dst_addr = cursor.start;
2016 
2017 		dst_addr += amdgpu_ttm_domain_start(adev,
2018 						    bo->tbo.resource->mem_type);
2019 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2020 					cur_size);
2021 
2022 		amdgpu_res_next(&cursor, cur_size);
2023 	}
2024 
2025 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2026 	WARN_ON(job->ibs[0].length_dw > num_dw);
2027 	r = amdgpu_job_submit(job, &adev->mman.entity,
2028 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2029 	if (r)
2030 		goto error_free;
2031 
2032 	return 0;
2033 
2034 error_free:
2035 	amdgpu_job_free(job);
2036 	return r;
2037 }
2038 
2039 #if defined(CONFIG_DEBUG_FS)
2040 
2041 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2042 {
2043 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2044 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2045 							    TTM_PL_VRAM);
2046 	struct drm_printer p = drm_seq_file_printer(m);
2047 
2048 	man->func->debug(man, &p);
2049 	return 0;
2050 }
2051 
2052 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2053 {
2054 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2055 
2056 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2057 }
2058 
2059 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2060 {
2061 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2062 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2063 							    TTM_PL_TT);
2064 	struct drm_printer p = drm_seq_file_printer(m);
2065 
2066 	man->func->debug(man, &p);
2067 	return 0;
2068 }
2069 
2070 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2071 {
2072 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2073 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2074 							    AMDGPU_PL_GDS);
2075 	struct drm_printer p = drm_seq_file_printer(m);
2076 
2077 	man->func->debug(man, &p);
2078 	return 0;
2079 }
2080 
2081 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2082 {
2083 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2084 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2085 							    AMDGPU_PL_GWS);
2086 	struct drm_printer p = drm_seq_file_printer(m);
2087 
2088 	man->func->debug(man, &p);
2089 	return 0;
2090 }
2091 
2092 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2093 {
2094 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2095 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2096 							    AMDGPU_PL_OA);
2097 	struct drm_printer p = drm_seq_file_printer(m);
2098 
2099 	man->func->debug(man, &p);
2100 	return 0;
2101 }
2102 
2103 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2104 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2105 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2106 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2107 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2108 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2109 
2110 /*
2111  * amdgpu_ttm_vram_read - Linear read access to VRAM
2112  *
2113  * Accesses VRAM via MMIO for debugging purposes.
2114  */
2115 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2116 				    size_t size, loff_t *pos)
2117 {
2118 	struct amdgpu_device *adev = file_inode(f)->i_private;
2119 	ssize_t result = 0;
2120 
2121 	if (size & 0x3 || *pos & 0x3)
2122 		return -EINVAL;
2123 
2124 	if (*pos >= adev->gmc.mc_vram_size)
2125 		return -ENXIO;
2126 
2127 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2128 	while (size) {
2129 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2130 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2131 
2132 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2133 		if (copy_to_user(buf, value, bytes))
2134 			return -EFAULT;
2135 
2136 		result += bytes;
2137 		buf += bytes;
2138 		*pos += bytes;
2139 		size -= bytes;
2140 	}
2141 
2142 	return result;
2143 }
2144 
2145 /*
2146  * amdgpu_ttm_vram_write - Linear write access to VRAM
2147  *
2148  * Accesses VRAM via MMIO for debugging purposes.
2149  */
2150 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2151 				    size_t size, loff_t *pos)
2152 {
2153 	struct amdgpu_device *adev = file_inode(f)->i_private;
2154 	ssize_t result = 0;
2155 	int r;
2156 
2157 	if (size & 0x3 || *pos & 0x3)
2158 		return -EINVAL;
2159 
2160 	if (*pos >= adev->gmc.mc_vram_size)
2161 		return -ENXIO;
2162 
2163 	while (size) {
2164 		uint32_t value;
2165 
2166 		if (*pos >= adev->gmc.mc_vram_size)
2167 			return result;
2168 
2169 		r = get_user(value, (uint32_t *)buf);
2170 		if (r)
2171 			return r;
2172 
2173 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2174 
2175 		result += 4;
2176 		buf += 4;
2177 		*pos += 4;
2178 		size -= 4;
2179 	}
2180 
2181 	return result;
2182 }
2183 
2184 static const struct file_operations amdgpu_ttm_vram_fops = {
2185 	.owner = THIS_MODULE,
2186 	.read = amdgpu_ttm_vram_read,
2187 	.write = amdgpu_ttm_vram_write,
2188 	.llseek = default_llseek,
2189 };
2190 
2191 /*
2192  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2193  *
2194  * This function is used to read memory that has been mapped to the
2195  * GPU and the known addresses are not physical addresses but instead
2196  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2197  */
2198 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2199 				 size_t size, loff_t *pos)
2200 {
2201 	struct amdgpu_device *adev = file_inode(f)->i_private;
2202 	struct iommu_domain *dom;
2203 	ssize_t result = 0;
2204 	int r;
2205 
2206 	/* retrieve the IOMMU domain if any for this device */
2207 	dom = iommu_get_domain_for_dev(adev->dev);
2208 
2209 	while (size) {
2210 		phys_addr_t addr = *pos & PAGE_MASK;
2211 		loff_t off = *pos & ~PAGE_MASK;
2212 		size_t bytes = PAGE_SIZE - off;
2213 		unsigned long pfn;
2214 		struct page *p;
2215 		void *ptr;
2216 
2217 		bytes = bytes < size ? bytes : size;
2218 
2219 		/* Translate the bus address to a physical address.  If
2220 		 * the domain is NULL it means there is no IOMMU active
2221 		 * and the address translation is the identity
2222 		 */
2223 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2224 
2225 		pfn = addr >> PAGE_SHIFT;
2226 		if (!pfn_valid(pfn))
2227 			return -EPERM;
2228 
2229 		p = pfn_to_page(pfn);
2230 		if (p->mapping != adev->mman.bdev.dev_mapping)
2231 			return -EPERM;
2232 
2233 		ptr = kmap(p);
2234 		r = copy_to_user(buf, ptr + off, bytes);
2235 		kunmap(p);
2236 		if (r)
2237 			return -EFAULT;
2238 
2239 		size -= bytes;
2240 		*pos += bytes;
2241 		result += bytes;
2242 	}
2243 
2244 	return result;
2245 }
2246 
2247 /*
2248  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2249  *
2250  * This function is used to write memory that has been mapped to the
2251  * GPU and the known addresses are not physical addresses but instead
2252  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2253  */
2254 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2255 				 size_t size, loff_t *pos)
2256 {
2257 	struct amdgpu_device *adev = file_inode(f)->i_private;
2258 	struct iommu_domain *dom;
2259 	ssize_t result = 0;
2260 	int r;
2261 
2262 	dom = iommu_get_domain_for_dev(adev->dev);
2263 
2264 	while (size) {
2265 		phys_addr_t addr = *pos & PAGE_MASK;
2266 		loff_t off = *pos & ~PAGE_MASK;
2267 		size_t bytes = PAGE_SIZE - off;
2268 		unsigned long pfn;
2269 		struct page *p;
2270 		void *ptr;
2271 
2272 		bytes = bytes < size ? bytes : size;
2273 
2274 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2275 
2276 		pfn = addr >> PAGE_SHIFT;
2277 		if (!pfn_valid(pfn))
2278 			return -EPERM;
2279 
2280 		p = pfn_to_page(pfn);
2281 		if (p->mapping != adev->mman.bdev.dev_mapping)
2282 			return -EPERM;
2283 
2284 		ptr = kmap(p);
2285 		r = copy_from_user(ptr + off, buf, bytes);
2286 		kunmap(p);
2287 		if (r)
2288 			return -EFAULT;
2289 
2290 		size -= bytes;
2291 		*pos += bytes;
2292 		result += bytes;
2293 	}
2294 
2295 	return result;
2296 }
2297 
2298 static const struct file_operations amdgpu_ttm_iomem_fops = {
2299 	.owner = THIS_MODULE,
2300 	.read = amdgpu_iomem_read,
2301 	.write = amdgpu_iomem_write,
2302 	.llseek = default_llseek
2303 };
2304 
2305 #endif
2306 
2307 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2308 {
2309 #if defined(CONFIG_DEBUG_FS)
2310 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2311 	struct dentry *root = minor->debugfs_root;
2312 
2313 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2314 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2315 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2316 			    &amdgpu_ttm_iomem_fops);
2317 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2318 			    &amdgpu_mm_vram_table_fops);
2319 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2320 			    &amdgpu_mm_tt_table_fops);
2321 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2322 			    &amdgpu_mm_gds_table_fops);
2323 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2324 			    &amdgpu_mm_gws_table_fops);
2325 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2326 			    &amdgpu_mm_oa_table_fops);
2327 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2328 			    &amdgpu_ttm_page_pool_fops);
2329 #endif
2330 }
2331