1 /* 2 * Copyright 2018 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 27 #include <linux/io-64-nonatomic-lo-hi.h> 28 #ifdef CONFIG_X86 29 #include <asm/hypervisor.h> 30 #endif 31 32 #include "amdgpu.h" 33 #include "amdgpu_gmc.h" 34 #include "amdgpu_ras.h" 35 #include "amdgpu_reset.h" 36 #include "amdgpu_xgmi.h" 37 38 #include <drm/drm_drv.h> 39 #include <drm/ttm/ttm_tt.h> 40 41 static const u64 four_gb = 0x100000000ULL; 42 43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev) 44 { 45 return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev); 46 } 47 48 /** 49 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 50 * 51 * @adev: amdgpu_device pointer 52 * 53 * Allocate video memory for pdb0 and map it for CPU access 54 * Returns 0 for success, error for failure. 55 */ 56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) 57 { 58 int r; 59 struct amdgpu_bo_param bp; 60 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 61 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; 62 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift; 63 64 memset(&bp, 0, sizeof(bp)); 65 bp.size = PAGE_ALIGN((npdes + 1) * 8); 66 bp.byte_align = PAGE_SIZE; 67 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 68 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 69 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 70 bp.type = ttm_bo_type_kernel; 71 bp.resv = NULL; 72 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 73 74 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); 75 if (r) 76 return r; 77 78 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); 79 if (unlikely(r != 0)) 80 goto bo_reserve_failure; 81 82 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); 83 if (r) 84 goto bo_pin_failure; 85 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); 86 if (r) 87 goto bo_kmap_failure; 88 89 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 90 return 0; 91 92 bo_kmap_failure: 93 amdgpu_bo_unpin(adev->gmc.pdb0_bo); 94 bo_pin_failure: 95 amdgpu_bo_unreserve(adev->gmc.pdb0_bo); 96 bo_reserve_failure: 97 amdgpu_bo_unref(&adev->gmc.pdb0_bo); 98 return r; 99 } 100 101 /** 102 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO 103 * 104 * @bo: the BO to get the PDE for 105 * @level: the level in the PD hirarchy 106 * @addr: resulting addr 107 * @flags: resulting flags 108 * 109 * Get the address and flags to be used for a PDE (Page Directory Entry). 110 */ 111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, 112 uint64_t *addr, uint64_t *flags) 113 { 114 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 115 116 switch (bo->tbo.resource->mem_type) { 117 case TTM_PL_TT: 118 *addr = bo->tbo.ttm->dma_address[0]; 119 break; 120 case TTM_PL_VRAM: 121 *addr = amdgpu_bo_gpu_offset(bo); 122 break; 123 default: 124 *addr = 0; 125 break; 126 } 127 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); 128 amdgpu_gmc_get_vm_pde(adev, level, addr, flags); 129 } 130 131 /* 132 * amdgpu_gmc_pd_addr - return the address of the root directory 133 */ 134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) 135 { 136 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 137 uint64_t pd_addr; 138 139 /* TODO: move that into ASIC specific code */ 140 if (adev->asic_type >= CHIP_VEGA10) { 141 uint64_t flags = AMDGPU_PTE_VALID; 142 143 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); 144 pd_addr |= flags; 145 } else { 146 pd_addr = amdgpu_bo_gpu_offset(bo); 147 } 148 return pd_addr; 149 } 150 151 /** 152 * amdgpu_gmc_set_pte_pde - update the page tables using CPU 153 * 154 * @adev: amdgpu_device pointer 155 * @cpu_pt_addr: cpu address of the page table 156 * @gpu_page_idx: entry in the page table to update 157 * @addr: dst addr to write into pte/pde 158 * @flags: access flags 159 * 160 * Update the page tables using CPU. 161 */ 162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, 163 uint32_t gpu_page_idx, uint64_t addr, 164 uint64_t flags) 165 { 166 void __iomem *ptr = (void *)cpu_pt_addr; 167 uint64_t value; 168 169 /* 170 * The following is for PTE only. GART does not have PDEs. 171 */ 172 value = addr & 0x0000FFFFFFFFF000ULL; 173 value |= flags; 174 writeq(value, ptr + (gpu_page_idx * 8)); 175 176 return 0; 177 } 178 179 /** 180 * amdgpu_gmc_agp_addr - return the address in the AGP address space 181 * 182 * @bo: TTM BO which needs the address, must be in GTT domain 183 * 184 * Tries to figure out how to access the BO through the AGP aperture. Returns 185 * AMDGPU_BO_INVALID_OFFSET if that is not possible. 186 */ 187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) 188 { 189 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 190 191 if (!bo->ttm) 192 return AMDGPU_BO_INVALID_OFFSET; 193 194 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) 195 return AMDGPU_BO_INVALID_OFFSET; 196 197 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) 198 return AMDGPU_BO_INVALID_OFFSET; 199 200 return adev->gmc.agp_start + bo->ttm->dma_address[0]; 201 } 202 203 /** 204 * amdgpu_gmc_vram_location - try to find VRAM location 205 * 206 * @adev: amdgpu device structure holding all necessary information 207 * @mc: memory controller structure holding memory information 208 * @base: base address at which to put VRAM 209 * 210 * Function will try to place VRAM at base address provided 211 * as parameter. 212 */ 213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 214 u64 base) 215 { 216 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20; 217 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; 218 219 mc->vram_start = base; 220 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 221 if (limit < mc->real_vram_size) 222 mc->real_vram_size = limit; 223 224 if (vis_limit && vis_limit < mc->visible_vram_size) 225 mc->visible_vram_size = vis_limit; 226 227 if (mc->real_vram_size < mc->visible_vram_size) 228 mc->visible_vram_size = mc->real_vram_size; 229 230 if (mc->xgmi.num_physical_nodes == 0) { 231 mc->fb_start = mc->vram_start; 232 mc->fb_end = mc->vram_end; 233 } 234 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 235 mc->mc_vram_size >> 20, mc->vram_start, 236 mc->vram_end, mc->real_vram_size >> 20); 237 } 238 239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture 240 * 241 * @adev: amdgpu device structure holding all necessary information 242 * @mc: memory controller structure holding memory information 243 * 244 * This function is only used if use GART for FB translation. In such 245 * case, we use sysvm aperture (vmid0 page tables) for both vram 246 * and gart (aka system memory) access. 247 * 248 * GPUVM (and our organization of vmid0 page tables) require sysvm 249 * aperture to be placed at a location aligned with 8 times of native 250 * page size. For example, if vm_context0_cntl.page_table_block_size 251 * is 12, then native page size is 8G (2M*2^12), sysvm should start 252 * with a 64G aligned address. For simplicity, we just put sysvm at 253 * address 0. So vram start at address 0 and gart is right after vram. 254 */ 255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 256 { 257 u64 hive_vram_start = 0; 258 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; 259 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; 260 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; 261 /* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */ 262 mc->gart_start = ALIGN(hive_vram_end + 1, four_gb); 263 mc->gart_end = mc->gart_start + mc->gart_size - 1; 264 if (amdgpu_virt_xgmi_migrate_enabled(adev)) { 265 /* set mc->vram_start to 0 to switch the returned GPU address of 266 * amdgpu_bo_create_reserved() from FB aperture to GART aperture. 267 */ 268 mc->vram_start = 0; 269 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; 270 mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size); 271 } else { 272 mc->fb_start = hive_vram_start; 273 mc->fb_end = hive_vram_end; 274 } 275 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", 276 mc->mc_vram_size >> 20, mc->vram_start, 277 mc->vram_end, mc->real_vram_size >> 20); 278 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 279 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 280 } 281 282 /** 283 * amdgpu_gmc_gart_location - try to find GART location 284 * 285 * @adev: amdgpu device structure holding all necessary information 286 * @mc: memory controller structure holding memory information 287 * @gart_placement: GART placement policy with respect to VRAM 288 * 289 * Function will try to place GART before or after VRAM. 290 * If GART size is bigger than space left then we ajust GART size. 291 * Thus function will never fails. 292 */ 293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, 294 enum amdgpu_gart_placement gart_placement) 295 { 296 u64 size_af, size_bf; 297 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ 298 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); 299 300 /* VCE doesn't like it when BOs cross a 4GB segment, so align 301 * the GART base on a 4GB boundary as well. 302 */ 303 size_bf = mc->fb_start; 304 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); 305 306 if (mc->gart_size > max(size_bf, size_af)) { 307 dev_warn(adev->dev, "limiting GART\n"); 308 mc->gart_size = max(size_bf, size_af); 309 } 310 311 switch (gart_placement) { 312 case AMDGPU_GART_PLACEMENT_HIGH: 313 mc->gart_start = max_mc_address - mc->gart_size + 1; 314 break; 315 case AMDGPU_GART_PLACEMENT_LOW: 316 mc->gart_start = 0; 317 break; 318 case AMDGPU_GART_PLACEMENT_BEST_FIT: 319 default: 320 if ((size_bf >= mc->gart_size && size_bf < size_af) || 321 (size_af < mc->gart_size)) 322 mc->gart_start = 0; 323 else 324 mc->gart_start = max_mc_address - mc->gart_size + 1; 325 break; 326 } 327 328 mc->gart_start &= ~(four_gb - 1); 329 mc->gart_end = mc->gart_start + mc->gart_size - 1; 330 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", 331 mc->gart_size >> 20, mc->gart_start, mc->gart_end); 332 } 333 334 /** 335 * amdgpu_gmc_agp_location - try to find AGP location 336 * @adev: amdgpu device structure holding all necessary information 337 * @mc: memory controller structure holding memory information 338 * 339 * Function will place try to find a place for the AGP BAR in the MC address 340 * space. 341 * 342 * AGP BAR will be assigned the largest available hole in the address space. 343 * Should be called after VRAM and GART locations are setup. 344 */ 345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) 346 { 347 const uint64_t sixteen_gb = 1ULL << 34; 348 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); 349 u64 size_af, size_bf; 350 351 if (mc->fb_start > mc->gart_start) { 352 size_bf = (mc->fb_start & sixteen_gb_mask) - 353 ALIGN(mc->gart_end + 1, sixteen_gb); 354 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); 355 } else { 356 size_bf = mc->fb_start & sixteen_gb_mask; 357 size_af = (mc->gart_start & sixteen_gb_mask) - 358 ALIGN(mc->fb_end + 1, sixteen_gb); 359 } 360 361 if (size_bf > size_af) { 362 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; 363 mc->agp_size = size_bf; 364 } else { 365 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); 366 mc->agp_size = size_af; 367 } 368 369 mc->agp_end = mc->agp_start + mc->agp_size - 1; 370 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", 371 mc->agp_size >> 20, mc->agp_start, mc->agp_end); 372 } 373 374 /** 375 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value. 376 * @adev: amdgpu device structure holding all necessary information 377 * @mc: memory controller structure holding memory information 378 * 379 * To disable the AGP aperture, you need to set the start to a larger 380 * value than the end. This function sets the default value which 381 * can then be overridden using amdgpu_gmc_agp_location() if you want 382 * to enable the AGP aperture on a specific chip. 383 * 384 */ 385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev, 386 struct amdgpu_gmc *mc) 387 { 388 mc->agp_start = 0xffffffffffff; 389 mc->agp_end = 0; 390 mc->agp_size = 0; 391 } 392 393 /** 394 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid 395 * 396 * @addr: 48 bit physical address, page aligned (36 significant bits) 397 * @pasid: 16 bit process address space identifier 398 */ 399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) 400 { 401 return addr << 4 | pasid; 402 } 403 404 /** 405 * amdgpu_gmc_filter_faults - filter VM faults 406 * 407 * @adev: amdgpu device structure 408 * @ih: interrupt ring that the fault received from 409 * @addr: address of the VM fault 410 * @pasid: PASID of the process causing the fault 411 * @timestamp: timestamp of the fault 412 * 413 * Returns: 414 * True if the fault was filtered and should not be processed further. 415 * False if the fault is a new one and needs to be handled. 416 */ 417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, 418 struct amdgpu_ih_ring *ih, uint64_t addr, 419 uint16_t pasid, uint64_t timestamp) 420 { 421 struct amdgpu_gmc *gmc = &adev->gmc; 422 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); 423 struct amdgpu_gmc_fault *fault; 424 uint32_t hash; 425 426 /* Stale retry fault if timestamp goes backward */ 427 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) 428 return true; 429 430 /* If we don't have space left in the ring buffer return immediately */ 431 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - 432 AMDGPU_GMC_FAULT_TIMEOUT; 433 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) 434 return true; 435 436 /* Try to find the fault in the hash */ 437 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 438 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 439 while (fault->timestamp >= stamp) { 440 uint64_t tmp; 441 442 if (atomic64_read(&fault->key) == key) { 443 /* 444 * if we get a fault which is already present in 445 * the fault_ring and the timestamp of 446 * the fault is after the expired timestamp, 447 * then this is a new fault that needs to be added 448 * into the fault ring. 449 */ 450 if (fault->timestamp_expiry != 0 && 451 amdgpu_ih_ts_after(fault->timestamp_expiry, 452 timestamp)) 453 break; 454 else 455 return true; 456 } 457 458 tmp = fault->timestamp; 459 fault = &gmc->fault_ring[fault->next]; 460 461 /* Check if the entry was reused */ 462 if (fault->timestamp >= tmp) 463 break; 464 } 465 466 /* Add the fault to the ring */ 467 fault = &gmc->fault_ring[gmc->last_fault]; 468 atomic64_set(&fault->key, key); 469 fault->timestamp = timestamp; 470 471 /* And update the hash */ 472 fault->next = gmc->fault_hash[hash].idx; 473 gmc->fault_hash[hash].idx = gmc->last_fault++; 474 return false; 475 } 476 477 /** 478 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter 479 * 480 * @adev: amdgpu device structure 481 * @addr: address of the VM fault 482 * @pasid: PASID of the process causing the fault 483 * 484 * Remove the address from fault filter, then future vm fault on this address 485 * will pass to retry fault handler to recover. 486 */ 487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, 488 uint16_t pasid) 489 { 490 struct amdgpu_gmc *gmc = &adev->gmc; 491 uint64_t key = amdgpu_gmc_fault_key(addr, pasid); 492 struct amdgpu_ih_ring *ih; 493 struct amdgpu_gmc_fault *fault; 494 uint32_t last_wptr; 495 uint64_t last_ts; 496 uint32_t hash; 497 uint64_t tmp; 498 499 if (adev->irq.retry_cam_enabled) 500 return; 501 502 ih = &adev->irq.ih1; 503 /* Get the WPTR of the last entry in IH ring */ 504 last_wptr = amdgpu_ih_get_wptr(adev, ih); 505 /* Order wptr with ring data. */ 506 rmb(); 507 /* Get the timetamp of the last entry in IH ring */ 508 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1); 509 510 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); 511 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; 512 do { 513 if (atomic64_read(&fault->key) == key) { 514 /* 515 * Update the timestamp when this fault 516 * expired. 517 */ 518 fault->timestamp_expiry = last_ts; 519 break; 520 } 521 522 tmp = fault->timestamp; 523 fault = &gmc->fault_ring[fault->next]; 524 } while (fault->timestamp < tmp); 525 } 526 527 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev) 528 { 529 int r; 530 531 /* umc ras block */ 532 r = amdgpu_umc_ras_sw_init(adev); 533 if (r) 534 return r; 535 536 /* mmhub ras block */ 537 r = amdgpu_mmhub_ras_sw_init(adev); 538 if (r) 539 return r; 540 541 /* hdp ras block */ 542 r = amdgpu_hdp_ras_sw_init(adev); 543 if (r) 544 return r; 545 546 /* mca.x ras block */ 547 r = amdgpu_mca_mp0_ras_sw_init(adev); 548 if (r) 549 return r; 550 551 r = amdgpu_mca_mp1_ras_sw_init(adev); 552 if (r) 553 return r; 554 555 r = amdgpu_mca_mpio_ras_sw_init(adev); 556 if (r) 557 return r; 558 559 /* xgmi ras block */ 560 r = amdgpu_xgmi_ras_sw_init(adev); 561 if (r) 562 return r; 563 564 return 0; 565 } 566 567 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) 568 { 569 return 0; 570 } 571 572 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) 573 { 574 575 } 576 577 /* 578 * The latest engine allocation on gfx9/10 is: 579 * Engine 2, 3: firmware 580 * Engine 0, 1, 4~16: amdgpu ring, 581 * subject to change when ring number changes 582 * Engine 17: Gart flushes 583 */ 584 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3 585 586 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) 587 { 588 struct amdgpu_ring *ring; 589 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0}; 590 unsigned i; 591 unsigned vmhub, inv_eng; 592 struct amdgpu_ring *shared_ring; 593 594 /* init the vm inv eng for all vmhubs */ 595 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) { 596 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP; 597 /* reserve engine 5 for firmware */ 598 if (adev->enable_mes) 599 vm_inv_engs[i] &= ~(1 << 5); 600 /* reserve engine 6 for uni mes */ 601 if (adev->enable_uni_mes) 602 vm_inv_engs[i] &= ~(1 << 6); 603 /* reserve mmhub engine 3 for firmware */ 604 if (adev->enable_umsch_mm) 605 vm_inv_engs[i] &= ~(1 << 3); 606 } 607 608 for (i = 0; i < adev->num_rings; ++i) { 609 ring = adev->rings[i]; 610 vmhub = ring->vm_hub; 611 612 if (ring == &adev->mes.ring[0] || 613 ring == &adev->mes.ring[1] || 614 ring == &adev->umsch_mm.ring || 615 ring == &adev->cper.ring_buf) 616 continue; 617 618 /* Skip if the ring is a shared ring */ 619 if (amdgpu_sdma_is_shared_inv_eng(adev, ring)) 620 continue; 621 622 inv_eng = ffs(vm_inv_engs[vmhub]); 623 if (!inv_eng) { 624 dev_err(adev->dev, "no VM inv eng for ring %s\n", 625 ring->name); 626 return -EINVAL; 627 } 628 629 ring->vm_inv_eng = inv_eng - 1; 630 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); 631 632 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", 633 ring->name, ring->vm_inv_eng, ring->vm_hub); 634 /* SDMA has a special packet which allows it to use the same 635 * invalidation engine for all the rings in one instance. 636 * Therefore, we do not allocate a separate VM invalidation engine 637 * for SDMA page rings. Instead, they share the VM invalidation 638 * engine with the SDMA gfx ring. This change ensures efficient 639 * resource management and avoids the issue of insufficient VM 640 * invalidation engines. 641 */ 642 shared_ring = amdgpu_sdma_get_shared_ring(adev, ring); 643 if (shared_ring) { 644 shared_ring->vm_inv_eng = ring->vm_inv_eng; 645 dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n", 646 ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub); 647 continue; 648 } 649 } 650 651 return 0; 652 } 653 654 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, 655 uint32_t vmhub, uint32_t flush_type) 656 { 657 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 658 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub]; 659 struct dma_fence *fence; 660 struct amdgpu_job *job; 661 int r; 662 663 if (!hub->sdma_invalidation_workaround || vmid || 664 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready || 665 !ring->sched.ready) { 666 /* 667 * A GPU reset should flush all TLBs anyway, so no need to do 668 * this while one is ongoing. 669 */ 670 if (!down_read_trylock(&adev->reset_domain->sem)) 671 return; 672 673 if (adev->gmc.flush_tlb_needs_extra_type_2) 674 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 675 vmhub, 2); 676 677 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 678 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, 679 vmhub, 0); 680 681 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, 682 flush_type); 683 up_read(&adev->reset_domain->sem); 684 return; 685 } 686 687 /* The SDMA on Navi 1x has a bug which can theoretically result in memory 688 * corruption if an invalidation happens at the same time as an VA 689 * translation. Avoid this by doing the invalidation from the SDMA 690 * itself at least for GART. 691 */ 692 mutex_lock(&adev->mman.gtt_window_lock); 693 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr, 694 AMDGPU_FENCE_OWNER_UNDEFINED, 695 16 * 4, AMDGPU_IB_POOL_IMMEDIATE, 696 &job, AMDGPU_KERNEL_JOB_ID_FLUSH_GPU_TLB); 697 if (r) 698 goto error_alloc; 699 700 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 701 job->vm_needs_flush = true; 702 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop; 703 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 704 fence = amdgpu_job_submit(job); 705 mutex_unlock(&adev->mman.gtt_window_lock); 706 707 dma_fence_wait(fence, false); 708 dma_fence_put(fence); 709 710 return; 711 712 error_alloc: 713 mutex_unlock(&adev->mman.gtt_window_lock); 714 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r); 715 } 716 717 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid, 718 uint32_t flush_type, bool all_hub, 719 uint32_t inst) 720 { 721 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring; 722 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst]; 723 unsigned int ndw; 724 int r, cnt = 0; 725 uint32_t seq; 726 727 /* 728 * A GPU reset should flush all TLBs anyway, so no need to do 729 * this while one is ongoing. 730 */ 731 if (!down_read_trylock(&adev->reset_domain->sem)) 732 return 0; 733 734 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) { 735 if (adev->gmc.flush_tlb_needs_extra_type_2) 736 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 737 2, all_hub, 738 inst); 739 740 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) 741 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 742 0, all_hub, 743 inst); 744 745 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 746 flush_type, all_hub, 747 inst); 748 r = 0; 749 } else { 750 /* 2 dwords flush + 8 dwords fence */ 751 ndw = kiq->pmf->invalidate_tlbs_size + 8; 752 753 if (adev->gmc.flush_tlb_needs_extra_type_2) 754 ndw += kiq->pmf->invalidate_tlbs_size; 755 756 if (adev->gmc.flush_tlb_needs_extra_type_0) 757 ndw += kiq->pmf->invalidate_tlbs_size; 758 759 spin_lock(&adev->gfx.kiq[inst].ring_lock); 760 r = amdgpu_ring_alloc(ring, ndw); 761 if (r) { 762 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 763 goto error_unlock_reset; 764 } 765 if (adev->gmc.flush_tlb_needs_extra_type_2) 766 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub); 767 768 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0) 769 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub); 770 771 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub); 772 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 773 if (r) { 774 amdgpu_ring_undo(ring); 775 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 776 goto error_unlock_reset; 777 } 778 779 amdgpu_ring_commit(ring); 780 spin_unlock(&adev->gfx.kiq[inst].ring_lock); 781 782 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 783 784 might_sleep(); 785 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 786 !amdgpu_reset_pending(adev->reset_domain)) { 787 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 788 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 789 } 790 791 if (cnt > MAX_KIQ_REG_TRY) { 792 dev_err(adev->dev, "timeout waiting for kiq fence\n"); 793 r = -ETIME; 794 } else 795 r = 0; 796 } 797 798 error_unlock_reset: 799 up_read(&adev->reset_domain->sem); 800 return r; 801 } 802 803 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev, 804 uint32_t reg0, uint32_t reg1, 805 uint32_t ref, uint32_t mask, 806 uint32_t xcc_inst) 807 { 808 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst]; 809 struct amdgpu_ring *ring = &kiq->ring; 810 signed long r, cnt = 0; 811 unsigned long flags; 812 uint32_t seq; 813 814 if (adev->mes.ring[0].sched.ready) { 815 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1, 816 ref, mask); 817 return; 818 } 819 820 spin_lock_irqsave(&kiq->ring_lock, flags); 821 amdgpu_ring_alloc(ring, 32); 822 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1, 823 ref, mask); 824 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); 825 if (r) 826 goto failed_undo; 827 828 amdgpu_ring_commit(ring); 829 spin_unlock_irqrestore(&kiq->ring_lock, flags); 830 831 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 832 833 /* don't wait anymore for IRQ context */ 834 if (r < 1 && in_interrupt()) 835 goto failed_kiq; 836 837 might_sleep(); 838 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY && 839 !amdgpu_reset_pending(adev->reset_domain)) { 840 841 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); 842 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); 843 } 844 845 if (cnt > MAX_KIQ_REG_TRY) 846 goto failed_kiq; 847 848 return; 849 850 failed_undo: 851 amdgpu_ring_undo(ring); 852 spin_unlock_irqrestore(&kiq->ring_lock, flags); 853 failed_kiq: 854 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1); 855 } 856 857 /** 858 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ 859 * @adev: amdgpu_device pointer 860 * 861 * Check and set if an the device @adev supports Trusted Memory 862 * Zones (TMZ). 863 */ 864 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) 865 { 866 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { 867 /* RAVEN */ 868 case IP_VERSION(9, 2, 2): 869 case IP_VERSION(9, 1, 0): 870 /* RENOIR looks like RAVEN */ 871 case IP_VERSION(9, 3, 0): 872 /* GC 10.3.7 */ 873 case IP_VERSION(10, 3, 7): 874 /* GC 11.0.1 */ 875 case IP_VERSION(11, 0, 1): 876 if (amdgpu_tmz == 0) { 877 adev->gmc.tmz_enabled = false; 878 dev_info(adev->dev, 879 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); 880 } else { 881 adev->gmc.tmz_enabled = true; 882 dev_info(adev->dev, 883 "Trusted Memory Zone (TMZ) feature enabled\n"); 884 } 885 break; 886 case IP_VERSION(10, 1, 10): 887 case IP_VERSION(10, 1, 1): 888 case IP_VERSION(10, 1, 2): 889 case IP_VERSION(10, 1, 3): 890 case IP_VERSION(10, 3, 0): 891 case IP_VERSION(10, 3, 2): 892 case IP_VERSION(10, 3, 4): 893 case IP_VERSION(10, 3, 5): 894 case IP_VERSION(10, 3, 6): 895 /* VANGOGH */ 896 case IP_VERSION(10, 3, 1): 897 /* YELLOW_CARP*/ 898 case IP_VERSION(10, 3, 3): 899 case IP_VERSION(11, 0, 4): 900 case IP_VERSION(11, 5, 0): 901 case IP_VERSION(11, 5, 1): 902 case IP_VERSION(11, 5, 2): 903 case IP_VERSION(11, 5, 3): 904 /* Don't enable it by default yet. 905 */ 906 if (amdgpu_tmz < 1) { 907 adev->gmc.tmz_enabled = false; 908 dev_info(adev->dev, 909 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); 910 } else { 911 adev->gmc.tmz_enabled = true; 912 dev_info(adev->dev, 913 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); 914 } 915 break; 916 default: 917 adev->gmc.tmz_enabled = false; 918 dev_info(adev->dev, 919 "Trusted Memory Zone (TMZ) feature not supported\n"); 920 break; 921 } 922 } 923 924 /** 925 * amdgpu_gmc_noretry_set -- set per asic noretry defaults 926 * @adev: amdgpu_device pointer 927 * 928 * Set a per asic default for the no-retry parameter. 929 * 930 */ 931 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) 932 { 933 struct amdgpu_gmc *gmc = &adev->gmc; 934 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); 935 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) || 936 gc_ver == IP_VERSION(9, 4, 0) || 937 gc_ver == IP_VERSION(9, 4, 1) || 938 gc_ver == IP_VERSION(9, 4, 2) || 939 gc_ver == IP_VERSION(9, 4, 3) || 940 gc_ver == IP_VERSION(9, 4, 4) || 941 gc_ver == IP_VERSION(9, 5, 0) || 942 gc_ver >= IP_VERSION(10, 3, 0)); 943 944 if (!amdgpu_sriov_xnack_support(adev)) 945 gmc->noretry = 1; 946 else 947 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry; 948 } 949 950 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, 951 bool enable) 952 { 953 struct amdgpu_vmhub *hub; 954 u32 tmp, reg, i; 955 956 hub = &adev->vmhub[hub_type]; 957 for (i = 0; i < 16; i++) { 958 reg = hub->vm_context0_cntl + hub->ctx_distance * i; 959 960 tmp = (hub_type == AMDGPU_GFXHUB(0)) ? 961 RREG32_SOC15_IP(GC, reg) : 962 RREG32_SOC15_IP(MMHUB, reg); 963 964 if (enable) 965 tmp |= hub->vm_cntx_cntl_vm_fault; 966 else 967 tmp &= ~hub->vm_cntx_cntl_vm_fault; 968 969 (hub_type == AMDGPU_GFXHUB(0)) ? 970 WREG32_SOC15_IP(GC, reg, tmp) : 971 WREG32_SOC15_IP(MMHUB, reg, tmp); 972 } 973 } 974 975 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) 976 { 977 unsigned size; 978 979 /* 980 * Some ASICs need to reserve a region of video memory to avoid access 981 * from driver 982 */ 983 adev->mman.stolen_reserved_offset = 0; 984 adev->mman.stolen_reserved_size = 0; 985 986 /* 987 * TODO: 988 * Currently there is a bug where some memory client outside 989 * of the driver writes to first 8M of VRAM on S3 resume, 990 * this overrides GART which by default gets placed in first 8M and 991 * causes VM_FAULTS once GTT is accessed. 992 * Keep the stolen memory reservation until the while this is not solved. 993 */ 994 switch (adev->asic_type) { 995 case CHIP_VEGA10: 996 adev->mman.keep_stolen_vga_memory = true; 997 /* 998 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area. 999 */ 1000 #ifdef CONFIG_X86 1001 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) { 1002 adev->mman.stolen_reserved_offset = 0x500000; 1003 adev->mman.stolen_reserved_size = 0x200000; 1004 } 1005 #endif 1006 break; 1007 case CHIP_RAVEN: 1008 case CHIP_RENOIR: 1009 adev->mman.keep_stolen_vga_memory = true; 1010 break; 1011 default: 1012 adev->mman.keep_stolen_vga_memory = false; 1013 break; 1014 } 1015 1016 if (amdgpu_sriov_vf(adev) || 1017 !amdgpu_device_has_display_hardware(adev)) { 1018 size = 0; 1019 } else { 1020 size = amdgpu_gmc_get_vbios_fb_size(adev); 1021 1022 if (adev->mman.keep_stolen_vga_memory) 1023 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); 1024 } 1025 1026 /* set to 0 if the pre-OS buffer uses up most of vram */ 1027 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) 1028 size = 0; 1029 1030 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { 1031 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; 1032 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; 1033 } else { 1034 adev->mman.stolen_vga_size = size; 1035 adev->mman.stolen_extended_size = 0; 1036 } 1037 } 1038 1039 /** 1040 * amdgpu_gmc_init_pdb0 - initialize PDB0 1041 * 1042 * @adev: amdgpu_device pointer 1043 * 1044 * This function is only used when GART page table is used 1045 * for FB address translatioin. In such a case, we construct 1046 * a 2-level system VM page table: PDB0->PTB, to cover both 1047 * VRAM of the hive and system memory. 1048 * 1049 * PDB0 is static, initialized once on driver initialization. 1050 * The first n entries of PDB0 are used as PTE by setting 1051 * P bit to 1, pointing to VRAM. The n+1'th entry points 1052 * to a big PTB covering system memory. 1053 * 1054 */ 1055 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) 1056 { 1057 int i; 1058 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? 1059 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M 1060 */ 1061 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; 1062 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21; 1063 u64 vram_addr, vram_end; 1064 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); 1065 int idx; 1066 1067 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1068 return; 1069 1070 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 1071 flags |= AMDGPU_PTE_WRITEABLE; 1072 flags |= AMDGPU_PTE_SNOOPED; 1073 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); 1074 flags |= AMDGPU_PDE_PTE_FLAG(adev); 1075 1076 vram_addr = adev->vm_manager.vram_base_offset; 1077 if (!amdgpu_virt_xgmi_migrate_enabled(adev)) 1078 vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; 1079 vram_end = vram_addr + vram_size; 1080 1081 /* The first n PDE0 entries are used as PTE, 1082 * pointing to vram 1083 */ 1084 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) 1085 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); 1086 1087 /* The n+1'th PDE0 entry points to a huge 1088 * PTB who has more than 512 entries each 1089 * pointing to a 4K system page 1090 */ 1091 flags = AMDGPU_PTE_VALID; 1092 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0); 1093 /* Requires gart_ptb_gpu_pa to be 4K aligned */ 1094 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); 1095 drm_dev_exit(idx); 1096 } 1097 1098 /** 1099 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC 1100 * address 1101 * 1102 * @adev: amdgpu_device pointer 1103 * @mc_addr: MC address of buffer 1104 */ 1105 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) 1106 { 1107 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; 1108 } 1109 1110 /** 1111 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from 1112 * GPU's view 1113 * 1114 * @adev: amdgpu_device pointer 1115 * @bo: amdgpu buffer object 1116 */ 1117 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) 1118 { 1119 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); 1120 } 1121 1122 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) 1123 { 1124 struct amdgpu_bo *vram_bo = NULL; 1125 uint64_t vram_gpu = 0; 1126 void *vram_ptr = NULL; 1127 1128 int ret, size = 0x100000; 1129 uint8_t cptr[10]; 1130 1131 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, 1132 AMDGPU_GEM_DOMAIN_VRAM, 1133 &vram_bo, 1134 &vram_gpu, 1135 &vram_ptr); 1136 if (ret) 1137 return ret; 1138 1139 memset(vram_ptr, 0x86, size); 1140 memset(cptr, 0x86, 10); 1141 1142 /** 1143 * Check the start, the mid, and the end of the memory if the content of 1144 * each byte is the pattern "0x86". If yes, we suppose the vram bo is 1145 * workable. 1146 * 1147 * Note: If check the each byte of whole 1M bo, it will cost too many 1148 * seconds, so here, we just pick up three parts for emulation. 1149 */ 1150 ret = memcmp(vram_ptr, cptr, 10); 1151 if (ret) { 1152 ret = -EIO; 1153 goto release_buffer; 1154 } 1155 1156 ret = memcmp(vram_ptr + (size / 2), cptr, 10); 1157 if (ret) { 1158 ret = -EIO; 1159 goto release_buffer; 1160 } 1161 1162 ret = memcmp(vram_ptr + size - 10, cptr, 10); 1163 if (ret) { 1164 ret = -EIO; 1165 goto release_buffer; 1166 } 1167 1168 release_buffer: 1169 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, 1170 &vram_ptr); 1171 1172 return ret; 1173 } 1174 1175 static const char *nps_desc[] = { 1176 [AMDGPU_NPS1_PARTITION_MODE] = "NPS1", 1177 [AMDGPU_NPS2_PARTITION_MODE] = "NPS2", 1178 [AMDGPU_NPS3_PARTITION_MODE] = "NPS3", 1179 [AMDGPU_NPS4_PARTITION_MODE] = "NPS4", 1180 [AMDGPU_NPS6_PARTITION_MODE] = "NPS6", 1181 [AMDGPU_NPS8_PARTITION_MODE] = "NPS8", 1182 }; 1183 1184 static ssize_t available_memory_partition_show(struct device *dev, 1185 struct device_attribute *addr, 1186 char *buf) 1187 { 1188 struct drm_device *ddev = dev_get_drvdata(dev); 1189 struct amdgpu_device *adev = drm_to_adev(ddev); 1190 int size = 0, mode; 1191 char *sep = ""; 1192 1193 for_each_inst(mode, adev->gmc.supported_nps_modes) { 1194 size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]); 1195 sep = ", "; 1196 } 1197 size += sysfs_emit_at(buf, size, "\n"); 1198 1199 return size; 1200 } 1201 1202 static ssize_t current_memory_partition_store(struct device *dev, 1203 struct device_attribute *attr, 1204 const char *buf, size_t count) 1205 { 1206 struct drm_device *ddev = dev_get_drvdata(dev); 1207 struct amdgpu_device *adev = drm_to_adev(ddev); 1208 enum amdgpu_memory_partition mode; 1209 struct amdgpu_hive_info *hive; 1210 int i; 1211 1212 mode = UNKNOWN_MEMORY_PARTITION_MODE; 1213 for_each_inst(i, adev->gmc.supported_nps_modes) { 1214 if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) { 1215 mode = i; 1216 break; 1217 } 1218 } 1219 1220 if (mode == UNKNOWN_MEMORY_PARTITION_MODE) 1221 return -EINVAL; 1222 1223 if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) { 1224 dev_info( 1225 adev->dev, 1226 "requested NPS mode is same as current NPS mode, skipping\n"); 1227 return count; 1228 } 1229 1230 /* If device is part of hive, all devices in the hive should request the 1231 * same mode. Hence store the requested mode in hive. 1232 */ 1233 hive = amdgpu_get_xgmi_hive(adev); 1234 if (hive) { 1235 atomic_set(&hive->requested_nps_mode, mode); 1236 amdgpu_put_xgmi_hive(hive); 1237 } else { 1238 adev->gmc.requested_nps_mode = mode; 1239 } 1240 1241 dev_info( 1242 adev->dev, 1243 "NPS mode change requested, please remove and reload the driver\n"); 1244 1245 return count; 1246 } 1247 1248 static ssize_t current_memory_partition_show( 1249 struct device *dev, struct device_attribute *addr, char *buf) 1250 { 1251 struct drm_device *ddev = dev_get_drvdata(dev); 1252 struct amdgpu_device *adev = drm_to_adev(ddev); 1253 enum amdgpu_memory_partition mode; 1254 1255 /* Only minimal precaution taken to reject requests while in reset */ 1256 if (amdgpu_in_reset(adev)) 1257 return -EPERM; 1258 1259 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1260 if ((mode >= ARRAY_SIZE(nps_desc)) || 1261 (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode)) 1262 return sysfs_emit(buf, "UNKNOWN\n"); 1263 1264 return sysfs_emit(buf, "%s\n", nps_desc[mode]); 1265 } 1266 1267 static DEVICE_ATTR_RW(current_memory_partition); 1268 static DEVICE_ATTR_RO(available_memory_partition); 1269 1270 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev) 1271 { 1272 bool nps_switch_support; 1273 int r = 0; 1274 1275 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1276 return 0; 1277 1278 nps_switch_support = (hweight32(adev->gmc.supported_nps_modes & 1279 AMDGPU_ALL_NPS_MASK) > 1); 1280 if (!nps_switch_support) 1281 dev_attr_current_memory_partition.attr.mode &= 1282 ~(S_IWUSR | S_IWGRP | S_IWOTH); 1283 else 1284 r = device_create_file(adev->dev, 1285 &dev_attr_available_memory_partition); 1286 1287 if (r) 1288 return r; 1289 1290 return device_create_file(adev->dev, 1291 &dev_attr_current_memory_partition); 1292 } 1293 1294 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev) 1295 { 1296 if (!adev->gmc.gmc_funcs->query_mem_partition_mode) 1297 return; 1298 1299 device_remove_file(adev->dev, &dev_attr_current_memory_partition); 1300 device_remove_file(adev->dev, &dev_attr_available_memory_partition); 1301 } 1302 1303 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev, 1304 struct amdgpu_mem_partition_info *mem_ranges, 1305 uint8_t *exp_ranges) 1306 { 1307 struct amdgpu_gmc_memrange *ranges; 1308 int range_cnt, ret, i, j; 1309 uint32_t nps_type; 1310 bool refresh; 1311 1312 if (!mem_ranges || !exp_ranges) 1313 return -EINVAL; 1314 1315 refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) && 1316 (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS); 1317 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges, 1318 &range_cnt, refresh); 1319 1320 if (ret) 1321 return ret; 1322 1323 /* TODO: For now, expect ranges and partition count to be the same. 1324 * Adjust if there are holes expected in any NPS domain. 1325 */ 1326 if (*exp_ranges && (range_cnt != *exp_ranges)) { 1327 dev_warn( 1328 adev->dev, 1329 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d", 1330 *exp_ranges, nps_type, range_cnt); 1331 ret = -EINVAL; 1332 goto err; 1333 } 1334 1335 for (i = 0; i < range_cnt; ++i) { 1336 if (ranges[i].base_address >= ranges[i].limit_address) { 1337 dev_warn( 1338 adev->dev, 1339 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx", 1340 nps_type, i, ranges[i].base_address, 1341 ranges[i].limit_address); 1342 ret = -EINVAL; 1343 goto err; 1344 } 1345 1346 /* Check for overlaps, not expecting any now */ 1347 for (j = i - 1; j >= 0; j--) { 1348 if (max(ranges[j].base_address, 1349 ranges[i].base_address) <= 1350 min(ranges[j].limit_address, 1351 ranges[i].limit_address)) { 1352 dev_warn( 1353 adev->dev, 1354 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]", 1355 ranges[j].base_address, 1356 ranges[j].limit_address, 1357 ranges[i].base_address, 1358 ranges[i].limit_address); 1359 ret = -EINVAL; 1360 goto err; 1361 } 1362 } 1363 1364 mem_ranges[i].range.fpfn = 1365 (ranges[i].base_address - 1366 adev->vm_manager.vram_base_offset) >> 1367 AMDGPU_GPU_PAGE_SHIFT; 1368 mem_ranges[i].range.lpfn = 1369 (ranges[i].limit_address - 1370 adev->vm_manager.vram_base_offset) >> 1371 AMDGPU_GPU_PAGE_SHIFT; 1372 mem_ranges[i].size = 1373 ranges[i].limit_address - ranges[i].base_address + 1; 1374 } 1375 1376 if (!*exp_ranges) 1377 *exp_ranges = range_cnt; 1378 err: 1379 kfree(ranges); 1380 1381 return ret; 1382 } 1383 1384 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev, 1385 int nps_mode) 1386 { 1387 /* Not supported on VF devices and APUs */ 1388 if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU)) 1389 return -EOPNOTSUPP; 1390 1391 if (!adev->psp.funcs) { 1392 dev_err(adev->dev, 1393 "PSP interface not available for nps mode change request"); 1394 return -EINVAL; 1395 } 1396 1397 return psp_memory_partition(&adev->psp, nps_mode); 1398 } 1399 1400 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev, 1401 int req_nps_mode, 1402 int cur_nps_mode) 1403 { 1404 return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) == 1405 BIT(req_nps_mode)) && 1406 req_nps_mode != cur_nps_mode); 1407 } 1408 1409 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev) 1410 { 1411 int req_nps_mode, cur_nps_mode, r; 1412 struct amdgpu_hive_info *hive; 1413 1414 if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes || 1415 !adev->gmc.gmc_funcs->request_mem_partition_mode) 1416 return; 1417 1418 cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); 1419 hive = amdgpu_get_xgmi_hive(adev); 1420 if (hive) { 1421 req_nps_mode = atomic_read(&hive->requested_nps_mode); 1422 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, 1423 cur_nps_mode)) { 1424 amdgpu_put_xgmi_hive(hive); 1425 return; 1426 } 1427 r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode); 1428 amdgpu_put_xgmi_hive(hive); 1429 goto out; 1430 } 1431 1432 req_nps_mode = adev->gmc.requested_nps_mode; 1433 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode)) 1434 return; 1435 1436 /* even if this fails, we should let driver unload w/o blocking */ 1437 r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode); 1438 out: 1439 if (r) 1440 dev_err(adev->dev, "NPS mode change request failed\n"); 1441 else 1442 dev_info( 1443 adev->dev, 1444 "NPS mode change request done, reload driver to complete the change\n"); 1445 } 1446 1447 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev) 1448 { 1449 if (adev->gmc.gmc_funcs->need_reset_on_init) 1450 return adev->gmc.gmc_funcs->need_reset_on_init(adev); 1451 1452 return false; 1453 } 1454 1455 enum amdgpu_memory_partition 1456 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev) 1457 { 1458 switch (adev->gmc.num_mem_partitions) { 1459 case 0: 1460 return UNKNOWN_MEMORY_PARTITION_MODE; 1461 case 1: 1462 return AMDGPU_NPS1_PARTITION_MODE; 1463 case 2: 1464 return AMDGPU_NPS2_PARTITION_MODE; 1465 case 4: 1466 return AMDGPU_NPS4_PARTITION_MODE; 1467 case 8: 1468 return AMDGPU_NPS8_PARTITION_MODE; 1469 default: 1470 return AMDGPU_NPS1_PARTITION_MODE; 1471 } 1472 } 1473 1474 enum amdgpu_memory_partition 1475 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes) 1476 { 1477 enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE; 1478 1479 if (adev->nbio.funcs && 1480 adev->nbio.funcs->get_memory_partition_mode) 1481 mode = adev->nbio.funcs->get_memory_partition_mode(adev, 1482 supp_modes); 1483 else 1484 dev_warn(adev->dev, "memory partition mode query is not supported\n"); 1485 1486 return mode; 1487 } 1488 1489 enum amdgpu_memory_partition 1490 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev) 1491 { 1492 if (amdgpu_sriov_vf(adev)) 1493 return amdgpu_gmc_get_vf_memory_partition(adev); 1494 else 1495 return amdgpu_gmc_get_memory_partition(adev, NULL); 1496 } 1497 1498 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev) 1499 { 1500 enum amdgpu_memory_partition mode; 1501 u32 supp_modes; 1502 bool valid; 1503 1504 mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes); 1505 1506 /* Mode detected by hardware not present in supported modes */ 1507 if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) && 1508 !(BIT(mode - 1) & supp_modes)) 1509 return false; 1510 1511 switch (mode) { 1512 case UNKNOWN_MEMORY_PARTITION_MODE: 1513 case AMDGPU_NPS1_PARTITION_MODE: 1514 valid = (adev->gmc.num_mem_partitions == 1); 1515 break; 1516 case AMDGPU_NPS2_PARTITION_MODE: 1517 valid = (adev->gmc.num_mem_partitions == 2); 1518 break; 1519 case AMDGPU_NPS4_PARTITION_MODE: 1520 valid = (adev->gmc.num_mem_partitions == 3 || 1521 adev->gmc.num_mem_partitions == 4); 1522 break; 1523 case AMDGPU_NPS8_PARTITION_MODE: 1524 valid = (adev->gmc.num_mem_partitions == 8); 1525 break; 1526 default: 1527 valid = false; 1528 } 1529 1530 return valid; 1531 } 1532 1533 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid) 1534 { 1535 int i; 1536 1537 /* Check if node with id 'nid' is present in 'node_ids' array */ 1538 for (i = 0; i < num_ids; ++i) 1539 if (node_ids[i] == nid) 1540 return true; 1541 1542 return false; 1543 } 1544 1545 static void 1546 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev, 1547 struct amdgpu_mem_partition_info *mem_ranges) 1548 { 1549 struct amdgpu_numa_info numa_info; 1550 int node_ids[AMDGPU_MAX_MEM_RANGES]; 1551 int num_ranges = 0, ret; 1552 int num_xcc, xcc_id; 1553 uint32_t xcc_mask; 1554 1555 num_xcc = NUM_XCC(adev->gfx.xcc_mask); 1556 xcc_mask = (1U << num_xcc) - 1; 1557 1558 for_each_inst(xcc_id, xcc_mask) { 1559 ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info); 1560 if (ret) 1561 continue; 1562 1563 if (numa_info.nid == NUMA_NO_NODE) { 1564 mem_ranges[0].size = numa_info.size; 1565 mem_ranges[0].numa.node = numa_info.nid; 1566 num_ranges = 1; 1567 break; 1568 } 1569 1570 if (amdgpu_gmc_is_node_present(node_ids, num_ranges, 1571 numa_info.nid)) 1572 continue; 1573 1574 node_ids[num_ranges] = numa_info.nid; 1575 mem_ranges[num_ranges].numa.node = numa_info.nid; 1576 mem_ranges[num_ranges].size = numa_info.size; 1577 ++num_ranges; 1578 } 1579 1580 adev->gmc.num_mem_partitions = num_ranges; 1581 } 1582 1583 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev, 1584 struct amdgpu_mem_partition_info *mem_ranges) 1585 { 1586 enum amdgpu_memory_partition mode; 1587 u32 start_addr = 0, size; 1588 int i, r, l; 1589 1590 mode = amdgpu_gmc_query_memory_partition(adev); 1591 1592 switch (mode) { 1593 case UNKNOWN_MEMORY_PARTITION_MODE: 1594 adev->gmc.num_mem_partitions = 0; 1595 break; 1596 case AMDGPU_NPS1_PARTITION_MODE: 1597 adev->gmc.num_mem_partitions = 1; 1598 break; 1599 case AMDGPU_NPS2_PARTITION_MODE: 1600 adev->gmc.num_mem_partitions = 2; 1601 break; 1602 case AMDGPU_NPS4_PARTITION_MODE: 1603 if (adev->flags & AMD_IS_APU) 1604 adev->gmc.num_mem_partitions = 3; 1605 else 1606 adev->gmc.num_mem_partitions = 4; 1607 break; 1608 case AMDGPU_NPS8_PARTITION_MODE: 1609 adev->gmc.num_mem_partitions = 8; 1610 break; 1611 default: 1612 adev->gmc.num_mem_partitions = 1; 1613 break; 1614 } 1615 1616 /* Use NPS range info, if populated */ 1617 r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges, 1618 &adev->gmc.num_mem_partitions); 1619 if (!r) { 1620 l = 0; 1621 for (i = 1; i < adev->gmc.num_mem_partitions; ++i) { 1622 if (mem_ranges[i].range.lpfn > 1623 mem_ranges[i - 1].range.lpfn) 1624 l = i; 1625 } 1626 1627 } else { 1628 if (!adev->gmc.num_mem_partitions) { 1629 dev_warn(adev->dev, 1630 "Not able to detect NPS mode, fall back to NPS1\n"); 1631 adev->gmc.num_mem_partitions = 1; 1632 } 1633 /* Fallback to sw based calculation */ 1634 size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT; 1635 size /= adev->gmc.num_mem_partitions; 1636 1637 for (i = 0; i < adev->gmc.num_mem_partitions; ++i) { 1638 mem_ranges[i].range.fpfn = start_addr; 1639 mem_ranges[i].size = 1640 ((u64)size << AMDGPU_GPU_PAGE_SHIFT); 1641 mem_ranges[i].range.lpfn = start_addr + size - 1; 1642 start_addr += size; 1643 } 1644 1645 l = adev->gmc.num_mem_partitions - 1; 1646 } 1647 1648 /* Adjust the last one */ 1649 mem_ranges[l].range.lpfn = 1650 (adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1; 1651 mem_ranges[l].size = 1652 adev->gmc.real_vram_size - 1653 ((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT); 1654 } 1655 1656 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev) 1657 { 1658 bool valid; 1659 1660 adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES, 1661 sizeof(struct amdgpu_mem_partition_info), 1662 GFP_KERNEL); 1663 if (!adev->gmc.mem_partitions) 1664 return -ENOMEM; 1665 1666 if (adev->gmc.is_app_apu) 1667 amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions); 1668 else 1669 amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions); 1670 1671 if (amdgpu_sriov_vf(adev)) 1672 valid = true; 1673 else 1674 valid = amdgpu_gmc_validate_partition_info(adev); 1675 if (!valid) { 1676 /* TODO: handle invalid case */ 1677 dev_warn(adev->dev, 1678 "Mem ranges not matching with hardware config\n"); 1679 } 1680 1681 return 0; 1682 } 1683