xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision 889d55154516ec8f98ea953e8660963f2e29c75d)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37 
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40 
41 /**
42  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
43  *
44  * @adev: amdgpu_device pointer
45  *
46  * Allocate video memory for pdb0 and map it for CPU access
47  * Returns 0 for success, error for failure.
48  */
49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
50 {
51 	int r;
52 	struct amdgpu_bo_param bp;
53 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
54 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
55 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;
56 
57 	memset(&bp, 0, sizeof(bp));
58 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
59 	bp.byte_align = PAGE_SIZE;
60 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
61 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
62 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
63 	bp.type = ttm_bo_type_kernel;
64 	bp.resv = NULL;
65 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
66 
67 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
68 	if (r)
69 		return r;
70 
71 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
72 	if (unlikely(r != 0))
73 		goto bo_reserve_failure;
74 
75 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
76 	if (r)
77 		goto bo_pin_failure;
78 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
79 	if (r)
80 		goto bo_kmap_failure;
81 
82 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
83 	return 0;
84 
85 bo_kmap_failure:
86 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
87 bo_pin_failure:
88 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
89 bo_reserve_failure:
90 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
91 	return r;
92 }
93 
94 /**
95  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
96  *
97  * @bo: the BO to get the PDE for
98  * @level: the level in the PD hirarchy
99  * @addr: resulting addr
100  * @flags: resulting flags
101  *
102  * Get the address and flags to be used for a PDE (Page Directory Entry).
103  */
104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
105 			       uint64_t *addr, uint64_t *flags)
106 {
107 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
108 
109 	switch (bo->tbo.resource->mem_type) {
110 	case TTM_PL_TT:
111 		*addr = bo->tbo.ttm->dma_address[0];
112 		break;
113 	case TTM_PL_VRAM:
114 		*addr = amdgpu_bo_gpu_offset(bo);
115 		break;
116 	default:
117 		*addr = 0;
118 		break;
119 	}
120 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
121 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
122 }
123 
124 /*
125  * amdgpu_gmc_pd_addr - return the address of the root directory
126  */
127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
128 {
129 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
130 	uint64_t pd_addr;
131 
132 	/* TODO: move that into ASIC specific code */
133 	if (adev->asic_type >= CHIP_VEGA10) {
134 		uint64_t flags = AMDGPU_PTE_VALID;
135 
136 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
137 		pd_addr |= flags;
138 	} else {
139 		pd_addr = amdgpu_bo_gpu_offset(bo);
140 	}
141 	return pd_addr;
142 }
143 
144 /**
145  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
146  *
147  * @adev: amdgpu_device pointer
148  * @cpu_pt_addr: cpu address of the page table
149  * @gpu_page_idx: entry in the page table to update
150  * @addr: dst addr to write into pte/pde
151  * @flags: access flags
152  *
153  * Update the page tables using CPU.
154  */
155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
156 				uint32_t gpu_page_idx, uint64_t addr,
157 				uint64_t flags)
158 {
159 	void __iomem *ptr = (void *)cpu_pt_addr;
160 	uint64_t value;
161 
162 	/*
163 	 * The following is for PTE only. GART does not have PDEs.
164 	*/
165 	value = addr & 0x0000FFFFFFFFF000ULL;
166 	value |= flags;
167 	writeq(value, ptr + (gpu_page_idx * 8));
168 
169 	return 0;
170 }
171 
172 /**
173  * amdgpu_gmc_agp_addr - return the address in the AGP address space
174  *
175  * @bo: TTM BO which needs the address, must be in GTT domain
176  *
177  * Tries to figure out how to access the BO through the AGP aperture. Returns
178  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
179  */
180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
181 {
182 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
183 
184 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
185 		return AMDGPU_BO_INVALID_OFFSET;
186 
187 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
188 		return AMDGPU_BO_INVALID_OFFSET;
189 
190 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
191 }
192 
193 /**
194  * amdgpu_gmc_vram_location - try to find VRAM location
195  *
196  * @adev: amdgpu device structure holding all necessary information
197  * @mc: memory controller structure holding memory information
198  * @base: base address at which to put VRAM
199  *
200  * Function will try to place VRAM at base address provided
201  * as parameter.
202  */
203 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
204 			      u64 base)
205 {
206 	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
207 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
208 
209 	mc->vram_start = base;
210 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
211 	if (limit < mc->real_vram_size)
212 		mc->real_vram_size = limit;
213 
214 	if (vis_limit && vis_limit < mc->visible_vram_size)
215 		mc->visible_vram_size = vis_limit;
216 
217 	if (mc->real_vram_size < mc->visible_vram_size)
218 		mc->visible_vram_size = mc->real_vram_size;
219 
220 	if (mc->xgmi.num_physical_nodes == 0) {
221 		mc->fb_start = mc->vram_start;
222 		mc->fb_end = mc->vram_end;
223 	}
224 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
225 			mc->mc_vram_size >> 20, mc->vram_start,
226 			mc->vram_end, mc->real_vram_size >> 20);
227 }
228 
229 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
230  *
231  * @adev: amdgpu device structure holding all necessary information
232  * @mc: memory controller structure holding memory information
233  *
234  * This function is only used if use GART for FB translation. In such
235  * case, we use sysvm aperture (vmid0 page tables) for both vram
236  * and gart (aka system memory) access.
237  *
238  * GPUVM (and our organization of vmid0 page tables) require sysvm
239  * aperture to be placed at a location aligned with 8 times of native
240  * page size. For example, if vm_context0_cntl.page_table_block_size
241  * is 12, then native page size is 8G (2M*2^12), sysvm should start
242  * with a 64G aligned address. For simplicity, we just put sysvm at
243  * address 0. So vram start at address 0 and gart is right after vram.
244  */
245 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
246 {
247 	u64 hive_vram_start = 0;
248 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
249 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
250 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
251 	mc->gart_start = hive_vram_end + 1;
252 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
253 	mc->fb_start = hive_vram_start;
254 	mc->fb_end = hive_vram_end;
255 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
256 			mc->mc_vram_size >> 20, mc->vram_start,
257 			mc->vram_end, mc->real_vram_size >> 20);
258 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
259 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
260 }
261 
262 /**
263  * amdgpu_gmc_gart_location - try to find GART location
264  *
265  * @adev: amdgpu device structure holding all necessary information
266  * @mc: memory controller structure holding memory information
267  *
268  * Function will place try to place GART before or after VRAM.
269  * If GART size is bigger than space left then we ajust GART size.
270  * Thus function will never fails.
271  */
272 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
273 			      enum amdgpu_gart_placement gart_placement)
274 {
275 	const uint64_t four_gb = 0x100000000ULL;
276 	u64 size_af, size_bf;
277 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
278 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
279 
280 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
281 	 * the GART base on a 4GB boundary as well.
282 	 */
283 	size_bf = mc->fb_start;
284 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
285 
286 	if (mc->gart_size > max(size_bf, size_af)) {
287 		dev_warn(adev->dev, "limiting GART\n");
288 		mc->gart_size = max(size_bf, size_af);
289 	}
290 
291 	switch (gart_placement) {
292 	case AMDGPU_GART_PLACEMENT_HIGH:
293 		mc->gart_start = max_mc_address - mc->gart_size + 1;
294 		break;
295 	case AMDGPU_GART_PLACEMENT_LOW:
296 		mc->gart_start = 0;
297 		break;
298 	case AMDGPU_GART_PLACEMENT_BEST_FIT:
299 	default:
300 		if ((size_bf >= mc->gart_size && size_bf < size_af) ||
301 		    (size_af < mc->gart_size))
302 			mc->gart_start = 0;
303 		else
304 			mc->gart_start = max_mc_address - mc->gart_size + 1;
305 		break;
306 	}
307 
308 	mc->gart_start &= ~(four_gb - 1);
309 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
310 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
311 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
312 }
313 
314 /**
315  * amdgpu_gmc_agp_location - try to find AGP location
316  * @adev: amdgpu device structure holding all necessary information
317  * @mc: memory controller structure holding memory information
318  *
319  * Function will place try to find a place for the AGP BAR in the MC address
320  * space.
321  *
322  * AGP BAR will be assigned the largest available hole in the address space.
323  * Should be called after VRAM and GART locations are setup.
324  */
325 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
326 {
327 	const uint64_t sixteen_gb = 1ULL << 34;
328 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
329 	u64 size_af, size_bf;
330 
331 	if (mc->fb_start > mc->gart_start) {
332 		size_bf = (mc->fb_start & sixteen_gb_mask) -
333 			ALIGN(mc->gart_end + 1, sixteen_gb);
334 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
335 	} else {
336 		size_bf = mc->fb_start & sixteen_gb_mask;
337 		size_af = (mc->gart_start & sixteen_gb_mask) -
338 			ALIGN(mc->fb_end + 1, sixteen_gb);
339 	}
340 
341 	if (size_bf > size_af) {
342 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
343 		mc->agp_size = size_bf;
344 	} else {
345 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
346 		mc->agp_size = size_af;
347 	}
348 
349 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
350 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
351 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
352 }
353 
354 /**
355  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
356  * @adev: amdgpu device structure holding all necessary information
357  * @mc: memory controller structure holding memory information
358  *
359  * To disable the AGP aperture, you need to set the start to a larger
360  * value than the end.  This function sets the default value which
361  * can then be overridden using amdgpu_gmc_agp_location() if you want
362  * to enable the AGP aperture on a specific chip.
363  *
364  */
365 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
366 				struct amdgpu_gmc *mc)
367 {
368 	mc->agp_start = 0xffffffffffff;
369 	mc->agp_end = 0;
370 	mc->agp_size = 0;
371 }
372 
373 /**
374  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
375  *
376  * @addr: 48 bit physical address, page aligned (36 significant bits)
377  * @pasid: 16 bit process address space identifier
378  */
379 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
380 {
381 	return addr << 4 | pasid;
382 }
383 
384 /**
385  * amdgpu_gmc_filter_faults - filter VM faults
386  *
387  * @adev: amdgpu device structure
388  * @ih: interrupt ring that the fault received from
389  * @addr: address of the VM fault
390  * @pasid: PASID of the process causing the fault
391  * @timestamp: timestamp of the fault
392  *
393  * Returns:
394  * True if the fault was filtered and should not be processed further.
395  * False if the fault is a new one and needs to be handled.
396  */
397 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
398 			      struct amdgpu_ih_ring *ih, uint64_t addr,
399 			      uint16_t pasid, uint64_t timestamp)
400 {
401 	struct amdgpu_gmc *gmc = &adev->gmc;
402 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
403 	struct amdgpu_gmc_fault *fault;
404 	uint32_t hash;
405 
406 	/* Stale retry fault if timestamp goes backward */
407 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
408 		return true;
409 
410 	/* If we don't have space left in the ring buffer return immediately */
411 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
412 		AMDGPU_GMC_FAULT_TIMEOUT;
413 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
414 		return true;
415 
416 	/* Try to find the fault in the hash */
417 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
418 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
419 	while (fault->timestamp >= stamp) {
420 		uint64_t tmp;
421 
422 		if (atomic64_read(&fault->key) == key) {
423 			/*
424 			 * if we get a fault which is already present in
425 			 * the fault_ring and the timestamp of
426 			 * the fault is after the expired timestamp,
427 			 * then this is a new fault that needs to be added
428 			 * into the fault ring.
429 			 */
430 			if (fault->timestamp_expiry != 0 &&
431 			    amdgpu_ih_ts_after(fault->timestamp_expiry,
432 					       timestamp))
433 				break;
434 			else
435 				return true;
436 		}
437 
438 		tmp = fault->timestamp;
439 		fault = &gmc->fault_ring[fault->next];
440 
441 		/* Check if the entry was reused */
442 		if (fault->timestamp >= tmp)
443 			break;
444 	}
445 
446 	/* Add the fault to the ring */
447 	fault = &gmc->fault_ring[gmc->last_fault];
448 	atomic64_set(&fault->key, key);
449 	fault->timestamp = timestamp;
450 
451 	/* And update the hash */
452 	fault->next = gmc->fault_hash[hash].idx;
453 	gmc->fault_hash[hash].idx = gmc->last_fault++;
454 	return false;
455 }
456 
457 /**
458  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
459  *
460  * @adev: amdgpu device structure
461  * @addr: address of the VM fault
462  * @pasid: PASID of the process causing the fault
463  *
464  * Remove the address from fault filter, then future vm fault on this address
465  * will pass to retry fault handler to recover.
466  */
467 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
468 				     uint16_t pasid)
469 {
470 	struct amdgpu_gmc *gmc = &adev->gmc;
471 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
472 	struct amdgpu_ih_ring *ih;
473 	struct amdgpu_gmc_fault *fault;
474 	uint32_t last_wptr;
475 	uint64_t last_ts;
476 	uint32_t hash;
477 	uint64_t tmp;
478 
479 	if (adev->irq.retry_cam_enabled)
480 		return;
481 
482 	ih = &adev->irq.ih1;
483 	/* Get the WPTR of the last entry in IH ring */
484 	last_wptr = amdgpu_ih_get_wptr(adev, ih);
485 	/* Order wptr with ring data. */
486 	rmb();
487 	/* Get the timetamp of the last entry in IH ring */
488 	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
489 
490 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
491 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
492 	do {
493 		if (atomic64_read(&fault->key) == key) {
494 			/*
495 			 * Update the timestamp when this fault
496 			 * expired.
497 			 */
498 			fault->timestamp_expiry = last_ts;
499 			break;
500 		}
501 
502 		tmp = fault->timestamp;
503 		fault = &gmc->fault_ring[fault->next];
504 	} while (fault->timestamp < tmp);
505 }
506 
507 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
508 {
509 	int r;
510 
511 	/* umc ras block */
512 	r = amdgpu_umc_ras_sw_init(adev);
513 	if (r)
514 		return r;
515 
516 	/* mmhub ras block */
517 	r = amdgpu_mmhub_ras_sw_init(adev);
518 	if (r)
519 		return r;
520 
521 	/* hdp ras block */
522 	r = amdgpu_hdp_ras_sw_init(adev);
523 	if (r)
524 		return r;
525 
526 	/* mca.x ras block */
527 	r = amdgpu_mca_mp0_ras_sw_init(adev);
528 	if (r)
529 		return r;
530 
531 	r = amdgpu_mca_mp1_ras_sw_init(adev);
532 	if (r)
533 		return r;
534 
535 	r = amdgpu_mca_mpio_ras_sw_init(adev);
536 	if (r)
537 		return r;
538 
539 	/* xgmi ras block */
540 	r = amdgpu_xgmi_ras_sw_init(adev);
541 	if (r)
542 		return r;
543 
544 	return 0;
545 }
546 
547 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
548 {
549 	return 0;
550 }
551 
552 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
553 {
554 
555 }
556 
557 	/*
558 	 * The latest engine allocation on gfx9/10 is:
559 	 * Engine 2, 3: firmware
560 	 * Engine 0, 1, 4~16: amdgpu ring,
561 	 *                    subject to change when ring number changes
562 	 * Engine 17: Gart flushes
563 	 */
564 #define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
565 
566 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
567 {
568 	struct amdgpu_ring *ring;
569 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
570 	unsigned i;
571 	unsigned vmhub, inv_eng;
572 
573 	/* init the vm inv eng for all vmhubs */
574 	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
575 		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
576 		/* reserve engine 5 for firmware */
577 		if (adev->enable_mes)
578 			vm_inv_engs[i] &= ~(1 << 5);
579 		/* reserve mmhub engine 3 for firmware */
580 		if (adev->enable_umsch_mm)
581 			vm_inv_engs[i] &= ~(1 << 3);
582 	}
583 
584 	for (i = 0; i < adev->num_rings; ++i) {
585 		ring = adev->rings[i];
586 		vmhub = ring->vm_hub;
587 
588 		if (ring == &adev->mes.ring ||
589 		    ring == &adev->umsch_mm.ring)
590 			continue;
591 
592 		inv_eng = ffs(vm_inv_engs[vmhub]);
593 		if (!inv_eng) {
594 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
595 				ring->name);
596 			return -EINVAL;
597 		}
598 
599 		ring->vm_inv_eng = inv_eng - 1;
600 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
601 
602 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
603 			 ring->name, ring->vm_inv_eng, ring->vm_hub);
604 	}
605 
606 	return 0;
607 }
608 
609 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
610 			      uint32_t vmhub, uint32_t flush_type)
611 {
612 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
613 	struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
614 	struct dma_fence *fence;
615 	struct amdgpu_job *job;
616 	int r;
617 
618 	if (!hub->sdma_invalidation_workaround || vmid ||
619 	    !adev->mman.buffer_funcs_enabled ||
620 	    !adev->ib_pool_ready || amdgpu_in_reset(adev) ||
621 	    !ring->sched.ready) {
622 
623 		/*
624 		 * A GPU reset should flush all TLBs anyway, so no need to do
625 		 * this while one is ongoing.
626 		 */
627 		if (!down_read_trylock(&adev->reset_domain->sem))
628 			return;
629 
630 		if (adev->gmc.flush_tlb_needs_extra_type_2)
631 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
632 							   vmhub, 2);
633 
634 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
635 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
636 							   vmhub, 0);
637 
638 		adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
639 						   flush_type);
640 		up_read(&adev->reset_domain->sem);
641 		return;
642 	}
643 
644 	/* The SDMA on Navi 1x has a bug which can theoretically result in memory
645 	 * corruption if an invalidation happens at the same time as an VA
646 	 * translation. Avoid this by doing the invalidation from the SDMA
647 	 * itself at least for GART.
648 	 */
649 	mutex_lock(&adev->mman.gtt_window_lock);
650 	r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
651 				     AMDGPU_FENCE_OWNER_UNDEFINED,
652 				     16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
653 				     &job);
654 	if (r)
655 		goto error_alloc;
656 
657 	job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
658 	job->vm_needs_flush = true;
659 	job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
660 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
661 	fence = amdgpu_job_submit(job);
662 	mutex_unlock(&adev->mman.gtt_window_lock);
663 
664 	dma_fence_wait(fence, false);
665 	dma_fence_put(fence);
666 
667 	return;
668 
669 error_alloc:
670 	mutex_unlock(&adev->mman.gtt_window_lock);
671 	dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
672 }
673 
674 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
675 				   uint32_t flush_type, bool all_hub,
676 				   uint32_t inst)
677 {
678 	u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT :
679 		adev->usec_timeout;
680 	struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
681 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
682 	unsigned int ndw;
683 	signed long r;
684 	uint32_t seq;
685 
686 	if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready ||
687 	    !down_read_trylock(&adev->reset_domain->sem)) {
688 
689 		if (adev->gmc.flush_tlb_needs_extra_type_2)
690 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
691 								 2, all_hub,
692 								 inst);
693 
694 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
695 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
696 								 0, all_hub,
697 								 inst);
698 
699 		adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
700 							 flush_type, all_hub,
701 							 inst);
702 		return 0;
703 	}
704 
705 	/* 2 dwords flush + 8 dwords fence */
706 	ndw = kiq->pmf->invalidate_tlbs_size + 8;
707 
708 	if (adev->gmc.flush_tlb_needs_extra_type_2)
709 		ndw += kiq->pmf->invalidate_tlbs_size;
710 
711 	if (adev->gmc.flush_tlb_needs_extra_type_0)
712 		ndw += kiq->pmf->invalidate_tlbs_size;
713 
714 	spin_lock(&adev->gfx.kiq[inst].ring_lock);
715 	amdgpu_ring_alloc(ring, ndw);
716 	if (adev->gmc.flush_tlb_needs_extra_type_2)
717 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
718 
719 	if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
720 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
721 
722 	kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
723 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
724 	if (r) {
725 		amdgpu_ring_undo(ring);
726 		spin_unlock(&adev->gfx.kiq[inst].ring_lock);
727 		goto error_unlock_reset;
728 	}
729 
730 	amdgpu_ring_commit(ring);
731 	spin_unlock(&adev->gfx.kiq[inst].ring_lock);
732 	r = amdgpu_fence_wait_polling(ring, seq, usec_timeout);
733 	if (r < 1) {
734 		dev_err(adev->dev, "wait for kiq fence error: %ld.\n", r);
735 		r = -ETIME;
736 		goto error_unlock_reset;
737 	}
738 	r = 0;
739 
740 error_unlock_reset:
741 	up_read(&adev->reset_domain->sem);
742 	return r;
743 }
744 
745 /**
746  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
747  * @adev: amdgpu_device pointer
748  *
749  * Check and set if an the device @adev supports Trusted Memory
750  * Zones (TMZ).
751  */
752 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
753 {
754 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
755 	/* RAVEN */
756 	case IP_VERSION(9, 2, 2):
757 	case IP_VERSION(9, 1, 0):
758 	/* RENOIR looks like RAVEN */
759 	case IP_VERSION(9, 3, 0):
760 	/* GC 10.3.7 */
761 	case IP_VERSION(10, 3, 7):
762 	/* GC 11.0.1 */
763 	case IP_VERSION(11, 0, 1):
764 		if (amdgpu_tmz == 0) {
765 			adev->gmc.tmz_enabled = false;
766 			dev_info(adev->dev,
767 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
768 		} else {
769 			adev->gmc.tmz_enabled = true;
770 			dev_info(adev->dev,
771 				 "Trusted Memory Zone (TMZ) feature enabled\n");
772 		}
773 		break;
774 	case IP_VERSION(10, 1, 10):
775 	case IP_VERSION(10, 1, 1):
776 	case IP_VERSION(10, 1, 2):
777 	case IP_VERSION(10, 1, 3):
778 	case IP_VERSION(10, 3, 0):
779 	case IP_VERSION(10, 3, 2):
780 	case IP_VERSION(10, 3, 4):
781 	case IP_VERSION(10, 3, 5):
782 	case IP_VERSION(10, 3, 6):
783 	/* VANGOGH */
784 	case IP_VERSION(10, 3, 1):
785 	/* YELLOW_CARP*/
786 	case IP_VERSION(10, 3, 3):
787 	case IP_VERSION(11, 0, 4):
788 		/* Don't enable it by default yet.
789 		 */
790 		if (amdgpu_tmz < 1) {
791 			adev->gmc.tmz_enabled = false;
792 			dev_info(adev->dev,
793 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
794 		} else {
795 			adev->gmc.tmz_enabled = true;
796 			dev_info(adev->dev,
797 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
798 		}
799 		break;
800 	default:
801 		adev->gmc.tmz_enabled = false;
802 		dev_info(adev->dev,
803 			 "Trusted Memory Zone (TMZ) feature not supported\n");
804 		break;
805 	}
806 }
807 
808 /**
809  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
810  * @adev: amdgpu_device pointer
811  *
812  * Set a per asic default for the no-retry parameter.
813  *
814  */
815 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
816 {
817 	struct amdgpu_gmc *gmc = &adev->gmc;
818 	uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
819 	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
820 				gc_ver == IP_VERSION(9, 3, 0) ||
821 				gc_ver == IP_VERSION(9, 4, 0) ||
822 				gc_ver == IP_VERSION(9, 4, 1) ||
823 				gc_ver == IP_VERSION(9, 4, 2) ||
824 				gc_ver == IP_VERSION(9, 4, 3) ||
825 				gc_ver >= IP_VERSION(10, 3, 0));
826 
827 	gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
828 }
829 
830 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
831 				   bool enable)
832 {
833 	struct amdgpu_vmhub *hub;
834 	u32 tmp, reg, i;
835 
836 	hub = &adev->vmhub[hub_type];
837 	for (i = 0; i < 16; i++) {
838 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
839 
840 		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
841 			RREG32_SOC15_IP(GC, reg) :
842 			RREG32_SOC15_IP(MMHUB, reg);
843 
844 		if (enable)
845 			tmp |= hub->vm_cntx_cntl_vm_fault;
846 		else
847 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
848 
849 		(hub_type == AMDGPU_GFXHUB(0)) ?
850 			WREG32_SOC15_IP(GC, reg, tmp) :
851 			WREG32_SOC15_IP(MMHUB, reg, tmp);
852 	}
853 }
854 
855 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
856 {
857 	unsigned size;
858 
859 	/*
860 	 * Some ASICs need to reserve a region of video memory to avoid access
861 	 * from driver
862 	 */
863 	adev->mman.stolen_reserved_offset = 0;
864 	adev->mman.stolen_reserved_size = 0;
865 
866 	/*
867 	 * TODO:
868 	 * Currently there is a bug where some memory client outside
869 	 * of the driver writes to first 8M of VRAM on S3 resume,
870 	 * this overrides GART which by default gets placed in first 8M and
871 	 * causes VM_FAULTS once GTT is accessed.
872 	 * Keep the stolen memory reservation until the while this is not solved.
873 	 */
874 	switch (adev->asic_type) {
875 	case CHIP_VEGA10:
876 		adev->mman.keep_stolen_vga_memory = true;
877 		/*
878 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
879 		 */
880 #ifdef CONFIG_X86
881 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
882 			adev->mman.stolen_reserved_offset = 0x500000;
883 			adev->mman.stolen_reserved_size = 0x200000;
884 		}
885 #endif
886 		break;
887 	case CHIP_RAVEN:
888 	case CHIP_RENOIR:
889 		adev->mman.keep_stolen_vga_memory = true;
890 		break;
891 	default:
892 		adev->mman.keep_stolen_vga_memory = false;
893 		break;
894 	}
895 
896 	if (amdgpu_sriov_vf(adev) ||
897 	    !amdgpu_device_has_display_hardware(adev)) {
898 		size = 0;
899 	} else {
900 		size = amdgpu_gmc_get_vbios_fb_size(adev);
901 
902 		if (adev->mman.keep_stolen_vga_memory)
903 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
904 	}
905 
906 	/* set to 0 if the pre-OS buffer uses up most of vram */
907 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
908 		size = 0;
909 
910 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
911 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
912 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
913 	} else {
914 		adev->mman.stolen_vga_size = size;
915 		adev->mman.stolen_extended_size = 0;
916 	}
917 }
918 
919 /**
920  * amdgpu_gmc_init_pdb0 - initialize PDB0
921  *
922  * @adev: amdgpu_device pointer
923  *
924  * This function is only used when GART page table is used
925  * for FB address translatioin. In such a case, we construct
926  * a 2-level system VM page table: PDB0->PTB, to cover both
927  * VRAM of the hive and system memory.
928  *
929  * PDB0 is static, initialized once on driver initialization.
930  * The first n entries of PDB0 are used as PTE by setting
931  * P bit to 1, pointing to VRAM. The n+1'th entry points
932  * to a big PTB covering system memory.
933  *
934  */
935 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
936 {
937 	int i;
938 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
939 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
940 	 */
941 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
942 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
943 	u64 vram_addr = adev->vm_manager.vram_base_offset -
944 		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
945 	u64 vram_end = vram_addr + vram_size;
946 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
947 	int idx;
948 
949 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
950 		return;
951 
952 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
953 	flags |= AMDGPU_PTE_WRITEABLE;
954 	flags |= AMDGPU_PTE_SNOOPED;
955 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
956 	flags |= AMDGPU_PDE_PTE;
957 
958 	/* The first n PDE0 entries are used as PTE,
959 	 * pointing to vram
960 	 */
961 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
962 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
963 
964 	/* The n+1'th PDE0 entry points to a huge
965 	 * PTB who has more than 512 entries each
966 	 * pointing to a 4K system page
967 	 */
968 	flags = AMDGPU_PTE_VALID;
969 	flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
970 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
971 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
972 	drm_dev_exit(idx);
973 }
974 
975 /**
976  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
977  * address
978  *
979  * @adev: amdgpu_device pointer
980  * @mc_addr: MC address of buffer
981  */
982 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
983 {
984 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
985 }
986 
987 /**
988  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
989  * GPU's view
990  *
991  * @adev: amdgpu_device pointer
992  * @bo: amdgpu buffer object
993  */
994 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
995 {
996 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
997 }
998 
999 /**
1000  * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
1001  * from CPU's view
1002  *
1003  * @adev: amdgpu_device pointer
1004  * @bo: amdgpu buffer object
1005  */
1006 uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1007 {
1008 	return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
1009 }
1010 
1011 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1012 {
1013 	struct amdgpu_bo *vram_bo = NULL;
1014 	uint64_t vram_gpu = 0;
1015 	void *vram_ptr = NULL;
1016 
1017 	int ret, size = 0x100000;
1018 	uint8_t cptr[10];
1019 
1020 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1021 				AMDGPU_GEM_DOMAIN_VRAM,
1022 				&vram_bo,
1023 				&vram_gpu,
1024 				&vram_ptr);
1025 	if (ret)
1026 		return ret;
1027 
1028 	memset(vram_ptr, 0x86, size);
1029 	memset(cptr, 0x86, 10);
1030 
1031 	/**
1032 	 * Check the start, the mid, and the end of the memory if the content of
1033 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1034 	 * workable.
1035 	 *
1036 	 * Note: If check the each byte of whole 1M bo, it will cost too many
1037 	 * seconds, so here, we just pick up three parts for emulation.
1038 	 */
1039 	ret = memcmp(vram_ptr, cptr, 10);
1040 	if (ret)
1041 		return ret;
1042 
1043 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1044 	if (ret)
1045 		return ret;
1046 
1047 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
1048 	if (ret)
1049 		return ret;
1050 
1051 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1052 			&vram_ptr);
1053 
1054 	return 0;
1055 }
1056 
1057 static ssize_t current_memory_partition_show(
1058 	struct device *dev, struct device_attribute *addr, char *buf)
1059 {
1060 	struct drm_device *ddev = dev_get_drvdata(dev);
1061 	struct amdgpu_device *adev = drm_to_adev(ddev);
1062 	enum amdgpu_memory_partition mode;
1063 
1064 	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1065 	switch (mode) {
1066 	case AMDGPU_NPS1_PARTITION_MODE:
1067 		return sysfs_emit(buf, "NPS1\n");
1068 	case AMDGPU_NPS2_PARTITION_MODE:
1069 		return sysfs_emit(buf, "NPS2\n");
1070 	case AMDGPU_NPS3_PARTITION_MODE:
1071 		return sysfs_emit(buf, "NPS3\n");
1072 	case AMDGPU_NPS4_PARTITION_MODE:
1073 		return sysfs_emit(buf, "NPS4\n");
1074 	case AMDGPU_NPS6_PARTITION_MODE:
1075 		return sysfs_emit(buf, "NPS6\n");
1076 	case AMDGPU_NPS8_PARTITION_MODE:
1077 		return sysfs_emit(buf, "NPS8\n");
1078 	default:
1079 		return sysfs_emit(buf, "UNKNOWN\n");
1080 	}
1081 
1082 	return sysfs_emit(buf, "UNKNOWN\n");
1083 }
1084 
1085 static DEVICE_ATTR_RO(current_memory_partition);
1086 
1087 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1088 {
1089 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1090 		return 0;
1091 
1092 	return device_create_file(adev->dev,
1093 				  &dev_attr_current_memory_partition);
1094 }
1095 
1096 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1097 {
1098 	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1099 }
1100