1 /* 2 * Copyright 2018 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #ifdef CONFIG_X86 29 #include <asm/hypervisor.h> 30 #endif 31 32 #include "amdgpu.h" 33 #include "amdgpu_gmc.h" 34 #include "amdgpu_ras.h" 35 #include "amdgpu_reset.h" 36 #include "amdgpu_xgmi.h" 37 38 #include <drm/drm_drv.h> 39 #include <drm/ttm/ttm_tt.h> 40 41 static const u64 four_gb = 0x100000000ULL; 42 43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev) 44 { 45 return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev); 46 } 47 48 /** 49 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 50 * 51 * @adev: amdgpu_device pointer 52 * 53 * Allocate video memory for pdb0 and map it for CPU access 54 * Returns 0 for success, error for failure. 55 */ 56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) 57 { 58 int r; 59 struct amdgpu_bo_param bp; 60 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 61 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; 62 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift; 63 64 memset(&bp, 0, sizeof(bp)); 65 bp.size = PAGE_ALIGN((npdes + 1) * 8); 66 bp.byte_align = PAGE_SIZE; 67 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 68 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 69 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 70 bp.type = ttm_bo_type_kernel; 71 bp.resv = NULL; 72 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 73 74 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); 75 if (r) 76 return r; 77 78 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); 79 if (unlikely(r != 0)) 80 goto bo_reserve_failure; 81 82 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); 83 if (r) 84 goto bo_pin_failure; 85 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); 86 if (r) 87 goto bo_kmap_failure; 88 89 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 90 return 0; 91 92 bo_kmap_failure: 93 amdgpu_bo_unpin(adev->gmc.pdb0_bo); 94 bo_pin_failure: 95 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 96 bo_reserve_failure: 97 amdgpu_bo_unref(&adev->gmc.pdb0_bo); 98 return r; 99 } 100 101 /** 102 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO 103 * 104 * @bo: the BO to get the PDE for 105 * @level: the level in the PD hirarchy 106 * @addr: resulting addr 107 * @flags: resulting flags 108 * 109 * Get the address and flags to be used for a PDE (Page Directory Entry). 110 */ 111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, 112 uint64_t *addr, uint64_t *flags) 113 { 114 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 115 116 switch (bo->tbo.resource->mem_type) { 117 case TTM_PL_TT: 118 *addr = bo->tbo.ttm->dma_address[0]; 119 break; 120 case TTM_PL_VRAM: 121 *addr = amdgpu_bo_gpu_offset(bo); 122 break; 123 default: 124 *addr = 0; 125 break; 126 } 127 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); 128 amdgpu_gmc_get_vm_pde(adev, level, addr, flags); 129 } 130 131 /* 132 * amdgpu_gmc_pd_addr - return the address of the root directory 133 */ 134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) 135 { 136 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 137 uint64_t pd_addr; 138 139 /* TODO: move that into ASIC specific code */ 140 if (adev->asic_type >= CHIP_VEGA10) { 141 uint64_t flags = AMDGPU_PTE_VALID; 142 143 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); 144 pd_addr |= flags; 145 } else { 146 pd_addr = amdgpu_bo_gpu_offset(bo); 147 } 148 return pd_addr; 149 } 150 151 /** 152 * amdgpu_gmc_set_pte_pde - update the page tables using CPU 153 * 154 * @adev: amdgpu_device pointer 155 * @cpu_pt_addr: cpu address of the page table 156 * @gpu_page_idx: entry in the page table to update 157 * @addr: dst addr to write into pte/pde 158 * @flags: access flags 159 * 160 * Update the page tables using CPU. 161 */ 162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, 163 uint32_t gpu_page_idx, uint64_t addr, 164 uint64_t flags) 165 { 166 void __iomem *ptr = (void *)cpu_pt_addr; 167 uint64_t value; 168 169 /* 170 * The following is for PTE only. GART does not have PDEs. 171 */ 172 value = addr & 0x0000FFFFFFFFF000ULL; 173 value |= flags; 174 writeq(value, ptr + (gpu_page_idx * 8)); 175 176 return 0; 177 } 178 179 /** 180 * amdgpu_gmc_agp_addr - return the address in the AGP address space 181 * 182 * @bo: TTM BO which needs the address, must be in GTT domain 183 * 184 * Tries to figure out how to access the BO through the AGP aperture. Returns 185 * AMDGPU_BO_INVALID_OFFSET if that is not possible. 186 */ 187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) 188 { 189 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 190 191 if (!bo->ttm) 192 return AMDGPU_BO_INVALID_OFFSET; 193 194 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) 195 return AMDGPU_BO_INVALID_OFFSET; 196 197 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) 198 return AMDGPU_BO_INVALID_OFFSET; 199 200 return adev->gmc.agp_start + bo->ttm->dma_address[0]; 201 } 202 203 /** 204 * amdgpu_gmc_vram_location - try to find VRAM location 205 * 206 * @adev: amdgpu device structure holding all necessary information 207 * @mc: memory controller structure holding memory information 208 * @base: base address at which to put VRAM 209 * 210 * Function will try to place VRAM at base address provided 211 * as parameter. 212 */ 213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 214 u64 base) 215 { 216 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20; 217 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; 218 219 mc->vram_start = base; 220 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 221 if (limit < mc->real_vram_size) 222 mc->real_vram_size = limit; 223 224 if (vis_limit && vis_limit < mc->visible_vram_size) 225 mc->visible_vram_size = vis_limit; 226 227 if (mc->real_vram_size < mc->visible_vram_size) 228 mc->visible_vram_size = mc->real_vram_size; 229 230 if (mc->xgmi.num_physical_nodes == 0) { 231 mc->fb_start = mc->vram_start; 232 mc->fb_end = mc->vram_end; 233 } 234 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 235 mc->mc_vram_size >> 20, mc->vram_start, 236 mc->vram_end, mc->real_vram_size >> 20); 237 } 238 239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture 240 * 241 * @adev: amdgpu device structure holding all necessary information 242 * @mc: memory controller structure holding memory information 243 * 244 * This function is only used if use GART for FB translation. In such 245 * case, we use sysvm aperture (vmid0 page tables) for both vram 246 * and gart (aka system memory) access. 247 * 248 * GPUVM (and our organization of vmid0 page tables) require sysvm 249 * aperture to be placed at a location aligned with 8 times of native 250 * page size. For example, if vm_context0_cntl.page_table_block_size 251 * is 12, then native page size is 8G (2M*2^12), sysvm should start 252 * with a 64G aligned address. For simplicity, we just put sysvm at 253 * address 0. So vram start at address 0 and gart is right after vram. 254 */ 255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 256 { 257 u64 hive_vram_start = 0; 258 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; 259 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; 260 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; 261 /* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */ 262 mc->gart_start = ALIGN(hive_vram_end + 1, four_gb); 263 mc->gart_end = mc->gart_start + mc->gart_size - 1; 264 if (amdgpu_virt_xgmi_migrate_enabled(adev)) { 265 /* set mc->vram_start to 0 to switch the returned GPU address of 266 * amdgpu_bo_create_reserved() from FB aperture to GART aperture. 267 */ 268 mc->vram_start = 0; 269 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 270 mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size); 271 } else { 272 mc->fb_start = hive_vram_start; 273 mc->fb_end = hive_vram_end; 274 } 275 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 276 mc->mc_vram_size >> 20, mc->vram_start, 277 mc->vram_end, mc->real_vram_size >> 20); 278 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 279 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 280 } 281 282 /** 283 * amdgpu_gmc_gart_location - try to find GART location 284 * 285 * @adev: amdgpu device structure holding all necessary information 286 * @mc: memory controller structure holding memory information 287 * @gart_placement: GART placement policy with respect to VRAM 288 * 289 * Function will try to place GART before or after VRAM. 290 * If GART size is bigger than space left then we ajust GART size. 291 * Thus function will never fails. 292 */ 293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 294 enum amdgpu_gart_placement gart_placement) 295 { 296 u64 size_af, size_bf; 297 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ 298 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); 299 300 /* VCE doesn't like it when BOs cross a 4GB segment, so align 301 * the GART base on a 4GB boundary as well. 302 */ 303 size_bf = mc->fb_start; 304 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); 305 306 if (mc->gart_size > max(size_bf, size_af)) { 307 dev_warn(adev->dev, "limiting GART\n"); 308 mc->gart_size = max(size_bf, size_af); 309 } 310 311 switch (gart_placement) { 312 case AMDGPU_GART_PLACEMENT_HIGH: 313 mc->gart_start = max_mc_address - mc->gart_size + 1; 314 break; 315 case AMDGPU_GART_PLACEMENT_LOW: 316 mc->gart_start = 0; 317 break; 318 case AMDGPU_GART_PLACEMENT_BEST_FIT: 319 default: 320 if ((size_bf >= mc->gart_size && size_bf < size_af) || 321 (size_af < mc->gart_size)) 322 mc->gart_start = 0; 323 else 324 mc->gart_start = max_mc_address - mc->gart_size + 1; 325 break; 326 } 327 328 mc->gart_start &= ~(four_gb - 1); 329 mc->gart_end = mc->gart_start + mc->gart_size - 1; 330 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 331 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 332 } 333 334 /** 335 * amdgpu_gmc_agp_location - try to find AGP location 336 * @adev: amdgpu device structure holding all necessary information 337 * @mc: memory controller structure holding memory information 338 * 339 * Function will place try to find a place for the AGP BAR in the MC address 340 * space. 341 * 342 * AGP BAR will be assigned the largest available hole in the address space. 343 * Should be called after VRAM and GART locations are setup. 344 */ 345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 346 { 347 const uint64_t sixteen_gb = 1ULL << 34; 348 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); 349 u64 size_af, size_bf; 350 351 if (mc->fb_start > mc->gart_start) { 352 size_bf = (mc->fb_start & sixteen_gb_mask) - 353 ALIGN(mc->gart_end + 1, sixteen_gb); 354 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); 355 } else { 356 size_bf = mc->fb_start & sixteen_gb_mask; 357 size_af = (mc->gart_start & sixteen_gb_mask) - 358 ALIGN(mc->fb_end + 1, sixteen_gb); 359 } 360 361 if (size_bf > size_af) { 362 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; 363 mc->agp_size = size_bf; 364 } else { 365 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); 366 mc->agp_size = size_af; 367 } 368 369 mc->agp_end = mc->agp_start + mc->agp_size - 1; 370 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", 371 mc->agp_size >> 20, mc->agp_start, mc->agp_end); 372 } 373 374 /** 375 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value. 376 * @adev: amdgpu device structure holding all necessary information 377 * @mc: memory controller structure holding memory information 378 * 379 * To disable the AGP aperture, you need to set the start to a larger 380 * value than the end. This function sets the default value which 381 * can then be overridden using amdgpu_gmc_agp_location() if you want 382 * to enable the AGP aperture on a specific chip. 383 * 384 */ 385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev, 386 struct amdgpu_gmc *mc) 387 { 388 mc->agp_start = 0xffffffffffff; 389 mc->agp_end = 0; 390 mc->agp_size = 0; 391 } 392 393 /** 394 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid 395 * 396 * @addr: 48 bit physical address, page aligned (36 significant bits) 397 * @pasid: 16 bit process address space identifier 398 */ 399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) 400 { 401 return addr << 4 | pasid; 402 } 403 404 /** 405 * amdgpu_gmc_filter_faults - filter VM faults 406 * 407 * @adev: amdgpu device structure 408 * @ih: interrupt ring that the fault received from 409 * @addr: address of the VM fault 410 * @pasid: PASID of the process causing the fault 411 * @timestamp: timestamp of the fault 412 * 413 * Returns: 414 * True if the fault was filtered and should not be processed further. 415 * False if the fault is a new one and needs to be handled. 416 */ 417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, 418 struct amdgpu_ih_ring *ih, uint64_t addr, 419 uint16_t pasid, uint64_t timestamp) 420 { 421 struct amdgpu_gmc *gmc = &adev->gmc; 422 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); 423 struct amdgpu_gmc_fault *fault; 424 uint32_t hash; 425 426 /* Stale retry fault if timestamp goes backward */ 427 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) 428 return true; 429 430 /* If we don't have space left in the ring buffer return immediately */ 431 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - 432 AMDGPU_GMC_FAULT_TIMEOUT; 433 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) 434 return true; 435 436 /* Try to find the fault in the hash */ 437 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 438 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 439 while (fault->timestamp >= stamp) { 440 uint64_t tmp; 441 442 if (atomic64_read(&fault->key) == key) { 443 /* 444 * if we get a fault which is already present in 445 * the fault_ring and the timestamp of 446 * the fault is after the expired timestamp, 447 * then this is a new fault that needs to be added 448 * into the fault ring. 449 */ 450 if (fault->timestamp_expiry != 0 && 451 amdgpu_ih_ts_after(fault->timestamp_expiry, 452 timestamp)) 453 break; 454 else 455 return true; 456 } 457 458 tmp = fault->timestamp; 459 fault = &gmc->fault_ring[fault->next]; 460 461 /* Check if the entry was reused */ 462 if (fault->timestamp >= tmp) 463 break; 464 } 465 466 /* Add the fault to the ring */ 467 fault = &gmc->fault_ring[gmc->last_fault]; 468 atomic64_set(&fault->key, key); 469 fault->timestamp = timestamp; 470 471 /* And update the hash */ 472 fault->next = gmc->fault_hash[hash].idx; 473 gmc->fault_hash[hash].idx = gmc->last_fault++; 474 return false; 475 } 476 477 /** 478 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter 479 * 480 * @adev: amdgpu device structure 481 * @addr: address of the VM fault 482 * @pasid: PASID of the process causing the fault 483 * 484 * Remove the address from fault filter, then future vm fault on this address 485 * will pass to retry fault handler to recover. 486 */ 487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, 488 uint16_t pasid) 489 { 490 struct amdgpu_gmc *gmc = &adev->gmc; 491 uint64_t key = amdgpu_gmc_fault_key(addr, pasid); 492 struct amdgpu_ih_ring *ih; 493 struct amdgpu_gmc_fault *fault; 494 uint32_t last_wptr; 495 uint64_t last_ts; 496 uint32_t hash; 497 uint64_t tmp; 498 499 if (adev->irq.retry_cam_enabled) 500 return; 501 502 ih = &adev->irq.ih1; 503 /* Get the WPTR of the last entry in IH ring */ 504 last_wptr = amdgpu_ih_get_wptr(adev, ih); 505 /* Order wptr with ring data. */ 506 rmb(); 507 /* Get the timetamp of the last entry in IH ring */ 508 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1); 509 510 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 511 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 512 do { 513 if (atomic64_read(&fault->key) == key) { 514 /* 515 * Update the timestamp when this fault 516 * expired. 517 */ 518 fault->timestamp_expiry = last_ts; 519 break; 520 } 521 522 tmp = fault->timestamp; 523 fault = &gmc->fault_ring[fault->next]; 524 } while (fault->timestamp < tmp); 525 } 526 527 int amdgpu_gmc_handle_retry_fault(struct amdgpu_device *adev, 528 struct amdgpu_iv_entry *entry, 529 u64 addr, 530 u32 cam_index, 531 u32 node_id, 532 bool write_fault) 533 { 534 int ret; 535 536 if (adev->irq.retry_cam_enabled) { 537 /* Delegate it to a different ring if the hardware hasn't 538 * already done it. 539 */ 540 if (entry->ih == &adev->irq.ih) { 541 amdgpu_irq_delegate(adev, entry, 8); 542 return 1; 543 } 544 545 ret = amdgpu_vm_handle_fault(adev, entry->pasid, entry->vmid, node_id, 546 addr, entry->timestamp, write_fault); 547 WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index); 548 if (ret) 549 return 1; 550 } else { 551 /* Process it only if it's the first fault for this address */ 552 if (entry->ih != &adev->irq.ih_soft && 553 amdgpu_gmc_filter_faults(adev, entry->ih, addr, entry->pasid, 554 entry->timestamp)) 555 return 1; 556 557 /* Delegate it to a different ring if the hardware hasn't 558 * already done it. 559 */ 560 if (entry->ih == &adev->irq.ih) { 561 amdgpu_irq_delegate(adev, entry, 8); 562 return 1; 563 } 564 565 /* Try to handle the recoverable page faults by filling page 566 * tables 567 */ 568 if (amdgpu_vm_handle_fault(adev, entry->pasid, entry->vmid, node_id, 569 addr, entry->timestamp, write_fault)) 570 return 1; 571 } 572 return 0; 573 } 574 575 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev) 576 { 577 int r; 578 579 /* umc ras block */ 580 r = amdgpu_umc_ras_sw_init(adev); 581 if (r) 582 return r; 583 584 /* mmhub ras block */ 585 r = amdgpu_mmhub_ras_sw_init(adev); 586 if (r) 587 return r; 588 589 /* hdp ras block */ 590 r = amdgpu_hdp_ras_sw_init(adev); 591 if (r) 592 return r; 593 594 /* mca.x ras block */ 595 r = amdgpu_mca_mp0_ras_sw_init(adev); 596 if (r) 597 return r; 598 599 r = amdgpu_mca_mp1_ras_sw_init(adev); 600 if (r) 601 return r; 602 603 r = amdgpu_mca_mpio_ras_sw_init(adev); 604 if (r) 605 return r; 606 607 /* xgmi ras block */ 608 r = amdgpu_xgmi_ras_sw_init(adev); 609 if (r) 610 return r; 611 612 return 0; 613 } 614 615 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) 616 { 617 return 0; 618 } 619 620 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) 621 { 622 623 } 624 625 /* 626 * The latest engine allocation on gfx9/10 is: 627 * Engine 2, 3: firmware 628 * Engine 0, 1, 4~16: amdgpu ring, 629 * subject to change when ring number changes 630 * Engine 17: Gart flushes 631 */ 632 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3 633 634 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) 635 { 636 struct amdgpu_ring *ring; 637 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0}; 638 unsigned i; 639 unsigned vmhub, inv_eng; 640 struct amdgpu_ring *shared_ring; 641 642 /* init the vm inv eng for all vmhubs */ 643 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) { 644 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP; 645 /* reserve engine 5 for firmware */ 646 if (adev->enable_mes) 647 vm_inv_engs[i] &= ~(1 << 5); 648 /* reserve engine 6 for uni mes */ 649 if (adev->enable_uni_mes) 650 vm_inv_engs[i] &= ~(1 << 6); 651 /* reserve mmhub engine 3 for firmware */ 652 if (adev->enable_umsch_mm) 653 vm_inv_engs[i] &= ~(1 << 3); 654 } 655 656 for (i = 0; i < adev->num_rings; ++i) { 657 ring = adev->rings[i]; 658 vmhub = ring->vm_hub; 659 660 if (ring == &adev->mes.ring[0] || 661 ring == &adev->mes.ring[1] || 662 ring == &adev->umsch_mm.ring || 663 ring == &adev->cper.ring_buf) 664 continue; 665 666 /* Skip if the ring is a shared ring */ 667 if (amdgpu_sdma_is_shared_inv_eng(adev, ring)) 668 continue; 669 670 inv_eng = ffs(vm_inv_engs[vmhub]); 671 if (!inv_eng) { 672 dev_err(adev->dev, "no VM inv eng for ring %s\n", 673 ring->name); 674 return -EINVAL; 675 } 676 677 ring->vm_inv_eng = inv_eng - 1; 678 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); 679 680 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", 681 ring->name, ring->vm_inv_eng, ring->vm_hub); 682 /* SDMA has a special packet which allows it to use the same 683 * invalidation engine for all the rings in one instance. 684 * Therefore, we do not allocate a separate VM invalidation engine 685 * for SDMA page rings. Instead, they share the VM invalidation 686 * engine with the SDMA gfx ring. This change ensures efficient 687 * resource management and avoids the issue of insufficient VM 688 * invalidation engines. 689 */ 690 shared_ring = amdgpu_sdma_get_shared_ring(adev, ring); 691 if (shared_ring) { 692 shared_ring->vm_inv_eng = ring->vm_inv_eng; 693 dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n", 694 ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub); 695 continue; 696 } 697 } 698 699 return 0; 700 } 701 702 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, 703 uint32_t vmhub, uint32_t flush_type) 704 { 705 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 706 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub]; 707 struct dma_fence *fence; 708 struct amdgpu_job *job; 709 int r; 710 711 if (!hub->sdma_invalidation_workaround || vmid || 712 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready || 713 !ring->sched.ready) { 714 /* 715 * A GPU reset should flush all TLBs anyway, so no need to do 716 * this while one is ongoing. 717 */ 718 if (!down_read_trylock(&adev->reset_domain->sem)) 719 return; 720 721 if (adev->gmc.flush_tlb_needs_extra_type_2) 722 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 723 vmhub, 2); 724 725 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 726 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 727 vmhub, 0); 728 729 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, 730 flush_type); 731 up_read(&adev->reset_domain->sem); 732 return; 733 } 734 735 /* The SDMA on Navi 1x has a bug which can theoretically result in memory 736 * corruption if an invalidation happens at the same time as an VA 737 * translation. Avoid this by doing the invalidation from the SDMA 738 * itself at least for GART. 739 */ 740 mutex_lock(&adev->mman.gtt_window_lock); 741 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.default_entity.base, 742 AMDGPU_FENCE_OWNER_UNDEFINED, 743 16 * 4, AMDGPU_IB_POOL_IMMEDIATE, 744 &job, AMDGPU_KERNEL_JOB_ID_FLUSH_GPU_TLB); 745 if (r) 746 goto error_alloc; 747 748 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 749 job->vm_needs_flush = true; 750 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop; 751 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 752 fence = amdgpu_job_submit(job); 753 mutex_unlock(&adev->mman.gtt_window_lock); 754 755 dma_fence_wait(fence, false); 756 dma_fence_put(fence); 757 758 return; 759 760 error_alloc: 761 mutex_unlock(&adev->mman.gtt_window_lock); 762 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r); 763 } 764 765 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid, 766 uint32_t flush_type, bool all_hub, 767 uint32_t inst) 768 { 769 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring; 770 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst]; 771 unsigned int ndw; 772 int r, cnt = 0; 773 uint32_t seq; 774 775 /* 776 * A GPU reset should flush all TLBs anyway, so no need to do 777 * this while one is ongoing. 778 */ 779 if (!down_read_trylock(&adev->reset_domain->sem)) 780 return 0; 781 782 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) { 783 784 if (!adev->gmc.gmc_funcs->flush_gpu_tlb_pasid) 785 return 0; 786 787 if (adev->gmc.flush_tlb_needs_extra_type_2) 788 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 789 2, all_hub, 790 inst); 791 792 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 793 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 794 0, all_hub, 795 inst); 796 797 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 798 flush_type, all_hub, 799 inst); 800 r = 0; 801 } else { 802 /* 2 dwords flush + 8 dwords fence */ 803 ndw = kiq->pmf->invalidate_tlbs_size + 8; 804 805 if (adev->gmc.flush_tlb_needs_extra_type_2) 806 ndw += kiq->pmf->invalidate_tlbs_size; 807 808 if (adev->gmc.flush_tlb_needs_extra_type_0) 809 ndw += kiq->pmf->invalidate_tlbs_size; 810 811 spin_lock(&adev->gfx.kiq[inst].ring_lock); 812 r = amdgpu_ring_alloc(ring, ndw); 813 if (r) { 814 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 815 goto error_unlock_reset; 816 } 817 if (adev->gmc.flush_tlb_needs_extra_type_2) 818 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub); 819 820 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0) 821 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub); 822 823 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub); 824 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 825 if (r) { 826 amdgpu_ring_undo(ring); 827 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 828 goto error_unlock_reset; 829 } 830 831 amdgpu_ring_commit(ring); 832 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 833 834 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 835 836 might_sleep(); 837 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 838 !amdgpu_reset_pending(adev->reset_domain)) { 839 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 840 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 841 } 842 843 if (cnt > MAX_KIQ_REG_TRY) { 844 dev_err(adev->dev, "timeout waiting for kiq fence\n"); 845 r = -ETIME; 846 } else 847 r = 0; 848 } 849 850 error_unlock_reset: 851 up_read(&adev->reset_domain->sem); 852 return r; 853 } 854 855 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev, 856 uint32_t reg0, uint32_t reg1, 857 uint32_t ref, uint32_t mask, 858 uint32_t xcc_inst) 859 { 860 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst]; 861 struct amdgpu_ring *ring = &kiq->ring; 862 signed long r, cnt = 0; 863 unsigned long flags; 864 uint32_t seq; 865 866 if (adev->mes.ring[MES_PIPE_INST(xcc_inst, 0)].sched.ready) { 867 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1, 868 ref, mask, xcc_inst); 869 return; 870 } 871 872 spin_lock_irqsave(&kiq->ring_lock, flags); 873 amdgpu_ring_alloc(ring, 32); 874 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1, 875 ref, mask); 876 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 877 if (r) 878 goto failed_undo; 879 880 amdgpu_ring_commit(ring); 881 spin_unlock_irqrestore(&kiq->ring_lock, flags); 882 883 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 884 885 /* don't wait anymore for IRQ context */ 886 if (r < 1 && in_interrupt()) 887 goto failed_kiq; 888 889 might_sleep(); 890 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 891 !amdgpu_reset_pending(adev->reset_domain)) { 892 893 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 894 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 895 } 896 897 if (cnt > MAX_KIQ_REG_TRY) 898 goto failed_kiq; 899 900 return; 901 902 failed_undo: 903 amdgpu_ring_undo(ring); 904 spin_unlock_irqrestore(&kiq->ring_lock, flags); 905 failed_kiq: 906 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1); 907 } 908 909 /** 910 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ 911 * @adev: amdgpu_device pointer 912 * 913 * Check and set if an the device @adev supports Trusted Memory 914 * Zones (TMZ). 915 */ 916 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) 917 { 918 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { 919 /* RAVEN */ 920 case IP_VERSION(9, 2, 2): 921 case IP_VERSION(9, 1, 0): 922 /* RENOIR looks like RAVEN */ 923 case IP_VERSION(9, 3, 0): 924 /* GC 10.3.7 */ 925 case IP_VERSION(10, 3, 7): 926 /* GC 11.0.1 */ 927 case IP_VERSION(11, 0, 1): 928 if (amdgpu_tmz == 0) { 929 adev->gmc.tmz_enabled = false; 930 dev_info(adev->dev, 931 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); 932 } else { 933 adev->gmc.tmz_enabled = true; 934 dev_info(adev->dev, 935 "Trusted Memory Zone (TMZ) feature enabled\n"); 936 } 937 break; 938 case IP_VERSION(10, 1, 10): 939 case IP_VERSION(10, 1, 1): 940 case IP_VERSION(10, 1, 2): 941 case IP_VERSION(10, 1, 3): 942 case IP_VERSION(10, 3, 0): 943 case IP_VERSION(10, 3, 2): 944 case IP_VERSION(10, 3, 4): 945 case IP_VERSION(10, 3, 5): 946 case IP_VERSION(10, 3, 6): 947 /* VANGOGH */ 948 case IP_VERSION(10, 3, 1): 949 /* YELLOW_CARP*/ 950 case IP_VERSION(10, 3, 3): 951 case IP_VERSION(11, 0, 4): 952 case IP_VERSION(11, 5, 0): 953 case IP_VERSION(11, 5, 1): 954 case IP_VERSION(11, 5, 2): 955 case IP_VERSION(11, 5, 3): 956 case IP_VERSION(11, 5, 4): 957 /* Don't enable it by default yet. 958 */ 959 if (amdgpu_tmz < 1) { 960 adev->gmc.tmz_enabled = false; 961 dev_info(adev->dev, 962 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); 963 } else { 964 adev->gmc.tmz_enabled = true; 965 dev_info(adev->dev, 966 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); 967 } 968 break; 969 default: 970 adev->gmc.tmz_enabled = false; 971 dev_info(adev->dev, 972 "Trusted Memory Zone (TMZ) feature not supported\n"); 973 break; 974 } 975 } 976 977 /** 978 * amdgpu_gmc_noretry_set -- set per asic noretry defaults 979 * @adev: amdgpu_device pointer 980 * 981 * Set a per asic default for the no-retry parameter. 982 * 983 */ 984 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) 985 { 986 struct amdgpu_gmc *gmc = &adev->gmc; 987 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); 988 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) || 989 gc_ver == IP_VERSION(9, 4, 0) || 990 gc_ver == IP_VERSION(9, 4, 1) || 991 gc_ver == IP_VERSION(9, 4, 2) || 992 gc_ver == IP_VERSION(9, 4, 3) || 993 gc_ver == IP_VERSION(9, 4, 4) || 994 gc_ver == IP_VERSION(9, 5, 0) || 995 gc_ver >= IP_VERSION(10, 3, 0)); 996 997 if (!amdgpu_sriov_xnack_support(adev)) 998 gmc->noretry = 1; 999 else 1000 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry; 1001 } 1002 1003 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, 1004 bool enable) 1005 { 1006 struct amdgpu_vmhub *hub; 1007 u32 tmp, reg, i; 1008 1009 hub = &adev->vmhub[hub_type]; 1010 for (i = 0; i < 16; i++) { 1011 reg = hub->vm_context0_cntl + hub->ctx_distance * i; 1012 1013 tmp = (hub_type == AMDGPU_GFXHUB(0)) ? 1014 RREG32_SOC15_IP(GC, reg) : 1015 RREG32_SOC15_IP(MMHUB, reg); 1016 1017 if (enable) 1018 tmp |= hub->vm_cntx_cntl_vm_fault; 1019 else 1020 tmp &= ~hub->vm_cntx_cntl_vm_fault; 1021 1022 (hub_type == AMDGPU_GFXHUB(0)) ? 1023 WREG32_SOC15_IP(GC, reg, tmp) : 1024 WREG32_SOC15_IP(MMHUB, reg, tmp); 1025 } 1026 } 1027 1028 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) 1029 { 1030 unsigned size; 1031 1032 /* 1033 * Some ASICs need to reserve a region of video memory to avoid access 1034 * from driver 1035 */ 1036 adev->mman.stolen_reserved_offset = 0; 1037 adev->mman.stolen_reserved_size = 0; 1038 1039 /* 1040 * TODO: 1041 * Currently there is a bug where some memory client outside 1042 * of the driver writes to first 8M of VRAM on S3 resume, 1043 * this overrides GART which by default gets placed in first 8M and 1044 * causes VM_FAULTS once GTT is accessed. 1045 * Keep the stolen memory reservation until the while this is not solved. 1046 */ 1047 switch (adev->asic_type) { 1048 case CHIP_VEGA10: 1049 adev->mman.keep_stolen_vga_memory = true; 1050 /* 1051 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area. 1052 */ 1053 #ifdef CONFIG_X86 1054 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) { 1055 adev->mman.stolen_reserved_offset = 0x500000; 1056 adev->mman.stolen_reserved_size = 0x200000; 1057 } 1058 #endif 1059 break; 1060 case CHIP_RAVEN: 1061 case CHIP_RENOIR: 1062 adev->mman.keep_stolen_vga_memory = true; 1063 break; 1064 default: 1065 adev->mman.keep_stolen_vga_memory = false; 1066 break; 1067 } 1068 1069 if (amdgpu_sriov_vf(adev) || 1070 !amdgpu_device_has_display_hardware(adev)) { 1071 size = 0; 1072 } else { 1073 size = amdgpu_gmc_get_vbios_fb_size(adev); 1074 1075 if (adev->mman.keep_stolen_vga_memory) 1076 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); 1077 } 1078 1079 /* set to 0 if the pre-OS buffer uses up most of vram */ 1080 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) 1081 size = 0; 1082 1083 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { 1084 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; 1085 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; 1086 } else { 1087 adev->mman.stolen_vga_size = size; 1088 adev->mman.stolen_extended_size = 0; 1089 } 1090 } 1091 1092 /** 1093 * amdgpu_gmc_init_pdb0 - initialize PDB0 1094 * 1095 * @adev: amdgpu_device pointer 1096 * 1097 * This function is only used when GART page table is used 1098 * for FB address translatioin. In such a case, we construct 1099 * a 2-level system VM page table: PDB0->PTB, to cover both 1100 * VRAM of the hive and system memory. 1101 * 1102 * PDB0 is static, initialized once on driver initialization. 1103 * The first n entries of PDB0 are used as PTE by setting 1104 * P bit to 1, pointing to VRAM. The n+1'th entry points 1105 * to a big PTB covering system memory. 1106 * 1107 */ 1108 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) 1109 { 1110 int i; 1111 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? 1112 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M 1113 */ 1114 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 1115 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21; 1116 u64 vram_addr, vram_end; 1117 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); 1118 int idx; 1119 1120 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1121 return; 1122 1123 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 1124 flags |= AMDGPU_PTE_WRITEABLE; 1125 flags |= AMDGPU_PTE_SNOOPED; 1126 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); 1127 flags |= AMDGPU_PDE_PTE_FLAG(adev); 1128 1129 vram_addr = adev->vm_manager.vram_base_offset; 1130 if (!amdgpu_virt_xgmi_migrate_enabled(adev)) 1131 vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; 1132 vram_end = vram_addr + vram_size; 1133 1134 /* The first n PDE0 entries are used as PTE, 1135 * pointing to vram 1136 */ 1137 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) 1138 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); 1139 1140 /* The n+1'th PDE0 entry points to a huge 1141 * PTB who has more than 512 entries each 1142 * pointing to a 4K system page 1143 */ 1144 flags = AMDGPU_PTE_VALID; 1145 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0); 1146 /* Requires gart_ptb_gpu_pa to be 4K aligned */ 1147 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); 1148 drm_dev_exit(idx); 1149 } 1150 1151 /** 1152 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC 1153 * address 1154 * 1155 * @adev: amdgpu_device pointer 1156 * @mc_addr: MC address of buffer 1157 */ 1158 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) 1159 { 1160 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; 1161 } 1162 1163 /** 1164 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from 1165 * GPU's view 1166 * 1167 * @adev: amdgpu_device pointer 1168 * @bo: amdgpu buffer object 1169 */ 1170 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 1171 { 1172 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); 1173 } 1174 1175 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) 1176 { 1177 struct amdgpu_bo *vram_bo = NULL; 1178 uint64_t vram_gpu = 0; 1179 void *vram_ptr = NULL; 1180 1181 int ret, size = 0x100000; 1182 uint8_t cptr[10]; 1183 1184 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, 1185 AMDGPU_GEM_DOMAIN_VRAM, 1186 &vram_bo, 1187 &vram_gpu, 1188 &vram_ptr); 1189 if (ret) 1190 return ret; 1191 1192 memset(vram_ptr, 0x86, size); 1193 memset(cptr, 0x86, 10); 1194 1195 /** 1196 * Check the start, the mid, and the end of the memory if the content of 1197 * each byte is the pattern "0x86". If yes, we suppose the vram bo is 1198 * workable. 1199 * 1200 * Note: If check the each byte of whole 1M bo, it will cost too many 1201 * seconds, so here, we just pick up three parts for emulation. 1202 */ 1203 ret = memcmp(vram_ptr, cptr, 10); 1204 if (ret) { 1205 ret = -EIO; 1206 goto release_buffer; 1207 } 1208 1209 ret = memcmp(vram_ptr + (size / 2), cptr, 10); 1210 if (ret) { 1211 ret = -EIO; 1212 goto release_buffer; 1213 } 1214 1215 ret = memcmp(vram_ptr + size - 10, cptr, 10); 1216 if (ret) { 1217 ret = -EIO; 1218 goto release_buffer; 1219 } 1220 1221 release_buffer: 1222 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, 1223 &vram_ptr); 1224 1225 return ret; 1226 } 1227 1228 static const char *nps_desc[] = { 1229 [AMDGPU_NPS1_PARTITION_MODE] = "NPS1", 1230 [AMDGPU_NPS2_PARTITION_MODE] = "NPS2", 1231 [AMDGPU_NPS3_PARTITION_MODE] = "NPS3", 1232 [AMDGPU_NPS4_PARTITION_MODE] = "NPS4", 1233 [AMDGPU_NPS6_PARTITION_MODE] = "NPS6", 1234 [AMDGPU_NPS8_PARTITION_MODE] = "NPS8", 1235 }; 1236 1237 static ssize_t available_memory_partition_show(struct device *dev, 1238 struct device_attribute *addr, 1239 char *buf) 1240 { 1241 struct drm_device *ddev = dev_get_drvdata(dev); 1242 struct amdgpu_device *adev = drm_to_adev(ddev); 1243 int size = 0, mode; 1244 char *sep = ""; 1245 1246 for_each_inst(mode, adev->gmc.supported_nps_modes) { 1247 size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]); 1248 sep = ", "; 1249 } 1250 size += sysfs_emit_at(buf, size, "\n"); 1251 1252 return size; 1253 } 1254 1255 static ssize_t current_memory_partition_store(struct device *dev, 1256 struct device_attribute *attr, 1257 const char *buf, size_t count) 1258 { 1259 struct drm_device *ddev = dev_get_drvdata(dev); 1260 struct amdgpu_device *adev = drm_to_adev(ddev); 1261 enum amdgpu_memory_partition mode; 1262 struct amdgpu_hive_info *hive; 1263 int i; 1264 1265 mode = UNKNOWN_MEMORY_PARTITION_MODE; 1266 for_each_inst(i, adev->gmc.supported_nps_modes) { 1267 if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) { 1268 mode = i; 1269 break; 1270 } 1271 } 1272 1273 if (mode == UNKNOWN_MEMORY_PARTITION_MODE) 1274 return -EINVAL; 1275 1276 if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) { 1277 dev_info( 1278 adev->dev, 1279 "requested NPS mode is same as current NPS mode, skipping\n"); 1280 return count; 1281 } 1282 1283 /* If device is part of hive, all devices in the hive should request the 1284 * same mode. Hence store the requested mode in hive. 1285 */ 1286 hive = amdgpu_get_xgmi_hive(adev); 1287 if (hive) { 1288 atomic_set(&hive->requested_nps_mode, mode); 1289 amdgpu_put_xgmi_hive(hive); 1290 } else { 1291 adev->gmc.requested_nps_mode = mode; 1292 } 1293 1294 dev_info( 1295 adev->dev, 1296 "NPS mode change requested, please remove and reload the driver\n"); 1297 1298 return count; 1299 } 1300 1301 static ssize_t current_memory_partition_show( 1302 struct device *dev, struct device_attribute *addr, char *buf) 1303 { 1304 struct drm_device *ddev = dev_get_drvdata(dev); 1305 struct amdgpu_device *adev = drm_to_adev(ddev); 1306 enum amdgpu_memory_partition mode; 1307 1308 /* Only minimal precaution taken to reject requests while in reset */ 1309 if (amdgpu_in_reset(adev)) 1310 return -EPERM; 1311 1312 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1313 if ((mode >= ARRAY_SIZE(nps_desc)) || 1314 (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode)) 1315 return sysfs_emit(buf, "UNKNOWN\n"); 1316 1317 return sysfs_emit(buf, "%s\n", nps_desc[mode]); 1318 } 1319 1320 static DEVICE_ATTR_RW(current_memory_partition); 1321 static DEVICE_ATTR_RO(available_memory_partition); 1322 1323 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev) 1324 { 1325 bool nps_switch_support; 1326 int r = 0; 1327 1328 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1329 return 0; 1330 1331 nps_switch_support = (hweight32(adev->gmc.supported_nps_modes & 1332 AMDGPU_ALL_NPS_MASK) > 1); 1333 if (!nps_switch_support) 1334 dev_attr_current_memory_partition.attr.mode &= 1335 ~(S_IWUSR | S_IWGRP | S_IWOTH); 1336 else 1337 r = device_create_file(adev->dev, 1338 &dev_attr_available_memory_partition); 1339 1340 if (r) 1341 return r; 1342 1343 return device_create_file(adev->dev, 1344 &dev_attr_current_memory_partition); 1345 } 1346 1347 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev) 1348 { 1349 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1350 return; 1351 1352 device_remove_file(adev->dev, &dev_attr_current_memory_partition); 1353 device_remove_file(adev->dev, &dev_attr_available_memory_partition); 1354 } 1355 1356 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev, 1357 struct amdgpu_mem_partition_info *mem_ranges, 1358 uint8_t *exp_ranges) 1359 { 1360 struct amdgpu_gmc_memrange *ranges; 1361 int range_cnt, ret, i, j; 1362 uint32_t nps_type; 1363 bool refresh; 1364 1365 if (!mem_ranges || !exp_ranges) 1366 return -EINVAL; 1367 1368 refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) && 1369 (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS); 1370 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges, 1371 &range_cnt, refresh); 1372 1373 if (ret) 1374 return ret; 1375 1376 /* TODO: For now, expect ranges and partition count to be the same. 1377 * Adjust if there are holes expected in any NPS domain. 1378 */ 1379 if (*exp_ranges && (range_cnt != *exp_ranges)) { 1380 dev_warn( 1381 adev->dev, 1382 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d", 1383 *exp_ranges, nps_type, range_cnt); 1384 ret = -EINVAL; 1385 goto err; 1386 } 1387 1388 for (i = 0; i < range_cnt; ++i) { 1389 if (ranges[i].base_address >= ranges[i].limit_address) { 1390 dev_warn( 1391 adev->dev, 1392 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx", 1393 nps_type, i, ranges[i].base_address, 1394 ranges[i].limit_address); 1395 ret = -EINVAL; 1396 goto err; 1397 } 1398 1399 /* Check for overlaps, not expecting any now */ 1400 for (j = i - 1; j >= 0; j--) { 1401 if (max(ranges[j].base_address, 1402 ranges[i].base_address) <= 1403 min(ranges[j].limit_address, 1404 ranges[i].limit_address)) { 1405 dev_warn( 1406 adev->dev, 1407 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]", 1408 ranges[j].base_address, 1409 ranges[j].limit_address, 1410 ranges[i].base_address, 1411 ranges[i].limit_address); 1412 ret = -EINVAL; 1413 goto err; 1414 } 1415 } 1416 1417 mem_ranges[i].range.fpfn = 1418 (ranges[i].base_address - 1419 adev->vm_manager.vram_base_offset) >> 1420 AMDGPU_GPU_PAGE_SHIFT; 1421 mem_ranges[i].range.lpfn = 1422 (ranges[i].limit_address - 1423 adev->vm_manager.vram_base_offset) >> 1424 AMDGPU_GPU_PAGE_SHIFT; 1425 mem_ranges[i].size = 1426 ranges[i].limit_address - ranges[i].base_address + 1; 1427 } 1428 1429 if (!*exp_ranges) 1430 *exp_ranges = range_cnt; 1431 err: 1432 kfree(ranges); 1433 1434 return ret; 1435 } 1436 1437 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev, 1438 int nps_mode) 1439 { 1440 /* Not supported on VF devices and APUs */ 1441 if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU)) 1442 return -EOPNOTSUPP; 1443 1444 if (!adev->psp.funcs) { 1445 dev_err(adev->dev, 1446 "PSP interface not available for nps mode change request"); 1447 return -EINVAL; 1448 } 1449 1450 return psp_memory_partition(&adev->psp, nps_mode); 1451 } 1452 1453 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev, 1454 int req_nps_mode, 1455 int cur_nps_mode) 1456 { 1457 return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) == 1458 BIT(req_nps_mode)) && 1459 req_nps_mode != cur_nps_mode); 1460 } 1461 1462 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev) 1463 { 1464 int req_nps_mode, cur_nps_mode, r; 1465 struct amdgpu_hive_info *hive; 1466 1467 if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes || 1468 !adev->gmc.gmc_funcs->request_mem_partition_mode) 1469 return; 1470 1471 cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1472 hive = amdgpu_get_xgmi_hive(adev); 1473 if (hive) { 1474 req_nps_mode = atomic_read(&hive->requested_nps_mode); 1475 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, 1476 cur_nps_mode)) { 1477 amdgpu_put_xgmi_hive(hive); 1478 return; 1479 } 1480 r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode); 1481 amdgpu_put_xgmi_hive(hive); 1482 goto out; 1483 } 1484 1485 req_nps_mode = adev->gmc.requested_nps_mode; 1486 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode)) 1487 return; 1488 1489 /* even if this fails, we should let driver unload w/o blocking */ 1490 r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode); 1491 out: 1492 if (r) 1493 dev_err(adev->dev, "NPS mode change request failed\n"); 1494 else 1495 dev_info( 1496 adev->dev, 1497 "NPS mode change request done, reload driver to complete the change\n"); 1498 } 1499 1500 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev) 1501 { 1502 if (adev->gmc.gmc_funcs->need_reset_on_init) 1503 return adev->gmc.gmc_funcs->need_reset_on_init(adev); 1504 1505 return false; 1506 } 1507 1508 enum amdgpu_memory_partition 1509 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev) 1510 { 1511 switch (adev->gmc.num_mem_partitions) { 1512 case 0: 1513 return UNKNOWN_MEMORY_PARTITION_MODE; 1514 case 1: 1515 return AMDGPU_NPS1_PARTITION_MODE; 1516 case 2: 1517 return AMDGPU_NPS2_PARTITION_MODE; 1518 case 4: 1519 return AMDGPU_NPS4_PARTITION_MODE; 1520 case 8: 1521 return AMDGPU_NPS8_PARTITION_MODE; 1522 default: 1523 return AMDGPU_NPS1_PARTITION_MODE; 1524 } 1525 } 1526 1527 enum amdgpu_memory_partition 1528 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes) 1529 { 1530 enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE; 1531 1532 if (adev->nbio.funcs && 1533 adev->nbio.funcs->get_memory_partition_mode) 1534 mode = adev->nbio.funcs->get_memory_partition_mode(adev, 1535 supp_modes); 1536 else 1537 dev_warn(adev->dev, "memory partition mode query is not supported\n"); 1538 1539 return mode; 1540 } 1541 1542 enum amdgpu_memory_partition 1543 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev) 1544 { 1545 if (amdgpu_sriov_vf(adev)) 1546 return amdgpu_gmc_get_vf_memory_partition(adev); 1547 else 1548 return amdgpu_gmc_get_memory_partition(adev, NULL); 1549 } 1550 1551 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev) 1552 { 1553 enum amdgpu_memory_partition mode; 1554 u32 supp_modes; 1555 bool valid; 1556 1557 mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes); 1558 1559 /* Mode detected by hardware not present in supported modes */ 1560 if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) && 1561 !(BIT(mode - 1) & supp_modes)) 1562 return false; 1563 1564 switch (mode) { 1565 case UNKNOWN_MEMORY_PARTITION_MODE: 1566 case AMDGPU_NPS1_PARTITION_MODE: 1567 valid = (adev->gmc.num_mem_partitions == 1); 1568 break; 1569 case AMDGPU_NPS2_PARTITION_MODE: 1570 valid = (adev->gmc.num_mem_partitions == 2); 1571 break; 1572 case AMDGPU_NPS4_PARTITION_MODE: 1573 valid = (adev->gmc.num_mem_partitions == 3 || 1574 adev->gmc.num_mem_partitions == 4); 1575 break; 1576 case AMDGPU_NPS8_PARTITION_MODE: 1577 valid = (adev->gmc.num_mem_partitions == 8); 1578 break; 1579 default: 1580 valid = false; 1581 } 1582 1583 return valid; 1584 } 1585 1586 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid) 1587 { 1588 int i; 1589 1590 /* Check if node with id 'nid' is present in 'node_ids' array */ 1591 for (i = 0; i < num_ids; ++i) 1592 if (node_ids[i] == nid) 1593 return true; 1594 1595 return false; 1596 } 1597 1598 static void 1599 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev, 1600 struct amdgpu_mem_partition_info *mem_ranges) 1601 { 1602 struct amdgpu_numa_info numa_info; 1603 int node_ids[AMDGPU_MAX_MEM_RANGES]; 1604 int num_ranges = 0, ret; 1605 int num_xcc, xcc_id; 1606 uint32_t xcc_mask; 1607 1608 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1609 xcc_mask = (1U << num_xcc) - 1; 1610 1611 for_each_inst(xcc_id, xcc_mask) { 1612 ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info); 1613 if (ret) 1614 continue; 1615 1616 if (numa_info.nid == NUMA_NO_NODE) { 1617 mem_ranges[0].size = numa_info.size; 1618 mem_ranges[0].numa.node = numa_info.nid; 1619 num_ranges = 1; 1620 break; 1621 } 1622 1623 if (amdgpu_gmc_is_node_present(node_ids, num_ranges, 1624 numa_info.nid)) 1625 continue; 1626 1627 node_ids[num_ranges] = numa_info.nid; 1628 mem_ranges[num_ranges].numa.node = numa_info.nid; 1629 mem_ranges[num_ranges].size = numa_info.size; 1630 ++num_ranges; 1631 } 1632 1633 adev->gmc.num_mem_partitions = num_ranges; 1634 } 1635 1636 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev, 1637 struct amdgpu_mem_partition_info *mem_ranges) 1638 { 1639 enum amdgpu_memory_partition mode; 1640 u32 start_addr = 0, size; 1641 int i, r, l; 1642 1643 mode = amdgpu_gmc_query_memory_partition(adev); 1644 1645 switch (mode) { 1646 case UNKNOWN_MEMORY_PARTITION_MODE: 1647 adev->gmc.num_mem_partitions = 0; 1648 break; 1649 case AMDGPU_NPS1_PARTITION_MODE: 1650 adev->gmc.num_mem_partitions = 1; 1651 break; 1652 case AMDGPU_NPS2_PARTITION_MODE: 1653 adev->gmc.num_mem_partitions = 2; 1654 break; 1655 case AMDGPU_NPS4_PARTITION_MODE: 1656 if (adev->flags & AMD_IS_APU) 1657 adev->gmc.num_mem_partitions = 3; 1658 else 1659 adev->gmc.num_mem_partitions = 4; 1660 break; 1661 case AMDGPU_NPS8_PARTITION_MODE: 1662 adev->gmc.num_mem_partitions = 8; 1663 break; 1664 default: 1665 adev->gmc.num_mem_partitions = 1; 1666 break; 1667 } 1668 1669 /* Use NPS range info, if populated */ 1670 r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges, 1671 &adev->gmc.num_mem_partitions); 1672 if (!r) { 1673 l = 0; 1674 for (i = 1; i < adev->gmc.num_mem_partitions; ++i) { 1675 if (mem_ranges[i].range.lpfn > 1676 mem_ranges[i - 1].range.lpfn) 1677 l = i; 1678 } 1679 1680 } else { 1681 if (!adev->gmc.num_mem_partitions) { 1682 dev_warn(adev->dev, 1683 "Not able to detect NPS mode, fall back to NPS1\n"); 1684 adev->gmc.num_mem_partitions = 1; 1685 } 1686 /* Fallback to sw based calculation */ 1687 size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT; 1688 size /= adev->gmc.num_mem_partitions; 1689 1690 for (i = 0; i < adev->gmc.num_mem_partitions; ++i) { 1691 mem_ranges[i].range.fpfn = start_addr; 1692 mem_ranges[i].size = 1693 ((u64)size << AMDGPU_GPU_PAGE_SHIFT); 1694 mem_ranges[i].range.lpfn = start_addr + size - 1; 1695 start_addr += size; 1696 } 1697 1698 l = adev->gmc.num_mem_partitions - 1; 1699 } 1700 1701 /* Adjust the last one */ 1702 mem_ranges[l].range.lpfn = 1703 (adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1; 1704 mem_ranges[l].size = 1705 adev->gmc.real_vram_size - 1706 ((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT); 1707 } 1708 1709 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev) 1710 { 1711 bool valid; 1712 1713 adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES, 1714 sizeof(struct amdgpu_mem_partition_info), 1715 GFP_KERNEL); 1716 if (!adev->gmc.mem_partitions) 1717 return -ENOMEM; 1718 1719 if (adev->gmc.is_app_apu) 1720 amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions); 1721 else 1722 amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions); 1723 1724 if (amdgpu_sriov_vf(adev)) 1725 valid = true; 1726 else 1727 valid = amdgpu_gmc_validate_partition_info(adev); 1728 if (!valid) { 1729 /* TODO: handle invalid case */ 1730 dev_warn(adev->dev, 1731 "Mem ranges not matching with hardware config\n"); 1732 } 1733 1734 return 0; 1735 } 1736