1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #ifndef __AMDGPU_MES_H__ 25 #define __AMDGPU_MES_H__ 26 27 #include "amdgpu_irq.h" 28 #include "kgd_kfd_interface.h" 29 #include "amdgpu_gfx.h" 30 #include "amdgpu_doorbell.h" 31 #include <linux/sched/mm.h> 32 33 #define AMDGPU_MES_MAX_COMPUTE_PIPES 8 34 #define AMDGPU_MES_MAX_GFX_PIPES 2 35 #define AMDGPU_MES_MAX_SDMA_PIPES 2 36 37 #define AMDGPU_MES_API_VERSION_SHIFT 12 38 #define AMDGPU_MES_FEAT_VERSION_SHIFT 24 39 40 #define AMDGPU_MES_VERSION_MASK 0x00000fff 41 #define AMDGPU_MES_API_VERSION_MASK 0x00fff000 42 #define AMDGPU_MES_FEAT_VERSION_MASK 0xff000000 43 #define AMDGPU_MES_MSCRATCH_SIZE 0x40000 44 #define AMDGPU_MES_INVALID_DB_OFFSET 0xffffffff 45 46 enum amdgpu_mes_priority_level { 47 AMDGPU_MES_PRIORITY_LEVEL_LOW = 0, 48 AMDGPU_MES_PRIORITY_LEVEL_NORMAL = 1, 49 AMDGPU_MES_PRIORITY_LEVEL_MEDIUM = 2, 50 AMDGPU_MES_PRIORITY_LEVEL_HIGH = 3, 51 AMDGPU_MES_PRIORITY_LEVEL_REALTIME = 4, 52 AMDGPU_MES_PRIORITY_NUM_LEVELS 53 }; 54 55 #define AMDGPU_MES_PROC_CTX_SIZE 0x1000 /* one page area */ 56 #define AMDGPU_MES_GANG_CTX_SIZE 0x1000 /* one page area */ 57 58 struct amdgpu_mes_funcs; 59 60 enum amdgpu_mes_pipe { 61 AMDGPU_MES_SCHED_PIPE = 0, 62 AMDGPU_MES_KIQ_PIPE, 63 AMDGPU_MAX_MES_PIPES = 2, 64 }; 65 66 struct amdgpu_mes { 67 struct amdgpu_device *adev; 68 69 struct mutex mutex_hidden; 70 71 struct idr pasid_idr; 72 struct idr gang_id_idr; 73 struct idr queue_id_idr; 74 struct ida doorbell_ida; 75 76 spinlock_t queue_id_lock; 77 78 uint32_t sched_version; 79 uint32_t kiq_version; 80 uint32_t fw_version[AMDGPU_MAX_MES_PIPES]; 81 bool enable_legacy_queue_map; 82 83 uint32_t total_max_queue; 84 uint32_t max_doorbell_slices; 85 86 uint64_t default_process_quantum; 87 uint64_t default_gang_quantum; 88 89 struct amdgpu_ring ring[AMDGPU_MAX_MES_PIPES]; 90 spinlock_t ring_lock[AMDGPU_MAX_MES_PIPES]; 91 92 const struct firmware *fw[AMDGPU_MAX_MES_PIPES]; 93 94 /* mes ucode */ 95 struct amdgpu_bo *ucode_fw_obj[AMDGPU_MAX_MES_PIPES]; 96 uint64_t ucode_fw_gpu_addr[AMDGPU_MAX_MES_PIPES]; 97 uint32_t *ucode_fw_ptr[AMDGPU_MAX_MES_PIPES]; 98 uint64_t uc_start_addr[AMDGPU_MAX_MES_PIPES]; 99 100 /* mes ucode data */ 101 struct amdgpu_bo *data_fw_obj[AMDGPU_MAX_MES_PIPES]; 102 uint64_t data_fw_gpu_addr[AMDGPU_MAX_MES_PIPES]; 103 uint32_t *data_fw_ptr[AMDGPU_MAX_MES_PIPES]; 104 uint64_t data_start_addr[AMDGPU_MAX_MES_PIPES]; 105 106 /* eop gpu obj */ 107 struct amdgpu_bo *eop_gpu_obj[AMDGPU_MAX_MES_PIPES]; 108 uint64_t eop_gpu_addr[AMDGPU_MAX_MES_PIPES]; 109 110 void *mqd_backup[AMDGPU_MAX_MES_PIPES]; 111 struct amdgpu_irq_src irq[AMDGPU_MAX_MES_PIPES]; 112 113 uint32_t vmid_mask_gfxhub; 114 uint32_t vmid_mask_mmhub; 115 uint32_t gfx_hqd_mask[AMDGPU_MES_MAX_GFX_PIPES]; 116 uint32_t compute_hqd_mask[AMDGPU_MES_MAX_COMPUTE_PIPES]; 117 uint32_t sdma_hqd_mask[AMDGPU_MES_MAX_SDMA_PIPES]; 118 uint32_t aggregated_doorbells[AMDGPU_MES_PRIORITY_NUM_LEVELS]; 119 uint32_t sch_ctx_offs[AMDGPU_MAX_MES_PIPES]; 120 uint64_t sch_ctx_gpu_addr[AMDGPU_MAX_MES_PIPES]; 121 uint64_t *sch_ctx_ptr[AMDGPU_MAX_MES_PIPES]; 122 uint32_t query_status_fence_offs[AMDGPU_MAX_MES_PIPES]; 123 uint64_t query_status_fence_gpu_addr[AMDGPU_MAX_MES_PIPES]; 124 uint64_t *query_status_fence_ptr[AMDGPU_MAX_MES_PIPES]; 125 126 uint32_t saved_flags; 127 128 /* initialize kiq pipe */ 129 int (*kiq_hw_init)(struct amdgpu_device *adev); 130 int (*kiq_hw_fini)(struct amdgpu_device *adev); 131 132 /* MES doorbells */ 133 uint32_t db_start_dw_offset; 134 uint32_t num_mes_dbs; 135 unsigned long *doorbell_bitmap; 136 137 /* MES event log buffer */ 138 uint32_t event_log_size; 139 struct amdgpu_bo *event_log_gpu_obj; 140 uint64_t event_log_gpu_addr; 141 void *event_log_cpu_addr; 142 143 /* ip specific functions */ 144 const struct amdgpu_mes_funcs *funcs; 145 146 /* mes resource_1 bo*/ 147 struct amdgpu_bo *resource_1[AMDGPU_MAX_MES_PIPES]; 148 uint64_t resource_1_gpu_addr[AMDGPU_MAX_MES_PIPES]; 149 void *resource_1_addr[AMDGPU_MAX_MES_PIPES]; 150 151 int hung_queue_db_array_size; 152 int hung_queue_hqd_info_offset; 153 struct amdgpu_bo *hung_queue_db_array_gpu_obj; 154 uint64_t hung_queue_db_array_gpu_addr; 155 void *hung_queue_db_array_cpu_addr; 156 }; 157 158 struct amdgpu_mes_gang { 159 int gang_id; 160 int priority; 161 int inprocess_gang_priority; 162 int global_priority_level; 163 struct list_head list; 164 struct amdgpu_mes_process *process; 165 struct amdgpu_bo *gang_ctx_bo; 166 uint64_t gang_ctx_gpu_addr; 167 void *gang_ctx_cpu_ptr; 168 uint64_t gang_quantum; 169 struct list_head queue_list; 170 }; 171 172 struct amdgpu_mes_queue { 173 struct list_head list; 174 struct amdgpu_mes_gang *gang; 175 int queue_id; 176 uint64_t doorbell_off; 177 struct amdgpu_bo *mqd_obj; 178 void *mqd_cpu_ptr; 179 uint64_t mqd_gpu_addr; 180 uint64_t wptr_gpu_addr; 181 int queue_type; 182 int paging; 183 struct amdgpu_ring *ring; 184 }; 185 186 struct amdgpu_mes_queue_properties { 187 int queue_type; 188 uint64_t hqd_base_gpu_addr; 189 uint64_t rptr_gpu_addr; 190 uint64_t wptr_gpu_addr; 191 uint64_t wptr_mc_addr; 192 uint32_t queue_size; 193 uint64_t eop_gpu_addr; 194 uint32_t hqd_pipe_priority; 195 uint32_t hqd_queue_priority; 196 bool paging; 197 struct amdgpu_ring *ring; 198 /* out */ 199 uint64_t doorbell_off; 200 }; 201 202 struct amdgpu_mes_gang_properties { 203 uint32_t priority; 204 uint32_t gang_quantum; 205 uint32_t inprocess_gang_priority; 206 uint32_t priority_level; 207 int global_priority_level; 208 }; 209 210 struct mes_add_queue_input { 211 uint32_t process_id; 212 uint64_t page_table_base_addr; 213 uint64_t process_va_start; 214 uint64_t process_va_end; 215 uint64_t process_quantum; 216 uint64_t process_context_addr; 217 uint64_t gang_quantum; 218 uint64_t gang_context_addr; 219 uint32_t inprocess_gang_priority; 220 uint32_t gang_global_priority_level; 221 uint32_t doorbell_offset; 222 uint64_t mqd_addr; 223 uint64_t wptr_addr; 224 uint64_t wptr_mc_addr; 225 uint32_t queue_type; 226 uint32_t paging; 227 uint32_t gws_base; 228 uint32_t gws_size; 229 uint64_t tba_addr; 230 uint64_t tma_addr; 231 uint32_t trap_en; 232 uint32_t skip_process_ctx_clear; 233 uint32_t is_kfd_process; 234 uint32_t is_aql_queue; 235 uint32_t queue_size; 236 uint32_t exclusively_scheduled; 237 }; 238 239 struct mes_remove_queue_input { 240 uint32_t doorbell_offset; 241 uint64_t gang_context_addr; 242 }; 243 244 struct mes_map_legacy_queue_input { 245 uint32_t queue_type; 246 uint32_t doorbell_offset; 247 uint32_t pipe_id; 248 uint32_t queue_id; 249 uint64_t mqd_addr; 250 uint64_t wptr_addr; 251 }; 252 253 struct mes_unmap_legacy_queue_input { 254 enum amdgpu_unmap_queues_action action; 255 uint32_t queue_type; 256 uint32_t doorbell_offset; 257 uint32_t pipe_id; 258 uint32_t queue_id; 259 uint64_t trail_fence_addr; 260 uint64_t trail_fence_data; 261 }; 262 263 struct mes_suspend_gang_input { 264 bool suspend_all_gangs; 265 uint64_t gang_context_addr; 266 uint64_t suspend_fence_addr; 267 uint32_t suspend_fence_value; 268 }; 269 270 struct mes_resume_gang_input { 271 bool resume_all_gangs; 272 uint64_t gang_context_addr; 273 }; 274 275 struct mes_reset_queue_input { 276 uint32_t queue_type; 277 uint32_t doorbell_offset; 278 bool use_mmio; 279 uint32_t me_id; 280 uint32_t pipe_id; 281 uint32_t queue_id; 282 uint64_t mqd_addr; 283 uint64_t wptr_addr; 284 uint32_t vmid; 285 bool legacy_gfx; 286 bool is_kq; 287 }; 288 289 struct mes_detect_and_reset_queue_input { 290 uint32_t queue_type; 291 bool detect_only; 292 }; 293 294 struct mes_inv_tlbs_pasid_input { 295 uint32_t xcc_id; 296 uint16_t pasid; 297 uint8_t hub_id; 298 uint8_t flush_type; 299 }; 300 301 enum mes_misc_opcode { 302 MES_MISC_OP_WRITE_REG, 303 MES_MISC_OP_READ_REG, 304 MES_MISC_OP_WRM_REG_WAIT, 305 MES_MISC_OP_WRM_REG_WR_WAIT, 306 MES_MISC_OP_SET_SHADER_DEBUGGER, 307 MES_MISC_OP_CHANGE_CONFIG, 308 }; 309 310 struct mes_misc_op_input { 311 enum mes_misc_opcode op; 312 313 union { 314 struct { 315 uint32_t reg_offset; 316 uint64_t buffer_addr; 317 } read_reg; 318 319 struct { 320 uint32_t reg_offset; 321 uint32_t reg_value; 322 } write_reg; 323 324 struct { 325 uint32_t ref; 326 uint32_t mask; 327 uint32_t reg0; 328 uint32_t reg1; 329 } wrm_reg; 330 331 struct { 332 uint64_t process_context_addr; 333 union { 334 struct { 335 uint32_t single_memop : 1; 336 uint32_t single_alu_op : 1; 337 uint32_t reserved: 29; 338 uint32_t process_ctx_flush: 1; 339 }; 340 uint32_t u32all; 341 } flags; 342 uint32_t spi_gdbg_per_vmid_cntl; 343 uint32_t tcp_watch_cntl[4]; 344 uint32_t trap_en; 345 } set_shader_debugger; 346 347 struct { 348 union { 349 struct { 350 uint32_t limit_single_process : 1; 351 uint32_t enable_hws_logging_buffer : 1; 352 uint32_t reserved : 30; 353 }; 354 uint32_t all; 355 } option; 356 struct { 357 uint32_t tdr_level; 358 uint32_t tdr_delay; 359 } tdr_config; 360 } change_config; 361 }; 362 }; 363 364 struct amdgpu_mes_funcs { 365 int (*add_hw_queue)(struct amdgpu_mes *mes, 366 struct mes_add_queue_input *input); 367 368 int (*remove_hw_queue)(struct amdgpu_mes *mes, 369 struct mes_remove_queue_input *input); 370 371 int (*map_legacy_queue)(struct amdgpu_mes *mes, 372 struct mes_map_legacy_queue_input *input); 373 374 int (*unmap_legacy_queue)(struct amdgpu_mes *mes, 375 struct mes_unmap_legacy_queue_input *input); 376 377 int (*suspend_gang)(struct amdgpu_mes *mes, 378 struct mes_suspend_gang_input *input); 379 380 int (*resume_gang)(struct amdgpu_mes *mes, 381 struct mes_resume_gang_input *input); 382 383 int (*misc_op)(struct amdgpu_mes *mes, 384 struct mes_misc_op_input *input); 385 386 int (*reset_hw_queue)(struct amdgpu_mes *mes, 387 struct mes_reset_queue_input *input); 388 389 int (*detect_and_reset_hung_queues)(struct amdgpu_mes *mes, 390 struct mes_detect_and_reset_queue_input *input); 391 392 393 int (*invalidate_tlbs_pasid)(struct amdgpu_mes *mes, 394 struct mes_inv_tlbs_pasid_input *input); 395 }; 396 397 #define amdgpu_mes_kiq_hw_init(adev) (adev)->mes.kiq_hw_init((adev)) 398 #define amdgpu_mes_kiq_hw_fini(adev) (adev)->mes.kiq_hw_fini((adev)) 399 400 int amdgpu_mes_init_microcode(struct amdgpu_device *adev, int pipe); 401 int amdgpu_mes_init(struct amdgpu_device *adev); 402 void amdgpu_mes_fini(struct amdgpu_device *adev); 403 404 int amdgpu_mes_suspend(struct amdgpu_device *adev); 405 int amdgpu_mes_resume(struct amdgpu_device *adev); 406 407 int amdgpu_mes_map_legacy_queue(struct amdgpu_device *adev, 408 struct amdgpu_ring *ring); 409 int amdgpu_mes_unmap_legacy_queue(struct amdgpu_device *adev, 410 struct amdgpu_ring *ring, 411 enum amdgpu_unmap_queues_action action, 412 u64 gpu_addr, u64 seq); 413 int amdgpu_mes_reset_legacy_queue(struct amdgpu_device *adev, 414 struct amdgpu_ring *ring, 415 unsigned int vmid, 416 bool use_mmio); 417 418 int amdgpu_mes_get_hung_queue_db_array_size(struct amdgpu_device *adev); 419 int amdgpu_mes_detect_and_reset_hung_queues(struct amdgpu_device *adev, 420 int queue_type, 421 bool detect_only, 422 unsigned int *hung_db_num, 423 u32 *hung_db_array); 424 425 uint32_t amdgpu_mes_rreg(struct amdgpu_device *adev, uint32_t reg); 426 int amdgpu_mes_wreg(struct amdgpu_device *adev, 427 uint32_t reg, uint32_t val); 428 int amdgpu_mes_reg_write_reg_wait(struct amdgpu_device *adev, 429 uint32_t reg0, uint32_t reg1, 430 uint32_t ref, uint32_t mask); 431 int amdgpu_mes_set_shader_debugger(struct amdgpu_device *adev, 432 uint64_t process_context_addr, 433 uint32_t spi_gdbg_per_vmid_cntl, 434 const uint32_t *tcp_watch_cntl, 435 uint32_t flags, 436 bool trap_en); 437 int amdgpu_mes_flush_shader_debugger(struct amdgpu_device *adev, 438 uint64_t process_context_addr); 439 440 uint32_t amdgpu_mes_get_aggregated_doorbell_index(struct amdgpu_device *adev, 441 enum amdgpu_mes_priority_level prio); 442 443 int amdgpu_mes_doorbell_process_slice(struct amdgpu_device *adev); 444 445 /* 446 * MES lock can be taken in MMU notifiers. 447 * 448 * A bit more detail about why to set no-FS reclaim with MES lock: 449 * 450 * The purpose of the MMU notifier is to stop GPU access to memory so 451 * that the Linux VM subsystem can move pages around safely. This is 452 * done by preempting user mode queues for the affected process. When 453 * MES is used, MES lock needs to be taken to preempt the queues. 454 * 455 * The MMU notifier callback entry point in the driver is 456 * amdgpu_mn_invalidate_range_start_hsa. The relevant call chain from 457 * there is: 458 * amdgpu_amdkfd_evict_userptr -> kgd2kfd_quiesce_mm -> 459 * kfd_process_evict_queues -> pdd->dev->dqm->ops.evict_process_queues 460 * 461 * The last part of the chain is a function pointer where we take the 462 * MES lock. 463 * 464 * The problem with taking locks in the MMU notifier is, that MMU 465 * notifiers can be called in reclaim-FS context. That's where the 466 * kernel frees up pages to make room for new page allocations under 467 * memory pressure. While we are running in reclaim-FS context, we must 468 * not trigger another memory reclaim operation because that would 469 * recursively reenter the reclaim code and cause a deadlock. The 470 * memalloc_nofs_save/restore calls guarantee that. 471 * 472 * In addition we also need to avoid lock dependencies on other locks taken 473 * under the MES lock, for example reservation locks. Here is a possible 474 * scenario of a deadlock: 475 * Thread A: takes and holds reservation lock | triggers reclaim-FS | 476 * MMU notifier | blocks trying to take MES lock 477 * Thread B: takes and holds MES lock | blocks trying to take reservation lock 478 * 479 * In this scenario Thread B gets involved in a deadlock even without 480 * triggering a reclaim-FS operation itself. 481 * To fix this and break the lock dependency chain you'd need to either: 482 * 1. protect reservation locks with memalloc_nofs_save/restore, or 483 * 2. avoid taking reservation locks under the MES lock. 484 * 485 * Reservation locks are taken all over the kernel in different subsystems, we 486 * have no control over them and their lock dependencies.So the only workable 487 * solution is to avoid taking other locks under the MES lock. 488 * As a result, make sure no reclaim-FS happens while holding this lock anywhere 489 * to prevent deadlocks when an MMU notifier runs in reclaim-FS context. 490 */ 491 static inline void amdgpu_mes_lock(struct amdgpu_mes *mes) 492 { 493 mutex_lock(&mes->mutex_hidden); 494 mes->saved_flags = memalloc_noreclaim_save(); 495 } 496 497 static inline void amdgpu_mes_unlock(struct amdgpu_mes *mes) 498 { 499 memalloc_noreclaim_restore(mes->saved_flags); 500 mutex_unlock(&mes->mutex_hidden); 501 } 502 503 bool amdgpu_mes_suspend_resume_all_supported(struct amdgpu_device *adev); 504 505 int amdgpu_mes_update_enforce_isolation(struct amdgpu_device *adev); 506 507 #endif /* __AMDGPU_MES_H__ */ 508