xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision be239684b18e1cdcafcf8c7face4a2f562c745ad)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37 
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40 
41 /**
42  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
43  *
44  * @adev: amdgpu_device pointer
45  *
46  * Allocate video memory for pdb0 and map it for CPU access
47  * Returns 0 for success, error for failure.
48  */
49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
50 {
51 	int r;
52 	struct amdgpu_bo_param bp;
53 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
54 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
55 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
56 
57 	memset(&bp, 0, sizeof(bp));
58 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
59 	bp.byte_align = PAGE_SIZE;
60 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
61 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
62 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
63 	bp.type = ttm_bo_type_kernel;
64 	bp.resv = NULL;
65 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
66 
67 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
68 	if (r)
69 		return r;
70 
71 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
72 	if (unlikely(r != 0))
73 		goto bo_reserve_failure;
74 
75 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
76 	if (r)
77 		goto bo_pin_failure;
78 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
79 	if (r)
80 		goto bo_kmap_failure;
81 
82 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
83 	return 0;
84 
85 bo_kmap_failure:
86 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
87 bo_pin_failure:
88 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
89 bo_reserve_failure:
90 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
91 	return r;
92 }
93 
94 /**
95  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
96  *
97  * @bo: the BO to get the PDE for
98  * @level: the level in the PD hirarchy
99  * @addr: resulting addr
100  * @flags: resulting flags
101  *
102  * Get the address and flags to be used for a PDE (Page Directory Entry).
103  */
104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
105 			       uint64_t *addr, uint64_t *flags)
106 {
107 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
108 
109 	switch (bo->tbo.resource->mem_type) {
110 	case TTM_PL_TT:
111 		*addr = bo->tbo.ttm->dma_address[0];
112 		break;
113 	case TTM_PL_VRAM:
114 		*addr = amdgpu_bo_gpu_offset(bo);
115 		break;
116 	default:
117 		*addr = 0;
118 		break;
119 	}
120 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
121 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
122 }
123 
124 /*
125  * amdgpu_gmc_pd_addr - return the address of the root directory
126  */
127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
128 {
129 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
130 	uint64_t pd_addr;
131 
132 	/* TODO: move that into ASIC specific code */
133 	if (adev->asic_type >= CHIP_VEGA10) {
134 		uint64_t flags = AMDGPU_PTE_VALID;
135 
136 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
137 		pd_addr |= flags;
138 	} else {
139 		pd_addr = amdgpu_bo_gpu_offset(bo);
140 	}
141 	return pd_addr;
142 }
143 
144 /**
145  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
146  *
147  * @adev: amdgpu_device pointer
148  * @cpu_pt_addr: cpu address of the page table
149  * @gpu_page_idx: entry in the page table to update
150  * @addr: dst addr to write into pte/pde
151  * @flags: access flags
152  *
153  * Update the page tables using CPU.
154  */
155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
156 				uint32_t gpu_page_idx, uint64_t addr,
157 				uint64_t flags)
158 {
159 	void __iomem *ptr = (void *)cpu_pt_addr;
160 	uint64_t value;
161 
162 	/*
163 	 * The following is for PTE only. GART does not have PDEs.
164 	*/
165 	value = addr & 0x0000FFFFFFFFF000ULL;
166 	value |= flags;
167 	writeq(value, ptr + (gpu_page_idx * 8));
168 
169 	return 0;
170 }
171 
172 /**
173  * amdgpu_gmc_agp_addr - return the address in the AGP address space
174  *
175  * @bo: TTM BO which needs the address, must be in GTT domain
176  *
177  * Tries to figure out how to access the BO through the AGP aperture. Returns
178  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
179  */
180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
181 {
182 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
183 
184 	if (!bo->ttm)
185 		return AMDGPU_BO_INVALID_OFFSET;
186 
187 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
188 		return AMDGPU_BO_INVALID_OFFSET;
189 
190 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
191 		return AMDGPU_BO_INVALID_OFFSET;
192 
193 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
194 }
195 
196 /**
197  * amdgpu_gmc_vram_location - try to find VRAM location
198  *
199  * @adev: amdgpu device structure holding all necessary information
200  * @mc: memory controller structure holding memory information
201  * @base: base address at which to put VRAM
202  *
203  * Function will try to place VRAM at base address provided
204  * as parameter.
205  */
206 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
207 			      u64 base)
208 {
209 	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
210 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
211 
212 	mc->vram_start = base;
213 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
214 	if (limit < mc->real_vram_size)
215 		mc->real_vram_size = limit;
216 
217 	if (vis_limit && vis_limit < mc->visible_vram_size)
218 		mc->visible_vram_size = vis_limit;
219 
220 	if (mc->real_vram_size < mc->visible_vram_size)
221 		mc->visible_vram_size = mc->real_vram_size;
222 
223 	if (mc->xgmi.num_physical_nodes == 0) {
224 		mc->fb_start = mc->vram_start;
225 		mc->fb_end = mc->vram_end;
226 	}
227 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
228 			mc->mc_vram_size >> 20, mc->vram_start,
229 			mc->vram_end, mc->real_vram_size >> 20);
230 }
231 
232 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
233  *
234  * @adev: amdgpu device structure holding all necessary information
235  * @mc: memory controller structure holding memory information
236  *
237  * This function is only used if use GART for FB translation. In such
238  * case, we use sysvm aperture (vmid0 page tables) for both vram
239  * and gart (aka system memory) access.
240  *
241  * GPUVM (and our organization of vmid0 page tables) require sysvm
242  * aperture to be placed at a location aligned with 8 times of native
243  * page size. For example, if vm_context0_cntl.page_table_block_size
244  * is 12, then native page size is 8G (2M*2^12), sysvm should start
245  * with a 64G aligned address. For simplicity, we just put sysvm at
246  * address 0. So vram start at address 0 and gart is right after vram.
247  */
248 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
249 {
250 	u64 hive_vram_start = 0;
251 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
252 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
253 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
254 	mc->gart_start = hive_vram_end + 1;
255 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
256 	mc->fb_start = hive_vram_start;
257 	mc->fb_end = hive_vram_end;
258 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
259 			mc->mc_vram_size >> 20, mc->vram_start,
260 			mc->vram_end, mc->real_vram_size >> 20);
261 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
262 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
263 }
264 
265 /**
266  * amdgpu_gmc_gart_location - try to find GART location
267  *
268  * @adev: amdgpu device structure holding all necessary information
269  * @mc: memory controller structure holding memory information
270  * @gart_placement: GART placement policy with respect to VRAM
271  *
272  * Function will place try to place GART before or after VRAM.
273  * If GART size is bigger than space left then we ajust GART size.
274  * Thus function will never fails.
275  */
276 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
277 			      enum amdgpu_gart_placement gart_placement)
278 {
279 	const uint64_t four_gb = 0x100000000ULL;
280 	u64 size_af, size_bf;
281 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
282 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
283 
284 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
285 	 * the GART base on a 4GB boundary as well.
286 	 */
287 	size_bf = mc->fb_start;
288 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
289 
290 	if (mc->gart_size > max(size_bf, size_af)) {
291 		dev_warn(adev->dev, "limiting GART\n");
292 		mc->gart_size = max(size_bf, size_af);
293 	}
294 
295 	switch (gart_placement) {
296 	case AMDGPU_GART_PLACEMENT_HIGH:
297 		mc->gart_start = max_mc_address - mc->gart_size + 1;
298 		break;
299 	case AMDGPU_GART_PLACEMENT_LOW:
300 		mc->gart_start = 0;
301 		break;
302 	case AMDGPU_GART_PLACEMENT_BEST_FIT:
303 	default:
304 		if ((size_bf >= mc->gart_size && size_bf < size_af) ||
305 		    (size_af < mc->gart_size))
306 			mc->gart_start = 0;
307 		else
308 			mc->gart_start = max_mc_address - mc->gart_size + 1;
309 		break;
310 	}
311 
312 	mc->gart_start &= ~(four_gb - 1);
313 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
314 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
315 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
316 }
317 
318 /**
319  * amdgpu_gmc_agp_location - try to find AGP location
320  * @adev: amdgpu device structure holding all necessary information
321  * @mc: memory controller structure holding memory information
322  *
323  * Function will place try to find a place for the AGP BAR in the MC address
324  * space.
325  *
326  * AGP BAR will be assigned the largest available hole in the address space.
327  * Should be called after VRAM and GART locations are setup.
328  */
329 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
330 {
331 	const uint64_t sixteen_gb = 1ULL << 34;
332 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
333 	u64 size_af, size_bf;
334 
335 	if (mc->fb_start > mc->gart_start) {
336 		size_bf = (mc->fb_start & sixteen_gb_mask) -
337 			ALIGN(mc->gart_end + 1, sixteen_gb);
338 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
339 	} else {
340 		size_bf = mc->fb_start & sixteen_gb_mask;
341 		size_af = (mc->gart_start & sixteen_gb_mask) -
342 			ALIGN(mc->fb_end + 1, sixteen_gb);
343 	}
344 
345 	if (size_bf > size_af) {
346 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
347 		mc->agp_size = size_bf;
348 	} else {
349 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
350 		mc->agp_size = size_af;
351 	}
352 
353 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
354 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
355 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
356 }
357 
358 /**
359  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
360  * @adev: amdgpu device structure holding all necessary information
361  * @mc: memory controller structure holding memory information
362  *
363  * To disable the AGP aperture, you need to set the start to a larger
364  * value than the end.  This function sets the default value which
365  * can then be overridden using amdgpu_gmc_agp_location() if you want
366  * to enable the AGP aperture on a specific chip.
367  *
368  */
369 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
370 				struct amdgpu_gmc *mc)
371 {
372 	mc->agp_start = 0xffffffffffff;
373 	mc->agp_end = 0;
374 	mc->agp_size = 0;
375 }
376 
377 /**
378  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
379  *
380  * @addr: 48 bit physical address, page aligned (36 significant bits)
381  * @pasid: 16 bit process address space identifier
382  */
383 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
384 {
385 	return addr << 4 | pasid;
386 }
387 
388 /**
389  * amdgpu_gmc_filter_faults - filter VM faults
390  *
391  * @adev: amdgpu device structure
392  * @ih: interrupt ring that the fault received from
393  * @addr: address of the VM fault
394  * @pasid: PASID of the process causing the fault
395  * @timestamp: timestamp of the fault
396  *
397  * Returns:
398  * True if the fault was filtered and should not be processed further.
399  * False if the fault is a new one and needs to be handled.
400  */
401 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
402 			      struct amdgpu_ih_ring *ih, uint64_t addr,
403 			      uint16_t pasid, uint64_t timestamp)
404 {
405 	struct amdgpu_gmc *gmc = &adev->gmc;
406 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
407 	struct amdgpu_gmc_fault *fault;
408 	uint32_t hash;
409 
410 	/* Stale retry fault if timestamp goes backward */
411 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
412 		return true;
413 
414 	/* If we don't have space left in the ring buffer return immediately */
415 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
416 		AMDGPU_GMC_FAULT_TIMEOUT;
417 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
418 		return true;
419 
420 	/* Try to find the fault in the hash */
421 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
422 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
423 	while (fault->timestamp >= stamp) {
424 		uint64_t tmp;
425 
426 		if (atomic64_read(&fault->key) == key) {
427 			/*
428 			 * if we get a fault which is already present in
429 			 * the fault_ring and the timestamp of
430 			 * the fault is after the expired timestamp,
431 			 * then this is a new fault that needs to be added
432 			 * into the fault ring.
433 			 */
434 			if (fault->timestamp_expiry != 0 &&
435 			    amdgpu_ih_ts_after(fault->timestamp_expiry,
436 					       timestamp))
437 				break;
438 			else
439 				return true;
440 		}
441 
442 		tmp = fault->timestamp;
443 		fault = &gmc->fault_ring[fault->next];
444 
445 		/* Check if the entry was reused */
446 		if (fault->timestamp >= tmp)
447 			break;
448 	}
449 
450 	/* Add the fault to the ring */
451 	fault = &gmc->fault_ring[gmc->last_fault];
452 	atomic64_set(&fault->key, key);
453 	fault->timestamp = timestamp;
454 
455 	/* And update the hash */
456 	fault->next = gmc->fault_hash[hash].idx;
457 	gmc->fault_hash[hash].idx = gmc->last_fault++;
458 	return false;
459 }
460 
461 /**
462  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
463  *
464  * @adev: amdgpu device structure
465  * @addr: address of the VM fault
466  * @pasid: PASID of the process causing the fault
467  *
468  * Remove the address from fault filter, then future vm fault on this address
469  * will pass to retry fault handler to recover.
470  */
471 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
472 				     uint16_t pasid)
473 {
474 	struct amdgpu_gmc *gmc = &adev->gmc;
475 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
476 	struct amdgpu_ih_ring *ih;
477 	struct amdgpu_gmc_fault *fault;
478 	uint32_t last_wptr;
479 	uint64_t last_ts;
480 	uint32_t hash;
481 	uint64_t tmp;
482 
483 	if (adev->irq.retry_cam_enabled)
484 		return;
485 
486 	ih = &adev->irq.ih1;
487 	/* Get the WPTR of the last entry in IH ring */
488 	last_wptr = amdgpu_ih_get_wptr(adev, ih);
489 	/* Order wptr with ring data. */
490 	rmb();
491 	/* Get the timetamp of the last entry in IH ring */
492 	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
493 
494 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
495 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
496 	do {
497 		if (atomic64_read(&fault->key) == key) {
498 			/*
499 			 * Update the timestamp when this fault
500 			 * expired.
501 			 */
502 			fault->timestamp_expiry = last_ts;
503 			break;
504 		}
505 
506 		tmp = fault->timestamp;
507 		fault = &gmc->fault_ring[fault->next];
508 	} while (fault->timestamp < tmp);
509 }
510 
511 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
512 {
513 	int r;
514 
515 	/* umc ras block */
516 	r = amdgpu_umc_ras_sw_init(adev);
517 	if (r)
518 		return r;
519 
520 	/* mmhub ras block */
521 	r = amdgpu_mmhub_ras_sw_init(adev);
522 	if (r)
523 		return r;
524 
525 	/* hdp ras block */
526 	r = amdgpu_hdp_ras_sw_init(adev);
527 	if (r)
528 		return r;
529 
530 	/* mca.x ras block */
531 	r = amdgpu_mca_mp0_ras_sw_init(adev);
532 	if (r)
533 		return r;
534 
535 	r = amdgpu_mca_mp1_ras_sw_init(adev);
536 	if (r)
537 		return r;
538 
539 	r = amdgpu_mca_mpio_ras_sw_init(adev);
540 	if (r)
541 		return r;
542 
543 	/* xgmi ras block */
544 	r = amdgpu_xgmi_ras_sw_init(adev);
545 	if (r)
546 		return r;
547 
548 	return 0;
549 }
550 
551 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
552 {
553 	return 0;
554 }
555 
556 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
557 {
558 
559 }
560 
561 	/*
562 	 * The latest engine allocation on gfx9/10 is:
563 	 * Engine 2, 3: firmware
564 	 * Engine 0, 1, 4~16: amdgpu ring,
565 	 *                    subject to change when ring number changes
566 	 * Engine 17: Gart flushes
567 	 */
568 #define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
569 
570 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
571 {
572 	struct amdgpu_ring *ring;
573 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
574 	unsigned i;
575 	unsigned vmhub, inv_eng;
576 
577 	/* init the vm inv eng for all vmhubs */
578 	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
579 		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
580 		/* reserve engine 5 for firmware */
581 		if (adev->enable_mes)
582 			vm_inv_engs[i] &= ~(1 << 5);
583 		/* reserve mmhub engine 3 for firmware */
584 		if (adev->enable_umsch_mm)
585 			vm_inv_engs[i] &= ~(1 << 3);
586 	}
587 
588 	for (i = 0; i < adev->num_rings; ++i) {
589 		ring = adev->rings[i];
590 		vmhub = ring->vm_hub;
591 
592 		if (ring == &adev->mes.ring ||
593 		    ring == &adev->umsch_mm.ring)
594 			continue;
595 
596 		inv_eng = ffs(vm_inv_engs[vmhub]);
597 		if (!inv_eng) {
598 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
599 				ring->name);
600 			return -EINVAL;
601 		}
602 
603 		ring->vm_inv_eng = inv_eng - 1;
604 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
605 
606 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
607 			 ring->name, ring->vm_inv_eng, ring->vm_hub);
608 	}
609 
610 	return 0;
611 }
612 
613 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
614 			      uint32_t vmhub, uint32_t flush_type)
615 {
616 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
617 	struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
618 	struct dma_fence *fence;
619 	struct amdgpu_job *job;
620 	int r;
621 
622 	if (!hub->sdma_invalidation_workaround || vmid ||
623 	    !adev->mman.buffer_funcs_enabled ||
624 	    !adev->ib_pool_ready || amdgpu_in_reset(adev) ||
625 	    !ring->sched.ready) {
626 
627 		/*
628 		 * A GPU reset should flush all TLBs anyway, so no need to do
629 		 * this while one is ongoing.
630 		 */
631 		if (!down_read_trylock(&adev->reset_domain->sem))
632 			return;
633 
634 		if (adev->gmc.flush_tlb_needs_extra_type_2)
635 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
636 							   vmhub, 2);
637 
638 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
639 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
640 							   vmhub, 0);
641 
642 		adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
643 						   flush_type);
644 		up_read(&adev->reset_domain->sem);
645 		return;
646 	}
647 
648 	/* The SDMA on Navi 1x has a bug which can theoretically result in memory
649 	 * corruption if an invalidation happens at the same time as an VA
650 	 * translation. Avoid this by doing the invalidation from the SDMA
651 	 * itself at least for GART.
652 	 */
653 	mutex_lock(&adev->mman.gtt_window_lock);
654 	r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
655 				     AMDGPU_FENCE_OWNER_UNDEFINED,
656 				     16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
657 				     &job);
658 	if (r)
659 		goto error_alloc;
660 
661 	job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
662 	job->vm_needs_flush = true;
663 	job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
664 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
665 	fence = amdgpu_job_submit(job);
666 	mutex_unlock(&adev->mman.gtt_window_lock);
667 
668 	dma_fence_wait(fence, false);
669 	dma_fence_put(fence);
670 
671 	return;
672 
673 error_alloc:
674 	mutex_unlock(&adev->mman.gtt_window_lock);
675 	dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
676 }
677 
678 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
679 				   uint32_t flush_type, bool all_hub,
680 				   uint32_t inst)
681 {
682 	u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT :
683 		adev->usec_timeout;
684 	struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
685 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
686 	unsigned int ndw;
687 	signed long r;
688 	uint32_t seq;
689 
690 	if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready ||
691 	    !down_read_trylock(&adev->reset_domain->sem)) {
692 
693 		if (adev->gmc.flush_tlb_needs_extra_type_2)
694 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
695 								 2, all_hub,
696 								 inst);
697 
698 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
699 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
700 								 0, all_hub,
701 								 inst);
702 
703 		adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
704 							 flush_type, all_hub,
705 							 inst);
706 		return 0;
707 	}
708 
709 	/* 2 dwords flush + 8 dwords fence */
710 	ndw = kiq->pmf->invalidate_tlbs_size + 8;
711 
712 	if (adev->gmc.flush_tlb_needs_extra_type_2)
713 		ndw += kiq->pmf->invalidate_tlbs_size;
714 
715 	if (adev->gmc.flush_tlb_needs_extra_type_0)
716 		ndw += kiq->pmf->invalidate_tlbs_size;
717 
718 	spin_lock(&adev->gfx.kiq[inst].ring_lock);
719 	amdgpu_ring_alloc(ring, ndw);
720 	if (adev->gmc.flush_tlb_needs_extra_type_2)
721 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
722 
723 	if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
724 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
725 
726 	kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
727 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
728 	if (r) {
729 		amdgpu_ring_undo(ring);
730 		spin_unlock(&adev->gfx.kiq[inst].ring_lock);
731 		goto error_unlock_reset;
732 	}
733 
734 	amdgpu_ring_commit(ring);
735 	spin_unlock(&adev->gfx.kiq[inst].ring_lock);
736 	r = amdgpu_fence_wait_polling(ring, seq, usec_timeout);
737 	if (r < 1) {
738 		dev_err(adev->dev, "wait for kiq fence error: %ld.\n", r);
739 		r = -ETIME;
740 		goto error_unlock_reset;
741 	}
742 	r = 0;
743 
744 error_unlock_reset:
745 	up_read(&adev->reset_domain->sem);
746 	return r;
747 }
748 
749 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
750 				      uint32_t reg0, uint32_t reg1,
751 				      uint32_t ref, uint32_t mask,
752 				      uint32_t xcc_inst)
753 {
754 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
755 	struct amdgpu_ring *ring = &kiq->ring;
756 	signed long r, cnt = 0;
757 	unsigned long flags;
758 	uint32_t seq;
759 
760 	if (adev->mes.ring.sched.ready) {
761 		amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
762 					      ref, mask);
763 		return;
764 	}
765 
766 	spin_lock_irqsave(&kiq->ring_lock, flags);
767 	amdgpu_ring_alloc(ring, 32);
768 	amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
769 					    ref, mask);
770 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
771 	if (r)
772 		goto failed_undo;
773 
774 	amdgpu_ring_commit(ring);
775 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
776 
777 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
778 
779 	/* don't wait anymore for IRQ context */
780 	if (r < 1 && in_interrupt())
781 		goto failed_kiq;
782 
783 	might_sleep();
784 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
785 
786 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
787 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
788 	}
789 
790 	if (cnt > MAX_KIQ_REG_TRY)
791 		goto failed_kiq;
792 
793 	return;
794 
795 failed_undo:
796 	amdgpu_ring_undo(ring);
797 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
798 failed_kiq:
799 	dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
800 }
801 
802 /**
803  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
804  * @adev: amdgpu_device pointer
805  *
806  * Check and set if an the device @adev supports Trusted Memory
807  * Zones (TMZ).
808  */
809 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
810 {
811 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
812 	/* RAVEN */
813 	case IP_VERSION(9, 2, 2):
814 	case IP_VERSION(9, 1, 0):
815 	/* RENOIR looks like RAVEN */
816 	case IP_VERSION(9, 3, 0):
817 	/* GC 10.3.7 */
818 	case IP_VERSION(10, 3, 7):
819 	/* GC 11.0.1 */
820 	case IP_VERSION(11, 0, 1):
821 		if (amdgpu_tmz == 0) {
822 			adev->gmc.tmz_enabled = false;
823 			dev_info(adev->dev,
824 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
825 		} else {
826 			adev->gmc.tmz_enabled = true;
827 			dev_info(adev->dev,
828 				 "Trusted Memory Zone (TMZ) feature enabled\n");
829 		}
830 		break;
831 	case IP_VERSION(10, 1, 10):
832 	case IP_VERSION(10, 1, 1):
833 	case IP_VERSION(10, 1, 2):
834 	case IP_VERSION(10, 1, 3):
835 	case IP_VERSION(10, 3, 0):
836 	case IP_VERSION(10, 3, 2):
837 	case IP_VERSION(10, 3, 4):
838 	case IP_VERSION(10, 3, 5):
839 	case IP_VERSION(10, 3, 6):
840 	/* VANGOGH */
841 	case IP_VERSION(10, 3, 1):
842 	/* YELLOW_CARP*/
843 	case IP_VERSION(10, 3, 3):
844 	case IP_VERSION(11, 0, 4):
845 	case IP_VERSION(11, 5, 0):
846 	case IP_VERSION(11, 5, 1):
847 		/* Don't enable it by default yet.
848 		 */
849 		if (amdgpu_tmz < 1) {
850 			adev->gmc.tmz_enabled = false;
851 			dev_info(adev->dev,
852 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
853 		} else {
854 			adev->gmc.tmz_enabled = true;
855 			dev_info(adev->dev,
856 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
857 		}
858 		break;
859 	default:
860 		adev->gmc.tmz_enabled = false;
861 		dev_info(adev->dev,
862 			 "Trusted Memory Zone (TMZ) feature not supported\n");
863 		break;
864 	}
865 }
866 
867 /**
868  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
869  * @adev: amdgpu_device pointer
870  *
871  * Set a per asic default for the no-retry parameter.
872  *
873  */
874 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
875 {
876 	struct amdgpu_gmc *gmc = &adev->gmc;
877 	uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
878 	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
879 				gc_ver == IP_VERSION(9, 3, 0) ||
880 				gc_ver == IP_VERSION(9, 4, 0) ||
881 				gc_ver == IP_VERSION(9, 4, 1) ||
882 				gc_ver == IP_VERSION(9, 4, 2) ||
883 				gc_ver == IP_VERSION(9, 4, 3) ||
884 				gc_ver >= IP_VERSION(10, 3, 0));
885 
886 	if (!amdgpu_sriov_xnack_support(adev))
887 		gmc->noretry = 1;
888 	else
889 		gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
890 }
891 
892 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
893 				   bool enable)
894 {
895 	struct amdgpu_vmhub *hub;
896 	u32 tmp, reg, i;
897 
898 	hub = &adev->vmhub[hub_type];
899 	for (i = 0; i < 16; i++) {
900 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
901 
902 		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
903 			RREG32_SOC15_IP(GC, reg) :
904 			RREG32_SOC15_IP(MMHUB, reg);
905 
906 		if (enable)
907 			tmp |= hub->vm_cntx_cntl_vm_fault;
908 		else
909 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
910 
911 		(hub_type == AMDGPU_GFXHUB(0)) ?
912 			WREG32_SOC15_IP(GC, reg, tmp) :
913 			WREG32_SOC15_IP(MMHUB, reg, tmp);
914 	}
915 }
916 
917 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
918 {
919 	unsigned size;
920 
921 	/*
922 	 * Some ASICs need to reserve a region of video memory to avoid access
923 	 * from driver
924 	 */
925 	adev->mman.stolen_reserved_offset = 0;
926 	adev->mman.stolen_reserved_size = 0;
927 
928 	/*
929 	 * TODO:
930 	 * Currently there is a bug where some memory client outside
931 	 * of the driver writes to first 8M of VRAM on S3 resume,
932 	 * this overrides GART which by default gets placed in first 8M and
933 	 * causes VM_FAULTS once GTT is accessed.
934 	 * Keep the stolen memory reservation until the while this is not solved.
935 	 */
936 	switch (adev->asic_type) {
937 	case CHIP_VEGA10:
938 		adev->mman.keep_stolen_vga_memory = true;
939 		/*
940 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
941 		 */
942 #ifdef CONFIG_X86
943 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
944 			adev->mman.stolen_reserved_offset = 0x500000;
945 			adev->mman.stolen_reserved_size = 0x200000;
946 		}
947 #endif
948 		break;
949 	case CHIP_RAVEN:
950 	case CHIP_RENOIR:
951 		adev->mman.keep_stolen_vga_memory = true;
952 		break;
953 	default:
954 		adev->mman.keep_stolen_vga_memory = false;
955 		break;
956 	}
957 
958 	if (amdgpu_sriov_vf(adev) ||
959 	    !amdgpu_device_has_display_hardware(adev)) {
960 		size = 0;
961 	} else {
962 		size = amdgpu_gmc_get_vbios_fb_size(adev);
963 
964 		if (adev->mman.keep_stolen_vga_memory)
965 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
966 	}
967 
968 	/* set to 0 if the pre-OS buffer uses up most of vram */
969 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
970 		size = 0;
971 
972 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
973 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
974 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
975 	} else {
976 		adev->mman.stolen_vga_size = size;
977 		adev->mman.stolen_extended_size = 0;
978 	}
979 }
980 
981 /**
982  * amdgpu_gmc_init_pdb0 - initialize PDB0
983  *
984  * @adev: amdgpu_device pointer
985  *
986  * This function is only used when GART page table is used
987  * for FB address translatioin. In such a case, we construct
988  * a 2-level system VM page table: PDB0->PTB, to cover both
989  * VRAM of the hive and system memory.
990  *
991  * PDB0 is static, initialized once on driver initialization.
992  * The first n entries of PDB0 are used as PTE by setting
993  * P bit to 1, pointing to VRAM. The n+1'th entry points
994  * to a big PTB covering system memory.
995  *
996  */
997 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
998 {
999 	int i;
1000 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1001 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1002 	 */
1003 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1004 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1005 	u64 vram_addr = adev->vm_manager.vram_base_offset -
1006 		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1007 	u64 vram_end = vram_addr + vram_size;
1008 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1009 	int idx;
1010 
1011 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1012 		return;
1013 
1014 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1015 	flags |= AMDGPU_PTE_WRITEABLE;
1016 	flags |= AMDGPU_PTE_SNOOPED;
1017 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1018 	flags |= AMDGPU_PDE_PTE;
1019 
1020 	/* The first n PDE0 entries are used as PTE,
1021 	 * pointing to vram
1022 	 */
1023 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1024 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1025 
1026 	/* The n+1'th PDE0 entry points to a huge
1027 	 * PTB who has more than 512 entries each
1028 	 * pointing to a 4K system page
1029 	 */
1030 	flags = AMDGPU_PTE_VALID;
1031 	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
1032 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
1033 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1034 	drm_dev_exit(idx);
1035 }
1036 
1037 /**
1038  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1039  * address
1040  *
1041  * @adev: amdgpu_device pointer
1042  * @mc_addr: MC address of buffer
1043  */
1044 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1045 {
1046 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1047 }
1048 
1049 /**
1050  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1051  * GPU's view
1052  *
1053  * @adev: amdgpu_device pointer
1054  * @bo: amdgpu buffer object
1055  */
1056 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1057 {
1058 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1059 }
1060 
1061 /**
1062  * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
1063  * from CPU's view
1064  *
1065  * @adev: amdgpu_device pointer
1066  * @bo: amdgpu buffer object
1067  */
1068 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1069 {
1070 	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
1071 }
1072 
1073 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1074 {
1075 	struct amdgpu_bo *vram_bo = NULL;
1076 	uint64_t vram_gpu = 0;
1077 	void *vram_ptr = NULL;
1078 
1079 	int ret, size = 0x100000;
1080 	uint8_t cptr[10];
1081 
1082 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1083 				AMDGPU_GEM_DOMAIN_VRAM,
1084 				&vram_bo,
1085 				&vram_gpu,
1086 				&vram_ptr);
1087 	if (ret)
1088 		return ret;
1089 
1090 	memset(vram_ptr, 0x86, size);
1091 	memset(cptr, 0x86, 10);
1092 
1093 	/**
1094 	 * Check the start, the mid, and the end of the memory if the content of
1095 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1096 	 * workable.
1097 	 *
1098 	 * Note: If check the each byte of whole 1M bo, it will cost too many
1099 	 * seconds, so here, we just pick up three parts for emulation.
1100 	 */
1101 	ret = memcmp(vram_ptr, cptr, 10);
1102 	if (ret) {
1103 		ret = -EIO;
1104 		goto release_buffer;
1105 	}
1106 
1107 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1108 	if (ret) {
1109 		ret = -EIO;
1110 		goto release_buffer;
1111 	}
1112 
1113 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
1114 	if (ret) {
1115 		ret = -EIO;
1116 		goto release_buffer;
1117 	}
1118 
1119 release_buffer:
1120 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1121 			&vram_ptr);
1122 
1123 	return ret;
1124 }
1125 
1126 static ssize_t current_memory_partition_show(
1127 	struct device *dev, struct device_attribute *addr, char *buf)
1128 {
1129 	struct drm_device *ddev = dev_get_drvdata(dev);
1130 	struct amdgpu_device *adev = drm_to_adev(ddev);
1131 	enum amdgpu_memory_partition mode;
1132 
1133 	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1134 	switch (mode) {
1135 	case AMDGPU_NPS1_PARTITION_MODE:
1136 		return sysfs_emit(buf, "NPS1\n");
1137 	case AMDGPU_NPS2_PARTITION_MODE:
1138 		return sysfs_emit(buf, "NPS2\n");
1139 	case AMDGPU_NPS3_PARTITION_MODE:
1140 		return sysfs_emit(buf, "NPS3\n");
1141 	case AMDGPU_NPS4_PARTITION_MODE:
1142 		return sysfs_emit(buf, "NPS4\n");
1143 	case AMDGPU_NPS6_PARTITION_MODE:
1144 		return sysfs_emit(buf, "NPS6\n");
1145 	case AMDGPU_NPS8_PARTITION_MODE:
1146 		return sysfs_emit(buf, "NPS8\n");
1147 	default:
1148 		return sysfs_emit(buf, "UNKNOWN\n");
1149 	}
1150 
1151 	return sysfs_emit(buf, "UNKNOWN\n");
1152 }
1153 
1154 static DEVICE_ATTR_RO(current_memory_partition);
1155 
1156 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1157 {
1158 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1159 		return 0;
1160 
1161 	return device_create_file(adev->dev,
1162 				  &dev_attr_current_memory_partition);
1163 }
1164 
1165 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1166 {
1167 	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1168 }
1169