xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 024bfd2e9d80d7131f1178eb2235030b96f7ef0e)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS("DMA_BUF");
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 		placement->num_placement = 0;
127 		return;
128 
129 	case TTM_PL_VRAM:
130 		if (!adev->mman.buffer_funcs_enabled) {
131 			/* Move to system memory */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133 
134 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
137 
138 			/* Try evicting to the CPU inaccessible part of VRAM
139 			 * first, but only set GTT as busy placement, so this
140 			 * BO will be evicted to GTT rather than causing other
141 			 * BOs to be evicted from VRAM
142 			 */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 							AMDGPU_GEM_DOMAIN_GTT |
145 							AMDGPU_GEM_DOMAIN_CPU);
146 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 			abo->placements[0].lpfn = 0;
148 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 		} else {
150 			/* Move to GTT memory */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 							AMDGPU_GEM_DOMAIN_CPU);
153 		}
154 		break;
155 	case TTM_PL_TT:
156 	case AMDGPU_PL_PREEMPT:
157 	default:
158 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 		break;
160 	}
161 	*placement = abo->placement;
162 }
163 
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 				 struct ttm_resource *mem,
180 				 struct amdgpu_res_cursor *mm_cur,
181 				 unsigned int window, struct amdgpu_ring *ring,
182 				 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 	struct amdgpu_device *adev = ring->adev;
185 	unsigned int offset, num_pages, num_dw, num_bytes;
186 	uint64_t src_addr, dst_addr;
187 	struct amdgpu_job *job;
188 	void *cpu_addr;
189 	uint64_t flags;
190 	unsigned int i;
191 	int r;
192 
193 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195 
196 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 		return -EINVAL;
198 
199 	/* Map only what can't be accessed directly */
200 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 			mm_cur->start;
203 		return 0;
204 	}
205 
206 
207 	/*
208 	 * If start begins at an offset inside the page, then adjust the size
209 	 * and addr accordingly
210 	 */
211 	offset = mm_cur->start & ~PAGE_MASK;
212 
213 	num_pages = PFN_UP(*size + offset);
214 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215 
216 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += offset;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 				     AMDGPU_FENCE_OWNER_UNDEFINED,
228 				     num_dw * 4 + num_bytes,
229 				     AMDGPU_IB_POOL_DELAYED, &job);
230 	if (r)
231 		return r;
232 
233 	src_addr = num_dw * 4;
234 	src_addr += job->ibs[0].gpu_addr;
235 
236 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 				dst_addr, num_bytes, 0);
240 
241 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 	WARN_ON(job->ibs[0].length_dw > num_dw);
243 
244 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 	if (tmz)
246 		flags |= AMDGPU_PTE_TMZ;
247 
248 	cpu_addr = &job->ibs[0].ptr[num_dw];
249 
250 	if (mem->mem_type == TTM_PL_TT) {
251 		dma_addr_t *dma_addr;
252 
253 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 	} else {
256 		dma_addr_t dma_address;
257 
258 		dma_address = mm_cur->start;
259 		dma_address += adev->vm_manager.vram_base_offset;
260 
261 		for (i = 0; i < num_pages; ++i) {
262 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 					flags, cpu_addr);
264 			dma_address += PAGE_SIZE;
265 		}
266 	}
267 
268 	dma_fence_put(amdgpu_job_submit(job));
269 	return 0;
270 }
271 
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 			       const struct amdgpu_copy_mem *src,
289 			       const struct amdgpu_copy_mem *dst,
290 			       uint64_t size, bool tmz,
291 			       struct dma_resv *resv,
292 			       struct dma_fence **f)
293 {
294 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 	struct amdgpu_res_cursor src_mm, dst_mm;
296 	struct dma_fence *fence = NULL;
297 	int r = 0;
298 	uint32_t copy_flags = 0;
299 	struct amdgpu_bo *abo_src, *abo_dst;
300 
301 	if (!adev->mman.buffer_funcs_enabled) {
302 		DRM_ERROR("Trying to move memory with ring turned off.\n");
303 		return -EINVAL;
304 	}
305 
306 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
308 
309 	mutex_lock(&adev->mman.gtt_window_lock);
310 	while (src_mm.remaining) {
311 		uint64_t from, to, cur_size, tiling_flags;
312 		uint32_t num_type, data_format, max_com;
313 		struct dma_fence *next;
314 
315 		/* Never copy more than 256MiB at once to avoid a timeout */
316 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
317 
318 		/* Map src to window 0 and dst to window 1. */
319 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
320 					  0, ring, tmz, &cur_size, &from);
321 		if (r)
322 			goto error;
323 
324 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
325 					  1, ring, tmz, &cur_size, &to);
326 		if (r)
327 			goto error;
328 
329 		abo_src = ttm_to_amdgpu_bo(src->bo);
330 		abo_dst = ttm_to_amdgpu_bo(dst->bo);
331 		if (tmz)
332 			copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
333 		if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
334 		    (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
335 			copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
336 		if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
337 		    (dst->mem->mem_type == TTM_PL_VRAM)) {
338 			copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
339 			amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
340 			max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
341 			num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
342 			data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
343 			copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
344 				       AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
345 				       AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format));
346 		}
347 
348 		r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
349 				       &next, false, true, copy_flags);
350 		if (r)
351 			goto error;
352 
353 		dma_fence_put(fence);
354 		fence = next;
355 
356 		amdgpu_res_next(&src_mm, cur_size);
357 		amdgpu_res_next(&dst_mm, cur_size);
358 	}
359 error:
360 	mutex_unlock(&adev->mman.gtt_window_lock);
361 	if (f)
362 		*f = dma_fence_get(fence);
363 	dma_fence_put(fence);
364 	return r;
365 }
366 
367 /*
368  * amdgpu_move_blit - Copy an entire buffer to another buffer
369  *
370  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
371  * help move buffers to and from VRAM.
372  */
373 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
374 			    bool evict,
375 			    struct ttm_resource *new_mem,
376 			    struct ttm_resource *old_mem)
377 {
378 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
379 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
380 	struct amdgpu_copy_mem src, dst;
381 	struct dma_fence *fence = NULL;
382 	int r;
383 
384 	src.bo = bo;
385 	dst.bo = bo;
386 	src.mem = old_mem;
387 	dst.mem = new_mem;
388 	src.offset = 0;
389 	dst.offset = 0;
390 
391 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
392 				       new_mem->size,
393 				       amdgpu_bo_encrypted(abo),
394 				       bo->base.resv, &fence);
395 	if (r)
396 		goto error;
397 
398 	/* clear the space being freed */
399 	if (old_mem->mem_type == TTM_PL_VRAM &&
400 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
401 		struct dma_fence *wipe_fence = NULL;
402 
403 		r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
404 				       false);
405 		if (r) {
406 			goto error;
407 		} else if (wipe_fence) {
408 			amdgpu_vram_mgr_set_cleared(bo->resource);
409 			dma_fence_put(fence);
410 			fence = wipe_fence;
411 		}
412 	}
413 
414 	/* Always block for VM page tables before committing the new location */
415 	if (bo->type == ttm_bo_type_kernel)
416 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
417 	else
418 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
419 	dma_fence_put(fence);
420 	return r;
421 
422 error:
423 	if (fence)
424 		dma_fence_wait(fence, false);
425 	dma_fence_put(fence);
426 	return r;
427 }
428 
429 /**
430  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
431  * @adev: amdgpu device
432  * @res: the resource to check
433  *
434  * Returns: true if the full resource is CPU visible, false otherwise.
435  */
436 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
437 			    struct ttm_resource *res)
438 {
439 	struct amdgpu_res_cursor cursor;
440 
441 	if (!res)
442 		return false;
443 
444 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
445 	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
446 		return true;
447 
448 	if (res->mem_type != TTM_PL_VRAM)
449 		return false;
450 
451 	amdgpu_res_first(res, 0, res->size, &cursor);
452 	while (cursor.remaining) {
453 		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
454 			return false;
455 		amdgpu_res_next(&cursor, cursor.size);
456 	}
457 
458 	return true;
459 }
460 
461 /*
462  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
463  *
464  * Called by amdgpu_bo_move()
465  */
466 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
467 				struct ttm_resource *mem)
468 {
469 	if (!amdgpu_res_cpu_visible(adev, mem))
470 		return false;
471 
472 	/* ttm_resource_ioremap only supports contiguous memory */
473 	if (mem->mem_type == TTM_PL_VRAM &&
474 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
475 		return false;
476 
477 	return true;
478 }
479 
480 /*
481  * amdgpu_bo_move - Move a buffer object to a new memory location
482  *
483  * Called by ttm_bo_handle_move_mem()
484  */
485 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
486 			  struct ttm_operation_ctx *ctx,
487 			  struct ttm_resource *new_mem,
488 			  struct ttm_place *hop)
489 {
490 	struct amdgpu_device *adev;
491 	struct amdgpu_bo *abo;
492 	struct ttm_resource *old_mem = bo->resource;
493 	int r;
494 
495 	if (new_mem->mem_type == TTM_PL_TT ||
496 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
497 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
498 		if (r)
499 			return r;
500 	}
501 
502 	abo = ttm_to_amdgpu_bo(bo);
503 	adev = amdgpu_ttm_adev(bo->bdev);
504 
505 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
506 			 bo->ttm == NULL)) {
507 		amdgpu_bo_move_notify(bo, evict, new_mem);
508 		ttm_bo_move_null(bo, new_mem);
509 		return 0;
510 	}
511 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
512 	    (new_mem->mem_type == TTM_PL_TT ||
513 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
514 		amdgpu_bo_move_notify(bo, evict, new_mem);
515 		ttm_bo_move_null(bo, new_mem);
516 		return 0;
517 	}
518 	if ((old_mem->mem_type == TTM_PL_TT ||
519 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
520 	    new_mem->mem_type == TTM_PL_SYSTEM) {
521 		r = ttm_bo_wait_ctx(bo, ctx);
522 		if (r)
523 			return r;
524 
525 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
526 		amdgpu_bo_move_notify(bo, evict, new_mem);
527 		ttm_resource_free(bo, &bo->resource);
528 		ttm_bo_assign_mem(bo, new_mem);
529 		return 0;
530 	}
531 
532 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
533 	    old_mem->mem_type == AMDGPU_PL_GWS ||
534 	    old_mem->mem_type == AMDGPU_PL_OA ||
535 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
536 	    new_mem->mem_type == AMDGPU_PL_GDS ||
537 	    new_mem->mem_type == AMDGPU_PL_GWS ||
538 	    new_mem->mem_type == AMDGPU_PL_OA ||
539 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
540 		/* Nothing to save here */
541 		amdgpu_bo_move_notify(bo, evict, new_mem);
542 		ttm_bo_move_null(bo, new_mem);
543 		return 0;
544 	}
545 
546 	if (bo->type == ttm_bo_type_device &&
547 	    new_mem->mem_type == TTM_PL_VRAM &&
548 	    old_mem->mem_type != TTM_PL_VRAM) {
549 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
550 		 * accesses the BO after it's moved.
551 		 */
552 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
553 	}
554 
555 	if (adev->mman.buffer_funcs_enabled &&
556 	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
557 	      new_mem->mem_type == TTM_PL_VRAM) ||
558 	     (old_mem->mem_type == TTM_PL_VRAM &&
559 	      new_mem->mem_type == TTM_PL_SYSTEM))) {
560 		hop->fpfn = 0;
561 		hop->lpfn = 0;
562 		hop->mem_type = TTM_PL_TT;
563 		hop->flags = TTM_PL_FLAG_TEMPORARY;
564 		return -EMULTIHOP;
565 	}
566 
567 	amdgpu_bo_move_notify(bo, evict, new_mem);
568 	if (adev->mman.buffer_funcs_enabled)
569 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
570 	else
571 		r = -ENODEV;
572 
573 	if (r) {
574 		/* Check that all memory is CPU accessible */
575 		if (!amdgpu_res_copyable(adev, old_mem) ||
576 		    !amdgpu_res_copyable(adev, new_mem)) {
577 			pr_err("Move buffer fallback to memcpy unavailable\n");
578 			return r;
579 		}
580 
581 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
582 		if (r)
583 			return r;
584 	}
585 
586 	/* update statistics after the move */
587 	if (evict)
588 		atomic64_inc(&adev->num_evictions);
589 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
590 	return 0;
591 }
592 
593 /*
594  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
595  *
596  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
597  */
598 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
599 				     struct ttm_resource *mem)
600 {
601 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
602 
603 	switch (mem->mem_type) {
604 	case TTM_PL_SYSTEM:
605 		/* system memory */
606 		return 0;
607 	case TTM_PL_TT:
608 	case AMDGPU_PL_PREEMPT:
609 		break;
610 	case TTM_PL_VRAM:
611 		mem->bus.offset = mem->start << PAGE_SHIFT;
612 
613 		if (adev->mman.aper_base_kaddr &&
614 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
615 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
616 					mem->bus.offset;
617 
618 		mem->bus.offset += adev->gmc.aper_base;
619 		mem->bus.is_iomem = true;
620 		break;
621 	case AMDGPU_PL_DOORBELL:
622 		mem->bus.offset = mem->start << PAGE_SHIFT;
623 		mem->bus.offset += adev->doorbell.base;
624 		mem->bus.is_iomem = true;
625 		mem->bus.caching = ttm_uncached;
626 		break;
627 	default:
628 		return -EINVAL;
629 	}
630 	return 0;
631 }
632 
633 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
634 					   unsigned long page_offset)
635 {
636 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
637 	struct amdgpu_res_cursor cursor;
638 
639 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
640 			 &cursor);
641 
642 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
643 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
644 
645 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
646 }
647 
648 /**
649  * amdgpu_ttm_domain_start - Returns GPU start address
650  * @adev: amdgpu device object
651  * @type: type of the memory
652  *
653  * Returns:
654  * GPU start address of a memory domain
655  */
656 
657 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
658 {
659 	switch (type) {
660 	case TTM_PL_TT:
661 		return adev->gmc.gart_start;
662 	case TTM_PL_VRAM:
663 		return adev->gmc.vram_start;
664 	}
665 
666 	return 0;
667 }
668 
669 /*
670  * TTM backend functions.
671  */
672 struct amdgpu_ttm_tt {
673 	struct ttm_tt	ttm;
674 	struct drm_gem_object	*gobj;
675 	u64			offset;
676 	uint64_t		userptr;
677 	struct task_struct	*usertask;
678 	uint32_t		userflags;
679 	bool			bound;
680 	int32_t			pool_id;
681 };
682 
683 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
684 
685 #ifdef CONFIG_DRM_AMDGPU_USERPTR
686 /*
687  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
688  * memory and start HMM tracking CPU page table update
689  *
690  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
691  * once afterwards to stop HMM tracking
692  */
693 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
694 				 struct hmm_range **range)
695 {
696 	struct ttm_tt *ttm = bo->tbo.ttm;
697 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
698 	unsigned long start = gtt->userptr;
699 	struct vm_area_struct *vma;
700 	struct mm_struct *mm;
701 	bool readonly;
702 	int r = 0;
703 
704 	/* Make sure get_user_pages_done() can cleanup gracefully */
705 	*range = NULL;
706 
707 	mm = bo->notifier.mm;
708 	if (unlikely(!mm)) {
709 		DRM_DEBUG_DRIVER("BO is not registered?\n");
710 		return -EFAULT;
711 	}
712 
713 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
714 		return -ESRCH;
715 
716 	mmap_read_lock(mm);
717 	vma = vma_lookup(mm, start);
718 	if (unlikely(!vma)) {
719 		r = -EFAULT;
720 		goto out_unlock;
721 	}
722 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
723 		vma->vm_file)) {
724 		r = -EPERM;
725 		goto out_unlock;
726 	}
727 
728 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
729 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
730 				       readonly, NULL, pages, range);
731 out_unlock:
732 	mmap_read_unlock(mm);
733 	if (r)
734 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
735 
736 	mmput(mm);
737 
738 	return r;
739 }
740 
741 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
742  */
743 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
744 				      struct hmm_range *range)
745 {
746 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
747 
748 	if (gtt && gtt->userptr && range)
749 		amdgpu_hmm_range_get_pages_done(range);
750 }
751 
752 /*
753  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
754  * Check if the pages backing this ttm range have been invalidated
755  *
756  * Returns: true if pages are still valid
757  */
758 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
759 				       struct hmm_range *range)
760 {
761 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
762 
763 	if (!gtt || !gtt->userptr || !range)
764 		return false;
765 
766 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
767 		gtt->userptr, ttm->num_pages);
768 
769 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
770 
771 	return !amdgpu_hmm_range_get_pages_done(range);
772 }
773 #endif
774 
775 /*
776  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
777  *
778  * Called by amdgpu_cs_list_validate(). This creates the page list
779  * that backs user memory and will ultimately be mapped into the device
780  * address space.
781  */
782 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
783 {
784 	unsigned long i;
785 
786 	for (i = 0; i < ttm->num_pages; ++i)
787 		ttm->pages[i] = pages ? pages[i] : NULL;
788 }
789 
790 /*
791  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
792  *
793  * Called by amdgpu_ttm_backend_bind()
794  **/
795 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
796 				     struct ttm_tt *ttm)
797 {
798 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
799 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
800 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
801 	enum dma_data_direction direction = write ?
802 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
803 	int r;
804 
805 	/* Allocate an SG array and squash pages into it */
806 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
807 				      (u64)ttm->num_pages << PAGE_SHIFT,
808 				      GFP_KERNEL);
809 	if (r)
810 		goto release_sg;
811 
812 	/* Map SG to device */
813 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
814 	if (r)
815 		goto release_sg_table;
816 
817 	/* convert SG to linear array of pages and dma addresses */
818 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
819 				       ttm->num_pages);
820 
821 	return 0;
822 
823 release_sg_table:
824 	sg_free_table(ttm->sg);
825 release_sg:
826 	kfree(ttm->sg);
827 	ttm->sg = NULL;
828 	return r;
829 }
830 
831 /*
832  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
833  */
834 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
835 					struct ttm_tt *ttm)
836 {
837 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
838 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
839 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
840 	enum dma_data_direction direction = write ?
841 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
842 
843 	/* double check that we don't free the table twice */
844 	if (!ttm->sg || !ttm->sg->sgl)
845 		return;
846 
847 	/* unmap the pages mapped to the device */
848 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
849 	sg_free_table(ttm->sg);
850 }
851 
852 /*
853  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
854  * MQDn+CtrlStackn where n is the number of XCCs per partition.
855  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
856  * and uses memory type default, UC. The rest of pages_per_xcc are
857  * Ctrl stack and modify their memory type to NC.
858  */
859 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
860 				struct ttm_tt *ttm, uint64_t flags)
861 {
862 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
863 	uint64_t total_pages = ttm->num_pages;
864 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
865 	uint64_t page_idx, pages_per_xcc;
866 	int i;
867 	uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
868 
869 	pages_per_xcc = total_pages;
870 	do_div(pages_per_xcc, num_xcc);
871 
872 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
873 		/* MQD page: use default flags */
874 		amdgpu_gart_bind(adev,
875 				gtt->offset + (page_idx << PAGE_SHIFT),
876 				1, &gtt->ttm.dma_address[page_idx], flags);
877 		/*
878 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
879 		 * the second page of the BO onward.
880 		 */
881 		amdgpu_gart_bind(adev,
882 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
883 				pages_per_xcc - 1,
884 				&gtt->ttm.dma_address[page_idx + 1],
885 				ctrl_flags);
886 	}
887 }
888 
889 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
890 				 struct ttm_buffer_object *tbo,
891 				 uint64_t flags)
892 {
893 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
894 	struct ttm_tt *ttm = tbo->ttm;
895 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
896 
897 	if (amdgpu_bo_encrypted(abo))
898 		flags |= AMDGPU_PTE_TMZ;
899 
900 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
901 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
902 	} else {
903 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
904 				 gtt->ttm.dma_address, flags);
905 	}
906 	gtt->bound = true;
907 }
908 
909 /*
910  * amdgpu_ttm_backend_bind - Bind GTT memory
911  *
912  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
913  * This handles binding GTT memory to the device address space.
914  */
915 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
916 				   struct ttm_tt *ttm,
917 				   struct ttm_resource *bo_mem)
918 {
919 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
920 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
921 	uint64_t flags;
922 	int r;
923 
924 	if (!bo_mem)
925 		return -EINVAL;
926 
927 	if (gtt->bound)
928 		return 0;
929 
930 	if (gtt->userptr) {
931 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
932 		if (r) {
933 			DRM_ERROR("failed to pin userptr\n");
934 			return r;
935 		}
936 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
937 		if (!ttm->sg) {
938 			struct dma_buf_attachment *attach;
939 			struct sg_table *sgt;
940 
941 			attach = gtt->gobj->import_attach;
942 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
943 			if (IS_ERR(sgt))
944 				return PTR_ERR(sgt);
945 
946 			ttm->sg = sgt;
947 		}
948 
949 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
950 					       ttm->num_pages);
951 	}
952 
953 	if (!ttm->num_pages) {
954 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
955 		     ttm->num_pages, bo_mem, ttm);
956 	}
957 
958 	if (bo_mem->mem_type != TTM_PL_TT ||
959 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
960 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
961 		return 0;
962 	}
963 
964 	/* compute PTE flags relevant to this BO memory */
965 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
966 
967 	/* bind pages into GART page tables */
968 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
969 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
970 			 gtt->ttm.dma_address, flags);
971 	gtt->bound = true;
972 	return 0;
973 }
974 
975 /*
976  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
977  * through AGP or GART aperture.
978  *
979  * If bo is accessible through AGP aperture, then use AGP aperture
980  * to access bo; otherwise allocate logical space in GART aperture
981  * and map bo to GART aperture.
982  */
983 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
984 {
985 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
986 	struct ttm_operation_ctx ctx = { false, false };
987 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
988 	struct ttm_placement placement;
989 	struct ttm_place placements;
990 	struct ttm_resource *tmp;
991 	uint64_t addr, flags;
992 	int r;
993 
994 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
995 		return 0;
996 
997 	addr = amdgpu_gmc_agp_addr(bo);
998 	if (addr != AMDGPU_BO_INVALID_OFFSET)
999 		return 0;
1000 
1001 	/* allocate GART space */
1002 	placement.num_placement = 1;
1003 	placement.placement = &placements;
1004 	placements.fpfn = 0;
1005 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1006 	placements.mem_type = TTM_PL_TT;
1007 	placements.flags = bo->resource->placement;
1008 
1009 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1010 	if (unlikely(r))
1011 		return r;
1012 
1013 	/* compute PTE flags for this buffer object */
1014 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1015 
1016 	/* Bind pages */
1017 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1018 	amdgpu_ttm_gart_bind(adev, bo, flags);
1019 	amdgpu_gart_invalidate_tlb(adev);
1020 	ttm_resource_free(bo, &bo->resource);
1021 	ttm_bo_assign_mem(bo, tmp);
1022 
1023 	return 0;
1024 }
1025 
1026 /*
1027  * amdgpu_ttm_recover_gart - Rebind GTT pages
1028  *
1029  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1030  * rebind GTT pages during a GPU reset.
1031  */
1032 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1033 {
1034 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1035 	uint64_t flags;
1036 
1037 	if (!tbo->ttm)
1038 		return;
1039 
1040 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1041 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1042 }
1043 
1044 /*
1045  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1046  *
1047  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1048  * ttm_tt_destroy().
1049  */
1050 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1051 				      struct ttm_tt *ttm)
1052 {
1053 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1054 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1055 
1056 	/* if the pages have userptr pinning then clear that first */
1057 	if (gtt->userptr) {
1058 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1059 	} else if (ttm->sg && gtt->gobj->import_attach) {
1060 		struct dma_buf_attachment *attach;
1061 
1062 		attach = gtt->gobj->import_attach;
1063 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1064 		ttm->sg = NULL;
1065 	}
1066 
1067 	if (!gtt->bound)
1068 		return;
1069 
1070 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1071 		return;
1072 
1073 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1074 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1075 	gtt->bound = false;
1076 }
1077 
1078 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1079 				       struct ttm_tt *ttm)
1080 {
1081 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1082 
1083 	if (gtt->usertask)
1084 		put_task_struct(gtt->usertask);
1085 
1086 	ttm_tt_fini(&gtt->ttm);
1087 	kfree(gtt);
1088 }
1089 
1090 /**
1091  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1092  *
1093  * @bo: The buffer object to create a GTT ttm_tt object around
1094  * @page_flags: Page flags to be added to the ttm_tt object
1095  *
1096  * Called by ttm_tt_create().
1097  */
1098 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1099 					   uint32_t page_flags)
1100 {
1101 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1102 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1103 	struct amdgpu_ttm_tt *gtt;
1104 	enum ttm_caching caching;
1105 
1106 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1107 	if (!gtt)
1108 		return NULL;
1109 
1110 	gtt->gobj = &bo->base;
1111 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1112 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1113 	else
1114 		gtt->pool_id = abo->xcp_id;
1115 
1116 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1117 		caching = ttm_write_combined;
1118 	else
1119 		caching = ttm_cached;
1120 
1121 	/* allocate space for the uninitialized page entries */
1122 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1123 		kfree(gtt);
1124 		return NULL;
1125 	}
1126 	return &gtt->ttm;
1127 }
1128 
1129 /*
1130  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1131  *
1132  * Map the pages of a ttm_tt object to an address space visible
1133  * to the underlying device.
1134  */
1135 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1136 				  struct ttm_tt *ttm,
1137 				  struct ttm_operation_ctx *ctx)
1138 {
1139 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1140 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1141 	struct ttm_pool *pool;
1142 	pgoff_t i;
1143 	int ret;
1144 
1145 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1146 	if (gtt->userptr) {
1147 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1148 		if (!ttm->sg)
1149 			return -ENOMEM;
1150 		return 0;
1151 	}
1152 
1153 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1154 		return 0;
1155 
1156 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1157 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1158 	else
1159 		pool = &adev->mman.bdev.pool;
1160 	ret = ttm_pool_alloc(pool, ttm, ctx);
1161 	if (ret)
1162 		return ret;
1163 
1164 	for (i = 0; i < ttm->num_pages; ++i)
1165 		ttm->pages[i]->mapping = bdev->dev_mapping;
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1172  *
1173  * Unmaps pages of a ttm_tt object from the device address space and
1174  * unpopulates the page array backing it.
1175  */
1176 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1177 				     struct ttm_tt *ttm)
1178 {
1179 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1180 	struct amdgpu_device *adev;
1181 	struct ttm_pool *pool;
1182 	pgoff_t i;
1183 
1184 	amdgpu_ttm_backend_unbind(bdev, ttm);
1185 
1186 	if (gtt->userptr) {
1187 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1188 		kfree(ttm->sg);
1189 		ttm->sg = NULL;
1190 		return;
1191 	}
1192 
1193 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1194 		return;
1195 
1196 	for (i = 0; i < ttm->num_pages; ++i)
1197 		ttm->pages[i]->mapping = NULL;
1198 
1199 	adev = amdgpu_ttm_adev(bdev);
1200 
1201 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1202 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1203 	else
1204 		pool = &adev->mman.bdev.pool;
1205 
1206 	return ttm_pool_free(pool, ttm);
1207 }
1208 
1209 /**
1210  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1211  * task
1212  *
1213  * @tbo: The ttm_buffer_object that contains the userptr
1214  * @user_addr:  The returned value
1215  */
1216 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1217 			      uint64_t *user_addr)
1218 {
1219 	struct amdgpu_ttm_tt *gtt;
1220 
1221 	if (!tbo->ttm)
1222 		return -EINVAL;
1223 
1224 	gtt = (void *)tbo->ttm;
1225 	*user_addr = gtt->userptr;
1226 	return 0;
1227 }
1228 
1229 /**
1230  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1231  * task
1232  *
1233  * @bo: The ttm_buffer_object to bind this userptr to
1234  * @addr:  The address in the current tasks VM space to use
1235  * @flags: Requirements of userptr object.
1236  *
1237  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1238  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1239  * initialize GPU VM for a KFD process.
1240  */
1241 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1242 			      uint64_t addr, uint32_t flags)
1243 {
1244 	struct amdgpu_ttm_tt *gtt;
1245 
1246 	if (!bo->ttm) {
1247 		/* TODO: We want a separate TTM object type for userptrs */
1248 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1249 		if (bo->ttm == NULL)
1250 			return -ENOMEM;
1251 	}
1252 
1253 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1254 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1255 
1256 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1257 	gtt->userptr = addr;
1258 	gtt->userflags = flags;
1259 
1260 	if (gtt->usertask)
1261 		put_task_struct(gtt->usertask);
1262 	gtt->usertask = current->group_leader;
1263 	get_task_struct(gtt->usertask);
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1270  */
1271 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1272 {
1273 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1274 
1275 	if (gtt == NULL)
1276 		return NULL;
1277 
1278 	if (gtt->usertask == NULL)
1279 		return NULL;
1280 
1281 	return gtt->usertask->mm;
1282 }
1283 
1284 /*
1285  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1286  * address range for the current task.
1287  *
1288  */
1289 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1290 				  unsigned long end, unsigned long *userptr)
1291 {
1292 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1293 	unsigned long size;
1294 
1295 	if (gtt == NULL || !gtt->userptr)
1296 		return false;
1297 
1298 	/* Return false if no part of the ttm_tt object lies within
1299 	 * the range
1300 	 */
1301 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1302 	if (gtt->userptr > end || gtt->userptr + size <= start)
1303 		return false;
1304 
1305 	if (userptr)
1306 		*userptr = gtt->userptr;
1307 	return true;
1308 }
1309 
1310 /*
1311  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1312  */
1313 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1314 {
1315 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1316 
1317 	if (gtt == NULL || !gtt->userptr)
1318 		return false;
1319 
1320 	return true;
1321 }
1322 
1323 /*
1324  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1325  */
1326 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1327 {
1328 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1329 
1330 	if (gtt == NULL)
1331 		return false;
1332 
1333 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1334 }
1335 
1336 /**
1337  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1338  *
1339  * @ttm: The ttm_tt object to compute the flags for
1340  * @mem: The memory registry backing this ttm_tt object
1341  *
1342  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1343  */
1344 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1345 {
1346 	uint64_t flags = 0;
1347 
1348 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1349 		flags |= AMDGPU_PTE_VALID;
1350 
1351 	if (mem && (mem->mem_type == TTM_PL_TT ||
1352 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1353 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1354 		flags |= AMDGPU_PTE_SYSTEM;
1355 
1356 		if (ttm->caching == ttm_cached)
1357 			flags |= AMDGPU_PTE_SNOOPED;
1358 	}
1359 
1360 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1361 			mem->bus.caching == ttm_cached)
1362 		flags |= AMDGPU_PTE_SNOOPED;
1363 
1364 	return flags;
1365 }
1366 
1367 /**
1368  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1369  *
1370  * @adev: amdgpu_device pointer
1371  * @ttm: The ttm_tt object to compute the flags for
1372  * @mem: The memory registry backing this ttm_tt object
1373  *
1374  * Figure out the flags to use for a VM PTE (Page Table Entry).
1375  */
1376 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1377 				 struct ttm_resource *mem)
1378 {
1379 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1380 
1381 	flags |= adev->gart.gart_pte_flags;
1382 	flags |= AMDGPU_PTE_READABLE;
1383 
1384 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1385 		flags |= AMDGPU_PTE_WRITEABLE;
1386 
1387 	return flags;
1388 }
1389 
1390 /*
1391  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1392  * object.
1393  *
1394  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1395  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1396  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1397  * used to clean out a memory space.
1398  */
1399 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1400 					    const struct ttm_place *place)
1401 {
1402 	struct dma_resv_iter resv_cursor;
1403 	struct dma_fence *f;
1404 
1405 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1406 		return ttm_bo_eviction_valuable(bo, place);
1407 
1408 	/* Swapout? */
1409 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1410 		return true;
1411 
1412 	if (bo->type == ttm_bo_type_kernel &&
1413 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1414 		return false;
1415 
1416 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1417 	 * If true, then return false as any KFD process needs all its BOs to
1418 	 * be resident to run successfully
1419 	 */
1420 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1421 				DMA_RESV_USAGE_BOOKKEEP, f) {
1422 		if (amdkfd_fence_check_mm(f, current->mm) &&
1423 		    !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1424 			return false;
1425 	}
1426 
1427 	/* Preemptible BOs don't own system resources managed by the
1428 	 * driver (pages, VRAM, GART space). They point to resources
1429 	 * owned by someone else (e.g. pageable memory in user mode
1430 	 * or a DMABuf). They are used in a preemptible context so we
1431 	 * can guarantee no deadlocks and good QoS in case of MMU
1432 	 * notifiers or DMABuf move notifiers from the resource owner.
1433 	 */
1434 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1435 		return false;
1436 
1437 	if (bo->resource->mem_type == TTM_PL_TT &&
1438 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1439 		return false;
1440 
1441 	return ttm_bo_eviction_valuable(bo, place);
1442 }
1443 
1444 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1445 				      void *buf, size_t size, bool write)
1446 {
1447 	while (size) {
1448 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1449 		uint64_t bytes = 4 - (pos & 0x3);
1450 		uint32_t shift = (pos & 0x3) * 8;
1451 		uint32_t mask = 0xffffffff << shift;
1452 		uint32_t value = 0;
1453 
1454 		if (size < bytes) {
1455 			mask &= 0xffffffff >> (bytes - size) * 8;
1456 			bytes = size;
1457 		}
1458 
1459 		if (mask != 0xffffffff) {
1460 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1461 			if (write) {
1462 				value &= ~mask;
1463 				value |= (*(uint32_t *)buf << shift) & mask;
1464 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1465 			} else {
1466 				value = (value & mask) >> shift;
1467 				memcpy(buf, &value, bytes);
1468 			}
1469 		} else {
1470 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1471 		}
1472 
1473 		pos += bytes;
1474 		buf += bytes;
1475 		size -= bytes;
1476 	}
1477 }
1478 
1479 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1480 					unsigned long offset, void *buf,
1481 					int len, int write)
1482 {
1483 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1484 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1485 	struct amdgpu_res_cursor src_mm;
1486 	struct amdgpu_job *job;
1487 	struct dma_fence *fence;
1488 	uint64_t src_addr, dst_addr;
1489 	unsigned int num_dw;
1490 	int r, idx;
1491 
1492 	if (len != PAGE_SIZE)
1493 		return -EINVAL;
1494 
1495 	if (!adev->mman.sdma_access_ptr)
1496 		return -EACCES;
1497 
1498 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1499 		return -ENODEV;
1500 
1501 	if (write)
1502 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1503 
1504 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1505 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1506 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1507 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1508 				     &job);
1509 	if (r)
1510 		goto out;
1511 
1512 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1513 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1514 		src_mm.start;
1515 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1516 	if (write)
1517 		swap(src_addr, dst_addr);
1518 
1519 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1520 				PAGE_SIZE, 0);
1521 
1522 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1523 	WARN_ON(job->ibs[0].length_dw > num_dw);
1524 
1525 	fence = amdgpu_job_submit(job);
1526 
1527 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1528 		r = -ETIMEDOUT;
1529 	dma_fence_put(fence);
1530 
1531 	if (!(r || write))
1532 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1533 out:
1534 	drm_dev_exit(idx);
1535 	return r;
1536 }
1537 
1538 /**
1539  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1540  *
1541  * @bo:  The buffer object to read/write
1542  * @offset:  Offset into buffer object
1543  * @buf:  Secondary buffer to write/read from
1544  * @len: Length in bytes of access
1545  * @write:  true if writing
1546  *
1547  * This is used to access VRAM that backs a buffer object via MMIO
1548  * access for debugging purposes.
1549  */
1550 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1551 				    unsigned long offset, void *buf, int len,
1552 				    int write)
1553 {
1554 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1555 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1556 	struct amdgpu_res_cursor cursor;
1557 	int ret = 0;
1558 
1559 	if (bo->resource->mem_type != TTM_PL_VRAM)
1560 		return -EIO;
1561 
1562 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1563 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1564 		return len;
1565 
1566 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1567 	while (cursor.remaining) {
1568 		size_t count, size = cursor.size;
1569 		loff_t pos = cursor.start;
1570 
1571 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1572 		size -= count;
1573 		if (size) {
1574 			/* using MM to access rest vram and handle un-aligned address */
1575 			pos += count;
1576 			buf += count;
1577 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1578 		}
1579 
1580 		ret += cursor.size;
1581 		buf += cursor.size;
1582 		amdgpu_res_next(&cursor, cursor.size);
1583 	}
1584 
1585 	return ret;
1586 }
1587 
1588 static void
1589 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1590 {
1591 	amdgpu_bo_move_notify(bo, false, NULL);
1592 }
1593 
1594 static struct ttm_device_funcs amdgpu_bo_driver = {
1595 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1596 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1597 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1598 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1599 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1600 	.evict_flags = &amdgpu_evict_flags,
1601 	.move = &amdgpu_bo_move,
1602 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1603 	.release_notify = &amdgpu_bo_release_notify,
1604 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1605 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1606 	.access_memory = &amdgpu_ttm_access_memory,
1607 };
1608 
1609 /*
1610  * Firmware Reservation functions
1611  */
1612 /**
1613  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1614  *
1615  * @adev: amdgpu_device pointer
1616  *
1617  * free fw reserved vram if it has been reserved.
1618  */
1619 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1620 {
1621 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1622 		NULL, &adev->mman.fw_vram_usage_va);
1623 }
1624 
1625 /*
1626  * Driver Reservation functions
1627  */
1628 /**
1629  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1630  *
1631  * @adev: amdgpu_device pointer
1632  *
1633  * free drv reserved vram if it has been reserved.
1634  */
1635 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1636 {
1637 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1638 						  NULL,
1639 						  &adev->mman.drv_vram_usage_va);
1640 }
1641 
1642 /**
1643  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1644  *
1645  * @adev: amdgpu_device pointer
1646  *
1647  * create bo vram reservation from fw.
1648  */
1649 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1650 {
1651 	uint64_t vram_size = adev->gmc.visible_vram_size;
1652 
1653 	adev->mman.fw_vram_usage_va = NULL;
1654 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1655 
1656 	if (adev->mman.fw_vram_usage_size == 0 ||
1657 	    adev->mman.fw_vram_usage_size > vram_size)
1658 		return 0;
1659 
1660 	return amdgpu_bo_create_kernel_at(adev,
1661 					  adev->mman.fw_vram_usage_start_offset,
1662 					  adev->mman.fw_vram_usage_size,
1663 					  &adev->mman.fw_vram_usage_reserved_bo,
1664 					  &adev->mman.fw_vram_usage_va);
1665 }
1666 
1667 /**
1668  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1669  *
1670  * @adev: amdgpu_device pointer
1671  *
1672  * create bo vram reservation from drv.
1673  */
1674 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1675 {
1676 	u64 vram_size = adev->gmc.visible_vram_size;
1677 
1678 	adev->mman.drv_vram_usage_va = NULL;
1679 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1680 
1681 	if (adev->mman.drv_vram_usage_size == 0 ||
1682 	    adev->mman.drv_vram_usage_size > vram_size)
1683 		return 0;
1684 
1685 	return amdgpu_bo_create_kernel_at(adev,
1686 					  adev->mman.drv_vram_usage_start_offset,
1687 					  adev->mman.drv_vram_usage_size,
1688 					  &adev->mman.drv_vram_usage_reserved_bo,
1689 					  &adev->mman.drv_vram_usage_va);
1690 }
1691 
1692 /*
1693  * Memoy training reservation functions
1694  */
1695 
1696 /**
1697  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1698  *
1699  * @adev: amdgpu_device pointer
1700  *
1701  * free memory training reserved vram if it has been reserved.
1702  */
1703 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1704 {
1705 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1706 
1707 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1708 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1709 	ctx->c2p_bo = NULL;
1710 
1711 	return 0;
1712 }
1713 
1714 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1715 						uint32_t reserve_size)
1716 {
1717 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1718 
1719 	memset(ctx, 0, sizeof(*ctx));
1720 
1721 	ctx->c2p_train_data_offset =
1722 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1723 	ctx->p2c_train_data_offset =
1724 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1725 	ctx->train_data_size =
1726 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1727 
1728 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1729 			ctx->train_data_size,
1730 			ctx->p2c_train_data_offset,
1731 			ctx->c2p_train_data_offset);
1732 }
1733 
1734 /*
1735  * reserve TMR memory at the top of VRAM which holds
1736  * IP Discovery data and is protected by PSP.
1737  */
1738 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1739 {
1740 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1741 	bool mem_train_support = false;
1742 	uint32_t reserve_size = 0;
1743 	int ret;
1744 
1745 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1746 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1747 			mem_train_support = true;
1748 		else
1749 			DRM_DEBUG("memory training does not support!\n");
1750 	}
1751 
1752 	/*
1753 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1754 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1755 	 *
1756 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1757 	 * discovery data and G6 memory training data respectively
1758 	 */
1759 	if (adev->bios)
1760 		reserve_size =
1761 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1762 
1763 	if (!adev->bios &&
1764 	    (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1765 	     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
1766 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1767 	else if (!reserve_size)
1768 		reserve_size = DISCOVERY_TMR_OFFSET;
1769 
1770 	if (mem_train_support) {
1771 		/* reserve vram for mem train according to TMR location */
1772 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1773 		ret = amdgpu_bo_create_kernel_at(adev,
1774 						 ctx->c2p_train_data_offset,
1775 						 ctx->train_data_size,
1776 						 &ctx->c2p_bo,
1777 						 NULL);
1778 		if (ret) {
1779 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1780 			amdgpu_ttm_training_reserve_vram_fini(adev);
1781 			return ret;
1782 		}
1783 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1784 	}
1785 
1786 	if (!adev->gmc.is_app_apu) {
1787 		ret = amdgpu_bo_create_kernel_at(
1788 			adev, adev->gmc.real_vram_size - reserve_size,
1789 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1790 		if (ret) {
1791 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1792 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1793 					      NULL, NULL);
1794 			return ret;
1795 		}
1796 	} else {
1797 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1804 {
1805 	int i;
1806 
1807 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1808 		return 0;
1809 
1810 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1811 				       sizeof(*adev->mman.ttm_pools),
1812 				       GFP_KERNEL);
1813 	if (!adev->mman.ttm_pools)
1814 		return -ENOMEM;
1815 
1816 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1817 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1818 			      adev->gmc.mem_partitions[i].numa.node,
1819 			      false, false);
1820 	}
1821 	return 0;
1822 }
1823 
1824 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1825 {
1826 	int i;
1827 
1828 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1829 		return;
1830 
1831 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1832 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1833 
1834 	kfree(adev->mman.ttm_pools);
1835 	adev->mman.ttm_pools = NULL;
1836 }
1837 
1838 /*
1839  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1840  * gtt/vram related fields.
1841  *
1842  * This initializes all of the memory space pools that the TTM layer
1843  * will need such as the GTT space (system memory mapped to the device),
1844  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1845  * can be mapped per VMID.
1846  */
1847 int amdgpu_ttm_init(struct amdgpu_device *adev)
1848 {
1849 	uint64_t gtt_size;
1850 	int r;
1851 
1852 	mutex_init(&adev->mman.gtt_window_lock);
1853 
1854 	dma_set_max_seg_size(adev->dev, UINT_MAX);
1855 	/* No others user of address space so set it to 0 */
1856 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1857 			       adev_to_drm(adev)->anon_inode->i_mapping,
1858 			       adev_to_drm(adev)->vma_offset_manager,
1859 			       adev->need_swiotlb,
1860 			       dma_addressing_limited(adev->dev));
1861 	if (r) {
1862 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1863 		return r;
1864 	}
1865 
1866 	r = amdgpu_ttm_pools_init(adev);
1867 	if (r) {
1868 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1869 		return r;
1870 	}
1871 	adev->mman.initialized = true;
1872 
1873 	/* Initialize VRAM pool with all of VRAM divided into pages */
1874 	r = amdgpu_vram_mgr_init(adev);
1875 	if (r) {
1876 		DRM_ERROR("Failed initializing VRAM heap.\n");
1877 		return r;
1878 	}
1879 
1880 	/* Change the size here instead of the init above so only lpfn is affected */
1881 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1882 #ifdef CONFIG_64BIT
1883 #ifdef CONFIG_X86
1884 	if (adev->gmc.xgmi.connected_to_cpu)
1885 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1886 				adev->gmc.visible_vram_size);
1887 
1888 	else if (adev->gmc.is_app_apu)
1889 		DRM_DEBUG_DRIVER(
1890 			"No need to ioremap when real vram size is 0\n");
1891 	else
1892 #endif
1893 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1894 				adev->gmc.visible_vram_size);
1895 #endif
1896 
1897 	/*
1898 	 *The reserved vram for firmware must be pinned to the specified
1899 	 *place on the VRAM, so reserve it early.
1900 	 */
1901 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1902 	if (r)
1903 		return r;
1904 
1905 	/*
1906 	 *The reserved vram for driver must be pinned to the specified
1907 	 *place on the VRAM, so reserve it early.
1908 	 */
1909 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1910 	if (r)
1911 		return r;
1912 
1913 	/*
1914 	 * only NAVI10 and onwards ASIC support for IP discovery.
1915 	 * If IP discovery enabled, a block of memory should be
1916 	 * reserved for IP discovey.
1917 	 */
1918 	if (adev->mman.discovery_bin) {
1919 		r = amdgpu_ttm_reserve_tmr(adev);
1920 		if (r)
1921 			return r;
1922 	}
1923 
1924 	/* allocate memory as required for VGA
1925 	 * This is used for VGA emulation and pre-OS scanout buffers to
1926 	 * avoid display artifacts while transitioning between pre-OS
1927 	 * and driver.
1928 	 */
1929 	if (!adev->gmc.is_app_apu) {
1930 		r = amdgpu_bo_create_kernel_at(adev, 0,
1931 					       adev->mman.stolen_vga_size,
1932 					       &adev->mman.stolen_vga_memory,
1933 					       NULL);
1934 		if (r)
1935 			return r;
1936 
1937 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1938 					       adev->mman.stolen_extended_size,
1939 					       &adev->mman.stolen_extended_memory,
1940 					       NULL);
1941 
1942 		if (r)
1943 			return r;
1944 
1945 		r = amdgpu_bo_create_kernel_at(adev,
1946 					       adev->mman.stolen_reserved_offset,
1947 					       adev->mman.stolen_reserved_size,
1948 					       &adev->mman.stolen_reserved_memory,
1949 					       NULL);
1950 		if (r)
1951 			return r;
1952 	} else {
1953 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1954 	}
1955 
1956 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1957 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1958 
1959 	/* Compute GTT size, either based on TTM limit
1960 	 * or whatever the user passed on module init.
1961 	 */
1962 	if (amdgpu_gtt_size == -1)
1963 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1964 	else
1965 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1966 
1967 	/* Initialize GTT memory pool */
1968 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1969 	if (r) {
1970 		DRM_ERROR("Failed initializing GTT heap.\n");
1971 		return r;
1972 	}
1973 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1974 		 (unsigned int)(gtt_size / (1024 * 1024)));
1975 
1976 	/* Initialize doorbell pool on PCI BAR */
1977 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1978 	if (r) {
1979 		DRM_ERROR("Failed initializing doorbell heap.\n");
1980 		return r;
1981 	}
1982 
1983 	/* Create a boorbell page for kernel usages */
1984 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1985 	if (r) {
1986 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1987 		return r;
1988 	}
1989 
1990 	/* Initialize preemptible memory pool */
1991 	r = amdgpu_preempt_mgr_init(adev);
1992 	if (r) {
1993 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1994 		return r;
1995 	}
1996 
1997 	/* Initialize various on-chip memory pools */
1998 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1999 	if (r) {
2000 		DRM_ERROR("Failed initializing GDS heap.\n");
2001 		return r;
2002 	}
2003 
2004 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2005 	if (r) {
2006 		DRM_ERROR("Failed initializing gws heap.\n");
2007 		return r;
2008 	}
2009 
2010 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2011 	if (r) {
2012 		DRM_ERROR("Failed initializing oa heap.\n");
2013 		return r;
2014 	}
2015 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2016 				AMDGPU_GEM_DOMAIN_GTT,
2017 				&adev->mman.sdma_access_bo, NULL,
2018 				&adev->mman.sdma_access_ptr))
2019 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2020 
2021 	return 0;
2022 }
2023 
2024 /*
2025  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2026  */
2027 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2028 {
2029 	int idx;
2030 
2031 	if (!adev->mman.initialized)
2032 		return;
2033 
2034 	amdgpu_ttm_pools_fini(adev);
2035 
2036 	amdgpu_ttm_training_reserve_vram_fini(adev);
2037 	/* return the stolen vga memory back to VRAM */
2038 	if (!adev->gmc.is_app_apu) {
2039 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2040 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2041 		/* return the FW reserved memory back to VRAM */
2042 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2043 				      NULL);
2044 		if (adev->mman.stolen_reserved_size)
2045 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2046 					      NULL, NULL);
2047 	}
2048 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2049 					&adev->mman.sdma_access_ptr);
2050 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2051 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2052 
2053 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2054 
2055 		if (adev->mman.aper_base_kaddr)
2056 			iounmap(adev->mman.aper_base_kaddr);
2057 		adev->mman.aper_base_kaddr = NULL;
2058 
2059 		drm_dev_exit(idx);
2060 	}
2061 
2062 	amdgpu_vram_mgr_fini(adev);
2063 	amdgpu_gtt_mgr_fini(adev);
2064 	amdgpu_preempt_mgr_fini(adev);
2065 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2066 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2067 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2068 	ttm_device_fini(&adev->mman.bdev);
2069 	adev->mman.initialized = false;
2070 	DRM_INFO("amdgpu: ttm finalized\n");
2071 }
2072 
2073 /**
2074  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2075  *
2076  * @adev: amdgpu_device pointer
2077  * @enable: true when we can use buffer functions.
2078  *
2079  * Enable/disable use of buffer functions during suspend/resume. This should
2080  * only be called at bootup or when userspace isn't running.
2081  */
2082 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2083 {
2084 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2085 	uint64_t size;
2086 	int r;
2087 
2088 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2089 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2090 		return;
2091 
2092 	if (enable) {
2093 		struct amdgpu_ring *ring;
2094 		struct drm_gpu_scheduler *sched;
2095 
2096 		ring = adev->mman.buffer_funcs_ring;
2097 		sched = &ring->sched;
2098 		r = drm_sched_entity_init(&adev->mman.high_pr,
2099 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2100 					  1, NULL);
2101 		if (r) {
2102 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2103 				  r);
2104 			return;
2105 		}
2106 
2107 		r = drm_sched_entity_init(&adev->mman.low_pr,
2108 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2109 					  1, NULL);
2110 		if (r) {
2111 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2112 				  r);
2113 			goto error_free_entity;
2114 		}
2115 	} else {
2116 		drm_sched_entity_destroy(&adev->mman.high_pr);
2117 		drm_sched_entity_destroy(&adev->mman.low_pr);
2118 		dma_fence_put(man->move);
2119 		man->move = NULL;
2120 	}
2121 
2122 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2123 	if (enable)
2124 		size = adev->gmc.real_vram_size;
2125 	else
2126 		size = adev->gmc.visible_vram_size;
2127 	man->size = size;
2128 	adev->mman.buffer_funcs_enabled = enable;
2129 
2130 	return;
2131 
2132 error_free_entity:
2133 	drm_sched_entity_destroy(&adev->mman.high_pr);
2134 }
2135 
2136 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2137 				  bool direct_submit,
2138 				  unsigned int num_dw,
2139 				  struct dma_resv *resv,
2140 				  bool vm_needs_flush,
2141 				  struct amdgpu_job **job,
2142 				  bool delayed)
2143 {
2144 	enum amdgpu_ib_pool_type pool = direct_submit ?
2145 		AMDGPU_IB_POOL_DIRECT :
2146 		AMDGPU_IB_POOL_DELAYED;
2147 	int r;
2148 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2149 						    &adev->mman.high_pr;
2150 	r = amdgpu_job_alloc_with_ib(adev, entity,
2151 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2152 				     num_dw * 4, pool, job);
2153 	if (r)
2154 		return r;
2155 
2156 	if (vm_needs_flush) {
2157 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2158 							adev->gmc.pdb0_bo :
2159 							adev->gart.bo);
2160 		(*job)->vm_needs_flush = true;
2161 	}
2162 	if (!resv)
2163 		return 0;
2164 
2165 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2166 						   DMA_RESV_USAGE_BOOKKEEP);
2167 }
2168 
2169 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2170 		       uint64_t dst_offset, uint32_t byte_count,
2171 		       struct dma_resv *resv,
2172 		       struct dma_fence **fence, bool direct_submit,
2173 		       bool vm_needs_flush, uint32_t copy_flags)
2174 {
2175 	struct amdgpu_device *adev = ring->adev;
2176 	unsigned int num_loops, num_dw;
2177 	struct amdgpu_job *job;
2178 	uint32_t max_bytes;
2179 	unsigned int i;
2180 	int r;
2181 
2182 	if (!direct_submit && !ring->sched.ready) {
2183 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2184 		return -EINVAL;
2185 	}
2186 
2187 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2188 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2189 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2190 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2191 				   resv, vm_needs_flush, &job, false);
2192 	if (r)
2193 		return r;
2194 
2195 	for (i = 0; i < num_loops; i++) {
2196 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2197 
2198 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2199 					dst_offset, cur_size_in_bytes, copy_flags);
2200 		src_offset += cur_size_in_bytes;
2201 		dst_offset += cur_size_in_bytes;
2202 		byte_count -= cur_size_in_bytes;
2203 	}
2204 
2205 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2206 	WARN_ON(job->ibs[0].length_dw > num_dw);
2207 	if (direct_submit)
2208 		r = amdgpu_job_submit_direct(job, ring, fence);
2209 	else
2210 		*fence = amdgpu_job_submit(job);
2211 	if (r)
2212 		goto error_free;
2213 
2214 	return r;
2215 
2216 error_free:
2217 	amdgpu_job_free(job);
2218 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2219 	return r;
2220 }
2221 
2222 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2223 			       uint64_t dst_addr, uint32_t byte_count,
2224 			       struct dma_resv *resv,
2225 			       struct dma_fence **fence,
2226 			       bool vm_needs_flush, bool delayed)
2227 {
2228 	struct amdgpu_device *adev = ring->adev;
2229 	unsigned int num_loops, num_dw;
2230 	struct amdgpu_job *job;
2231 	uint32_t max_bytes;
2232 	unsigned int i;
2233 	int r;
2234 
2235 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2236 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2237 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2238 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2239 				   &job, delayed);
2240 	if (r)
2241 		return r;
2242 
2243 	for (i = 0; i < num_loops; i++) {
2244 		uint32_t cur_size = min(byte_count, max_bytes);
2245 
2246 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2247 					cur_size);
2248 
2249 		dst_addr += cur_size;
2250 		byte_count -= cur_size;
2251 	}
2252 
2253 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2254 	WARN_ON(job->ibs[0].length_dw > num_dw);
2255 	*fence = amdgpu_job_submit(job);
2256 	return 0;
2257 }
2258 
2259 /**
2260  * amdgpu_ttm_clear_buffer - clear memory buffers
2261  * @bo: amdgpu buffer object
2262  * @resv: reservation object
2263  * @fence: dma_fence associated with the operation
2264  *
2265  * Clear the memory buffer resource.
2266  *
2267  * Returns:
2268  * 0 for success or a negative error code on failure.
2269  */
2270 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2271 			    struct dma_resv *resv,
2272 			    struct dma_fence **fence)
2273 {
2274 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2275 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2276 	struct amdgpu_res_cursor cursor;
2277 	u64 addr;
2278 	int r;
2279 
2280 	if (!adev->mman.buffer_funcs_enabled)
2281 		return -EINVAL;
2282 
2283 	if (!fence)
2284 		return -EINVAL;
2285 
2286 	*fence = dma_fence_get_stub();
2287 
2288 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2289 
2290 	mutex_lock(&adev->mman.gtt_window_lock);
2291 	while (cursor.remaining) {
2292 		struct dma_fence *next = NULL;
2293 		u64 size;
2294 
2295 		if (amdgpu_res_cleared(&cursor)) {
2296 			amdgpu_res_next(&cursor, cursor.size);
2297 			continue;
2298 		}
2299 
2300 		/* Never clear more than 256MiB at once to avoid timeouts */
2301 		size = min(cursor.size, 256ULL << 20);
2302 
2303 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2304 					  1, ring, false, &size, &addr);
2305 		if (r)
2306 			goto err;
2307 
2308 		r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2309 					&next, true, true);
2310 		if (r)
2311 			goto err;
2312 
2313 		dma_fence_put(*fence);
2314 		*fence = next;
2315 
2316 		amdgpu_res_next(&cursor, size);
2317 	}
2318 err:
2319 	mutex_unlock(&adev->mman.gtt_window_lock);
2320 
2321 	return r;
2322 }
2323 
2324 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2325 			uint32_t src_data,
2326 			struct dma_resv *resv,
2327 			struct dma_fence **f,
2328 			bool delayed)
2329 {
2330 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2331 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2332 	struct dma_fence *fence = NULL;
2333 	struct amdgpu_res_cursor dst;
2334 	int r;
2335 
2336 	if (!adev->mman.buffer_funcs_enabled) {
2337 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2338 		return -EINVAL;
2339 	}
2340 
2341 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2342 
2343 	mutex_lock(&adev->mman.gtt_window_lock);
2344 	while (dst.remaining) {
2345 		struct dma_fence *next;
2346 		uint64_t cur_size, to;
2347 
2348 		/* Never fill more than 256MiB at once to avoid timeouts */
2349 		cur_size = min(dst.size, 256ULL << 20);
2350 
2351 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2352 					  1, ring, false, &cur_size, &to);
2353 		if (r)
2354 			goto error;
2355 
2356 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2357 					&next, true, delayed);
2358 		if (r)
2359 			goto error;
2360 
2361 		dma_fence_put(fence);
2362 		fence = next;
2363 
2364 		amdgpu_res_next(&dst, cur_size);
2365 	}
2366 error:
2367 	mutex_unlock(&adev->mman.gtt_window_lock);
2368 	if (f)
2369 		*f = dma_fence_get(fence);
2370 	dma_fence_put(fence);
2371 	return r;
2372 }
2373 
2374 /**
2375  * amdgpu_ttm_evict_resources - evict memory buffers
2376  * @adev: amdgpu device object
2377  * @mem_type: evicted BO's memory type
2378  *
2379  * Evicts all @mem_type buffers on the lru list of the memory type.
2380  *
2381  * Returns:
2382  * 0 for success or a negative error code on failure.
2383  */
2384 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2385 {
2386 	struct ttm_resource_manager *man;
2387 
2388 	switch (mem_type) {
2389 	case TTM_PL_VRAM:
2390 	case TTM_PL_TT:
2391 	case AMDGPU_PL_GWS:
2392 	case AMDGPU_PL_GDS:
2393 	case AMDGPU_PL_OA:
2394 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2395 		break;
2396 	default:
2397 		DRM_ERROR("Trying to evict invalid memory type\n");
2398 		return -EINVAL;
2399 	}
2400 
2401 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2402 }
2403 
2404 #if defined(CONFIG_DEBUG_FS)
2405 
2406 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2407 {
2408 	struct amdgpu_device *adev = m->private;
2409 
2410 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2411 }
2412 
2413 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2414 
2415 /*
2416  * amdgpu_ttm_vram_read - Linear read access to VRAM
2417  *
2418  * Accesses VRAM via MMIO for debugging purposes.
2419  */
2420 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2421 				    size_t size, loff_t *pos)
2422 {
2423 	struct amdgpu_device *adev = file_inode(f)->i_private;
2424 	ssize_t result = 0;
2425 
2426 	if (size & 0x3 || *pos & 0x3)
2427 		return -EINVAL;
2428 
2429 	if (*pos >= adev->gmc.mc_vram_size)
2430 		return -ENXIO;
2431 
2432 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2433 	while (size) {
2434 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2435 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2436 
2437 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2438 		if (copy_to_user(buf, value, bytes))
2439 			return -EFAULT;
2440 
2441 		result += bytes;
2442 		buf += bytes;
2443 		*pos += bytes;
2444 		size -= bytes;
2445 	}
2446 
2447 	return result;
2448 }
2449 
2450 /*
2451  * amdgpu_ttm_vram_write - Linear write access to VRAM
2452  *
2453  * Accesses VRAM via MMIO for debugging purposes.
2454  */
2455 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2456 				    size_t size, loff_t *pos)
2457 {
2458 	struct amdgpu_device *adev = file_inode(f)->i_private;
2459 	ssize_t result = 0;
2460 	int r;
2461 
2462 	if (size & 0x3 || *pos & 0x3)
2463 		return -EINVAL;
2464 
2465 	if (*pos >= adev->gmc.mc_vram_size)
2466 		return -ENXIO;
2467 
2468 	while (size) {
2469 		uint32_t value;
2470 
2471 		if (*pos >= adev->gmc.mc_vram_size)
2472 			return result;
2473 
2474 		r = get_user(value, (uint32_t *)buf);
2475 		if (r)
2476 			return r;
2477 
2478 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2479 
2480 		result += 4;
2481 		buf += 4;
2482 		*pos += 4;
2483 		size -= 4;
2484 	}
2485 
2486 	return result;
2487 }
2488 
2489 static const struct file_operations amdgpu_ttm_vram_fops = {
2490 	.owner = THIS_MODULE,
2491 	.read = amdgpu_ttm_vram_read,
2492 	.write = amdgpu_ttm_vram_write,
2493 	.llseek = default_llseek,
2494 };
2495 
2496 /*
2497  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2498  *
2499  * This function is used to read memory that has been mapped to the
2500  * GPU and the known addresses are not physical addresses but instead
2501  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2502  */
2503 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2504 				 size_t size, loff_t *pos)
2505 {
2506 	struct amdgpu_device *adev = file_inode(f)->i_private;
2507 	struct iommu_domain *dom;
2508 	ssize_t result = 0;
2509 	int r;
2510 
2511 	/* retrieve the IOMMU domain if any for this device */
2512 	dom = iommu_get_domain_for_dev(adev->dev);
2513 
2514 	while (size) {
2515 		phys_addr_t addr = *pos & PAGE_MASK;
2516 		loff_t off = *pos & ~PAGE_MASK;
2517 		size_t bytes = PAGE_SIZE - off;
2518 		unsigned long pfn;
2519 		struct page *p;
2520 		void *ptr;
2521 
2522 		bytes = min(bytes, size);
2523 
2524 		/* Translate the bus address to a physical address.  If
2525 		 * the domain is NULL it means there is no IOMMU active
2526 		 * and the address translation is the identity
2527 		 */
2528 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2529 
2530 		pfn = addr >> PAGE_SHIFT;
2531 		if (!pfn_valid(pfn))
2532 			return -EPERM;
2533 
2534 		p = pfn_to_page(pfn);
2535 		if (p->mapping != adev->mman.bdev.dev_mapping)
2536 			return -EPERM;
2537 
2538 		ptr = kmap_local_page(p);
2539 		r = copy_to_user(buf, ptr + off, bytes);
2540 		kunmap_local(ptr);
2541 		if (r)
2542 			return -EFAULT;
2543 
2544 		size -= bytes;
2545 		*pos += bytes;
2546 		result += bytes;
2547 	}
2548 
2549 	return result;
2550 }
2551 
2552 /*
2553  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2554  *
2555  * This function is used to write memory that has been mapped to the
2556  * GPU and the known addresses are not physical addresses but instead
2557  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2558  */
2559 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2560 				 size_t size, loff_t *pos)
2561 {
2562 	struct amdgpu_device *adev = file_inode(f)->i_private;
2563 	struct iommu_domain *dom;
2564 	ssize_t result = 0;
2565 	int r;
2566 
2567 	dom = iommu_get_domain_for_dev(adev->dev);
2568 
2569 	while (size) {
2570 		phys_addr_t addr = *pos & PAGE_MASK;
2571 		loff_t off = *pos & ~PAGE_MASK;
2572 		size_t bytes = PAGE_SIZE - off;
2573 		unsigned long pfn;
2574 		struct page *p;
2575 		void *ptr;
2576 
2577 		bytes = min(bytes, size);
2578 
2579 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2580 
2581 		pfn = addr >> PAGE_SHIFT;
2582 		if (!pfn_valid(pfn))
2583 			return -EPERM;
2584 
2585 		p = pfn_to_page(pfn);
2586 		if (p->mapping != adev->mman.bdev.dev_mapping)
2587 			return -EPERM;
2588 
2589 		ptr = kmap_local_page(p);
2590 		r = copy_from_user(ptr + off, buf, bytes);
2591 		kunmap_local(ptr);
2592 		if (r)
2593 			return -EFAULT;
2594 
2595 		size -= bytes;
2596 		*pos += bytes;
2597 		result += bytes;
2598 	}
2599 
2600 	return result;
2601 }
2602 
2603 static const struct file_operations amdgpu_ttm_iomem_fops = {
2604 	.owner = THIS_MODULE,
2605 	.read = amdgpu_iomem_read,
2606 	.write = amdgpu_iomem_write,
2607 	.llseek = default_llseek
2608 };
2609 
2610 #endif
2611 
2612 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2613 {
2614 #if defined(CONFIG_DEBUG_FS)
2615 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2616 	struct dentry *root = minor->debugfs_root;
2617 
2618 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2619 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2620 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2621 			    &amdgpu_ttm_iomem_fops);
2622 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2623 			    &amdgpu_ttm_page_pool_fops);
2624 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2625 							     TTM_PL_VRAM),
2626 					    root, "amdgpu_vram_mm");
2627 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2628 							     TTM_PL_TT),
2629 					    root, "amdgpu_gtt_mm");
2630 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2631 							     AMDGPU_PL_GDS),
2632 					    root, "amdgpu_gds_mm");
2633 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2634 							     AMDGPU_PL_GWS),
2635 					    root, "amdgpu_gws_mm");
2636 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2637 							     AMDGPU_PL_OA),
2638 					    root, "amdgpu_oa_mm");
2639 
2640 #endif
2641 }
2642